

Α.	NSK Linear Rolling Guide Product
В.	Ball Screws
C.	Monocarrier™
D.	Other
E.	Appendices

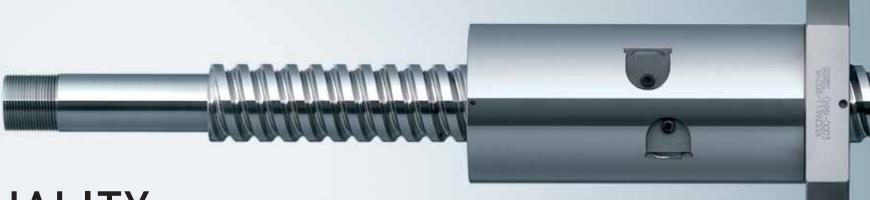
GLOBAL BRAND

NSK products are known and used all over the world

Since 1916, when it was the first company in Japan to produce ball bearings,

NSK has contributed to industrial growth both domestically and overseas

for 90 years. Now, the company's accumulated technology in bearings has


been applied to precision products in order to support core components used

in a variety of machinery. Precision products marketed under the trusted

NSK brand, such as Ball Screws, Linear Guides, Monocarriers,

mechatronic products, and Spindles are found in every corner of the globe.

TOTAL QUALITY

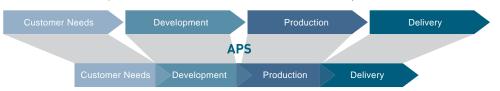
Focus on customers' total quality

Product quality is essential for manufacturers. NSK builds on its solid foundation of quality to enhance its ability to offer solutions that add value for customers, taking advantage of capabilities afforded by supply chain management (APS: Advanced Production System), and further extending its technical expertise based on four core technologies. Quality is the objective in all our business processes toward becoming "No. 1 in Total Quality."

SOLUTIONS

Improvement of customers' product value by technical support

APS


Advanced production system for speed, quality and global supply chain management

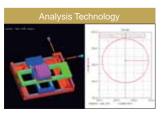
Solutions only NSK can propose are contributing to the advancement of manufacturing for a new era.


With its Technology Center as the cornerstone, NSK is able to provide technical support worldwide and quickly offer innovative solutions. We are able to more rapidly deliver the required products by combining a global production system with a broad lineup that includes precision products and bearings. These detailed solutions and technical support efforts enable us to enhance the value of our customers' products and thereby deepen our partnerships with those customers.

NSK has streamlined operations to cut lead times and achieve faster delivery.

To more effectively respond to customer needs, NSK implemented APS (Advanced Production System) encompassing sales, development, design, manufacturing and distribution. Under our APS, we established a project for streamlining operations to shorten lead times. As a result, the system has boosted supply capacity and directly addressed customer demand.

5



TECHNOLOGY

Developing innovative technologies and products by our four core technologies

Tribology

Precision products with rotational and linear movement require lubrication that supports high speed, low noise operation, load capacity, durability, and other desirable functionality. NSK has applied, and provided to customers, advanced tribology (friction control technology) to such areas as grease, solid lubricants, and surface processing methods for precision products.

NSK utilizes computer simulations to conduct virtual experiments that require high precision or are difficult to run under actual machine operating conditions. Further improvements in analysis technology have accelerated product development.

We are aggressively striving to advance material technology through material design, thermal treatment, performance evaluation, and analysis as the cornerstone for improving product performance and durability as well as for reducing costs and boosting productivity.

Mechatronics

Our mechatronics, which integrate mechanical and electronic elements, incorporates state-of-the-art advances in high-performance motors along with control and sensor technology.

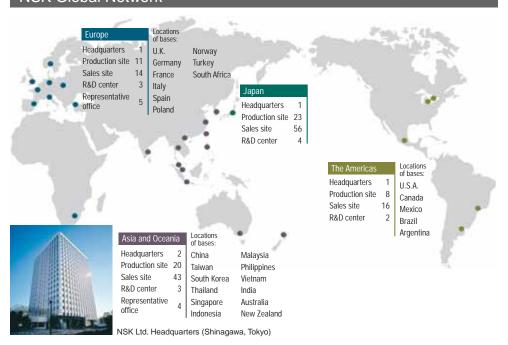
Environmental Initiatives

Approach and Basic Policy for Development and Design

In its Environmental Code of Conduct, the NSK Group aims to develop technology and create products that reduce environmental impact. NSK Group products are incorporated into various machines and devices and have the ability to control friction and reduce the amount of energy consumed. In the product development and design stage, importance is placed on comfort, preservation of natural resources, and energy conservation at the end-user stage, as well as on reducing the environmental impact of the manufacturing process. Therefore, initiatives are being promoted to utilize the environmental features of NSK products. In fiscal 2001, a basic policy affecting all technical departments was established in order to steadily implement these

■ Green Procurement Policy

The NSK Group actively procures products, parts, and materials based on environmental considerations. By managing environmentally harmful substances with its suppliers, NSK is strengthening its environmental quality assurance system for its products.


■ Green Procurement Standards

The NSK Group must deliver products that ensure satisfaction and meet the ever-stricter requirements of customers and European regulations. Therefore, NSK has established standards for procurement such as the Master Purchase Agreement and the *Green Procurement Standards*, based on the idea that ecological considerations for parts and material procurement are indispensable to environmental protection. The company has asked its suppliers to cooperate in this effort.

- Basic Policy for the Development of Environmentally Friendly Products The NSK Group will minimize the environmental impact of its products at every stage—from R&D and design, to production, usage, and disposal—by upholding the following standards:
- Each product should contribute toward the energy and resource conservation by the machine in which it is installed.
- The amount of energy and resources required during product manufacturing
- Environmentally harmful substances should not be used in products or manufacturing processes.
- Products should contribute to the health and safety of end-users by having low emissions of vibration, noise, and dust.

7

Research & Development NSK's research system takes full advantage of knowledge on technology shared through its information network.

Precision Machinery and Parts Technology Center

Maebashi, Gunma

The Precision Machinery and Parts Technology Center plays a vital role in developing next-generation precision products in cooperation with NSK's Research and Development Center. For new products or those used for special purposes, reliability testing is essential. Each technology division has introduced instruments developed by NSK to evaluate the various aspects of product performance. Experiments conducted by the Center are designed according to specific application conditions, such as operating life and durability. The Center also undertakes vacuum environment testing for semiconductor and LCD manufacturing equipment as well as sound and vibration testing. In addition, accumulated test data is stored in a database, which has proved to be a valuable resource. The Center is constantly striving to develop new industry-leading products.

Fujisawa Research and Development Center

Fujisawa, Kanagawa

The Fujisawa Research and Development Center supports the future of NSK by conducting research and development into innovative technologies, such as tribology, analysis technology, materials technology, and mechatronics. This Center develops high added-value, next-generation products by broadly disseminating data and exchanging information with the Precision Machinery and Parts Technology Center and R&D centers in the Americas, Europe and Asia.

Manufacturing Bases Global manufacturing bases assist in maintaining the high-quality "NSK brand."

NSK Precision Co., Ltd. Maebashi Precision Machinery and Parts Plant

Maebashi, Gunma

As a production base for precision machinery components, the Maebashi Precision Machinery and Parts Plant manufactures world-class products, including large Ball Screws and Monocarriers, by fully applying state-of-the-art techniques based on the highest level super-precision technologies. NSK's own production methods ensure meticulous quality control throughout the entire production process. Products: Ball Screws, Monocarriers, XY Tables, Support Units

NSK Precision Co., Ltd. Saitama Precision Machinery and Parts Plant

Hanyu, Saitama

The Saitama Precision Machinery and Parts Plant manufactures Linear Guides that are widely used in machine tools, transportation systems, and other applications. With its ground-breaking processing technology and thorough factory automation, the plant contributes to enhancing customer satisfaction by producing high-quality products.

Products: Linear Guides

NSK Kyushu Co., Ltd.

Ukiha, Fukuoka

As the world's No. 1 production base for small precision Ball Screws, NSK Kyushu Co., Ltd. is striving to realize unsurpassed QCD (quality, cost, delivery) and earn customer trust. NSK Kyushu Co., Ltd. endeavors to shorten delivery time with NSK's proprietary production management system.

Products: Ball Screws

NSK Precision America. Inc. Franklin Plant

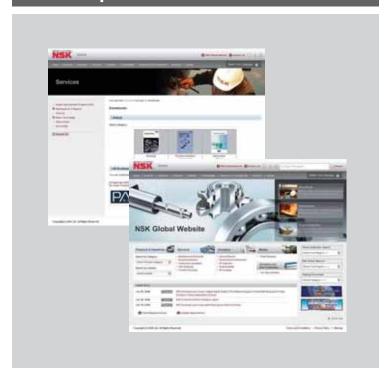
Indiana, U.S.A.

Established in 1993, this plant serves as a production base for Ball Screws. It actively supplies Linear Guides and mechatronic products to meet a wide range of market needs in such areas as machine tools, semiconductors, medical equipment and general industrial applications. The plant also promotes various projects and advanced production system (APS) activities in concert with other plants in Japan to achieve further advances toward even faster delivery systems to meet the demands of a broader market.

Products: Ball Screws, XY Tables

NSK Precision UK. Ltd. Newark Plant

Nottinghamshire, U.K.


The Newark Plant was established in 1998 as a Linear Guide production base that supports short-term delivery along with a European warehouse, a sales base in Europe, and a workshop. The plant is part of a system that covers not only major markets in Europe but also general industrial markets in Eastern Europe and the Middle East. It also pursues streamlining in accordance with globalization and plays an active role as a global sourcing facility by supplying products to the Americas.

Products: Linear Guides

1

For other machine components, technical data, and CAD drawing date, visit the NSK's website at http://www.nsk.com.

http://www.nsk.com

NSK Ltd. has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and without any obligation on the part of the manufacturer. Every care has been taken to ensure the accuracy of the data contained in this brochure, but no liability can be accepted for any loss or damage suffered through errors or omissions. We will gratefully acknowledge any additions or corrections.

Preface

It is our pleasure to announce the publication of a new catalog which contains all NSK linear motion products. We believe this publication is one way to show our deep appreciation of your patronage.

Market demand for more sophisticated and diversified machines and equipment is rapidly escalating. NSK precision products are not only used widely in these machines, but also are crucial elements.

In response to this trend, ball screws, NSK linear guides, and Monocarriers, which are crucial mechanical components of these machines, are required to be highly reliable, maintenance-free, smaller in size and lightweight. They also are expected to heighten efficiency and satisfy uses in special environment.

Publishing a catalog to introduce our entire product line is especially meaningful under such circumstances.

This is an improved version of the previous catalog; products are categorized, and each product category has two sections. The first section contains an explanation of products for selection and a technical explanation including results of the latest experiments and research to assist thorough technological discussion. The second half is dimension tables. Last, "Other," whose pages are in color, explains special environments and lubrications such as grease, which are general issues for NSK precision products.

We hope abundant NSK products in the new catalog will be your aide in selecting the most suitable products for your purpose. We solicit your continued patronage.

Contents

A. NSK Linear Rolling Guide B. Ball Screws

A-1 Characteristics of NSK Linear R Guides	olling
1. Comparison of Rolling Guides and S	
Guides·····	
Structure and Characteristics of NSK Guides	
A-2 Types of NSK Linear Rolling Gu	uides
	A5
A-3 Selection of NSK Linear Rolling Guides	J
1. Selection Flow Chart ·····	A13
2. Rating Life and Basic Load Rating	A15
3. Preload······	
4. Accuracy	A32
5. Lubrication ······	
6. Dust Proof	A52
7. Rust Prevention (Stainless Steel and	
Surface Treatment)	A57
8. Special Environment	A60
9. Arrangement and Mounting of Linea	r
Guide	···· A67
10. Drills to Select Linear Guide	A79
A-4 NSK Linear Guides™	A91
A-5 Technical Description and Dime Table for NSK Linear Guides	ension
1. General Industrial Use	A113
2. Machine Tools·····	A249
3. Liquid Crystal Display and Semicond	luctor
	A287
4. High-Precision Machine and High-Pre	ecision
Measuring Equipment	A339
A-6 Other Linear Rolling Guide Prod	
1. Linear Rolling Bushing	A369
2. Crossed Roller Guide	
3. Roller Pack	
4 Linear Roller Bearings	A393

3	-1	Selection Guide to NSK Ball Screw
		Features of NSK Ball Screws B1
		Structure of a Ball Screw B3
	3.	Ball Screw Series B7
		Procedures to Select Ball Screw B17
	5.	When Placing Orders B31
3	-2	Technical Description of Ball Screws
۵	1.	Accuracy B41
þ	2.	Static Load Limitation B48
		Permissible Rotational Speed B51
	4.	Supporting Conditions for Calculation of
		Bucking Load and Speed B55
		Life (dynamic load limitation) B57
		Preload and Rigidity B60
		Friction Torque and Drive Torque B66
		Even Load Distribution in Ball Nut B69
		Lubrication of Ball Screw B71
		Dust Prevention for Ball Screw B72
	11	. Rust Prevention and Surface Treatment of
		Ball ScrewsB73
	12	P. Ball Screw Specifications for Special
		Environment B74
		B. Noise and Vibration B75
		. Installation of Ball Screw B77
		6. Precautions for Designing Ball Screw B84
		Ball Screw Selection Exercise B87
		. Reference B101
		B. Guide to Technical Services B102
	19	Precautions When Handling Ball Screws
		B103
3.	-3	Ball Screw Dimension Table
		Dimension Table and Reference Number of
	1.	Application-Oriented Ball Screws B105
	2	Dimension Table and Reference Number of
	۷.	Standard Ball Screws

C. Monocarrier™

C-1 Monocarrier™
1. Features C1
2. Classification and Series C3
3. Optional Components C5
4. Selection of Monocarrier ······ C6
5. Maintenance······C17
6. NSK Clean Grease LG2 Specification C19
7. Characteristics and Evaluation Method · C19
8. Special Specifications
Sensor Specification
C-2 MCM Series
MCM Series Reference Number Coding
2. MCM Series Dimension Table of Standard Products C26 3. MCM Series Option Part C37
C-3 MCH Series
1. MCH Series Reference Number Coding
MCH Series Dimension Table of Standard Products
3. MCH Series Option Part ·······C71
9001

D. Other

 Special Environments Specifications for Special Environments
1.2 Lubrication and Materials
D5 1.4 Measures against Special Environments
1.5 Table to Cope with Special Environments
1.6 Precautions for Handling ······ D12 2. Lubrication
2.1 Grease Lubrication D13 2.2 Oil Lubrication D23
3. RoHS Compliant ······ D24
E Appendices: Tables
Conversion from International System of
Units (SI)E1 2. Conversion Table between N and kgf E3
Conversion Table between kg and lb E4 Conversion Table of Hardness F5

Deviations of Shafts Use in Common Fits E7
 Deviations of Holes Used in Common Fits E9

VSK	Linear	Rolli	ing	Guid	e F)rod	UC	
-----	--------	-------	-----	------	-----	------	----	--

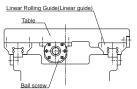
Precision Machine Components <linear rolling<="" th=""></linear>
Guide Products Contents A-1 Characteristics of NSK Linear Rolling Guides
A-1-1 Comparison of Rolling Guides and Sliding
Guides
A-1-2 Structure and Characteristics of NSK Linear Guides
(1) Structure of NSK Linear Guides (2) Characteristics of NSK Linear Guides
A-2 Types of NSK Linear Rolling Guides ······ A5 A-3 Selection of NSK Linear Rolling Guides A13 A-3-1 Selection Flow Chart ····· A13
A-3-1 Selection Flow Chart A13 A-3-2 Rating Life and Basic Load Rating A15
A-3-2 Rating Life and Basic Load Rating A15 A-3-2.1 Life and Basic Load Rating (1) Life
(2) Rating fatigue life
(3) Basic load ratings in compliance with ISO standard
(4) Basic dynamic load rating (5) Calculation of rating fatigue life
(6) Dynamic equivalent load (7) Basic static load rating
(8) Basic static moment load rating
(9) Basic load rating by load direction A-3-2.2 How to Calculate Life
(2) Calculating load to a slide (3) Calculation of dynamic equivalent load
(4) Calculation of mean effective load
(5) Various coefficients (6) Calculation of rating life
(7) Examination of static load (8) Precautions for the design in examining
the life A-3-3 Preload A-28
(1) Objective of preload (2) Preload and rigidity
(3) Selection of preload types (4) Deformation Calculation
(5) Application examples of preload (6) Load and rating life when the preload is
taken into account
(7) Calculating Friction Force by preload A-3-4 Accuracy A32
(1) Accuracy standard (2) Definition of Accuracy
(3) Application examples of accuracy grade (4) Combination of accuracy grade and
preload A-3-5 Lubrication
(1) NSK Linear Guides Equipped with "NSK K1™" Lubrication Unit
(2) Lubrication A-3-6 Dust Proof
(1) Standard specification (2) Dust proof components
A-3-7 Rust Prevention (Stainless Steel and
Surface Treatment)A57 (1) Stainless steel
(2) Surface Treatment A-3-8 Special Environment A-60
(1) Heat-resistant specification(2) Vacuum and clean specifications
(3) "NSK Linear Guides for Food

Processing Equipment and Medical Devices" for Sanitary Environment A-3-9 Arrangement and Mounting of Linear	
Guide A67 (1) Arrangement (2) Mounting Accuracy (3) Installation (4) Assemble Random-Matching Linear Guide (5) Butting Rail Specification (6) Handling Preload Assembly	
(1) Single Axis Material Handling System (2) Machining Center A-3-11 Reference	
4 NSK Linear Guides A91 (1) Structure of NSK Linear Guides (2) Characteristics of NSK Linear Guides (3) Types and Characteristics of NSK Linear Guides	
(4) Guide to Technical Services (5) Linear Guides: Handling Precautions (6) Design precautions	
5 Technical Description and Dimension Table	
5-1 General Industrial Use A-5-1 SH Series	
(5) Installation (6) Lubrication components	
(7) Dust proof components (8) Reference number (9) Dimensions A-5-1.2 SS Series A139	
(1) Features (2) Ball slide shape (3) Accuracy and prelaod (4) Available length of rail	
(5) Installation (6) Lubrication components (7) Dust proof components (8) Reference number (9) Dimensions	
A161 (1) Features (2) Ball slide shape (3) Accuracy and prelaod (4) Available length of rail	
(4) Available length of fall (5) Installation (6) Lubrication components (7) Dust proof components (8) Reference number	
(9) Dimensions A-5-1.4 LS Series	
 (1) Features (2) Ball slide shape (3) Accuracy and prelaod (4) Available length of rail (5) Installation (6) Lubrication components (7) Dust proof components (8) Reference number (9) Dimensions 	
• •	

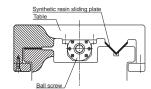
A-5-1.5 VH Series A207
(1) Features
(2) Ball slide shape
(3) Accuracy and prelaod
(4) Available length of rail
(5) Installation
(6) Lubrication components
(7) Dust proof components (8) Reference number
(9) Dimensions
A-5-1.6 LW Series
(1) Features
(2) Ball slide shape
(3) Accuracy and prelaod
(4) Available length of rail
(5) Installation
(6) Lubrication components
(7) Dust proof components (8) Reference number
(9) Dimensions A-5-1.7 TS Series
(1) Features
(2) Ball slide shape
(3) Accuracy and prelaod
(4) Available length of rail
(5) Lubrication components
(6) Dust proof components
(7) Reference number
(8) Dimensions
A-5-2 Machine Tools A-5-2.1 RA Series
(1) Features
(2) Roller slide shape
(3) Accuracy and prelaod
(4) Available length of rail
(5) Installation
(6) Lubrication components
(7) Dust proof components
(8) Reference number
(9) Dimensions A-5-2.2 LA Series
(1) Features
(2) Ball slide shape
(3) Accuracy and prelaod
(4) Available length of rail
(5) Installation
(6) Lubrication components
(7) Dust proof components
(8) Reference number
(9) Dimensions A-5-3 Liquid Crystal Display and Semiconductor
A-5-3.1 PU Series ·················· A289
(1) Features
(2) Ball slide shape
(3) Accuracy and prelaod
(4) Available length of rail
(5) Installation
(6) Lubrication accessory
(7) Dust proof components (8) Reference number
(9) Dimensions
A-5-3.2 PE Series A299
(1) Features
(2) Ball slide shape
(3) Accuracy and prelaod

		A13
)7	(4) Available length of rail (5) Installation	-A90
	(6) Lubrication accessory	A91
	(7) Dust proof components (8) Reference number	
	(9) Dimensions	-A112
	A-5-3.3 LU Series	A113
	(2) Ball slide shape	
	(3) Accuracy and prelaod (4) Available length of rail	-A364
	(5) Installation	A365
	(6) Lubrication accessories(7) Dust proof components	-A393
	(8) Reference number	-NJ/J
	(9) Dimensions A-5-3.4 LE Series	
	(1) Features	
	(2) Ball slide shape (3) Accuracy and prelaod	
13	(4) Available length of rail	
	(5) Installation(6) Lubrication accessories	
	(7) Dust proof components (8) Reference number	
	(9) Dimensions	
	A-5-3.5 LL Series	
	(2) Ball slide model	
51	(3) Accuracy and prelaod (4) Available length of rail	
'	(5) Reference number	
	(6) Dimensions A-5-4 High-Precision Machine and High-	
	Precision Measuring Equipment	
	A-5-4.1 HA Series A341 (1) Features	
	(2) Ball slide shape	
	(3) Accuracy and prelaod (4) Available length of rail	
9	(5) Installation	
	(6) Lubrication components(7) Dust proof components	
	(8) Reference number	
	(9) Dimensions A-5-4.2 HS Series	
	(1) Features	
	(2) Ball slide shape (3) Accuracy and prelaod	
	(4) Available length of rail	
or 89	(5) Installation(6) Lubrication components	
	(7) Dust proof components	
	(8) Reference number (9) Dimensions	
	A-6 Other Linear Rolling Guide Products	
	A-6-1 Linear Rolling Bushing	
	A-6-3 Roller Pack A386 A-6-4 Linear Roller Bearings A393	
	A-0-4 Linear Roller Dearlings A393	

A5 -A12


A-1 Characteristics of NSK Linear Rolling Guides

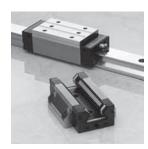
Characteristics of the NSK linear rolling guides are:


- Designs are simple and economic. This contributes to highly accurate and low cost machines.
- · Low friction coefficient facilitates a compact and low cost driving mechanism.
- Ultra-high purity of materials and superb processing technology provide long-term highly reliable operation.
- Prompt delivery thanks to interchangeable components variation.
- The user can select the most suitable guide from a variety of the ball guides and roller guides.

A-1-1 Comparision of Rolling Guides and Sliding Guides

The following describes a characteristic comparison between general rolling and sliding guide.

Example of rolling guide


Example of sliding guide

Comparative characteristics of rolling and sliding guide way

Function	Rolling guide	Sliding guide		
Friction	 Friction coefficient: 0.01 or lower Difference between static and dynamic friction is small. Change by speed is slight. 	Friction is great. The difference between static and dynamic friction coefficient is great.		
Positioning accuracy	Lost motion is slight.	Lost motion is great.		
	Stick-slip is slight.	Stick-slip at low speed is great.		
	Easy to achieve sub-micron positioning	Difficult to achieve sub- micron positioning		
Life	Possible to estimate useful life	Difficult to estimate useful life		
Static rigidity	Generally high	Rigidity is great against load from a particular direction.		
	No play because of preload	There is mechanical play.		
	Easy to estimate rigidity	Difficult to estimate rigidity		
Speed	Wide range of use from low to high speed	 Unsuitable for extremely low or high speed 		
Maintenance, reliability	Long life through simple maintenance	Precision is lost greatly by deteriorated guide surface.		

In response to the demand for guideways with high-speed, high-precision, high-quality, as well as to the demand for easy maintenance, rolling guides which have above features are becoming prevalent. Utilizing the technology we sharpened in anti-friction rotating bearings, NSK makes various types of rolling linear guides which are highly accurate and reliable.

A-1-2 Structure and Characteristics of NSK Linear Guides

(1) Structure of NSK Linear Guides

By avoiding structural complexity, and by reducing the number of components, we not only enhanced the precision of linear guides, but also are able to keep costs low. We have added NSK's patented unique structural feature to the original invention (Fig. 1). This contributes to higher precision and lower prices.

NSK linear guide consists of a rail and a ball or roller slide (Fig. 2). The balls or rollers roll on the race way surface, and are scooped up by the end caps attached to both ends of the ball or roller slide. Then, the balls or rollers go through a passage made in the ball or roller slides and circulate back to the other end.

(2) Characteristics of NSK Linear Guides

The use of a unique offset Gothic arch groove (Fig. 3) allows the ball type of NSK linear guides to satisfy groove designs required for specific purposes.

This unique ball groove design facilitates precise measurement of the ball groove, thus enabling stable and highly accurate production of the ball slides and the rails for random matching. (Fig. 4)

On top of that, we have developed and marketed the NSK Roller Guides, representing the culmination of NSK's analysis technology and tribology.

Such technologies ensure the feature of NSK linear guides outlined below.

1 High precision and quality

 High precision and quality come from our superb production and measuring technologies, strengthened by extensive experience in antifriction rotary bearings and ball screw production. Our quality assurance extends to the smallest components.

2 High reliability and durability

- · Logical simplicity in shape, along with stable processing, maintains high precision and reliability.
- Super-clean materials, our advanced heat treatment and processing technologies increase product durability.

3 Abundant in type for any purpose

 Various series are available, and their slide models and size categories are standardized to satisfy any requirement. Our technology, polished by abundant experience in the use of special materials and surface treatments, meets the customer's most demanding expectations.

4 Development of random-matching parts for short delivery time

• The adoption of the Gothic arch groove which makes measuring easy, and a reliable quality control method has made random-matching of the rails and the ball slides possible. The parts are stocked as standard products, thereby reducing delivery time.

5 Patented static load carrying capacity (impact-resistance)

• When a super-high load (impact) is applied, our Gothic arch groove spreads the load to contact surfaces which usually do not come into contact in ball type. This increases shock resistance (Fig. 5).

6 Lineup of extremely high-load capacity series

• The LA series provides a top class high-load capacity for the ball linear guides through a unique load carrying configuration with three ball recirculation circuits on the one side.

By installing rollers that are the largest possible diameter and length, the NSK roller linear guides have realized the world highest load capacity, far superior to the roller linear guides of other companies.

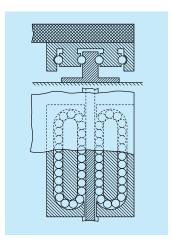


Fig. 1 • French Patent in 1932. • Inventor : Gretsh (German)

NSK added its patented technology to the invention in Fig. 1, and improved the linear guide structure and realized low cost design.

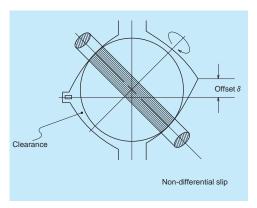


Fig. 3 Two contact point at offset Gothic arch groove

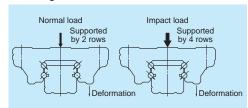
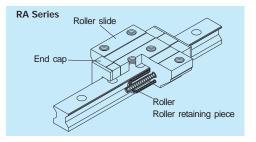



Fig. 5 Shock-resistance

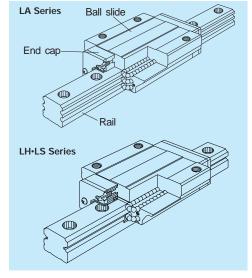


Fig. 2 Structure of NSK linear guides

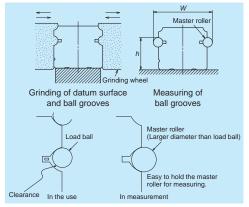


Fig. 4 Processing and measuring grooves

Measuring grooves is easy. You can obtain highly accurate results for all types of NSK series. This is why you can purchase rails and slides separately for random matching.

A3 A4

A-2 Types of NSK Linear Rolling Guides

Product	Appearance	Shape	Rolling element	Load capability
	SH Series		Ball	High vertical load carrying capacity
ar Guides	SS Series		Ball	High vertical load carrying capacity
NSK Linear Guides	LH Series		Ball	High vertical load carrying capacity
	LS Series		Ball	High vertical load carrying capacity

Rigidity; $\fint \frac{1}{2}$: Extremely high $\fill \fill \fill$

Mounting; \bigcirc : Good \bigcirc : Fair

Rigidity	Friction characteristic	Mounting	Major applications	Page
			Industrial robots Materials handling Semiconductor manufacturing equipment Laser processing machines Electric discharge machines Packaging/packing machines	A115
			Industrial robots Materials handling Electric discharge machines Semiconductor manufacturing equipment Packaging/packing machines Pneumatic components	A139
			Industrial robots Materials handling Semiconductor manufacturing equipment Woodworking machines Laser processing machines Electric discharge machines Packaging/packing machines	A161
			Industrial robots Materials handling Electric discharge machines Woodworking machines Semiconductor manufacturing equipment Packaging/packing machines Pneumatic components	A185

A5 A6

NSK

Product	Appearance	Shape	Rolling element	Load capability
	VH Series		Ball	High vertical load carrying capacity
	LW Series		Ball	High vertical load carrying capacity
NSK Linear Guides	TS Series		Ball	Four-directional iso-load carrying capacity
	RA Series		Roller	Four-directional iso-load carrying capacity
	LA Series		Ball	Four-directional iso-load carrying capacity

A7 A8

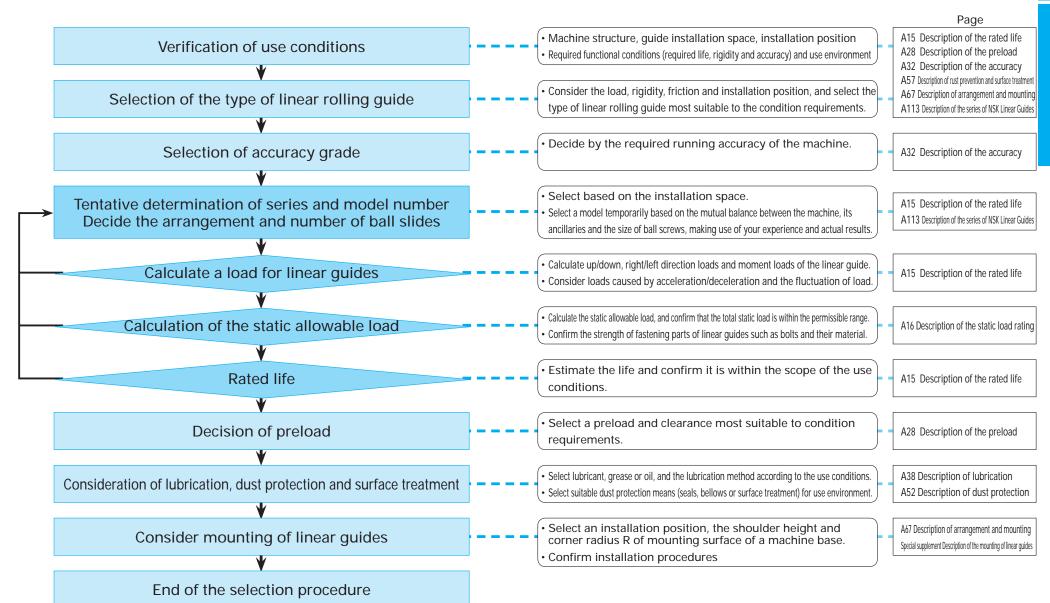
Product	Appearance	Shape	Rolling element	Load capability
	PU Series		Ball	Four-directional iso-load carrying capacity
	PE Series		Ball	Four-directional iso-load carrying capacity
NSK Linear Guides	LU Series		Ball	Four-directional iso-load carrying capacity
2	LE Series		Ball	Four-directional iso-load carrying capacity
	LL Series		Ball	Four-directional iso-load carrying capacity

Rigidity	Friction characteristic	Mounting	Major applications	Page
			Semiconductor manufacturing equipment Liquid crystal display manufacturing equipment Medical equipment Optical stage Microscope XY stage Small robots Pneumatic equipment Computer peripheral equipment	A289
			Semiconductor manufacturing equipment Liquid crystal display manufacturing equipment Medical equipment Optical stage Microscope XY stage Small robots Pneumatic equipment Computer peripheral equipment	A299
			Semiconductor manufacturing equipment Liquid crystal display manufacturing equipment Medical equipment Optical stage Microscope XY stage Small robots Pneumatic equipment Computer peripheral equipment	A309
			Semiconductor manufacturing equipment Liquid crystal display manufacturing equipment Medical equipment Optical stage Microscope XY stage Small robots Pneumatic equipment Computer peripheral equipment	A321
			Knitting machines Computer peripheral equipment Pneumatic equipment Office equipment	A335

A9 A10

D	Friction			
Rigidity	characteristic	Mounting	Major applications Machining centers Precision lathes Grinders Electric discharge machines Optical stage Liquid crystal display manufacturing equipment Die and mold tooling machine Precision measuring equipment	Page A341
	0	0	Machining centers Precision lathes Grinders Electric discharge machines Optical stage Liquid crystal display manufacturing equipment Precision measuring equipment	A355
			Materials handling Packaging/packing machines Medical equipment Pneumatic components Office equipment Assembling machines	A369
			Precision stageMeasuring equipmentTest equipmentPrinted circuit board assembly	A380
			Large machine tools Conveyor system for heavy objects (guide for heavy load)	A386
			Large machine tools Conveyor system for heavy objects (guide for heavy load)	A393

Product	Appearance	Shape	Rolling element	Load capability
NSK Linear Guides	HA Series		Ball	Four-directional iso-load carrying capacity
NSK Line	HS Series		Ball	High vertical load carrying capacity
Linear rolling bushing			Ball	P
Crossed roller guide			Roller	↓ ↑ ↑
Roller pack	100		Roller	
Linear roller bearing			Roller	


_	- 9				
Linear rolling		Ball	P		
Crossed roller		Roller	→		
Roller pack	00	Roller			
Linear roller bearing		Roller			

A11 A12

A-3 Selection of NSK Linear Rolling Guides

A-3-1 Selection Flow Chart

Selection flow chart of NSK linear rolling guides

A13

A-3-2 Rating Life and Basic Load Rating

A-3-2.1 Life and Basic Load Rating

(1) Life

Although used in appropriate conditions, the linear guide deteriorates after a certain period of operation, and eventually becomes unusable. In broad definition, the period until the linear guide becomes unusable is called "life." There are "fatigue life " caused by flaking, and "life of accuracy deterioration" which is caused by wear.

(2) Rating fatigue life

When the linear guide runs under load, the rolling elements and the rolling contact surface of the grooves are exposed to repetitive load. This brings about fatigue to the material, and generates flaking. Flaking is scale-like damage to the surface of the rolling contact surface.

Total running distance until first appearance of flaking is called "fatigue life." This is "life" in the narrow sense. Fatigue life varies significantly even in linear guides produced in the same lot, and even when they are operated under the same conditions. This is attributable to the inherent variation of the fatigue of the material itself.

"Rating fatigue life" is the total running distance which allows 90% of the group of linear guides of the same reference number to run without causing flaking when they are independently run under the same conditions. Rating fatigue life is sometimes indicated by total operating hours when the linear guides run at a certain speed.

(3) Basic load ratings in compliance with ISO standard

NSK calculates the basic load rating in compliance with ISO standard.

The basic load rating as listed in "A-5 Linear Guide Dimension Table" comply with the ISO standard.

ISO: International Organization for

Standardization

[Basic dynamic load rating]

ISO 14728-1; Rolling bearings — Linear motion rolling bearings

Part 1: Dynamic load ratings and rating life

[Basic static load rating]

ISO 14728-2; Rolling bearings — Linear motion rolling bearings

Part 2: Static load ratings

(4) Basic dynamic load rating

- Basic dynamic load rating, which indicates load carrying capacity of the linear guide, is a load whose direction and volume do not change, and which furnishes 50 km of rating fatigue life.
- In case of linear guide, it is a constant load applied to downward direction to the center of the slide.
- Value of basic dynamic load rating C is shown in "A-5 Linear Guide Dimension Table."
- NSK defines the basic dynamic load rating as the load that furnishes 50 km of rated fatigue life. However some linear guide manufacturers in Europe and the United States define the load for the basic fatigue life of 100 km as the basic dynamic load ratings.
- The following formula may be used to convert the basic dynamic load rating C_{50} into the dynamic load rating for 100 km rated fatigue life.

For balls as rolling element : $C_{100} = C/1.26$ (N) For rollers as rolling element : $C_{100} = C/1.23$ (N)

(5) Calculation of rating fatigue life

 In general, rating fatigue life "L" can be calculated from basic dynamic load rating "C" and the load "F" to slide using the following formula.

For balls as rolling element : $L = 50 \times \left(\frac{C}{F}\right)^3$

For rollers as rolling element : $L = 50 \times \left(\frac{C}{F}\right)^{\frac{10}{3}}$

- L : Rating fatigue life (km)
- C: Basic dynamic load rating (N) (50 km)
- F: Load to a slide (N) (dynamic equivalent load)

• The rating fatigue life L for 100 km can be obtained from the following formulas using the dynamic load rating C_{100} .

For balls as rolling element : $L = 100 \times \left(\frac{C_{100}}{F}\right)^3$

For rollers as rolling element : $L = 100 \times \left[\frac{C_{100}}{F}\right]^{\frac{10}{3}}$

L: Rating fatigue life (km)

 C_{100} : Dynamic load rating for 100 km (N)

F: Load to a slide (dynamic equivalent load) (N)

(6) Dynamic equivalent load

• Load applied to the linear guide (slide load) comes from various directions up/down and right/left directions and/or as moment load. Sometimes more than one type of load is applied simultaneously. Sometimes volume and direction of the load may change.

Varying load cannot be used as it is to calculate life of linear guide. Therefore, it is necessary to use a hypothetical load to slide with a constant volume which would generate a value equivalent to an actual fatigue life. This is called "dynamic equivalent load." For actual calculation, refer to "A-3-2.2 (3)"

(7) Basic static load rating

- When an excessive load or a momentary large impact is applied to the linear guide, local permanent deformation takes place to the rolling elements and to the rolling contact surface. After exceeding a certain level, the deformation hampers smooth linear guide operation.
- Basic static load rating is a static load when: [Permanent deformation of the rolling elements]

 [permanent deformation of the rolling contact surfaces] becomes approximately 0.0001 times of the rolling element diameter.
- In case of linear guide, it is a load which is applied in downward direction to the center of the slide.
- Values of basic static load rating C₀ are shown in "A-5 Linear Guide Dimension Table."

(8) Basic static moment load rating

 Generally, NSK linear guide uses a set of two rails and four slides for the guide way of one axis.
 Under some operating condition, static moment load should be taken into account.

"M₀," which is the limit of static moment load , and calculated from permanent deformation in such use is shown in "A-5 Linear Guide Dimension Table."

(9) Basic load rating by load direction

• The basic load rating is considered to be a downward load to the slide and is indicated in the dimension tables as the dynamic load rating C and the static load rating C_0 respectively. However, the load may be applied to a slide in upward or lateral directions in actual use. In such a case the basic load rating shall be compensated as shown in Table 2.1. The basic dynamic load rating of the RA and LA Series is the same in C and C_0 for all load directions, up, down and lateral, while the LH Series has different basic load ratings by the load direction as shown in the table.

Table 2.1 Basic load ratings by load direction

1 1	,		9	Basic static load rating			
Load direction	Downward	Upward	Lateral	Downward	Upward	Lateral	
SH, SS, LH, LS, VH, HS, LW	С	С	0.84 <i>C</i>	C _o	0.78 <i>C</i> ₀	0.65 <i>C</i> ₀	
RA, LA, HA, TS, PU, PE, LU, LE, LL	С	С	С	C_{0}	C_{0}	C_{0}	

A15 A16

A-3-2.2 How to Calculate Life

(1) Setting operating condition of linear guide

- · First, set operating conditions to determine whether the temporarily selected model satisfies the required life.
- · Major operating conditions are as follows. Set all values to calculate applied loads to each slide (Refer to Table 2.2).

Axis set up : Horizontal, vertical Rail combination : Single rail, multiple

rail

Applying loads : F_x , F_y and F_z (N) Slide span : I(mm)Rail span : L (mm) Position of load action point : X, Y, Z (mm) Center of driving mechanism : X_b , Y_b , Z_b (mm) Operating speed : V (mm/sec) Time in acceleration : t (sec) Operating frequency (duty cycle)

(2) Calculating load to a slide

· Table 2.2 shows a formula to calculate loads that are going to be applied to each assembled slide into a machine.

The Table shows six typical patterns of linear guide installing structure.

- · In the Tables, directions indicated by arrows denote "plus" for the applied loads (F_{v_i}, F_{v_i}, F_z) and the loads which are applied to the slide. (F_{tt} $F_{s_i} M_{r_i} M_{p_i} M_{v}$).
- · Codes in the Tables are as follows:

F.: Vertical loads to the slide (N)

 F_s : Lateral loads to the slide (N)

 M_c : Rolling moment to the slide (N · mm)

 $M_{\scriptscriptstyle D}$: Pitching moment to the slide (N · mm)

 M_v : Yawing moment to the slide (N · mm)

Suffixes (1, 2, ...) to the above $F_r - M_v$: Slide number

- F_{xi} : Load applied in X direction (i = 1 n; n is the number of loads applied in X direction) (N)
- F_{vi} : Load applied in Y direction (j = 1 n; n is the number of loads applied in Y direction) (N)
- F_{2k} : Load applied in Z direction (k = 1 n; n is the number of loads applied in Z direction) (N)

Coordinates (X_{xi}, Y_{xi}, Z_{xi}) : Point where load F_{xi} (mm) is applied.

Coordinates $(X_{vir}, Y_{vir}, Z_{vi})$: Point where load F_{vir} (mm) is applied.

Coordinates $(X_{x_i}, Y_{x_i}, Z_{x_i})$: Point where load F_{x_i} (mm) is applied.

1: Slide span (mm)

L: Rail span (mm)

A17

Coordinates (X_b, Y_b, Z_b) : Center of driving mechanism

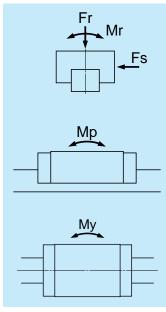


Fig. 2.1

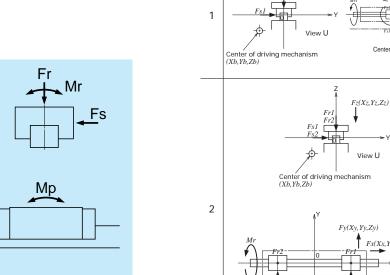
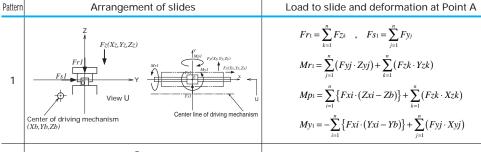
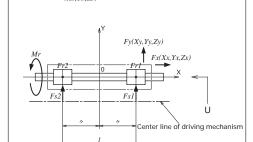
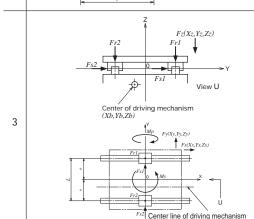
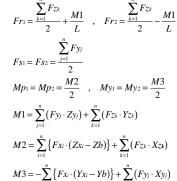




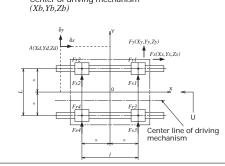
Table 2.2 Loads applied to the slides

$$Fs_{1} = \frac{\sum_{j=1}^{n} Fy_{j}}{2} + \frac{M3}{l} , Fs_{2} = \frac{\sum_{j=1}^{n} Fy_{j}}{2} - \frac{M3}{l}$$

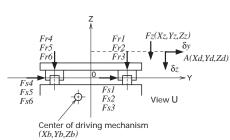

$$Mr_{1} = \frac{M1}{2} , Mr_{2} = \frac{M1}{2}$$

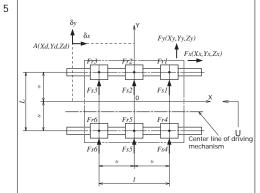

$$M1 = \sum_{j=1}^{n} (Fy_{j} \cdot Zy_{j}) + \sum_{k=1}^{n} (Fz_{k} \cdot Yz_{k})$$

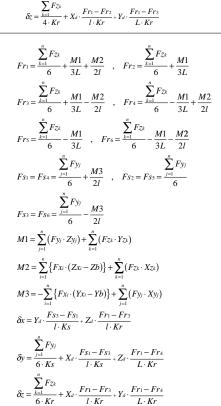
$$M2 = \sum_{i=1}^{n} \{Fx_{i} \cdot (Zx_{i} - Zb)\} + \sum_{k=1}^{n} (Fz_{k} \cdot Xz_{k})$$

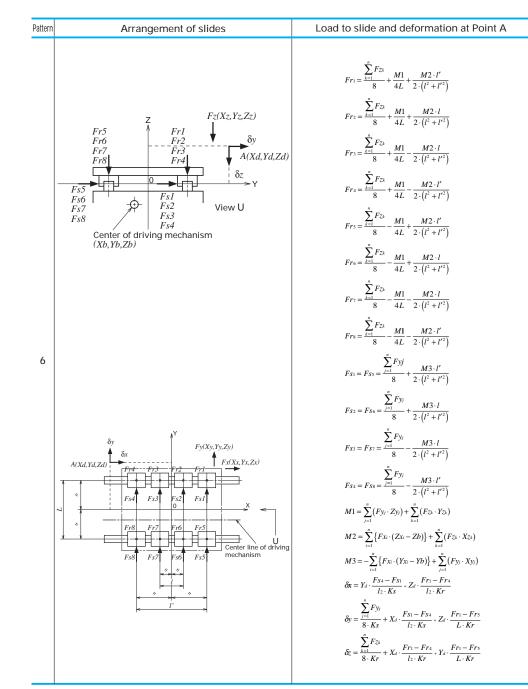

$$M3 = -\sum_{i=1}^{n} \{Fx_{i} \cdot (Yx_{i} - Yb)\} + \sum_{i=1}^{n} (Fy_{j} \cdot Xy_{j})$$

 $Fr_1 = \frac{\sum_{k=1}^{\infty} F_{Zk}}{2} + \frac{M2}{l}$, $Fr_2 = \frac{\sum_{k=1}^{\infty} F_{Zk}}{2} - \frac{M2}{l}$




A18




$F_{T1} = \frac{\sum_{k=1}^{n} F_{Zk}}{4} + \frac{M1}{2L} + \frac{M2}{2l} , F_{T2} = \frac{\sum_{k=1}^{n} F_{Zk}}{4} + \frac{M1}{2L} - \frac{M2}{2l}$
$Fr_3 = \frac{\sum_{k=1}^{n} Fz_k}{4} - \frac{M1}{2L} + \frac{M2}{2l}$, $Fr_4 = \frac{\sum_{k=1}^{n} Fz_k}{4} - \frac{M1}{2L} - \frac{M2}{2l}$
$Fs_1 = Fs_3 = \sum_{j=1}^{n} Fy_j$ $\frac{M3}{2l}$, $Fs_2 = Fs_4 = \sum_{j=1}^{n} Fy_j$ $\frac{M3}{2l}$
$M1 = \sum_{j=1}^{n} \left(Fy_j \cdot Zy_j \right) + \sum_{k=1}^{n} \left(Fz_k \cdot Yz_k \right)$
$M2 = \sum_{i=1}^{n} \left\{ Fx_{i}(Zx_{i} - Zb) \right\} + \sum_{k=1}^{n} \left(Fz_{k} \cdot Xz_{k} \right)$
$M3 = -\sum_{i=1}^{n} \{Fx_i(Yx_i - Yb)\} + \sum_{j=1}^{n} (Fy_j \cdot Xy_j)$
$\delta x = Y_d \cdot \frac{Fs_2 - Fs_1}{l \cdot Ks} + Z_d \cdot \frac{Fr_1 - Fr_2}{l \cdot Kr}$
$\delta y = \frac{\sum_{j=1}^{n} Fy_{j}}{4 \cdot Ks} + X_{d} \cdot \frac{Fs_{1} - Fs_{2}}{l \cdot Ks} + Z_{d} \cdot \frac{Fr_{1} - Fr_{3}}{L \cdot Kr}$
$\sum_{i=1}^{n} Fz_{i}$ $Fr_{i} = Fr_{i}$ $Fr_{i} = Fr_{i}$

Load to slide and deformation at Point A

(3) Calculation of dynamic equivalent load

• For calculation of dynamic equivalent load, use the load in Table 2.3 which matches the intended use of the linear guide.

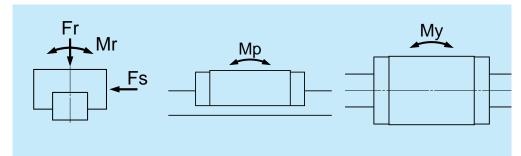


Fig. 2.3

Table 2.3 Loads in the arrangement of linear guides

	Arrangement of linear	Loads necessary to calculate dynamic equivalent load					Dynamic oquivalent
Pattern	guide		ad	Moment load			Dynamic equivalent load
	guide	Up/down (vertical)	Right/left (lateral)	Rolling	Pitching	Yawing	1000
1		F,	F _s	M _r	M _p	$M_{\scriptscriptstyle \mathrm{y}}$	$F_r = F_r$ $F_{se} = F_s \cdot \tan \alpha$
2		F _r	F _s	M _r			$F_{\text{re}} = \mathcal{E}_{\text{r}} \cdot M_{\text{r}}$ $F_{\text{pe}} = \mathcal{E}_{\text{p}} \cdot M_{\text{p}}$ $F_{\text{ye}} = \mathcal{E}_{\text{y}} \cdot M_{\text{y}}$
3		F _r	Fs		M _p	M _y	α : Contact angle SH, SS, LH, LS, VH, LW, HS Series α = 50°
4		F,	Fs				TS, RA, LA, PU, PE, LU, LE, HA Series $\alpha = 45^{\circ}$

 \bullet Use dynamic equivalent coefficient ${\boldsymbol{\mathcal{E}}}$ in the table below for easy conversion of moment load to dynamic equivalent load.

· Coefficient of each moment direction is as follows.

 \mathcal{E}_r : Rolling direction

 \mathcal{E}_{p} : Pitching direction

 \mathcal{E}_{v} : Yawing direction

Table 2.4 Dynamic equivalent coefficients

Unit: 1/m 22

										,	JIIIL. 1/111
Model		0		Model	0			Model	0	0	
No.	${oldsymbol{arepsilon}}_{ m r}$	$arepsilon_{_{\mathrm{p}}}$	$oldsymbol{arepsilon}_{y}$	No.	${oldsymbol{\mathcal{E}}}_{r}$	$arepsilon_{_{p}}$	$oldsymbol{arepsilon}_{y}$	No.	${oldsymbol{arepsilon}}_{r}$	${\cal E}_{_{\sf p}}$	$arepsilon_{y}$
SH15	188	112	133	LS35S	76	87	104	PU12	163	204	204
SH15I	188	68	81					PU12L	163	125	125
SH15L SH20	142	82	98	VH15	188	111	132	PU15	133	174	174
CHOOL	142	56	67	VH15L	188	72	86	PU15L	133	102	102
SH25	123	66	78	VH20	142	81	97	I O ISE	100	102	102
SH25L	123	47	56	VH20L	142	57	68	PE05	194	277	277
SH30A	98	74	89	VH25	123	68	81	PE07	141	203	203
SH30EF	98	60	71	VH25L	123	51	61	PE07	123	161	161
SHOOL											
SH30L SH35	98 78	42	50	VH30A	98 98	70 58	83	PE09L	123	108	108
SH35		54	64	VH30EF			69	PE12	90	136	136
SH35L	78	36	43	VH30L	98	44	52	PE12L	90	90	90
SH45	60	39	46	VH35	78	51	61	PE15	50	111	111
SH45L SH55 SH55L	60	29	35	VH35L	78	36	43	PE15L	50	72	72
<u>SH55</u>	51	33	39	VH45	60	38	45				
SH55L	51	24	29	VH45L	60	30	36	LU05	385	359	359
				VH55	51	31	37	LU07	286	305	305
SS15	177	97	115	VH55L	51	25	30	LU09	217	242	242
SS15 SS15S	177	176	210					LU09L	217	138	138
SS20	127	87	104	LW17	66	125	149	LU09R	217	203	203
SS20 SS20S	127	138	164	LW21	59	108	129	LU12	167	204	204
SS25	111	70	83	LW27	53	76	91	LU12L	167	116	116
SS25 SS25S	111	115	137	LW35	53 32	51	61	LU15	133	174	174
SS30 SS30S	94	57	68	LW50	25	38	46	LU15L	133	94	94
2230	94	106	126	LVVSU	23	30	40	LUISL	133	74	74
22302	76	42	50	RA15	105	95	95	LE05	196	248	248
SS35 SS35S		94	112	RA15L	105	70	70	LE05S	196	323	323
33333	76	94	112								
11100	047	0.40	004	RA20	79	74	74	LE07	141	188	188
LH08	316	269	321	RA20L	79	55	55	LE07S	141	349	349
LH10	253	203	242	RA25	71	64	64	LE07L	141	122	122
LH12	223	136	162	RA25L	71	50	50	LE09	123	149	149
LH15	188	111	132	RA30	56	58	58	LE09S	123	277	277
LH15L	188	72	86	RA30L	56	44	44	LE09L	123	102	102
LH20	142	81	97	RA35	46	52	52	LE12	90	125	125
LH20L	142	57	68	RA35L	46	39	39	LE12S	90	233	233
LH25	123	68	81	RA45	37	40	40	LE12L	90	86	86
LH25L	123	51	61	RA45L	37	30	30	LE15	50	102	102
LH30A	98	70	83	RA55	32	33	33	LE15S	50	174	174
TH30FF	98	58	69	RA55I	32	24	24	LE15L	50	68	68
LH30L	98	44	52	RA55L RA65	26	28	28				
LH35	78	51	61	RA65L	26	19	19	HA25	122	33	33
LH35L	78	36	43			' '		HA30	105	27	27
LH45	60	38	45	LA25	122	76	76	HA35	84	23	23
LH45L	60	30	36	LA25L	122	47	47	HA45	60	20	20
LH55	51	31	37	LA30	105	63	63	HA55	51	16	16
LH55L	51	25	30	LA30L	105	43	43	IIASS	. J I	10	10
LH65	43	27	32	LA35L	84	54	54	HS15	177	45	54
	43	20	24	LASS	84	37				39	
LH65L		17		LA35L		41	37 41	HS20	127	37	47
LH85L	33	17	20	LA45	60			HS25	111	33	39
1.045	477	447	400	LA45L	60	31	31	HS30	94	27	32
LS15	177	116	138	LA55	51	33	33	HS35	76	23	28
LS15S	177	174	208	LA55L	51	26	26		400	100	100
LS20	127	94	112	LA65	43	29	29	TS15	128	122	122
LS20S	127	136	162	LA65L	43	20	20	TS20	97	90	90
LS25	111	70	83					TS25	81	77	77
LS25S LS30	111	108	129	PU05	377	431	431	TS30	67	61	61
LS30	94	63	75	PU07	267	349	349	TS35	55	54	54
LS30S	94	102	121	PU09	215	222	222				
LS35	76	54	64	PU09L	215	136	136				
Definition	. of ood			o and of		م ما مسییم ا	n in Tolel				

Definitions of codes appearing at the end of the model number in Table 2.4:

: Super-high-load type ; LH45<u>L</u> : Medium load type S ; LS25<u>S</u> No code: High-load type ; LY45_

: Ball slide shape is square ; LH30A (only LH30 and SH30) : Ball slide shape is flanged type (EL, FL type) ; LH30EF (only LH30 and SH30) EF

R

: Miniature Series with ball retainer ; LU09<u>R</u>

A21

• Formula is determined by the relationship of loads in terms of volume. Full dynamic equivalent load can be easily obtained by using each coefficient.

After obtaining the dynamic equivalent load of the necessary load directions from Table 2.4, use the formulas below to calculate full dynamic equivalent loads.

- When Fr is the largest load : Fe = Fr + 0.5Fse + 0.5Fre + 0.5Fpe + 0.5Fye
- When Fse is the largest load : Fe = 0.5Fr + Fse + 0.5Fre + 0.5Fpe + 0.5Fye
- When Fre is the largest load : Fe = 0.5Fr + 0.5Fse + Fre + 0.5Fpe + 0.5Fye
- When Fpe is the largest load : Fe = 0.5Fr + 0.5Fse + 0.5Fre + Fpe + 0.5Fye
- When Fye is the largest load : Fe = 0.5Fr + 0.5Fse + 0.5Fre + 0.5Fpe + Fye

For the values of each dynamic equivalent load in the formulas above, disregard load directions and take the absolute value.

(4) Calculation of mean effective load

When the load to the slide deviates, obtain a mean effective load which becomes equal to the life of slide under variable load conditions. If the load does not vary, use the dynamic equivalent load as it is.

① When load and running distance vary stepwise (Fig. 2.3)

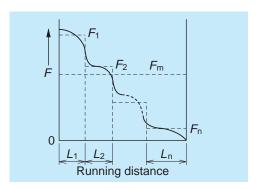


Fig. 2.3 Stepwise load change

Running distance while dynamic equivalent load F_1 is applied: L_1

Running distance while dynamic equivalent load F_2 is applied: L_2

Running distance while dynamic equivalent load F_3 is applied: L_3

Running distance while dynamic equivalent load F_n is applied: L_n

From the above, mean effective load Fm can be obtained by the following formula.

In case of ball

In case of roller

$$Fm = \sqrt[3]{\frac{1}{L} (F_1^3 L_1 + F_2^3 L_2 + \dots + F_n^3 L_n)}$$

$$Fm = {}^{\frac{10}{3}}\sqrt{\frac{1}{L}\left(F_{1}^{\frac{10}{3}}L_{1} + F_{2}^{\frac{10}{3}}L_{2} + \dots + F_{n}^{\frac{10}{3}}L_{n}\right)}$$

Fm: Mean effective load of the deviating load (N)

L : Running distance (ΣLn)

② When load changes almost lineally (Fig. 2.4)

Approximate mean effective load ${\it Fm}$ can be obtained by the following formula.

$$Fm = \frac{1}{3} (Fmin + 2Fmax)$$

 ${\it F}$ min : Minimum value of dynamic

equivalent load (N)

Fmax: Maximum value of dynamic

equivalent load (N)

③ When load changes in sinusoidol pattern (Fig. 2.5)

At time of (a): Fm = 0.65 Fmax At time of (b): Fm = 0.75 Fmax

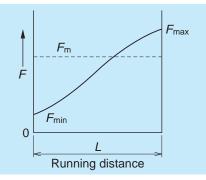
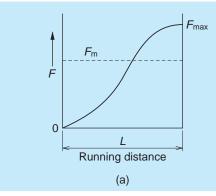



Fig. 2.4 Linear load change

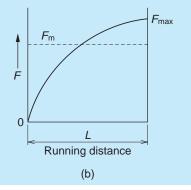


Fig. 2.5 Load that changes in sinusoidal pattern

(5) Various coefficients

1 Load factors

- Although a load applied to the slide can be calculated, the actual load becomes larger than the calculated value due to the machine's vibration and impact.
- Therefore, calculation of load on the slide should take into consideration the load factors in Table 2.5.

Table 2.5 Load factor fw

Impact/Vibration	Load factor		
No external impact/	10 15		
vibration	1.0 – 1.5		
There is impact/	1.5 – 2.0		
vibration from outside.			
There is significant	2.0 - 3.0		
impact/vibration.	2.0 - 3.0		

NSK

2 Hardness coefficient

- · For linear guides, in order to function optimally, both the rolling elements and the rolling contact surface must have a hardness of HRC58 to 62 to an appropriate depth.
- The hardness of NSK linear guide fully satisfies HRC58 to 62. Therefore, in most cases it is not necessary to consider hardness. If the linear guide is made of a special material by a customer's request, as the material hardness is lower than HRC58, use the following formula for adjustment.

$$C_{H} = f_{H} \cdot C$$
 $C_{OH} = f_{H}' \cdot C_{O}$

 $C_{\rm H}$: Basic dynamic load rating adjusted by hardness coefficient

f_H: Hardness coefficient (Refer to Fig. 2.6)

 C_{OH} : Basic static load rating adjusted by hardness coefficient

f_H': Static hardness coefficient (Refer to Fig. 2.6)



Fig. 2.6 Hardness coefficient

3 Reliability coefficient

· In general, a reliability of 90% is customary. In this case, reliability coefficient is 1. Therefore, the reliability coefficient does not have to be included in calculation.

(6) Calculation of rating life

Life Calculating Formula

Life calculating formula in the stroke movement with normal lubrication, the following relationships exist between slide mean effective load Fm (N). basic dynamic load rating to load application direction C(N), and rating fatigue life L(km).

$$L = 50 \times \left(\frac{f_{\text{H}} \cdot C}{f_{\text{w}} \cdot F_{\text{m}}} \right)^{n} \text{ (km)}$$

Ball linear guide bearing which uses balls n = 3Roller linear guide bearing which uses rollers n = 10/3

f_H: Hardness coefficient

 f_w : Load factor

Fm: Mean effective load

Use basic dynamic load rating C to calculate the life.

Note: Do not use basic static load rating C_{0i} and basic static moment rating M_{R0} , M_{P0} or M_{Y0} .

Life as an entire guide way system

In those cases when several slides comprise

a single guide way system (such as a single-axis table), the life of the slide to which the most strenuous condition is applied is considered to be the life of the entire system. For example, in Fig. 2.7, if

"slide A" is the slide which

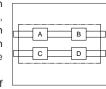


Fig. 2.7 Life of a system

receives the largest mean effective load, or if "slide A" is the one which has the shortest life, the life of the system is considered to be the life of "slide A."

(7) Examination of static load

1 Examine from basic static load rating

• Examine static equivalent load P_0 , which is applied to the slide, from basic static load rating C_0 and static permissible load factor fs.

$$fs = \frac{C_0}{P_0}$$

When static equivalent load P_0 is a combination of vertical loads Fr and lateral load Fs, calculate using formulas below.

For SH, SS, LH, LS, VH, HS and LW Series: If compressed load and lateral load are combined $P_0 = Fr + 1.54Fs$

If tensile load and lateral load are combined

 $P_0 = 1.28Fr + 1.54Fs$

For RA, LA, HA, TS, PU, PE, LU, LE and LL Series: $P_0 = Fr + Fs$

• The table below shows guidelines of fs for general 26 industrial use.

Table 2.6

Use conditions	fs
Under normal operating conditions	1 – 2
Operating under vibration/impact	1.5 – 3

- · Basic static load rating is not a destructive force to the balls or rollers, rails, or slide. The balls can withstand a load more than seven times larger than the basic static load rating. It is sufficient as a safety factor to the destruction load designed for general machines.
- · However, when a heavy load applied to the rail and slide in tension direction, the strength of the bolt which secures rail and ball slide affects the strength of the entire system. Strength of the bolt and its material should be considered.

2 Examining from static moment load rating

· Also examine static permissible moment load M_0 from basic static moment load M_{00} and static permissible load factor fs.

$$fs = \frac{M_{P0}}{M_0}$$

If more than one moment load in any direction is combined, please consult NSK.

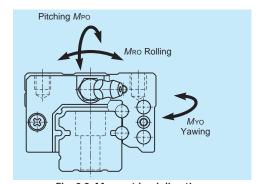


Fig. 2.8 Moment load directions

(8) Precautions for the design in examining the life

The following points must be heeded in examining the life.

In case of oscillating stroke

- If the rolling elements do not rotate all the way, but only halfway, and if this minute stroke is repeated, lubricant disappears from the contact surface of balls or rollers and raceways. This generates "fretting," a premature wear. Fretting cannot be entirely prevented, but it can be mitigated.
- A grease which prevents fretting is recommended for oscillating stroke operations. Using a standard grease, life can be markedly prolonged by adding a normal stroke travel (about the slide length) once every several thousand cycles.

When applying pitching or yawing moment

- Load applied to the rolling element rows inside the slide is inconsistent if pitching or yawing moment load is applied. Loads are heavy on the rolling elements on each end of the row.
- In such case, a heavy load lubricant grease or oil are recommended. Another countermeasure is using one size larger model of linear guide to reduce the load per rolling element.
- Moment load is insignificant for 2-rail, 4-slides combination which is commonly used.

When an extraordinary large load is applied during stroke

- If an extraordinary large load is applied at certain position of the stroke, calculate not only the life based on the mean effective load, but also the life based on the load in this range.
- When an extraordinary heavy load is applied and thus the application of high tensile stress to fixing bolts of the rails and slides is foreseen, the strength of the bolts should be considered.

When calculated life is extraordinarily short (Less than 3000 km in calculated life.)

- In such case, the contact pressure to the rolling elements and the rolling contact surface is extraordinarily high.
- Operated under such state continually, the life is significantly affected by the loss of lubrication and the presence of dust, and the actual life becomes shorter than calculated.
- It is necessary to reconsider arrangement, the number of slide, and the type of model in order to reduce the load to the slide.
- It is necessary to consider preload for calculation of rating life, when selecting Z3 (medium preload) or Z4 (heavy preload) as a preload.
 Please consult NSK.

Application at high speed

- The standard maximum allowable speed of a linear guide under normal conditions is 100 m/ min. However, the maximum allowable speed can be affected by accuracy of installation, temperature, external loading etc.
- The end cap with high speed specification must be used when operating speed exceeds the permissible speed. Please consult NSK.

A-3-3 Preload

(1) Objective of preload

- An elimination of clearance between the raceways and rolling elements diminishes the mechanical play of the linear guide system.
- When a preload is applied, the deformation of linear guides by external vertical load is further improved thus increasing the system stiffness.
- Preloading method Rolling elements slightly bigger than the space of two raceways are inserted as shown Figure 3.1.

(2) Preload and rigidity

- In NSK linear guides, slight size changes rolling elements, which are going to be inserted in the slide, control clearance and amount of preload.
- In NSK linear guide, rigidity is further increased and elastic deformation is reduced by applying preload.
- In general, a load range of ball guide system in which the preload is effective becomes about 2.8 times of the preload (Fig.3.2). For roller guide system, it becomes about 2.2 times of the preload.
- Fig. 3.3 shows the relationship of ball slide deformation by external vertical load and preload. SH35 is used as a case.
- The following show the definition of linear guide rigidity.
- 1) Radial rigidity: Rigidity of vertical and lateral directions, up/down and right/left (Fig. 3.4).
- 2) Moment rigidity: Three moment directions, pitching, rolling, and yawing (Fig. 3.5).

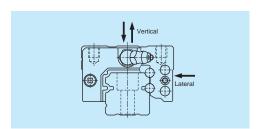


Fig. 3.4 Radial rigidity

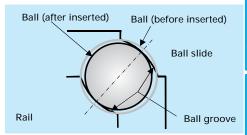


Fig.3.1 Preloading method

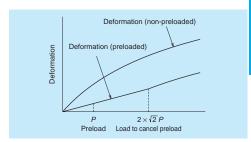


Fig. 3.2 Elastic deformation

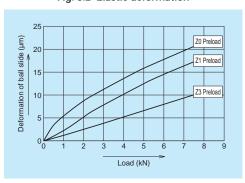


Fig. 3.3 Rigidity of SH35, downward direction load (example)

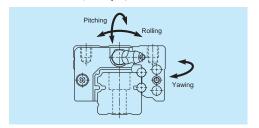
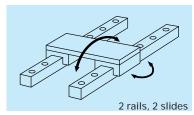
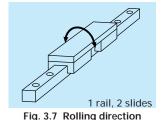




Fig. 3.5 Moment rigidity

- · Since two rails and four slides are used in general as a pair, considering only the radial rigidity is sufficient.
- · However, in cases as shown in Fig. 3.6, Fig. 3.7 and Fig. 3.8, it is necessary to take into account the moment rigidity in addition to the radial rigidity.

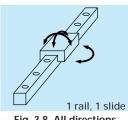


Fig. 3.6 Pitching and yawing direction

Fig. 3.8 All directions

(3) Selection of preload types

- · Several types of preload that match the characteristic of each series are set for NSK linear guides.
- Types of preload classification for each series are shown in Table 3.1. Table 3.2 shows the selection criterion of preload classification.

Table 3.1 Classification of preload in each series

		Preloaded	assembly (r	not random	matching)	Random	-matching a	issem	bly
	Preload	Heavy preload	Medium preload	Slight preload	Fine clearance	Medium preload	Slight preload	Fine cle	earance
	Series \	Z4	Z3	Z1	Z0	Z3	ZZ	ZT	ZS
	SH, SS		0	0	0		0	0	
	LH, LS		0	0	0		0	0	
	VH		0	0	0		0	0	
	LA	0	0						
	LW		(0)	0	0			0	
	TS								0
Ball guide	HA		0	0					
	HS		0	0					
	PU			0	0			0	
	PE			0	0			0	
	LU			0	0			0	
	LE			0	0			0	
	LL				0				
Roller guide	RA		0			0			

Table 3.2 Loads

Classification of preload	Use condition	Applications	
Z0, ZT, ZS (Fine clearance)	An application in which a set of parallel two linear guides (four ball slides/two rails) is used to sustain a unidirectional load with low vibration and impact. Application in which the accuracy is not very necessary but a friction force must be minimized.	Welding machine, Glass processing machine, Packaging/packing machines, Materials handling	
Z1, ZZ (Slight preload)	Moment loads are applied. Application for highly accurate.	Industrial robot , Inspection/measuring equipment, Laser cutting machine, Electric discharge machine, PCB driller , Mounter	
Z3, Z4 (Medium preload, Heavy preload)	Application in which extremely high stiffness is essential. Application in which vibration and impact load will be applied.	Machining centers, Lathes, Milling machines, Boring machines, Grinders	

(4) Deformation Calculation

The followings are the relation between load and deformation.

- · Without preload When the rolling element is ball The deformation is proportional to the 2/3 power of the load.
- When the rolling element is roller The deformation is proportional to the 9/10 power of the load.
- · With preload The deformation is directly proportional to the

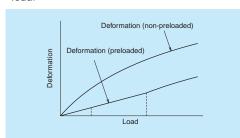


Fig. 3.9 Elastic deformation

A preloaded linear guide deforms proportionally to the load as shown in Figure 3.9; the calculation of system deformation can be done using the stiffness of slide. The factors required an estimation of system deformation are listed below. The stiffness is shown on the relevant explanation of each series.

- <Required conditions to calculate deformation>
- · Volume of load
- · Direction of load
- · Point of load application
- · Position of deformation calculation
- Arrangement of rail and ball slides
- · Position of driving mechanism

Please refer to the calculating formula of deformation for typical table structures on the Pages A18 to A20.

(5) Application examples of preload

Table 3.3 shows examples of preload of NSK linear guides for specific purposes.

Refer to this table when selecting preload type for 30 your application.

Table 3.3 Examples of preload for specific purpose

Preload

0 [oad	
Type of machine	Application	Heavy preload Z4	Medium preload Z3	Slight preload Z1, ZZ	Fine clearance Z0, ZT, ZS
	Machining centers	0	0		
l	Grinders	0	0		
۱,,	• Lathes	0	0		
ğ	Milling machines	0	0		
etc	Drilling machines	0	0		
hi	Boring machines		0		
Machine tools	Gear cutters	0	0		
2	Diesinking machine		0 0	0	
	Laser cutting machine		0	0	
	Electric discharge machine		0		
	Punch press		0	0	
	Press machine			0	0
Je l	Welding machine		0	0	0
Б	Painting machine			0	0
Industrial machines and equipment	Textile machine			0	0
g	Coil winder		0	0	
ah	Woodworking machine		0	0	0
Sec	Glass processing machine			0	0
훒	Stone cutting machine			Ō	0
nac	Tire forming machine			0	0
a	• ATC			0	0 0
Stri	Industrial robot		0	0	0
8	Materials handling			0	0
=	Packing machine			0	0
İ	Construction machine				0
S	• Prober		0		
ij	Wire bonder		0 0	0	
aci	• PCB driller		0	0	
٦	• Slicer		0		
Semiconductor facilities	• Dicer		0		
ndt	Chip mounter		0	0	
<u>0</u>	IC handler			0	
E	• Scanner			0	
Ň	Lithographic machine		0	0	
	Measuring/inspection equipment			0	
	Three-dimensional measuring equipment		0	0	
S	Medical equipment			0	0
Others	OA equipment			0	0
Ō	Railway cars			0	0
	Stage systems				0
	Pneumatic equipment			0	0

(6) Load and rating life when the preload is taken into account

It is necessary to consider preload for calculation of rating life, when the Z3 (medium preload) or the Z4 (heavy preload) preload code is specified. Please consult NSK.

(7) Calculating Friction Force by Preload

- · Dynamic friction force per one slide of the ball guide can be calculated from preload value.
- The following is a simple calculation to obtain the criterion of dynamic friction force. For slight preload ZZ of random-matching type with preload, use preload volume of slight preload Z1 of preloaded assembly.

F = iP

F: Dynamic friction force (N)

P: Preload (N)

i : Contact coefficient

Use the following contact coefficient values (i).

SH, SS, LH, LS, LW, HS Series: 0.004 HA, LA Series : 0.010 PU, PE, LU, LE Series : 0.026

• The starting friction force when the slide begins to move depends on lubrication condition. Roughly estimate it at 1.5 to 2 times of the dynamic friction obtained by the above method.

Calculation example

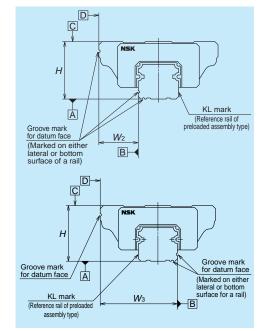
In case of LH35AN - Z3 i = 0.004P = 2350 (N) (refer to LH series preload) F = iP $= 0.004 \times 2350 = 9.4 (N)$

Therefore, the criteria of the dynamic friction force of LH35AN - Z3 is 9.4 N.

For seal friction, refer to seal friction of each Series.

A-3-4 Accuracy

(1) Accuracy standard


The accuracy characteristics of linear quide are specified to each series in the variations of assembled height, assembled width, and running parallelism. We also specify the mutual variation of a pair of A linear guides in the assembled height and assembled width. The accuracy of the table equipped with a set of linear guides is depending on other accuracies and many factors besides the accuracy of linear quides. Those are the accuracy of the mounting surface of the machine, the mounting span between two linear guides, the span of ball slides, the number of ball slides, and the location of the point at where the accuracy is really required.

(2) Definition of Accuracy

• Table 4.1, Figure 4.1 and Figure 4.2 show accuracy characteristics.

Table 4.1 Definition of accuracy

Characteristics	Definition (Figures 4.1 and 4.2)
Mounting height H	Distance from A (rail bottom datum face) to C (slide top face)
Variation of H	Variation of H in slides assembled to the rails of a set of linear guides
Mounting width	Distance from B (rail side datum face) to D (slide side datum face).
W_2 or W_3	Applicable only to the reference linear guide.
Variation of W_2 or W_3	Difference of the width $(W_2 \text{ or } W_3)$ between the assembled slides
	which are installed in the same rail. Applicable only to the reference
	linear guide.
Running parallelism of	Variation of C (slide top face) to A (rail bottom datum face) when slide
slide, face C to face A	is moving.
Running parallelism of	Variation of D (slide side datum face) to B (rail side datum face)
slide, face D to face B	when a slide is moving.
	· · · · · · · · · · · · · · · · · · ·

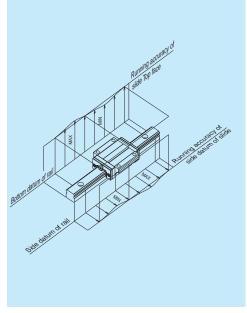
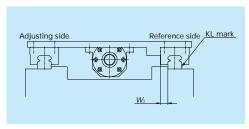



Fig. 4.1 Assembled dimensions

Fig. 4.2 Running parallelism of slide

Mounting width: W2, and W3

• Mounting width differs depending on the arrangement of the datum faces of the rail and slide on the reference linear guide (indicated as KL on the rail). (Fig. 4.3 and Fig. 4.4)

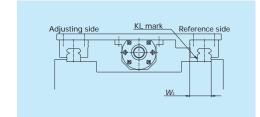


Fig. 4.3 Mounting width W₂

Fig. 4.4 Mounting width W₃

Running Parallelism of Ball Slide

• Running parallelism of slide is common in all series. Specifications of all accuracy grades are shown in Table 4.2. However, applicable accuracy grades differ by series. Please refer to "Table 4.4 Accuracy grade and applicable series" on page A35.

Table 4.2 Running parallelism of slide

Unit: µm

						Random-		
Accuracy grade		Preloaded assembly (not random matching)						
Rail over all length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5		Normal grade PN	Normal grade PC		
- 50	2	2	2	4.5	6	6		
50 - 80	2	2	3	5	6	6		
80 – 125	2	2	3.5	5.5	6.5	6.5		
125 – 200	2	2	4	6	7	7		
200 – 250	2	2.5	5	7	8	8		
250 – 315	2	2.5	5	8	9	9		
315 – 400	2	3	6	9	11	11		
400 – 500	2	3	6	10	12	12		
500 - 630	2	3.5	7	12	14	14		
630 – 800	2	4.5 (4)	8	14	16	16		
800 – 1000	2.5	5 (4.5)	9	16	18	18		
1000 – 1250	3	6 (5)	10	17	20	20		
1250 – 1600	4	7 (6)	11	19	23	23		
1600 – 2000	4.5	8 (7)	13	21	26	26		
2000 – 2500	5	10 (8)	15	22	29	29		
2500 – 3150	6	11 (9.5)	17	25	32	32		
3150 – 4000	9	16	23	30	34	34		

Note: Value of () is the running parallelism of RA Series.

(3) Application examples of accuracy grade

Table 4.3 shows examples of accuracy grade and preload of NSK linear guides for specific purposes.

Refer to this table when selecting accuracy grade and preload type for your application.

Table 4.3 Application examples of accuracy grade and preload

of Je			Aco	curacy gra	ade		Preload			
Type of machine		Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN, PC	Heavy preload Z4	Medium preload Z3	Slight preload Z1, ZZ	Fine clearance ZO, ZT
	 Machining centers 		0	0	0		0	0		
	Grinders	0	0	0			0	0		
8	Lathes		0	0	0		0	0		
t c	Milling machines		0	0	0		0	0		
Je	Drilling machines			0	0		0	0		
Machine tools	Boring machines		0	0	0		0	0		
ac	Gear cutters		0	0	0		0	0		
Σ	Diesinking machine		0	0	0			0	0	
	Laser cutting machine		0	0	0			0	0	
	Electric discharge machine	0	0	0			0	0		
Ħ	Punch press			0	0			0	0	
Jei	Press machine				0	0			0	0
b	 Welding machine 				0	0		0	0	0
equipment	Painting machine				0	0			0	0
	Textile machine				0	0			0	0
JU.	Coil winder				0	0		0	0	
S	Woodworking machine			0	0	0		0	0	0
ine	Glass processing machine				0	0			0	0
C	Stone cutting machine				0	00			0	0
шa	Tire forming machine ATC				0	0			0	0
a	Industrial robot				0	0			0	
Industrial machines and				0		0		0	0	0
ñ	Materials handling Packing machine				0	0			0	0
Ľ						0				
	Construction machine					O				0
ies	• Prober	0						0	0	
≝	Wire bonder		0	0				0	0	
fac	PCB driller			0	0			0	0	
Semiconductor facilities	• Slicer	0	0							
쥙	Dicer Chip mounter	0	0	0	0			0	0	
onc	IC handler			0	0			0	0	
ni:	Scanner			0	0				0	
Ser	Lithographic machine	0	0					0	0	
-		_						0		
	Measuring/inspection equipment	0	0	0	0				0	
٠,	Three-dimensional measuring equipment	0	0	0	0			0	0	
Others	Medical equipment			0	0	0			0	0
닱	OA equipment Railway cars				0	0			0	
O						0			0	0
	Stage systems				0	0			0	0
	 Pneumatic equipment 									

Note: Only "slight preload (Z1, ZZ)" and "fine clearance (Z0, ZT)" are available for "normal grade (PN and PC)". For random-matching type, only accuracy grade "PC," and preload "ZZ" and "ZT" are available. For random-matching RA Series, only accuracy grade "P6" and preload "Z3" are available.

(4) Combination of accuracy grade and preload

1 Accuracy grades

- The accuracy grade which matches the characteristic of each series is set for NSK linear guides.
- Table 4.4 shows accuracy grade set for each series.
- Refer to "(3) Application examples of accuracy grade" which shows cases of appropriate accuracy grade for specific purpose.

Table 4.4 Accuracy grades and applicable series

	Pre	eloaded assei	mbly (not rar	ndom matchi	ng)	Random-ma	atching type
Series	Ultra precision	Super precision	High precision	Precision grade	Normal grade	Precision grade	Normal grade
	P3	P4	P5	P6	PN	P6	PC
LH, SH, VH	0	0	0	0	0		0
LS, SS	0	0	0	0	0		0
LA	0	0	0	0			
LW			0	0	0		0
LE, PE			0	0	0		0
LU, PU		0	0	0	0		0
LL					0		
HA	0	0	0				
HS	0	0	0				
RA	0	0	0	0		O*)	

^{*)} Only RA25 to 65 are available in random matching.

2 Preload

- Several types of preload that match the characteristic of each series are set for NSK linear guides.
- Types of preload for each series are shown in Table 4.5.
- Refer to characteristics of each series for details of radial clearance, preload, and rigidity.
- "(3) Application examples of accuracy grade" shows cases of appropriate preload and accuracy grades for specific purposes.

Table 4.5 Classification of preload

Preloaded assembly (not random matching) Random-						om-matching	m-matching type		
Series	Heavy preload	Medium preload	Slight preload	Fine clearance	Medium preload	Slight preload	Fine clearance		
	Z4	Z3	Z1	Z0	Z3	ZZ	ZT		
LH, LS, VH		0	0	0		0	0		
SH, SS		0	0	0		0			
LA	0	0							
LW		(0)	0	0		0	0		
LE, PE			0	0			0		
LU, PU			0	0			0		
LL				0					
НА		0	0						
HS		0	0						
RA		0			0				

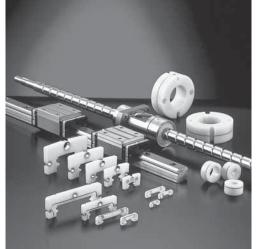
Note: 1) Z3 preload types for LW Series are LW35 and 50 only.

^{2) &}quot;Z" is omitted from the specification number (refer to each series).

NSK

A-3-5 Lubrication

(1) NSK Linear Guides Equipped with "NSK K1[™]" Lubrication Unit.


What is "long-term, maintenance-free" operation? Ball screws and linear guides which are equipped with "NSK K1™" do not require maintenance for five years or up to 10,000 km operational distance.

"NSK K1™" lowers machine operation cost, and

reduces impact on the environment.

What is "NSK K1™" Lubrication Unit?

"NSK K1™" is a lubrication device which combines oil and resin in a single unit. The porous resin contains a large amount of lubrication oil. Equipped closely to the rail, "NSK K1™" constantly supplies fresh oil which seeps from the resin, lubricating the rail surface.

Enlarged surface of "NSK K1" Lubrication Unit 100um

Polvolefin

Unlike vinyl chloride products, polyolefin does not produce dioxin. Polyolefin is also gaining use at supermarkets for food wrapping.

Lubrication oil

It is mineral oil-based. The oil has a viscosity of 100 cSt.

Remarkable capacity with new material: NSK K1[™] Lubrication Unit information

- NSK K1 lubrication unit (referred to NSK K1 hereafter) to be equipped with NSK linear guide is outstanding new lubrication material.
- Newly developed "porous synthetic resin" contains large volume of lubricant oil, and it seeps out enhancing lubricating function.
- Simply install NSK K1 inside the standard end seal (rubber).
- We also provide NSK K1 lubrication unit for sanitary environments suited for food processing machinery, medical equipment and their ancillaries for the environment where hygiene control is essential. For details, refer to A-3-8 (3).

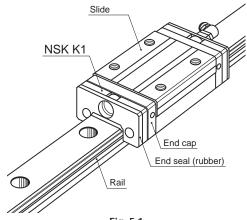


Fig. 5.1

A37

3 Combinations of accuracy grade and preload

Preloaded assembly

Random-matching type

• Combinations of accuracy grade and preload are shown in Table 4.6.

*) P6 grade is only for RA 25 to 65, and its preload is Z3. (Preload code is ZZ)

Table 4.6 Combinations of accuracy grade and preload type

Accuracy grade

P3 - P6

PΝ

PC. P6*)

Preload

Z4 - Z0

Z1 - Z0

ZZ - ZT

1) Features

NSK K1 comprises a part of the compact and efficient lubrication unit.

1 Maintenance is required only infrequently

Used with grease, and maintaining lubrication function for a long period of time. Ideal for systems/ environments which make replenishment difficult.

For automotive component processing lines, etc.

2 Does not pollute the environment

A very small volume of grease combined with NSK K1 can provide sufficient lubrication in the environment where grease is undesirable as well as in the environment where high cleanliness is required.

Food processing/medical equipment, liquid crystal display/semiconductor manufacturing equipment, etc.

We also provide NSK K1 lubrication unit for sanitary environment suited for food processing machinery, medical equipment and their ancillaries for the environment where hygiene control is essential. For details, refer to A-3-8 (3).

2) Functions

NSK K1 has various superb functions. NSK's ample test data and field performances confirm NSK K1 abilities.

1 Durability test at high speed, with no other lubrication

Figure 5.2 shows test results under these conditions. The linear guide operated with no lubricant is unable to travel after a short period because breakage occurs. Equipped with NSK K1, the linear guide easily travels 25000 km.

Conditions: Sample Travel speed : 200 m/min

; LH30AN (preload Z1)

3 Good for environments where lubricant is washed away

Used with grease, life of the machine is prolonged even when the machine is washed entirely by water, or in an environment where the machine is exposed to rain or wind.

Food processing equipment, housing/construction machines, etc.

Maintains efficiency in dusty environment

In environment where oil- and grease-absorbing dust is produced, long-term efficiency in lubrication and prevention from foreign inclusions are maintained by using the "NSK K1[™]" in combination with grease.

Woodworking machines, etc.

*Stainless steel linear guides are available for use in corrosive environments or other environments where rusting is a potential

Stroke : 1800 mm No lubricant: Completely degreased, no lubrication NSK K1: Completely degreased, no lubrication + NSK K1

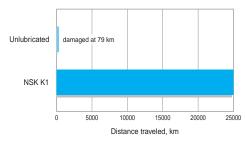


Fig. 5.2 Durability test at high speed, with no lubrication (lubricated by NSK K1 only)

2 Durability test immersed in water

Figure 5.3 shows test results after the linear guide is immersed in water once per week for 24 hours at a time, then traveled for 2700 km. Without NSK K1, the ball groove sufrace wore out at an early stage and broke. With NSK K1, the wear was reduced to about 1/3 (Table 5.1). This test proves the effect of NSK K1.

Conditions: Sample : LS30 Stainless (preload Z1)

> Travel speed: 24 m/min Stroke : 400 mm Load : 4700 N/Slide Lubricant

; Fully packed with dedicated grease (*) for food machines

Immersing condition:

Immersed and traveled once per week for 24 hours at a time.

* Grease made in U.S.A.

Characteristic

Consistency: 280 Base oil viscosity: 580 (cSt)

Table 5.1 Comparison in wear of grooves and steel balls (2700 km)

	• • •	,	(Unit: µm))
Lubricating condition	Ball slide groove	Rail groove	Steel balls	
With NSK K1	16 – 18	2 – 3	6 – 8	
Without NSK K1	30 – 45	9 – 11	17 – 25	

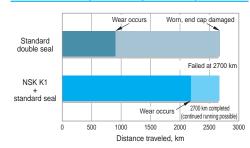


Fig. 5.3 Durability test immersed in water

4 Dust emission

Figure 5.5 is a comparison of NSK K1 dust emissions. The combination of NSK K1 and NSK Clean Grease LG2 (low dust grease) generates as little dust as fluorine grease.

Conditions: Sample : LS20

Travel speed : 36 m/min

3 Durability test with wood chips

Wood chips absorb lubricant. Maintaining lubrication in such environment is extremely difficult. Figure 5.4 shows that the life when NSK K1 is added to a A standard seal is two times longer than the life when two seals are combined (Standard double seal)

Conditions: Sample ; LH30AN (preload Z1)

> Travel speed : 24 m/min Stroke : 400 mm Load : 490 N/Slide

Seal specifications/lubricant:

Standard double Seal···Standard double

Seal + AS2 Grease

NSK K1.....NSK K1 + Standard

seal + AS2 Grease

Wood chip conditions:

1..... Large volume of wood chips

2..... Medium volume of wood chips

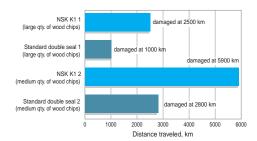


Fig. 5.4 Durability test with wood chips

Fig. 5.5 Comparison of dust emission

A39

3) Specifications

1 Applicable series and sizes

- 1 Can be installed in SH, SS, LH, LS, LW, RA, LA, PU, PE, LU, LE, HA, and HS series. For VH and TS series, NSK K1 is equipped as a standard specification.
- 2 Can be used with stainless steel materials and surface-treated items.

2 Standard specifications

- 1 Install NSK K1 between the end seal and end cap.
 For TS series, it is installed inside end cap. (Double-seal specification, and specification with protector are also available on request.)
- 2 NSK standard grease is packed inside the slide. (Volume of grease, type of grease on request.)
- 3 Accuracy and preload are the same as standard items.
 (Dynamic friction increases slightly due to NSK K1.)

③ Number of installed NSK K1

Normally, one NSK K1 should be installed on both sides of slides. (two K1s for one slide)

However, more NSK K1 may be required under more stringent drive and environment. Please consult NSK for details.

Precautions for handling

To extend high functions of NSK K1, please observe the following precautions.

- Temperature range for use: Maximum temperature for use: 50°C
 Momentary maximum temperature in use: 80°C
- 2. Chemicals that should not come to contact with NSK K1:

Do not leave NSK K1 in organic solvent, white kerosene such as hexane, thinner which removes oil, and rust preventive oil which contains white kerosene.

Note: Water-type cutting oil, oil-type cutting oil, grease such as mineral-type AS2 and ester-type PS2 do not damage NSK K1.

(2) Lubrication

There are two types of lubricating method, grease and oil, for linear guides.

Use a lubricant agent and method most suitable to condition requirements and purpose to optimize functions of linear guides.

In general, lubricants with low base oil kinematic viscosity are used for high speed operation, in which 42 thermal expansion has large impact, and in low temperatures.

Lubrication with high base oil kinematic viscosity is used for oscillating operations, low speed and high temperature.

The following are lubrication methods by grease and by oil.

1) Grease Lubrication

Grease lubrication is widely used because it does not require special oil supply system or piping. Grease lubricants made by NSK are:

- · Various types of grease in bellowed container which can be instantly attached to the grease pump;
- NSK Grease Unit which comprise a hand grease pump and various nozzles. They are compact and easy to use.

1. NSK grease lubricants

Table 5.2 shows the marketed general grease widely used for linear guides, in specific uses, conditions and purposes.

Table 5.2 Grease lubricant for linear guides

Type	Thickener	Base oil	Base oil kinematic viscosity	Range of use	Purpose
			mm²/s (40°C)	temperature (°C)	
AS2*1)	Lithium type	Mineral oil	130	-10 - 110	For general use at high load
PS2*2)	Lithium type	Synthetic oil	15	-50 - 110	For low temperature and
		+ mineral oil			high frequency operation
LG2	Lithium type	Mineral oil	30	-20 - 70	For clean environment
		+ synthetic			
		hydrocarbon oil			
LGU	Diurea	Synthetic	100	-30 - 120	For clean environment
		hydrocarbon oil			
NF2	Urea composite type	Synthetic oil	27	-40 - 100	For fretting resistant
		+ mineral oil			

^{*1)} Standard grease of SH, SS, LH, LS, VH, LW, TS, RA, LA, HA, and HS Series.

^{*2)} Standard grease of PU, PE, LU, and LE Series.

1 NSK Grease AS2

Features

It is an environmentally friendly and widely used grease for high load application. It is mineral oil based grease containing lithium thickener and several additives. It is superb in load resistance as well as stability in oxidization. It not only maintains good lubrication over a long period of time, but also demonstrates superb capability in retaining water. Even containing a large amount of water, it does not lose grease when it is softened.

Application

It is a standard grease for general NSK linear guides. It is prevalently used in many applications because of its high base oil viscosity, high load resistance, and stability in oxidization.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil
Consistency	275
Dropping point	185°C
Volume of evaporation	0.24% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	2.8% (100°C, 24 hr)
Base oil kinematic viscosity	130 mm ² /s (40°C)

2 NSK Grease PS2

Features

The major base oil component is synthetic oil with mineral oil. It is an excellent lubrication especially for low temperature operation. It is for high speed and light load.

Application

It is a standard grease for NSK miniature linear guides. It is especially superb for low temperature operation, but also functions well in normal temperatures, making it ideal for small equipment with light load.

Nature

Thickener	Lithium soap base
Base oil	Synthetic oil + mineral oil
Consistency	275
Dropping point	190°C
Volume of evaporation	0.60% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	3.6% (100°C, 24 hr)
Base oil kinematic viscosity	15 mm²/s (40°C)

③ NSK Grease LG2

Features

This grease was developed by NSK to be exclusively used for linear guides in clean room. Compared to the fluorine grease which are commonly used in clean room, LG2 has several advantages such as:

- Higher in lubrication function
- Longer lubrication life
- More stable torque (resistant to wear)
- · Higher rust prevention.

In dust generation, LG2 is more than equal to fluorine grease in keeping dust volume low. Since the base oil is not a special oil but a mineral oil, LG2 can be handled in the same manner as general greases.

Application

LG2 is a lubrication grease for linear guides for semiconductor and liquid crystal display (LCD) processing equipment which require a highly clean environment. Because LG2 is exclusively for a clean environment at normal temperatures, however, it cannot be used in a vacuum environment.

Refer to "Special environment" in Page A60 for detailed data on superb characteristics of NSK Grease LG2

Nature

Thickener	Lithium soap base
Base oil	Mineral oil + Synthetic hydrocarbon oil
Consistency	207
Dropping point	200°C
Volume of evaporation	1.40% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.8% (100°C, 24 hr)
Base oil kinematic viscosity	30 mm²/s (40°C)

4 NSK Grease LGU

Features

This is a proprietary urea base grease of NSK featuring low dust emission exclusively for linear guides which are used in clean rooms.

In comparison with fluorine base grease, which has been used commonly in clean rooms, LGU has better lubricating property, longer duration of lubricant, better torque variation, much better anti-rust property, and equivalent or better dust emission. In addition, this grease can be handled in the same way as the other common grease because high-grade synthetic oil is used as the base oil.

LGU grease contains much less metallic elements compared to LG2 grease. It can be used in high temperature environment.

Application

This is exclusive lubrication grease for linear guides that are installed in equipment that requires cleanliness, as same as LG2 grease, and it can be used in high temperature range of -30° to 180°C. This cannot be used in vacuum.

Nature

Thickener	Diurea
Base oil	Synthetic hydrocarbon oil
Consistency	209
Dropping point	260°C
Volume of evaporation	0.09% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.6% (100°C, 24 hr)
Base oil kinematic viscosity	100 mm ² /s (40°C)

(5) NSK Grease NF2

Features

It uses high-grade synthetic oil as the base oil and urea base organic compound as the thickener. It has A remarkable anti-fretting corrosion property. It can be used in wide temperature range, from low to high, and has superior lubrication life.

Application

This grease is suitable for linear guides of which application include oscillating operations. Allowable temperature range is -40° to 130°C.

Nature

Thickener	Diurea
Base oil	Synthetic hydrocarbon oil
Consistency	288
Dropping point	269°C
Volume of evaporation	7.9% (177°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.6% (100°C, 24 hr)
Base oil kinematic viscosity	27 mm²/s (40°C)

Precautions for handling

- Wash the linear guides to remove oil prior to applying Clean Grease LG2 or LGU, so the grease functions are fully utilized.
- Clean grease is exclusively used for clean environments at normal pressure.

A43

2. How to replenish grease

Use grease fitting to linear guide slide if exclusive grease supply component is not used. Supply required amount to grease fitting by a grease gun (pump).

Wipe off old grease and accumulated dust before supplying new grease. If grease fitting is not used, apply grease directly to the rail. Remove the seal if possible, and move a slide few strokes so the grease permeates into the slide. A hand grease pump, an exclusive and easy lubrication device to linear guides, is available at NSK.

3. Volume of grease to be replenished

Once grease is replenished, another supply is not required for a long period of time. But under some operational conditions, it is necessary to periodically replenish grease. The following are replenishing methods.

· When there is an exclusive grease supply system and the volume from the spout can be controlled, the

criterion is:

All at once, replenish the amount which fills about 50% of the internal space of the slide. This method eliminates waste of grease, and is efficient.

Page A46 shows internal spaces of slide of each series for refenence.

· When replenishing using a grease gun:

Use a grease gun and fill the inside of slide with grease. Supply grease until it comes out from the slide area. Move the slide by hand while filling them with grease, so the grease permeates all areas. Do not operate the machine immediately after replenishing. Always try the system a few times to spread the grease throughout the system and to remove excess grease from inside. Trial operations are necessary because the resistance to sliding force of linear guide greatly increase immediately after replenishment (full-pack state) and may cause problems. Grease's agitating resistance is accountable for this phenomenon. Wipe off excess grease that accumulates at the end of the rail after trial runs, so the grease does not scatter to other areas.

4. Intervals of checks and replenishments

Although the grease is of high quality, it gradually deteriorates and its lubrication function diminishes. Also, the grease in the slide is gradually removed by stroke movement. In some environments, the grease becomes dirty, and foreign objects may enter. New grease should be replenished depending on frequency of use. The following is a guide of intervals of grease replenishments to linear guides.

Table 5.3 Intervals of checks and replenishments for grease lubrication

Intervals of checks	Items to check	Intervals of replenishments
	Dirt, foreign matters such as	Usually once per year. Every 3000 km for material handling
3-6 months	cutting chip	system which travels more than 3000 km per year. Replenish
		if checking results warrant it necessary.

Note: 1) As a general rule, do not mix greases of different brands. Grease structure may be destroyed if greases of different thickeners are mixed. Even when greases have the same thickener, different additives in them may have an adverse effect on each other.

2) Grease viscosity varies by temperature. Viscosity is particular high in winter due to low temperature. Pay attention to increase in linear guide's sliding resistance in such occasion.

Unit: cm3

Table 5.4 Inside space of the slide

SH, SS Series

				UIIII. CIII
Series	SH		SS	
Model No.	High-load type	Ultra-high-load type	Medium-load type	High-load type
15	2	3	1.5	2
20	5	7	3	4
25	9	12	5	7
30	11	17	7	11
35	20	27	11	17
45	42	53	İ	_
55	73	93	_	_

LH, LS Series

Series	LH		L	
Model No.	High-load type	Ultra-high-load type	Medium-load type	High-load type
08	0.2	_	-	-
10	0.4	_	_	-
12	1.2	_	-	-
15	3	4	2	3
20	6	8	3	4
25	9	13	5	8
30	13	20	8	12
35	22	30	12	19
45	47	59	-	_
55	80	100	-	-
65	139	186	-	_
85	-	336	-	-

VH Series

		Unit: cm	
Series	VH		
Model No.	High-load type	Ultra-high-load type	
15	3	4	
20	6	8	
25	9	13	
30	13	20	
35	22	30	
45	47	59	
55	80	100	

RA Series

		Unit: cm	
Series	RA		
Model No.	High-load type	Ultra-high-load type	
15	1	1.5	
20	2	2.5	
25	3	3.5	
30	5	6	
35	6	8	
45	10	13	
55	15	20	
65	33	42	

LA Series

		UTIIL: CITI	
Series	LA		
Model No.	High-load type	Ultra-high-load type	
25	8	12	
30	14	18	
35	21	29	
45	38	48	
55	68	86	
65	130	177	

Liberta Communication

HA, HS Series

		OTHE. CITE
Series Model No.	НА	HS
15	-	5
20	-	9
25	16	16
30	27	25
35	42	40
45	67	-
55	122	-

Unit: cm3

Unit: cm ³					
Series	PE		Р	U	
Model No.	Standard type	High-load type	Standard type	High-load type	
05	0.1	-	0.1	-	
07	0.2	-	0.1	_	
09	0.4	0.5	0.2	0.3	
12	0.5	0.7	0.3	0.4	
15	1.2	1.6	0.8	1.1	

LW Series Unit: cm³

	OHIL: CH		
Series Model No.	LW		
17	3		
21	3		
27	7		
35	24		
50	52		

TS Sprips

3 Series	Unit: cm³		
Series Vlodel No.	TS		
15	2		
20	3 6		
25			
30	9		
35	15		

LE. LU Series

PE. PU Series

					Unit: cm
Series	LE			LU	
Model No.	Medium-load type	Standard type	High-load type	Standard type	High-load type
05	0.1	0.1	-	0.1	-
07	0.1	0.2	0.3	0.1	
09	0.2	0.4	0.5	0.2	0.3
12	0.3	0.5	0.7	0.3	0.4
15	0.8	1.2	1.6	0.8	1.1

A45 A46

NSK

5. NSK Grease Unit

Supply grease to NSK linear guides by a manual type hand grease pump. Install the grease in bellows tube to the pump. Several types of grease (80 g) are available.

Grease in a bellows tube

① Composition of NSK Grease Unit

Components and grease types are shown below.

	Name	(Tube type)	Reference number
NSK Grease Unit			
NSK Grease	NSK Grease AS2	(Brown)	NSK GRS AS2
(80 g in a bellows tube)	NSK Grease PS2	(Orange)	NSK GRS PS2
	NSK Grease LG2	(Blue)	NSK GRS LG2
	NSK Grease LGU	(Yellow)	NSK GRS LGU
	NSK Grease NF2	(Gray)	NSK GRS NF2
NSK Hand Grease Pump Un	it		
— NSK Hand Grease Pu (Straight nozzle NSk	ımp K HGP NZ1 One nozzle is p	provided with the	NSK HGP hand pump.)
Grease nozzle (used v	with the hand grease pump))	
	NSK straight nozzle		NSK HGP NZ1
	NSK chuck nozzle		NSK HGP NZ2
	NSK drive fitting no	ozzle	NSK HGP NZ3
	NSK point nozzle		NSK HGP NZ4
	NSK flexible nozzle		NSK HGP NZ5
	NSK flexible extens	ion pipe	NSK HGP NZ6
	NSK straight extens	sion pipe	NSK HGP NZ7

2 NSK Greases (80 g in a bellows tube)

Refer to Pages A43 and D14 for their natures and details.

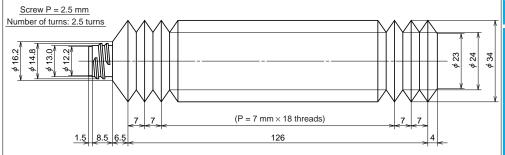


Fig. 5.6 Bellows tube

③ NSK manual Grease Pump Unit

a. NSK Hand Grease Pump Unit (Reference number: NSK HGP)

Features

- Light-weight ······ Can be operated by one hand, yet there is no worry to making a mistake.
- \bullet Inserting by high pressure \cdots Insert at 15 Mpa.
- No leakingDoes not leak when held upside down.
- Easy to change grease ···· Simply attach the grease in bellows tube.
- Remaining grease ····· Can be confirmed through slit on the tube.
- Several nozzles ······Five types of nozzles to choose from.

Specifications

- Spout volume ······ 0.35 g/stroke
- \bullet Mass of main body $\,\cdots\,393$ g
- Overall length · · · · · About 200 mm
- Overall width About 200 mm
- Grease tube outer diameter $\cdots \phi$ 38.1
- Accessory Several nozzles for a unique application can be attached

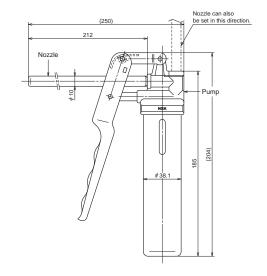


Fig. 5.7 NSK Hand Grease Pump with NSK straight nozzle

b. Nozzles

Table 5.5 Nozzles that can be attached to NSK Hand Grease Pump

Name	Designation code	Use	Dimensions
NSK straight nozzle	NSK HGP NZ1	Can be used with grease fitting A, B, and C under JIS B1575 standard.	Rc1/8
NSK chuck nozzle	NSK HGP NZ2	Same as above. However, there is no need to press the hand pump because the grease fitting and the nozzle come to contact due to the chucking mechanism at the tip.	Rc1/8
NSK fitting nozzle	NSK HGP NZ3	Dedicated for the - \phi 3 drive-in grease fitting.	30 11 M6x1.0 2 3 155
NSK point nozzle	NSK HGP NZ4	Used for linear guides which do not have grease fitting. Supplies grease directly to the ball grooves, or through the opening of slide or slide to inside.	Tip. \$\phi 1.5 \\ \text{Rc1/8}
NSK flexible nozzle	NSK HGP NZ5	The tip of the flexible nozzle is chuck nozzle. Used to supply grease to the area where hand cannot reach.	14HEX. 14HEX. Rc1/8
NSK flexible extension pipe	NSK HGP NZ6	Flexible extension pipe connects the grease pump and the nozzle	Rp1/8 14HEX. Rc1/8
NSK straight extension pipe	NSK HGP NZ7	Straight extension pipe connects the grease pump and the nozzle.	Rp1/8 12HEX. Rc1/8

Table 5.6 Grease fittings used for NSK linear guide

Series	Model No.	Tap hole for grease fitting	fitting	Straight nozzle NZ1	Chuck nozzles NZ2	Drive-in fitting nozzle NZ3	Point nozzle NZ4	Flexible nozzle NZ5
SH Series	SH15	φ3	Drive-in type			0		
	SH20, 25, 30, 35*)	M6×0.75	B type	0	0			0
	SH45, 55	Rc1/8	B type	0	0			0
SS Series	SS15	φ3	Drive-in type			0		
	SS20, 25, 30, 35*)	M6×0.75	B type	0	0			0
	LH08, 10	-	-				0	
LH Series	LH12, 15	φ3	Drive-in type			0		
LH Selles	LH20, 25, 30, 35*)	M6×0.75	B type	0	0			0
	LH45, 55, 65	Rc1/8	B type	0	0			0
LS Series	LS15	φ3	Drive-in type			0		
LS Series	LS20, 25, 30, 35*)	M6×0.75	B type	0	0			0
	VH15	φ3	Drive-in type			0		
VH Series	LH20, 25, 30, 35*)	M6×0.75	B type	0	0			0
	VH45, 55	Rc1/8	B type	0	0			0
	LW17	φ3	Drive-in type			0		
LW Series	LW21, 27, 35*)	M6×0.75	B type	0	0			0
	LW50	Rc1/8	B type	0	0			0
TC Carles	TS15	φ3	Drive-in type			0		
TS Series	TS20, 25, 30, 35*)	M6×0.75	B type	0	0			0
	RA15, 20	φ3	Drive-in type			0		
RA Series	RA25, 30, 35*)	M6×0.75	B type	0	0			0
	RA45, 55, 65	Rc1/8	B type	0	0			0
	LA25, 30, 35*)	M6×0.75	B type	0	0			0
LA Series	LA45, 55, 65	Rc1/8	B type	0	0			0
DI I C	PU05, 07, 09, 12	-	-				0	
PU Series	PU15	φ3	Drive-in type			0		
55.0	PE05, 07, 09, 12	_	- 71				0	
PE Series	PE15	φ3	Drive-in type			0		
LU Series	LU05, 07, 09, 12, 15	, _	-				0	
LE Series	LE05, 07, 09, 12, 15	_	-				Ō	
	HA25, 30, 35*)	M6×0.75	B type	0	0			0
HA Series	HA45, 55	Rc1/8	B type	Ō	Ö			Ō
	HS15	φ3	Drive-in type					
HS Series	HS20, 25, 30, 35*)	M6×0.75	B type	0	0			0

^{*)} When using a chuck nozzle, make sure that it does not interfere with the table on linear guides. Note: PU, PE, LU, and LE Series: Apply grease directly to ball groove, etc. using a point nozzle.

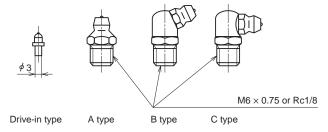


Fig. 5.8 Grease fittings

A long threaded grease fitting is required because of dust proof parts. Please refer to the sections pertaining to the lubrication and dust proof parts of each series.

2) Oil Lubrication

Required amount of new oil is regularly supplied by:

- Manual or automatic intermittent supply system;
- · Oil mist lubricating system via piping.

Equipment for oil lubrication is more costly than one for grease lubrication. However, oil mist lubricating system supplies air as well as oil, raising the inner pressure of the slide. This prevents foreign matters from entering, and the air cools the system. Use an oil of high atomizing rate such as ISO VG 32-68 for the oil mist lubrication system.

ISO VG 68-220 are recommended for common intermittent replenishment system. Approximate volume of oil Q for a slide of linear guide per hour can be obtained by the following formula.

In case of ball type linear guide except for LA series

 $Q \ge n/150 \text{ (cm}^3/\text{hr)}$

In case of LA and RA series

 $Q \ge n/100 \text{ (cm}^3/\text{hr)}$

n: Linear guide code

e.g. When LH45 is used,

n = 45.

Therefore,

 $Q = 45/150 = 0.3 \text{ cm}^3/\text{hr}$

For oil lubrication by gravity drip, the oil supply position and installation position of the slide are crucial. In case of linear guide, unless it is installed to a horizontal position, the oil flows only on the down side, and does not spread to all race way surface. This may cause insufficient lubrication. Please consult NSK to correct such situations prior to use. NSK has internal design which allows oil lubricant to flow throughout the system.

Table 5.7 shows the criterion of intervals of oil checks and replenishments.

Table 5.7 Intervals of checks and replenishments

Method	Intervals of checks	Items to check	Replenishment or intervals of changes
Automatic intermittent supply	Weekly	Volume of oil, dirt, etc.	Replenish at each check. Suitable volume for tank capacity.
Oil bath	Daily before operation	Oil surface	Make a suitable criterion based on consumption

Note: 1) As with grease lubrication, do not mix oil lubricant with different types.

- Some components of the linear guide are made of plastic. Avoid using an oil that adversely affects synthetic resin.
- 3) When using oil mist lubricating system, please confirm an oil supply amount at the each outlet port.

A-3-6 Dust Proof

(1) Standard Specification

- To keep foreign matters from entering inside the slide, NSK linear guide has an end seal on both ends, an bottom seal at the bottom, and an inner seal inside the slide.
- Table 6.1 shows seals for standard specification for each series.
- Seal friction per standard slide is shown in the dust proof item of each series.

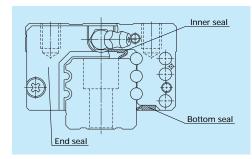


Fig. 6.1

Table 6.1 Standard seals

		End	Bottom	Inner
		seal	seal	seal
SH Series	SH15			-
on series	SH20, SH25, SH30, SH35, SH45, SH55	0	0	Δ
SS Series	SS15	0	0	_
33 Series	SS20, SS25, SS30, SS35	0	0	Δ
	LH08, LH10	0	-	-
LH Series	LH12, LH15	0	0	_
	LH20, LH25, LH30, LH35, LH45, LH55, LH65	0	0	Δ
LS Series	LS15	0	0	_
LS Series	LS20, LS25, LS30, LS35	0	0	Δ
VH Series	VH15	0	0	-
vid Series	VH20, VH25, VH30, VH35, VH45, VH55	0	0	
LW Series	LW17, LW21, LW27, LW35, LW50	0	0	-
TS Series	TS15, TS20, TS25, TS30, TS35	0	0	0
RA Series	RA15, RA20	0	0	Δ
KA Series	RA25, RA30, RA35, RA45, RA55, RA65	0	0	0
LA Series	LA25, LA30, LA35, LA45, LA55, LA65	0	0	\triangle
PU Series	PU05, PU07, PU09, PU12, PU15	0	-	-
PE Series	PE05, PE07, PE09, PE12, PE15	0	-	-
III Camina	LU05, LU07, LU09	\triangle	_	_
LU Series	LU12, LU15	0	-	-
LE Series	LE05, LE07, LE09, LE12, LE15	0	-	-
HA Series	HA25, HA30, HA35, HA45, HA55	0	0	0
HS Series	HS15, HS20, HS25, HS30, HS35	0	Δ	-

○ : Installed as standard△ : Installed on request

(2) Dust proof components

• NSK has the following items. Select a suitable type for the operating environment.

Table 6.2 Optional dust proof components

Name	Purpose	Reference page
NSK K1 lubrication unit	Made of oil impregnated resin. Enhances lubricating functions.	A38 – 41
Double seal	Combines two end seals, enhancing sealing function.	A53
Protector	Protect end seal from hot and hard contamination.	A54
Rail cap	Prevents foreign matters such as swarf generated in cutting operation from clogging the rail-mounting hole.	A54
Inner seal	Installed inside a slide, and prevents foreign matters from entering the rolling contact surface.	A55
Bellows	Covers linear guide.	A55
Rail cover *)	Covers top of rail, and prevents foreign matters such as cutting dust from collecting in the rail mounting holes.	A258

^{*)} Rail cover is applicable to RA25 to 65 of RA series.

1. Double seal

- A combination of two end seals to enhance seal function.
- When a double seal is installed, the end seal section becomes thicker than the standard item.
 Please pay attention to the increase in a slide length when designing the mounting dimension of slide and the table stroke. Please refer to the section of dust proof components for the dimensional increase in the length direction of each series due to fitting of double seal.
- Double-seal set: Can be installed to a completed standard item later on request. It comprises two end seals, a collar, and a screw for installation (Fig. 6.2). The product reference numbers of each series are described on the section of dust proof parts.
- When attaching a grease fitting to the end cap after the double seal is equipped, you require a connector shown in Figure 6.2. Please specify the connector set when ordering linear guides.
- For VH, RA, LA, HA, and HS Series, double-seal set can be installed only before shipping from the factory.

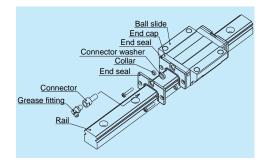


Fig. 6.2 Double seal

2. Protector

- A protector is usually installed outside the end seal to prevent high-temperature fine particles such as welding spatter and other hard foreign matters from entering the slide.
- Same as the case with a double seal, when a protector is installed, the slide becomes longer. Please pay attention to the increase in a slide length when designing the mounting dimensions of slide and the table stroke. The dimensional increase in the slide length because of protector is described on the section of dust proof components.
- Protector can be installed to a completed item later. The reference number for order shown in dust proof components of each series.
- When attaching a grease fitting to the end cap after the protector is equipped, you require a connector shown in Figure 6.3. Please specify the connector set when ordering linear guides.
- For VH, RA, LA, HA, and HS Series, protector can be installed only before shipping from the factory.

3. Cap to cover the bolt hole for rail mounting

- After the rail is mounted to the machine base, a cap is used to cover the bolt hole to prevent foreign matters from clogging up the hole or from entering into the slide (Fig. 6.4).
- The cap for the bolt hole is made of synthetic resin which is superb in its resistance to oil and wear.
- The size of rail mounting bolts and bolt hole caps are shown on the section of dust proof components in each series.
- To insert a cap into the rail bolt hole, use a flat tool (Fig. 6.5). Pound the cap gradually until its height becomes flush with the rail top face.
- You can reorder extra bolt hole caps. The size of rail mounting bolts and reference numbers of bolt hole caps are shown on the section of dust proof components.

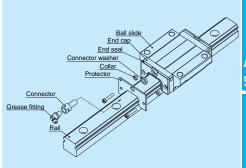


Fig. 6.3 Protector

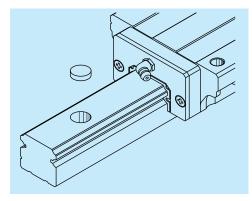


Fig. 6.4

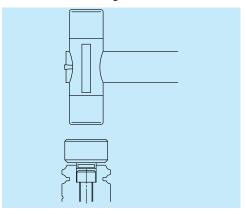


Fig. 6.5

NSK

4. Inner seal

- The end seal installed on both ends of the slide cannot arrest entire foreign matters, though the missed amount is negligible. An inner seal protects the rolling contact surface from such foreign matters which entered inside the slide (Fig. 6.6).
- Inner seal is installed inside the slide. Therefore. the appearance in size and the shape are the same as standard slide. (Inner seal is already installed before shipped from the factory.)
- · It is strongly recommended to use a bellows and a double seal, along with an inner seal, to maintain precision of the linear guide.
- · Refer to Table 6.1 for availability of inner seal.

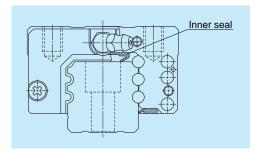


Fig. 6.6 Inner seal when installed

1 Installation of bellows SH, SS, LH and LS Series

- * Installation in the ball slide (Fig. 6.7)
- Remove two machine screws (M2) which secure the end seals to the end of the slide (Fig. 6.7). For LS15, hold the end cap by hand. Otherwise, the end cap is detached from the ball slide, and the balls inside may spill out.
- · Then place a spacer to the hole for securing end seal. Fasten the mounting plate at the end of the bellows to the slide with a slightly longer machine screw (provided with the bellows).

5. Bellows

- Bellows covers entire linear guide. It has been used widely as a way of protection in an environment where foreign matters are prevalent.
- · NSK has bellows exclusively for LH (SH), LS (SS), LA and LW Series. They have a middle bellows and a bellows at both ends. For LH Series, there are low and high type bellows which are in compliance with their slide types.
- The high type is used for AN and BN types. The low type is used for FL, EL, EM, HL, GL, GM, AL and BL types. By combining, the top of the bellows is slightly lower than the top face of the slide.
- · When a high type bellows is installed to the slide with the height code L (such as FL), the top of the bellows becomes higher than the slide. However, it is advantageous for stroke because the pitch of the bellows becomes larger.
- · Special bellows are required for installing the linear guide vertically, or hanging it from a ceiling. Please consult NSK.
- · When a bellows is used, please be advised that we cannot put a grease fitting on the end of slide to which the bellows is attached. If you require the grease fitting, it shall be put on the side of end cap or slide body. Consult NSK for details.
- · For the dimension of bellows, please refer to the section of dust proof parts of each series.

* Installation in the rail

- · To install bellows for SH, SS, LH and LS Series, lightly knock a fastener exclusively for bellows to the end of the rail (Fig. 6.7). Then secure the mounting plate at the end of the bellows through the tap hole of the fastener.
- · As described above, a bellows can be easily installed in the end of the rail without creating a tap hole on the end of the rail.

Lmax Mounting plate Spacer

Fig. 6.7

2 LA and LW Series

- * Installation in the ball slide (Fig. 6.8 and Fig. 6.9)
- · Remove two machine screws which secure the end seal. (For LW17 and 21, hold the end cap by hand. Otherwise, the end cap is detached from the slide, and the balls inside may spill out.)
- · Place a spacer in the securing hole of the end seal, fasten the mounting plate on the end of the bellows using a slightly longer machine screw (provided with the bellows).

* Installation in the rail

· Make tap holes to the rail end face. Fix the bellows mounting plate to the rail end face through these tap holes. Use a machine screw. NSK processes a tap hole to the rail end face Λ when ordered with a linear guide.

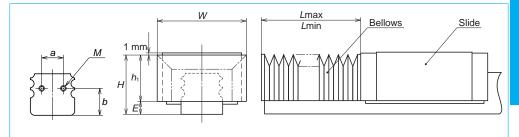


Fig. 6.8

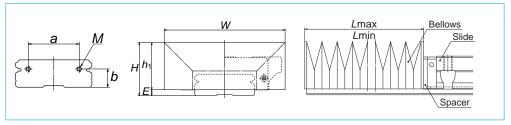


Fig. 6.9

Calculating length of bellows

- · Formula is as follows.
- · A bellows forms one block (BL) with six folds as shown in Fig. 6.10. Stroke is determined by multiplying by an integer of this BL.
- · Length when stretched to maximum size :

- Lmax = $7 \times P \times N$ umber of BL
- · Length when contracted to minimum size :
 - Lmin = 17 × Number of BL
- St = Lmax Lmin · Stroke:
- P and the number of BL are shown in bellows dimension table in each series.

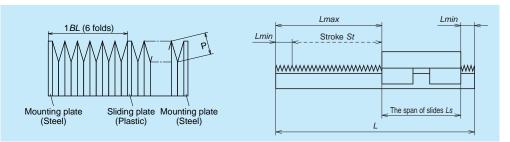


Fig. 6.10

A-3-7 Rust Prevention (Stainless Steel and Surface Treatment)

(1) Stainless steel

NSK linear guide is available in stainless steel.

OStainless steel standard series

PU Series PE Series

LL Series

OAvailable in stainless steel

SH Series SS Series LH Series LS Series LU Series LE Series

Select from the above when using in the environments which invite rust.

(2) Surface Treatment

1) Recommended surface treatment

Among the surface treatments mentioned above, we recommend "low temperature chrome plating" and "fluoride low temperature chrome plating" for rust prevention because of the result of humidity chamber test for antirust characteristics and their cost-effectiveness.

However, never apply any organic solvent for degreasing because it has adverse effect on antirust characteristics.

Refer to next page for the results of humidity chamber test.

Please consult NSK for other surface treatment.

- OLow temperature chrome plating (Electrolytic rust prevention black treatment)
- · Used to prevent corrosion, light reflection, and for cosmetic purpose.

OFluoride low temperature chrome plating

- · Fluoroplastic coating is provided following the low temperature chrome plating.
- · Resistance to corrosion is higher than electrolytic rust prevention film treatment.

2) Rust prevention of fluoride low temperature chrome plating

The use environment of NSK linear guides is expanding from general industrial machines, semiconductor and liquid crystal manufacturing systems to aerospace equipment.

Among all measures to cope with environment, rust prevention is the most challenging. Such environment includes: Moisture for washers and other equipment; Chemicals used in the wet processing of semiconductor and liquid crystal display manufacturing equipment.

NSK developed electrolytic rust prevention black film treatment (black chrome plating) which is added by fluororesin impregnating treatment. (hereinafter referred as "Fluoride low temperature chrome plating") This surface treatment methods has proved its superiority as the rust prevention of linear guides which are used in above equipment.

What is "Fluoride low temperature chrome plating?"

This is a type of black chrome plating which forms a black film (1-2 µm) on the metal surface. Fluoroplastic coating is added to the film to increase corrosion resistance.

- · Accuracy control is easily manageable due to low temperature treatment and to an absence of hydrogen embrittlement.
- Product accuracy is less affected due to the thin film which has high corrosion resistance.
- This method is superior to other surface treatments in durability on the rolling surface.
- Inexpensive compared with products by other surface treatment and stainless steel products.

Do not use organic solvent because it adversely affects antirust property of the plating.

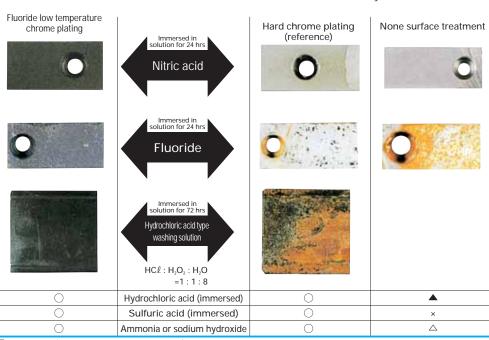
Humidity cabinet corrosion resistance test

Table 7.1 Results of the humidity cabinet test

Test sample			Fluoride low temperature chrome plating	Hard chrome plating	Electroless nickel plating	Equivalent to	Standard steel
Char	acteris		chrome plating (Recommended)		(Reference)	SUS440C material	0.0
Top			(Ground) B	(Ground) B	(Ground) A	(Ground) C	(Ground) D
	_	Side	(Ground) A	(Ground) A	(Ground) A	(Ground) C	(Ground) E
	Rusting	Bottom	(Ground) A	(Ground) A	(Ground) A	(Ground) C	(Ground) E
	Rus	End	(Machined) A	(Machined) C	(Machined) A	(Machined) C	(Machined) E
		Chamfer/grinding recess	(Drawn) A	(Drawn) D	(Drawn) A	(Drawn) C	(Drawn) E
Rust prevention ability	Tree Reports Tree From hum					0	
		Film thickness	5 µm	0.5 – 7 µm	10 μm	_	_

A: No rust

B: Not rust, but some discoloration


C: Spotty rust

A57 A58

Corrosion resistance test against chemicals

Table 7.2 Result of the corrosion resistance test

Test conditions Rail base material : Equivalent to SUS440C Chemical density : $1 \text{ mol}/\ell$

O: Normal △: Partial surface damage ▲: Overall surface damage ×: Corrode

Surface treatment durability test

Life of surface treatment by peeling

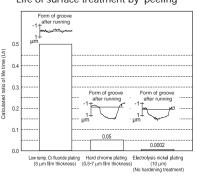


Fig. 7.1 Result of durability test

Total evaluation

Table 7.3 Evaluation

	Rust prevention ability	Quality stability	Durability	Cost
Fluoride low temperature chrome plating (recommended)	0	0	0	0
Hard chrome plating (reference)	0	×	\triangle	Δ
Electroless nickel plating (reference)	0	Δ	×	Δ
Material equivalent to SUS440C	0	0	0	Δ

A-3-8 Special Environment

(1) Heat-Resistant Specifications

- Standard linear guides use plastic for rolling element recirculation component. The environmental maximum temperature of standard linear guides is 80°C.
- Use linear guide with heat-resistant specifications under temperatures that exceed this limit.

Table 8.1 Comparison of materials: Standard and heat-resistant specifications

Component	Standard specification	Heat-resistant specification	
Rail	Special high carbon steel (equivalent to SUS440C/JIS)	Special high carbon steel (equivalent to SUS440C/JIS)	
Slide	Special high carbon steel (equivalent to SUS440C/JIS)	Special high carbon steel (equivalent to SUS440C/JIS)	
Rolling elements	SUJ2, SUS440C	SUJ2, SUS440C	
Retainer	Polyacetals	SUS304	
Retaining wire	SUS304	SUS304	
End cap	Polyacetals	SUS316L	
Return guide	Polyacetals	SUS316L	
End seal	Acrylonitril-butadiene rubber, SPC/JIS and stainless steel	Fluoro rubber, SPC/JIS and stainless steel	
Bottom seal	Acrylonitril-butadiene rubber, SPC/JIS and stainless steel	Fluoro rubber, SPC/JIS and stainless steel	

Heat resistant linear guides

LH Series LS Series
LW Series LU Series

LE Series

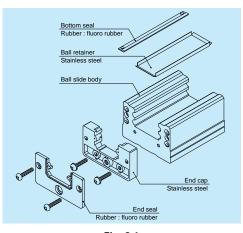
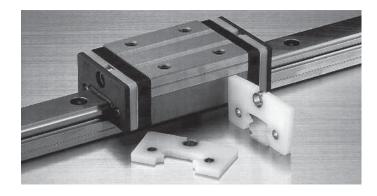


Fig. 8.1


(2) Vacuum and Clean Specifications

- Due to its abundant experience and technology, NSK manufactures linear guides that can be used in a vacuum or in clean environment.
 Please consult NSK.
- Linear guide specifications vary for environmental conditions.
- For example, "all stainless steel plus special grease, or solid film lubricant" for vacuum environment.
- NSK has low-dust generating grease "LG2" which is ideal for clean environment.
 Refer to Page A43 for details.

A59 A60

(3) "NSK Linear Guides for Food Processing Equipment and Medical Devices" for Sanitary Environment

Used with NSK K1 for food processing equipment and medical devices and grease for food processing equipment.

What is "NSK K1[™]" for food processing equipment and medical devices?

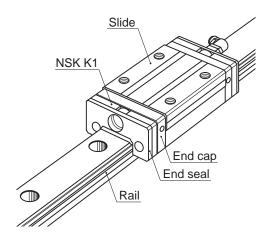
With an amazing innovation lubrication unit, the "NSK K1[™]" for food processing equipment and medical devices utilizing the US Food and Drug Administration (FDA) compliant material, provides reliability when used in food processing equipment and medical devices. The newly developed porous synthetic resin contains abundant lubricant.

With the basic function of highly praised "NSK K1[™]" lubrication unit for general industry, more sophisticated materials make it applicable in food and medical equipment.

It also offers easy installation, mounted inside the standard end seal.

1. Features

- ◆The highest grade of category H1 grease of USDA standard is used for NSK K1 lubrication unit.
- *category H1: Lubricants permitted for use where there is possibility of incidental fool contact
- *USDA: USDA (The United States Department of Agriculture)
- <Features of grease for food processing machines>
- This grease is approved by USDA H1. (National Science Foundation [NSF] carries out certification for USDA.)
- · Superb water resistance and antirust capability
- · Superb wear resistance
- · Applicable for a centralized oiling system
- ◆Appropriate volume of grease


Reduces grease draining and scattering, and maintains a clean environment by supplying appropriate volume of grease.

2. Available models

Table 8.2 shows available models.

Table 8.2

LH Series	LH12, LH15, LH20, LH25, LH30, LH35
LS Series	LS15, LS20, LS25, LS30, LS35
PU Series	PU09, PU12, PU15
PE Series	PE09, PE12, PE15
LU Series	LU09, LU12, LU15
LE Series	LE09, LE12, LE15
LW Series	LW17, LW21, LW27, LW35

Precautions for use

To maintain optimal performance of NSK K1 lubrication unit over a long time, please follow the instructions below:

1. Temperatures range for use: Maximum temperature for use: 50°C

Momentary maximum temperature in use: 80°C

2. Chemicals that should not come to contact:

Do not leave NSK K1 lubrication unit in organic solvent, white kerosene such as hexane, thinner which removes oil, and rust prevention oil which contains white kerosene.

Note: Water-type cutting oil, oil-type cutting oil, grease such as mineral-type and ester-type do not damage NSK K1 lubrication unit.

(4) Specifications for Special Environments

Table 8.3 Linear guide specifications

Environmont	NSK linear guide specifications					Technical Explanation
LITVII OI IIII EI II	Condition	Rail, slide	Steel balls/rollers	Ball Recirculation component	Lubrication/surface treatment	Page No.
		Standard material	Standard material	Standard material	LG2 Grease, LGU Grease	D8
	Atmosphere,	Standard material	Standard material	Standard material	NSK K1 lubrication unit	D10
Clean	normal temperature				LG2 Grease, LGU Grease	D8
	normai temperature				NSK K1 lubrication unit	D10
		Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
	Atmosphere–Vacuum, normal temperature Atmosphere–Vacuum up to 200°C				Fluoride grease	
	Atmosphere–Vacuum, normal temperature Atmosphere–Vacuum up to 200°C				Fluoride grease	
Vacuum	Atmosphere–Vacuum up to 300°C	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Molybdenum disulfide	
	High vacuum up to 500°C				Special silver film	D7
	Vapor, steam	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel		
	vapor, steam	Standard material	Standard material	Standard material		D5
	Acid, alkali	Standard material	Staridard material		Fluoride low temperature chrome plating	D5
	Aciu, aikaii					D5
Corrosion	Asid alkali alaan	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
resistance	Acid, alkali, clean				LG2 Grease, LGU Grease	D8
	Strong acid,				Fluoride low temperature chrome plating	D5
	strong alkali				Fluoride grease	
	Organic solvent				Fluoride grease	
	Atmosphere	Standard material	Standard material		ET1E0 Crosss	
I II ala	up to 150°C				ET150 Grease	
High	Atmosphere Up to 200°C	Mantanaitia atainlaan ataal	Mantanaitia atainlaan ataal	Austenitic stainless steel	Fluoride grease	
temperature	Atmosphere Up to 200°C,	Martensitic stainless steel	iviartensitic stainless steel		Florada anasas	
	Corrosion resistant				Fluoride grease	
Low temperature	-273 °C –	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Solid lubricant	
Radiation	Atmospha	Standard material	Standard material	Standard material	De dieties sesistent	
resistance	Atmosphere	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Radiation resistant grease	
	Fine particles,	Standard material	Standard material	Standard material		D10
Foreign	wooden chips		Martensitic stainless steel	Austenitic stainless steel	NCK KAT LIFT AT THE	D10
matters	Water,	Martensitic stainless steel	Standard material	Standard material	NSK K1 lubrication unit	D10
	under water		Martensitic stainless steel	Austenitic stainless steel		D10

NSK

(5) Lubrication and Materials

1. Lubrication

Grease can be used for high rotation and magnetic field. However, grease evaporates or solidifies in special environment such as vacuum, high temperature, and low temperature. Solid lubricant is used when it is difficult to use grease. Functions of solid lubricant differ greatly by condition where it is used. It is important to select the most suitable solid lubrication for the environment.

Fig. 8.2 Lubrication in clean environment

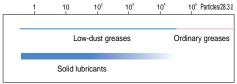


Fig. 8.3 Lubrication in vacuum

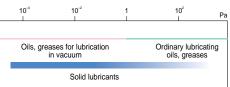


Fig. 8.4 Lubrication in corrosive environment

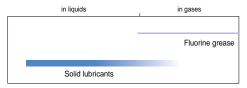


Fig. 8.5 Lubrication in high temperature

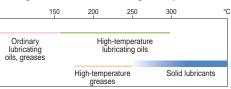


Fig. 8.6 Lubrication in low temperature

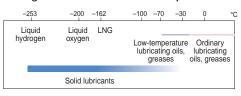
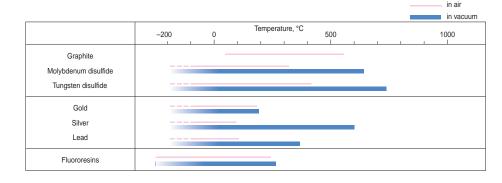



Fig. 8.7 Lubrication in radioactive environment

Fig. 8.8 Temperature range for using solid lubricants

2. Materials

Steel type metals are used in vacuum, high temperature, and high speed environments as the basic material. We generally use nonmagnetic stainless steel for nonmagnetic materials.

Table 8.4 Characteristics of metal materials

Application	Type of steel	Linear expansivity ×10 ⁻⁶ /°C	Young's modulus GPa	Hardness *) HB
For clean environment,	Martensitic stainless steel SUS440C	10.1	200	580
vacuum environment, corrosion resistance, low temperature,	Austenitic stainless steel SUS304	16.3	193	150
high temperature, radioactive resistance	Precipitation hardening stainless steel SUS630	10.8	200	277 – 363
Nonmagnetic	Nonmagnetic stainless steel	17.0	195	420

^{*)} Hardness of steel is usually indicated by Rockwell C Scale. For comparison, these figures are expressed by Brinell number.

3. Table to Cope With Special Environments

<u>.e</u>	Model No.			ent whic			
Series		Clean	Vacuum		High temp.	Hygienic	High dust proofin
	SH15	0		0			
SH	SH20	0		0			
	SH25	0		0			
	SH30	0		0			
	SH35	0		0			
	SH45	0		0			
	SH55	Ó		Ó			
	SS15	0		0			
	SS20	Ŏ		Õ			
SS	SS25	Ĭ		Ŏ			
-	SS30	Ĭ		Õ			
	SS35	1 6		Ö			
	LH08	1 ~		ŏ			
	LH10	l ŏ		ŏ			-
	LH12	1 6	-	<u> </u>		0	
	LH12 LH15	1 ~		<u> </u>	0		
	LH15 LH20	1 %	0		0		-
		10	0	0	0	0	
LH		10	0	0	0	0	
	LH30	10	0	0	0	0	
	LH35	0		0		0	
	LH45	0		0			
	LH55	0		0			
	LH65			0			
	LS15	0	0	0	0	0	
	LS20	0	0	0	Ö	0	
LS	LS25	0	0	0	0	0	
	LS30	0	0	0	0	0	
	LS35	0		0		0	
	VH15	0		0	0		0
	VH20	Ŏ		Õ	Ô		Ô
	VH25	Ŏ		Õ	Õ		Õ
VН	VH30	Ŏ		Ŏ	Ŏ		Õ
	VH35	1 0		ŏ			0
	VH45	T ŏ		ŏ			0
	VH55	1 6		ŏ			0
	LW17	1 ~		ŏ		0	
	LW21	1 8		ŏ		0	
١ ١٨/	LW27	1 6	-	<u>~</u>		ŏ	
LVV	LW35	1 ~		<u> </u>			
	LW35 LW50	+ >	-	<u> </u>		0	-
		1 0		0			
	TS15	0		0			
	TS20	10		0			
TS		0		0			
	TS30	0		0			
	TS35	0		0			
RA	RA15	0		0			
KH	RA20			0			

Series	Model No.		environn				
R		Clean	Vacuum		High temp.	Hygienic	High dust proofin
	RA25	0		0			
RA	RA30	0		0			
	RA35	0		0			
	RA45	Ó		Ö			
	RA55	Õ		Õ			
	RA65	Ŏ		Õ			
_	LA25	Ŏ		Õ			
	LA30	Ŏ		Õ			
	LA35	Ŏ		Õ			
LA	LA45	0		0			
	LA55	0		0			
				0			
	LA65 PU05	0		9			
		0		0			
	PU07	0		0			
PU	PU09	0		0		0	
	PU12	0		0		0	
	PU15	0		0		0	
	PE05	0		0			
	PE07	0		0			
PΕ	PE09	0		0		0	
	PE12	0		0		0	
	PE15	0		0		0	
	LU05	Õ					
	LU07	Ŏ		0			
	LU09_L	Ŏ	0	Õ	0	0	
	LU09_R	Ŏ		Õ		Õ	
LU	LU12_L	0	0	0	0	ŏ	
	LU12_E	0		0	0	0	
		0	0	0	0	0	
	LU15	0	0	0	0	0	
	LE05						
	LE07	0	0	0	0		
	LE09_L	0	0	0	0	0	
LE	LE09_R	0		0		0	
	LE12_L	0	0	0	0	0	
	LE12_R	0		0		0	
	LE15_L	0	0	0	0	0	
	LE15AR	0		0		0	
	HA25	0		0			
	HA30	0		0			
НΑ	HA35	0		0			
1	HA45	Ŏ		Ŏ			
	HA55	Ŏ		Ŏ			
	HS15	ŏ		ŏ			
	HS20	+ ~		ŏ	<u> </u>		
це	HS25	0		~			
н5				0			
	HS30	0		0			
	HS35			\cup			

4. Precautions for Handling

Please observe the following precautions to maintain high functions of linear guide.

- Products are washed to remove oil, and wrapped in a way to protect them from moisture. Use the product as soon as possible after opening the package.
- After opening, store the products in a clean, air-tight container such as desiccater with desiccating agent (e.g. silica gel). Do not apply rust preventive oil or paper or product that vaporizes rust preventive agent.
- · Wear plastic gloves and handle product in clean place.

Note: Please refer to the catalog "CAT. No. E1258 SPACEA" for details of special environmental use.

A65 A66

NSK

A-3-9 Arrangement and Mounting of Linear Guide

(1) Arrangement

- For NSK linear guide, the datum face of the rail and of the slide are marked with either a "datum face groove" or with an "arrow."
- In case that two or more linear guides are used together, one linear guide is designated as a reference side guide, and the rest is adjusting side guide(s). The reference side linear guide has its reference number, serial number, and "KL" mark on the opposite side of the datum face (Fig. 9 1)
- When the datum faces of the reference side rail and slides are pressed to their mounting datum faces respectively, the variation of distance (mounting width W₂ or W₃) between the datum faces of the rails and that of the slides must be a minimum and therefore, it is specified as the standard.

(Fig. 9.2 and 9.3)

 The ways to indicate the datum faces of each series are shown in Table 9.1.

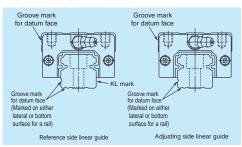


Fig. 9.1 Datum face

Example of arrangement

 Arrangement of the linear guide must be determined taking into account the table position, its direction (horizontal, vertical, inclined, hanging from the ceiling), stroke, the size of bed and the table in the equipment as a whole. Table 9.2 shows a common arrangement examples, and features/precautions for each case.

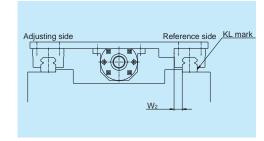


Fig. 9.2 Most common setting of the reference side rail

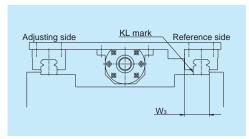
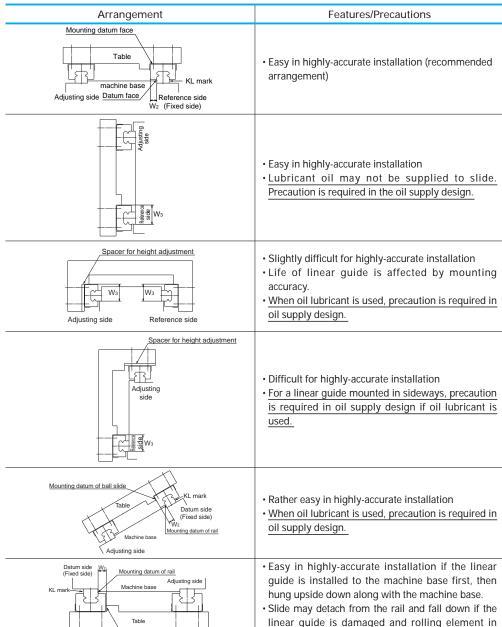



Fig. 9.3 Setting of the reference side rail in certain occasions

Table 9.1 Marks on the rail datum faces in each series

Model No. Material	Standard	LU05, 07, 09 PU05, 09, 12, 15 LE07, 09, 12	LU12, 15, LH15	PU07 LE05, 15 LE09, 12 (with a ball retainer) PE series LH08, 10, 12 LW17, 21 RA15
Special high carbon steel	B	5117	B	
Stainless steel	B	B	B	B

Mounting datum of ball slide

A67

the slide fall out. It is necessary to take preventive

measures against the falling of the ball slide.

A70

NSK

(2) Mounting Accuracy

1. Accuracy of the mounting base of machine

- Mounting accuracy of linear guide usually copies the accuracy of the machine base.
- However, when two or more slides are assembled to each rail, the table stroke becomes shorter than the mounting surface. This, along with the fact that the mounting error is evenly spread, contributes to a higher table accuracy than the mounting face accuracy, reducing the error to about 1/3 in average (Fig. 9.4).

2. Installation error

• Mounting error affects mainly three factors: life, friction and accuracy (Table 9.3).

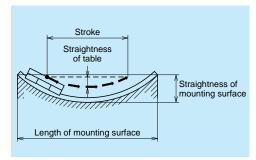
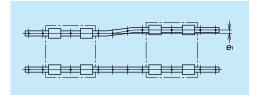


Fig. 9.4

Table 9.3 Influence of mounting error

	Table 9.3 illidence of mounting error					
Factor	Influence					
Life	Rail	 Large mounting error generates a force which twists the slide and reduces its life. It also distorts the contact point of the ball and the groove, and changes contact angle, lowering rigidity. 				
Friction	80 00 00 00 00 00 00 00 00 00 00 00 00 0	 SH, SS, LH and LS Series are affected very little by mounting error thanks to their small friction. (self alignment) However, because of off-set Gothic arch grooves, their friction suddenly soars once the mounting error exceeds a certain level. Mounting error severely affects friction of LA Series with heavy preload. 				
Accuracy		 When rigidity of four slides are equal, the theoretical straightness becomes 1/2 of the installation error e₁. However, this value becomes slightly larger due to deformation of the rail and the machine base. 				

3. Permissible values of mounting error


 Of the three factors; life, friction, and accuracy, which are affected by the mounting error, NSK focuses on life. By the NSK standard, permissible values of mounting error are the values under the following conditions.

For ball guide

- Load volume per ball slide is 10% of the basic dynamic load rating C.
- Rated life is 5000 km or longer.
- Rigidity of the machine base is infinite.

For roller guide

- Load volume per roller slide is 10% of the basic dynamic load rating C.
- Rated life is 10000 km or longer.
- Rigidity of the machine base is infinite.
- Fig. 9.5 and 9.6 are representing the mounting errors. Their permissible values of mounting error are shown in "Installation" of the each series.

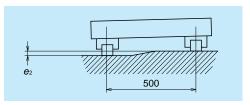


Fig. 9.5

Fig. 9.6

4. Running accuracy and the influence of even-off effect

 When installed in a machine base, the linear guide is affected by the flatness of the mounting face of the machine base. However, in the case of two-rails/four-slides specification, which is most widely used, the straightness as a table unit is generally less than the straightness as a single component. This is due to the even-off effect generated by the shorter stroke, compared to rail length, as well as by interaction between the rails, and slides.

• Fig. 9.9 shows an actually measured straightness of the table which uses NSK linear guide. In this case, the final straightness of the table is about 1/5 of the straightness of the mounting face.

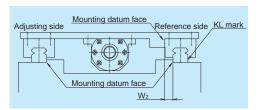


Fig. 9.7

Fig. 9.8

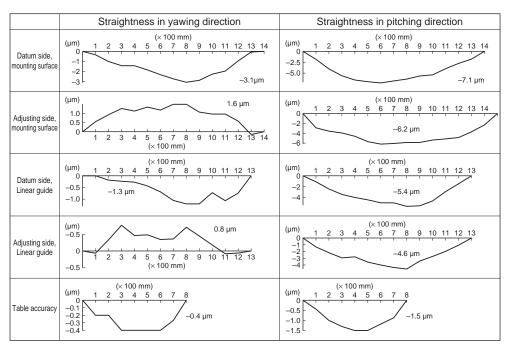


Fig. 9.9 Straightness of the table equipped with linear guide

(3) Installation

Shoulder height of the mounting face of the machine base and corner radius r

- Fig. 9.10 and 9.11, show shoulder height of the mounting face of the machine base and the size of corner r. These figures are relevant when the linear guide is pressed to the shoulder of the machine base or table (the raised section from where the mounting face begins), and horizontally secured to it. Recommended sizes are shown in "Shoulder hight and corner radius r" of each series introduction.
- The shoulder should be thick (wide) enough, so it is not deformed by the pressing force.

2. Tightening torque of the bolt

- Table 9.4 shows tightening torque of the bolt when the rail is secured to the fixture of race way interface grinding machine.
- Apply same torque in this table when securing the rail to the machine base. Equal accuracy at the time of grinding can be obtained.

Table 9.4 Bolt tightening torque (Bolt material: High carbon chromium steel)

	-		Unit: N⋅m
Bolt size	Tightening torque	Bolt size	Tightening torque
M2.3	0.38	M10	43
M2.5	0.58	M12	76
M3	1.06	M14	122
M4	2.5	M16	196
M5	5.1	M18	265
M6	8.6	M22	520
M8	22	_	_

3. Installation procedures

- There are two installation ways depending on the accuracy requirement.
 - a. Installation with high accuracy
 - b. Accuracy is not high, but easy to install
- For both methods, wipe off the rust preventive oil applied to the linear guide. Remove burrs and small bumps on the machine base and table mounting face with an oilstone (Fig. 9.12)

Apply machine oil or similar oil with low viscosity to the mounting face to increase the rust preventive effect.

• Linear guide is a precision product. Handle with care.

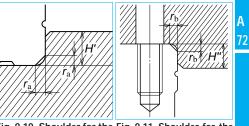


Fig. 9.10 Shoulder for the Fig. 9.11 Shoulder for the rail datum face slide datum face

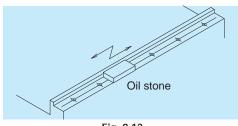


Fig. 9.12

A71 A72

A Highly accurate installation

- (a) Rail installation procedures
- (a)-1) Machine base has a shoulder on the side where the reference side rail is installed.
- ① Confirm that the rail is reference side rail, and the datum face of the rail comes face to face with the shoulder of the bed. Keep the slides on the rail, and carefully place the rail on the machine base on its mounting face. Temporarily tighten the bolts.
 - At this time, press the rail from sideways to make the rail tightly contact to the shoulder of the machine base. Apply tightening torque to the bolt in Table 9.4 when tightening a shoulder plate (Fig. 9.13).
 - Refer to "4. Various methods to press linear guide sideways."
- ② For final tightening of the bolts to secure the rail, tighten the bolt on either end of the rail, then proceed to other end.
- If the datum face is on the left side as shown in Fig. 9.14, tighten the bolt at the farthest end first, then proceed to near end.
- This way, a bolt rotating force presses the rail against the shoulder. (Therefore, the rail is pressed sufficiently tight against the shoulder by merely pressing the rail by hand. However, if there is a possibility applying a lateral impact load, it is necessary to use a shoulder plate to prevent the rail from slipping.)
- ③ If the mounting face of the machine base where the adjusting side rail is installed also has a shoulder, repeat the steps ① - ②.
- ④ If there is no shoulder on the mounting face of the machine base for the adjusting side rail: Secure a measuring table to the slides of the reference side rail (Fig. 9.15). Use this to adjust the parallelism of the adjusting side rail. Check parallelism of the adjusting side rail with a dial gauge from one end of the rail, tightening the bolts one by one.

The measuring table is more stable if secured to two bearings, but one bearing is sufficient. Parallelism between two rails can also be checked by the same method in Fig. 9.15 when there is a shoulder on the face where the adjusting side rail is installed.

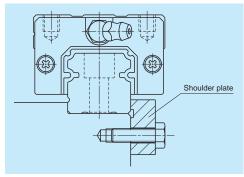


Fig. 9.13 Pressing the rail from sideways

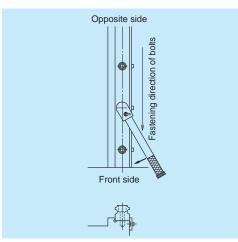


Fig. 9.14 Rail installation

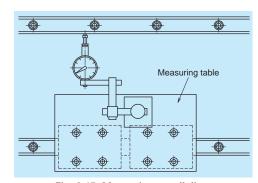


Fig. 9.15 Measuring parallelism

(a)-2) When machine base does not have a shoulder on the side where the reference side rail is installed

- ① Carefully place the reference side rail on the machine base on its mounting face. Temporarily tighten the bolts. Do not tighten the bolts all the way, but stop tightening when the bolt enters halfway into the bolt hole. This makes the proceeding steps easier.
- ② Place the straight edge almost parallel to the reference side rail which is temporarily secured by bolts. (At both ends of the rail and straight edge, the distance between them shall be almost same.)
- ③ Once the position of the straight edge is determined, use it as the reference. With a dial gauge, check parallelism with the rail, and adjust the rail if necessary. Then tighten the bolts.

Ensure that the straight edge does not move while the bolts are being tightened.

This procedure should be carried out starting from one end of the rail to the other end. (Fig. 9.16).

- 4 Finally tighten all bolts with specified torque.
- (5) There are two ways for installation of adjusting side rail:
 - 1. Based on the straight edge which is used for reference side rail installation
 - 2. Based on the reference side rail which is installed prior to the adjusting side rail.

In both cases, use a dial gauge to measure parallelism.

Other procedures are the same as 1 - 4, and the 4 in cases where there is a shoulder on the machine base.

b Procedures of slide installation

b-1) When table has a shoulder

- ① Arrange the slides so that locations match to their mounting section of the table. Carefully place the table on the slides. Temporarily tighten all bolts.
- While pressing the table from sideways, further tighten the bolts which secure the slides on the reference side, so the table shoulder and the slide's mounting datum face are sufficiently tightly pressed.

If a shoulder plate is provided, first tighten the bolts of the plate, then further tighten the bolts to the slides (Fig. 9.17).

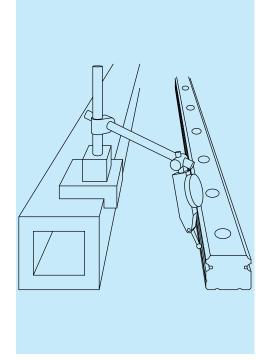


Fig. 9.16

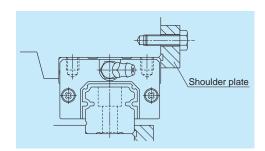


Fig. 9.17 Pressing slide from sideways

- 3 Then, further tighten the bolts for slides on the adjusting side rail.
- Move the table by hand to confirm that there is no abnormality such as excessive friction force during stroking. (This confirms that the correct installation steps were taken.)
- 4 Finally, tighten all bolts with standard torque.

b-2) When table does not have a shoulder

- Arrange the slides so that locations match to their mounting section of the table. Carefully place the table on the slides. Temporarily tighten bolts to secure slides.
- ② Since the table does not have a shoulder, immediately tighten the bolts further to secure slides.
- ③ Move the table by hand to confirm that there is no abnormality. Finally, tighten all bolts with standard torque.

A75

B Easy installation

- ① Carefully place the reference side rail on the machine base. Then tighten the bolts for installation with specified torque.
- 2 Temporarily tighten the bolts on the adjusting side rail.
- ③ Tighten the slides on the reference side rail and one slide on the adjustment side rail with specified torque. Leave the rest of the slide on the adjusting side rail temporarily tightened (Fig. 9.18).
- While moving the table with each pitch of the bolt for rail: With specified torque, tighten the rail mounting bolt which is located immediately adjacent to the slide on the adjusting side rail that had been finally tightened.
- Take this procedure from one end to the other.
- Seturn the table to the original position once. Then with standard torque, tighten the rest of the slides on the adjusting side. Then, by the same procedure as in ①, tighten the rest of the rail mounting bolts with standard torque. Move the table to check any abnormality such as large friction force.

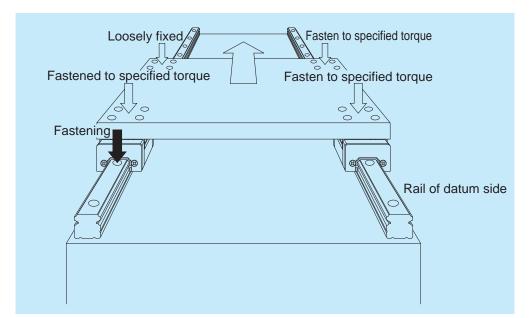


Fig. 9.18 Easy installation

4. Various methods to press linear guide sideways

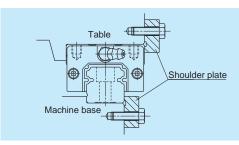
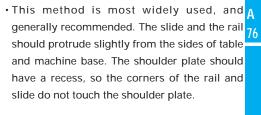



Fig. 9.19 Recommended method

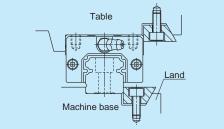
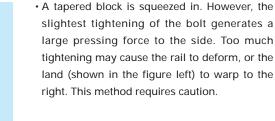



Fig. 9.20 Installation that requires caution

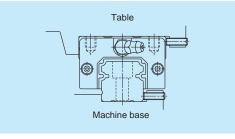


Fig. 9.21

 The bolt that presses rail must be thin due to limited space.

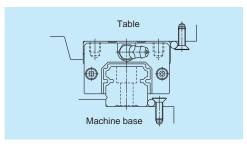


Fig. 9.22

 Press a needle-shape roller with a taper section of the head of a slotted pan head screw. Watch out for the position of the screw.

(4) Assemble Random-Matching Linear Guide

- Random-matching slide is assembled on a provisional rail (an inserting tool) when it is delivered (Fig. 9.23).
- NSK standard grease is packed into the slide, allowing immediate use.

Assembly procedures of random-matching linear guide

Follow steps as described below.

- ① Wipe off the rust preventive oil from the rail and slide.
- ② Please match an groove mark for datum face of slide and rail to become an assembling state desired.
- ③ Align the provisional rail to the rail in the bottom and side faces. Press the provisional rail lightly against the rail, and move the slide over the rail (Fig. 9.23).

End cap Provisional rail Provisional rail Plastic Surface A Confirm alphabetical code and numerals. Push slightly Grease fitting

Fig. 9.23 Inserting slide into the rail

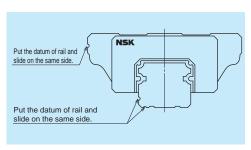


Fig. 9.24

(5) Butting Rail Specification

- A rail which requires the length that exceeds manufactured maximum length comes in butting specification.
- The rails with butting specification are marked with alphabet (A, B, C ...) and an arrow on the opposite side of the mounting datum face. Use the alphabets and arrows for assembly order and direction of the rail (Fig. 9.25).

The random-matching rails for butting specification are only marked with the arrows.

- The pitch of the rail mounting hole on the butting section should be as F in Fig. 9.26.
 When two rails are used in parallel, the butted sections should not align. This is to avoid change in the running accuracy of the table at the butted sections.
- We recommend shifting the butting sections more than the length of a slide. If the higher running accuracy is required, consider installing the slides into the table so that they do not simultaneously pass the butting sections.

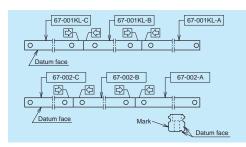


Fig. 9.25

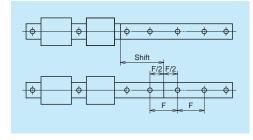


Fig. 9.26

(6) Handling Preloaded Assembly

- In case of the preloaded assembly (not random matching), do not remove slides from the rail as a general rule.
- If it is unavoidable to remove slides from the rail, make certain to use a provisional rail (a jig used to insert a slide to the rail) as shown in Fig. 9.27.
- · Provisional rail for each model is in stock.
- Pay due attention to the assembly mark when returning the slide back to the rail. Follow the cautions described below.

Mark for assembling ball slide and rail

- Rails of preloaded assembly (not randommatching) are marked with a reference number and a serial number on the opposite of the datum face.
- Slide to be combined are also marked with the same serial number (reference number is not marked).
- Furthermore, slides are marked with an arrow.
 Slides should be positioned with their arrows facing each other.
- In case that the slides had to be removed from the rail, confirm their serial numbers and the directions of arrows for re-assembly (Fig. 9.28).
- When two or more rails are used in a single set, serial numbers are in sequence if their reference numbers are the same. The linear guide with smallest serial number has the "KL" mark (Fig. 9.29).
- When two or more rails of different reference number are used in a single set, the rails and slides have the same serial number. In this case, when slides are removed from the rail, it is unclear which rail each slide was previously installed on. When removing ball slides from the rail for an unavoidable reason (Fig. 9.30), sufficient precaution is required.

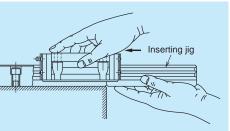


Fig. 9.27

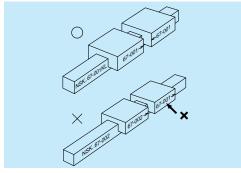


Fig. 9.28

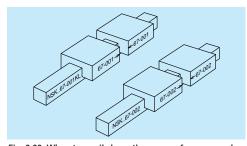


Fig. 9.29 When two rails have the same reference number

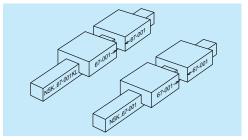
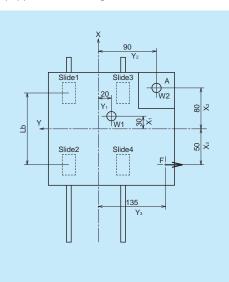



Fig. 9.30 When two rails have different reference number

A-3-10 Drills to Select Linear Guide

(1) Single Axis Material Handling System

This section explains linear guide selection, life calculation, and deformation at load acting point for a single axis material handling system equipped with linear guide.

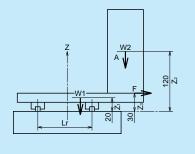


Fig. 10.1 Single axis material handling system

The work load is applied only to one way of stroke. Assume that the load is acting in full stroke as the condition of acting load is unknown.

Specification of single axis material handling system

Table weight	W1:150 (N)
Weight of the work	W2: 200 (N)
Acting load	F : 200 (N)

Ball slide span L_b : 100 (mm) Rail span L_r : 90 (mm)

Load point coordinates from the table center (mm)

Load	X coordinate	Y coordinate	Z coordinate
W1	30	-20	20
W2	80	-90	120
F	-50	-135	30

Stroke: 1000 mm (1 cycle: 2000 mm)

Environment : 10 – 30 (°C)
Travel speed : 12 (m/min)
Time to reach travel speed : 0.25 (sec)
Operating hour : 16 (hr/day)

(1)-1 Selection of linear guide model

Select a type of linear guide from "A-1-2 Structure and Characteristics of Linear Guide." Since this material handling system has 2 rails and 4 ball slides, LH, LS, and LU Series are suitable.

Here, we temporary select LU15 because of the dimensions of mounting space.

(1)-2 Calculating life

Calculate life of the selected LU15AL based on "A-3-2 Rating Life and Basic Load Rating."

Linear guide LU15AL

Basic dynamic load rating: 5550 (N) Basic static load rating : 6600 (N)

Load conditions of the linear guide

Table weight W1 : 150 (N)
Weight of the work W2 : 200 (N)
Applied load F : 200 (N)
Rail span L_r : 90 (mm)
Ball slide span L_b : 100 (mm)

From the time to reach travel speed and the travel speed, the table acceleration is 0.8 m/sec². Therefore, it is not necessary to take into account inertial force brought about by table mass.

Calculation of the load applied to ball slide

Calculate two occasions:

1. There is the work mounted on the table.

2. No work mounted on the table.

From Pattern 4 in Table 2.2 (page A19)

There is a work mounted on the table Vertical direction loads

$$M1 = \sum_{j=1}^{n} (F_{yj} \cdot Z_{yj}) + \sum_{k=1}^{n} (F_{zk} \cdot Y_{zk})$$

$$= F \cdot Z_3 + W1 \cdot Y_1 + W2 \cdot Y_2$$

$$= -200 \times 30 + 150 \times (-20) + 200 \times (-90)$$

$$= -27000 \text{ (N·mm)}$$

$$M2 = \sum_{i=1}^{n} \{ F_{xi} \cdot (Z_{xi} - Z_b) \} + \sum_{k=1}^{n} (F_{zk} \cdot X_{zk})$$

$$= W1 \cdot X_1 + W2 \cdot X_2$$

$$= 150 \times 30 + 200 \times 80$$

$$= 20500 \text{ (N·mm)}$$

$$F_{r1} = \frac{\sum_{k=1}^{N} F_{2k}}{4} + \frac{M1}{2 \cdot L} + \frac{M2}{2 \cdot \ell}$$

$$= \frac{W1 + W2}{4} + \frac{M1}{2 \cdot L_r} + \frac{M2}{2 \cdot L_b}$$

$$= \frac{150 + 200}{4} + \frac{-27000}{2 \times 90} + \frac{20500}{2 \times 100}$$

$$= 40 \text{ (N)}$$

Similarly

$$F_{r2} = -165(N)$$

$$F_{r_3} = 340(N)$$

$$F_{r4} = 135(N)$$

Lateral direction loads

$$M3 = -\sum_{i=1}^{n} \left\{ F_{xi} \cdot (Y_{xi} - Y_b) \right\} + \sum_{j=1}^{n} \left(F_{yj} \cdot X_{yj} \right)$$

$$= F \cdot X_3$$

$$= -200 \times (-50)$$

$$= 10000 \text{ (N-mm)}$$

A79 A80

$$F_{s1} = F_{s3} = \frac{\sum_{j=1}^{n} F_{yj}}{4} + \frac{M3}{2 \cdot \ell}$$
$$= \frac{F}{4} + \frac{M3}{2L_b}$$
$$= \frac{-200}{4} + \frac{10000}{2 \times 100}$$
$$= 0 \text{ (N)}$$

Similarly

$$F_{s2} = F_{s4} = -100(N)$$

No work mounted on the table Vertical direction load

$$M1 = \sum_{j=1}^{n} (F_{yj} \cdot Z_{yj}) + \sum_{k=1}^{n} (F_{zk} \cdot Y_{zk})$$
$$= F \cdot Z_3 + W1 \cdot Y_1$$
$$= -200 \times 30 + 150 \times (-20)$$
$$= -9000 \text{ (N·mm)}$$

$$M2 = \sum_{i=1}^{n} \{ F_{xi} (Z_{xi} - Z_{b}) \} + \sum_{k=1}^{n} (F_{zk} \cdot X_{zk})$$

$$= W1 \cdot X_{1}$$

$$= 150 \times 30$$

$$= 4500 \text{ (N·mm)}$$

$$F_{r1} = \frac{\sum_{k=1}^{n} F_{zk}}{4} + \frac{M1}{2 \cdot L} + \frac{M2}{2 \cdot \ell}$$
$$= \frac{W1}{4} + \frac{M1}{2 \cdot L_r} + \frac{M2}{2 \cdot L_b}$$
$$= \frac{150}{4} + \frac{-9000}{2 \times 90} + \frac{4500}{2 \times 100}$$
$$= 10 \text{ (N)}$$

Similarly

$$F_{r2} = -35 \text{ (N)}$$

$$F_{r3} = 110 \text{ (N)}$$

$$F_{r4} = 65 (N)$$

Lateral direction loads

$$M3 = -\sum_{i=1}^{n} \left\{ F_{xi} \cdot (Y_{xi} - Y_{b}) \right\} + \sum_{j=1}^{n} (F_{yj} \cdot X_{yj})$$

$$= F \cdot X_{3}$$

$$= -200 \times (-50)$$

$$= 10000 \text{ (N·mm)}$$

$$F_{s1} = F_{s3} = \frac{\sum_{j=1}^{N} F_{yj}}{4} + \frac{M3}{2 \cdot \ell}$$
$$= \frac{F}{4} + \frac{M3}{2 \cdot L_b}$$
$$= \frac{-200}{4} + \frac{10000}{2 \times 100}$$
$$= 0 \text{ (N)}$$

Similarly

$$F_{s2} = F_{s4} = -100 \text{ (N)}$$

For calculation, take into consideration the positive or negative signs (+, -) for load point coordinate.

Calculation of dynamic equivalent load
Use "A-3-2.2 (3) Calculation of dynamic equivalent load."

It matches Position 4 in "Table 2.3 Loads in the arrangement of linear guides." Ball slide loads that must be considered are vertical and lateral direction loads.

In case of LU15AL,

Vertical direction dynamic equivalent load

 $F_r = F_r$

Lateral direction dynamic equivalent load

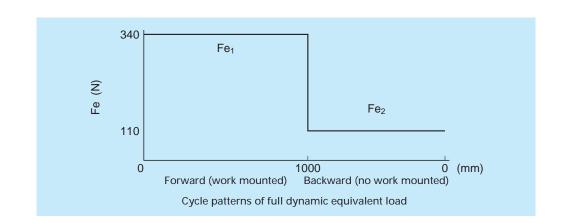
 $F_{se} = F_s \cdot \tan \alpha = F_s$

Unit: N

NSK

Use the formula for full dynamic equivalent load (Page A23) to calculate $F_{\rm e}$.

Results are shown in the table below.


Work mounted	Slide1	Slide2	Slide3	Slide4
$F_{\rm r} \left(F_{\rm r1} - F_{\rm r4} \right)$	40	- 165	340	135
$F_{\rm se} (F_{\rm s1} - F_{\rm s4})$	0	- 100	0	- 100
F _e	40	215	340	185
No work mounted	Slide1	Slide2	Slide3	Slide4
$F_{\rm r} \left(F_{\rm r1} - F_{\rm r4} \right)$	10	- 35	110	65
$F_{\rm se} (F_{\rm s1} - F_{\rm s4})$	0	- 100	0	- 100
F _e	10	118	110	133

Based on the results of calculations, a ball slide that bears the maximum dynamic equivalent load shall be taken as the representative of the linear guides for further life calculation. For this case, we take the Slide3.

Therefore:

Work mounted $F_{e1} = 340$ (N) No work mounted $F_{e2} = 110$ (N) Calculation of mean effective load

Based on "A-3-2.2 (4) Calculation of mean effective load," calculate from the largest full dynamic equivalent loads.

From the cycle pattern, the mean effective load matches "① When load and running distance vary by phase." Therefore, use the following formula.

Assuming that L is: $L = L_1 + L_2$.

$$Fm = \sqrt[3]{\frac{1}{L} \left(F_{e1}^{3} L_{1} + F_{e2}^{3} L_{2} \right)}$$

$$= \sqrt[3]{\frac{1}{2000} \left(340^{3} \times 1000 + 110^{3} \times 1000 \right)}$$

$$= 273 \text{ (N)}$$

Determine various coefficients

Determine applicable coefficients from "A-3-2.2

(5) Various coefficients."

Load factors

Use conditions are: Travel speed, 12 m/min; Acceleration, 0.8 m/sec² (0.082G). As the load factor f_w is in the range of 1.0 to 1.5, use common value $f_w = 1.2$.

Hardness coefficient

The hardness of NSK linear guides is HRC58 – 62. Use a hardness coefficient $f_{\rm H}$ = 1 and take the value of basic dynamic load rating as it is.

Calculate rating life

Use "A-3-2.2 (6) Calculation of rating life."

The basic dynamic load rating (C) of linear quide LU15AL : 5550 (N)

Mean effective load $F_{\rm m}$: 273 (N) Load factor $f_{\rm w}$: 1.2

Hardness coefficient f_{H} : 1

Rating fatigue life
$$L = 50 \times \left[\frac{f_{\text{H}} \cdot C}{f_{\text{w}} \cdot F_{\text{m}}} \right]^3$$

= $50 \times \left[\frac{1 \times 5550}{1.2 \times 273} \right]^3$

= approximately 243110 (km)

Travel speed, 12 m/min; Operating hours, 16 hr/day.

Convert the above rating fatigue life into hours:

$$\frac{243110 \times 1000}{12 \times 60 \times 16}$$
 = approximately 21100 (days)

Examine static load

Based on "A-3-2.2 (7) Examination of static load," find out on which ball slide the static equivalent load P_0 becomes largest.

The basic static load rating (C_0) of linear guide LU15AL: 6600 (N)

Ball slide No. 3 bears the largest load.

 P_0 at this time:

$$P_0 = F_c + F_s = 340$$

Therefore, static permissible load coefficient fs is:

$$f_{\rm S} = \frac{C_0}{P_0} = \frac{6600}{340} = 19.4$$

There is no problem at this value.

(1)-3 Selection of accuracy grade and preload

Based on "A-1-3.4 (2) Application examples of accuracy," select accuracy grade PN and preload Z1 for material handling system.

(1)-4 Calculation of deformation

Calculate deformation by the weight of the mounted work W_2 . From "Rigidity of LU series," the rigidity of linear guide LU15AL with Z1 preload is:

$$K_s = K_r = 45 \text{ (N/µm)} = 45000 \text{ (N/mm)}$$

Deformation by the weight of the mounted work W_2 can be obtained as the difference in deformation when W_2 applies or does not apply.

From Pattern 4 in Table 2.2 (Page A19)

Work mounted:

$$\delta_{x1} = Y_d \cdot \frac{F_{s2} - F_{s1}}{L_b \cdot K_s} + Z_d \cdot \frac{F_{r1} - F_{r2}}{L_b \cdot K_r}$$

$$= -90 \times \frac{-100 - 0}{100 \times 45000} + 120 \times \frac{40 - (-165)}{100 \times 45000}$$

$$= 0.0075 \text{ (mm)} = 7.5 \text{ (µm)}$$

Similarly,
$$\delta_{y1} = -0.0082 \text{ (mm)} = -8.2 \text{ (}\mu\text{m)}$$

 $\delta_{z1} = 0.0123 \text{ (mm)} = 12.3 \text{ (}\mu\text{m)}$

No work mounted:

$$\delta_{x2} = Y_d \cdot \frac{F_{s2} - F_{s1}}{L_b \cdot K_s} + Z_d \cdot \frac{F_{r1} - F_{r2}}{L_b \cdot K_r}$$

$$= -90 \times \frac{-100 - 0}{100 \times 45000} + 120 \times \frac{10 - (-35)}{100 \times 45000}$$

$$= 0.0032 \text{ (mm)} = 3.2 \text{ (µm)}$$

Similarly,
$$\delta_{y^2} = -0.0023$$
 (mm) = -2.3 (µm)
 $\delta_{z^2} = 0.0039$ (mm) = 3.9 (µm)

Therefore, the difference in deformation by whether

there is a mounted work or not is as follows:

$$\begin{split} &\delta_x = \delta_{x1} - \delta_{x2} = 7.5 - 3.2 = 4.3 \text{ (µm)} \\ &\delta_y = \delta_{y1} - \delta_{y2} = -8.2 - (-2.3) = -5.9 \text{ (µm)} \\ &\delta_z = \delta_{z1} - \delta_{z2} = 12.3 - 3.9 = 8.4 \text{ (µm)} \end{split}$$

(2) Machining Center

The following is a case calculation for a horizontal type machining center. Arrangements of each axis are shown in Fig. 10.2 and Fig. 10.3.

Operating conditions

Dimensions and load conditions are:

X axis column's weight Wx:7500 (N)Y axis spindle head's weight Wy:2500 (N)

Z axis table's weight Wz:5500 (N)X axis rail span $XL_r:450 (mm)$

X axis ball slide span XL_b : 310 (mm)

Y axis rail span YL_r : 410 (mm) Y axis ball slide span YL_b : 308 (mm)

Z axis rail span ZL_r : 660 (mm) Z axis ball slide span ZL_b : 420 (mm)

X axis stroke : 400 (mm) Y axis stroke : 350 (mm) Z axis stroke : 500 (mm) Average rapid traverse speed: 15 (m/min)

[Max. 30 (m/min)]

Starting accelerating speed : 1 (G)

Milling speed : 2.5 (m/min)

Drilling speed : 0.8 (m/min)

Cutting load

Milling process Fx = Fy = 1000 (N)Drilling process Fz = 3000 (N)

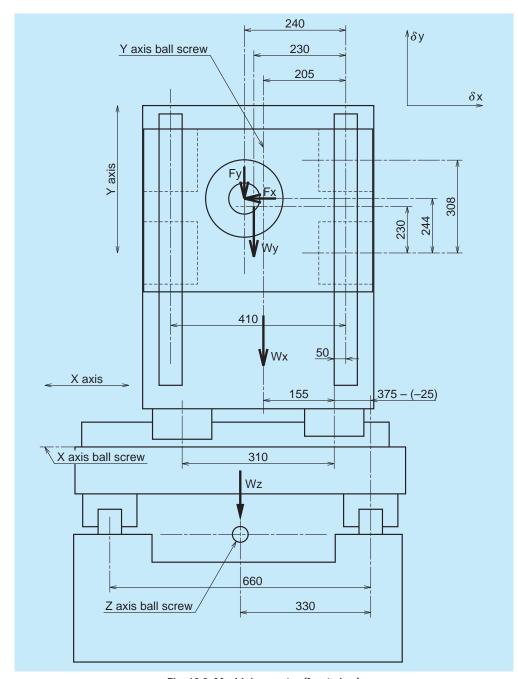


Fig. 10.2 Machining center (front view)

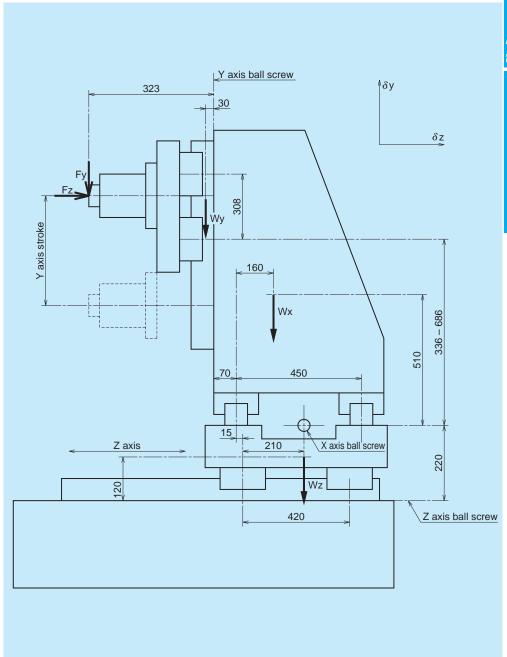


Fig. 10.3 Machining center (side view)

(2)-1 Selection of linear guide model

From the operating conditions, the linear guide should be LA Series which is suitable for the machining center.

Select below temporaly from shaft diameter of ball screw:

X axis LA55

Y axis LA35

Z axis LA65

(2)-2 Calculation of life expectation

Examination shall be done in three cases, no cutting load; milling process; and drilling process.

Inertial force associated with the starting acceleration is not considered in this case. However, it must be calculated for more accurate figures.

Calculation of the loads that apply to the ball slide In case of no cutting load: Fx = Fy = Fz = 0Calculate load on X, Y, Z axes using "Table 2.2" in "A-3-2.2 (2) Calculating load to a ball slide."

X axis: Loads to consider Wx and Wy

Y axis: Loads to consider Wy

Z axis: Loads to consider Wx, Wy, and Wz

					Unit: N
Axis	Load direction	Slide1	Slide2	Slide3	Slide4
X axis	Vertical direction Fr	1156	955	4045	3844
	Lateral direction Fs	0	0	0	0
Y axis	Vertical direction Fr	122	-122	122	-122
1 axis	Lateral direction Fs	102	-102	102	-102
Z axis	Vertical direction Fr	765	3860	3890	6985
	Lateral direction Fs	0	0	0	0

In case of milling process: Fx = Fy = 1000 (N)

X axis: Loads to consider Wx, Wy, Fx, and Fy Y axis: Loads to consider Wy, Fx, and Fy

Z axis: Loads to consider Wx, Wy, Wz, Fx, and

Fy

The table below shows calculation of each load coordinates at stroke end which imposes most strict condition.

					Unit: N
Axis	Load direction	Slide1	Slide2	Slide3	Slide4
X axis	Vertical direction Fr	2277	-1039	6539	3224
	Lateral direction Fs	997	-997	997	-997
Y axis	Vertical direction Fr	252	-1040	1040	-252
	Lateral direction Fs	54	-554	54	-554
Z axis	Vertical direction Fr	-771	3796	4453	9020
	Lateral direction Fs	486	-986	486	-986

In case of drilling process: Fz = 3000 (N)

X axis: Loads to consider Wx, Wy, and FzWy and Fz

Y axis: Loads to consider

Z axis: Loads to consider Wx, Wy, Wz, and Fz The table below shows calculation of each load coordinates at a stroke end which imposes most strict condition.

Unit: N

					OTIIL. IN
Axis	Load direction	Slide1	Slide2	Slide3	Slide4
X axis	Vertical direction Fr	4256	4055	945	744
V avis	Lateral direction Fs	919	581	919	581
Y axis	Vertical direction Fr	305	938	561	1195
	Lateral direction Fs	102	-102	102	-102
Z axis	Vertical direction Fr	4872	-247	7997	2878
	Lateral direction Fs	839	-839	839	-839

Calculation of dynamic equivalent load

Next, find dynamic equivalent load under each cutting condition. From "Table 2.3" in "A-3-2.2 (3) Calculation of dynamic equivalent load," necessary load Fr and Fse are, as the linear guide model is LA Series, obtained as follows.

Vertical dynamic equivalent load

Fr = FrLateral dynamic equivalent load

 $Fse = Fs \cdot tan \alpha = Fs$

From above, calculate Fe using formulas for full dynamic equivalent loads shown in Page A23. From calculation, the largest full dynamic equivalent loads are as follows.

A ! -	Largest full dynamic equivalent load Fe (N)				
Axis	No cutting load	For milling process	For drilling process		
X axis	4045	7038	4716		
Y axis	173	1317	1246		
Z axis	6985	9513	8417		

Calculation of mean effective load

Calculate the mean effective loads from full dynamic equivalent loads. If duty cycle in the cutting process is not clear, set at 70% of the largest full dynamic equivalent load in all processes.

Therefore,

X axis: $7038 \times 0.7 = 4927$ (N) **Y axis**: $1317 \times 0.7 = 922$ (N) **Z** axis: $9513 \times 0.7 = 6659$ (N)

A87 A88

Determine various coefficients

Determine based on "A-3-2.2 (5) Various coefficients."

In this occasion,

Load coefficient $f_w: 1.5$

Hardness coefficient f_{H} : 1

Calculation of rating life

Based on the calculated loads and various coefficients, calculate life from "A-3-2.2 (6) Calculation of rating life."

Basic dynamic load rating C

(X axis linear guide LA55): 139000 (N)

Basic dynamic load rating C

(Y axis linear guide LA35): 61500 (N)

Basic dynamic load rating C

(Z axis linear guide LA65): 260000 (N)

Load coefficient f_w : 1.5 Hardness coefficient f_u : 1

Rating fatigue life
$$L = 50 \times \left(\frac{f_H \cdot C}{f_W \cdot F_W}\right)^{\frac{1}{2}}$$

From this,

In case of X axis Lx = 332650 (km)

In case of Y axis Ly = 4396720 (km)

In case of Z axis Lz = 881830 (km)

In case of roller, shown in A-3-2.2 (6)

"Calculation of rating life" (Page A26)

Examination of static loads based on "A-3-2.2 (7)" Basic static load rating C_0

(X axis linear guide LA55): 215000 (N)

Basic static load rating C₀

(Y axis linear guide LA35): 98000 (N)

Basic static load rating C_0

(Z axis linear guide LA65): 420000 (N)

Examine for milling process with large load.

X axis
$$fs = \frac{C_0}{P_0} = \frac{C_0}{(F_r + F_s)} = \frac{215000}{(6539 + 997)} = 28.$$

Similarly,

Y axis fs = 61.5

Z axis $f_{S} = 42.0$

Therefore, there is no problem.

(2)-3 Selection of accuracy grade and preload

For machining center, select accuracy grade P5, and preload Z3.

(2)-4 Calculation of deformation

Calculate deformation at processing points (stroke position is the stroke end positions on Y axis and X axis)

Rigidity of X axis linear guide LA55Z3:1400 (N/µm) Rigidity of Y axis linear guide LA35Z3: 825 (N/µm) Rigidity of Z axis linear guide LA65Z3:1730 (N/µm)

Calculate using Pattern 4 in Table 2.2.

Load conditions	Deformation	Deform	Total deformation		
Load Conditions	direction	X axis	Y axis	Z axis	(µm)
Table weight	δx	-0.2	-0.1	-3.1	-3.4
Table weight alone	δу	-4.6	-0.3	-4.2	-9.1
alone	δz	-4.3	-0.1	-4.9	-9.3
	δx	-9.9	-1.3	-6.7	-17.9
Milling process	δу	-6.4	-1.7	-5.2	-13.3
	δz	-6.1	-0.4	-7.7	-14.2
	δx	-0.9	-0.3	-4.6	-5.8
Drilling process	δу	1.4	0.8	2.8	5.0
	δz	5.5	1.2	7.6	14.3

Therefore, deformation at processing points at time of milling is:

 $\delta x = -17.9 - (-3.4) = -14.5 (\mu m)$

 $\delta y = -13.3 - (-9.1) = -4.2 (\mu m)$

 $\delta z = -14.2 - (-9.3) = -4.9 (\mu m)$

Deformation at processing points at time of milling:

 $\delta x = -5.8 - (-3.4) = -2.4 (\mu m)$

 $\delta y = 5.0 - (-9.1) = 14.1 (\mu m)$

 $\delta z = 14.3 - (-9.3) = 23.6 (\mu m)$

If a life of this long period is not required, select a smaller linear guide model, and calculate life again. To reduce deformation at processing point, select a linear guide model with higher rigidity. Then calculate life again.

A-3-11 Reference

The articles in "Motion & Control (NSK Technical Journals)" which refer to NSK linear guides are listed in the table below for user convenience.

"Motion & Control" is compiled to introduce NSK products and its technologies.

For inquiries and orders of "Motion & Controls," please contact your local NSK sales offices, or representatives.

Table 11.1 Motion & Control (NSK Technical Journal): Articles relating to linear guides (1997 -)

	Table 11.1 Motion & Control (NSK Technical Southal). Articles relating to linear galacis (1777 -)				
Issue No.	Date of Publication	Articles related to linear guides			
No.5	Dec. 1998	Development of the NSK K1 Seal for Linear Guides			
No.8	May. 2000	NSK Linear Guides for High-Temperature Environments			
No.9	Oct. 2000	Recent Developments in Highly Precise NSK Linear Guides			
No.9	Oct. 2000	High-Performance Seals for NSK Linear Guides			
No.11	Oct 2001	Development of the NSK S1 Series [™] Ball Screws and Linear Guides			
INO. I I	Oct. 2001	High Load Capacity Mini LH Series of NSK Linear Guides			
No.12	Apr. 2002	NSK Linear Guides & Ball Screws Equipped with NSK K1 [™] Lubrication Unit			
No.12	Apr. 2002	NSK S1 Series, NSK Linear Guides and Ball Screws			
No.13	Oct. 2002	Translide [™] -New Rolling Element Linear Motion Bearing-			
No.14	May. 2003	New Generation of NSK Linear Guides Miniature PU Series			
No.15	Dec. 2003	Ultra-Precision NSK Linear Guides for Machine Tools-the HA Series			
No.16	Aug. 2004	Numerical analysis Technology & NSK Linear Guides for Machine Tools			
No.16	Aug. 2004	NSK RA Series Roller Guide			
No.18	Aug. 2005	New Generation of NSK linear Guides Miniature PU Series/PE Series			
No.20	Aug. 2007	V1 Series of Highly Dust-Resistant NSK Linear Guides			

A-4 NSK Linear Guides™

(1) Structure of NSK Linear Guides

By avoiding structural complexity, and by reducing the number of components, we not only enhanced the precision of linear guides, but also are able to keep costs low. We have added NSK's patented unique structural feature to the original invention (Fig. 1). This contributes to higher precision and lower prices.

NSK linear guide consists of a rail and a ball or roller slide (Fig. 2). The balls or rollers roll on the race way surface, and are scooped up by the end caps attached to both ends of the ball or roller slide. Then, the balls or rollers go through a passage made in the ball or roller slides and circulate back to the other end.

(2) Characteristics of NSK Linear Guides

The use of a unique offset Gothic arch groove (Fig. 3) allows the ball type of NSK linear guides to satisfy groove designs required for specific purposes.

This unique ball groove design facilitates precise measurement of the ball groove, thus enabling stable and highly accurate production of the ball slides and the rails for random matching. (Fig. 4)

On top of that, we have developed and marketed the NSK Roller Guides, representing the culmination of NSK's analysis technology and tribology.

Such technologies ensure the feature of NSK linear guides outlined below.

1. High precision and quality

 High precision and quality come from our superb production and measuring technologies, strengthened by extensive experience in antifriction rotary bearings and ball screw production. Our quality assurance extends to the smallest components.

2. High reliability and durability

- · Logical simplicity in shape, along with stable processing, maintains high precision and reliability.
- Super-clean materials, our advanced heat treatment and processing technologies increase product durability.

3. Abundant in type for any purpose

 Various series are available, and their slide models and size categories are standardized to satisfy any requirement. Our technology, polished by abundant experience in the use of special materials and surface treatments, meets the customer's most demanding expectations.

4. Development of random-matching parts for short delivery time

• The adoption of the Gothic arch groove which makes measuring easy, and a reliable quality control method has made random-matching of the rails and the ball or roller slides possible. The parts are stocked as standard products, thereby reducing delivery time.

5. Patented static load carrying capacity (shock-resistance)

• When a super-high load (impact) is applied, our Gothic arch groove spreads the load to surfaces which usually do not come into contact in ball type. This increases shock resistance (Fig. 5).

6. Lineup of extremely high-load capacity series

• The LA series provides a top class high-load capacity for the ball linear guides through a unique load carrying configuration with three ball recirculation circuits on the one side.

By installing rollers that are the largest possible diameter and length, the NSK roller linear guides have realized the world highest load capacity, far superior to the roller linear guides of other companies.

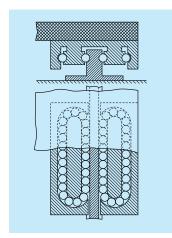


Fig. 1 • French Patent in 1932. • Inventor : Gretsh (German)

NSK added its patented technology to the invention in Fig. 1, and improved the linear guide structure and realized low cost design.

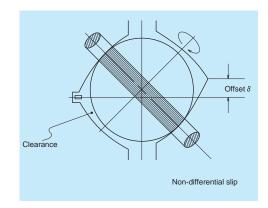


Fig. 3 Two contact point at offset Gothic arch groove

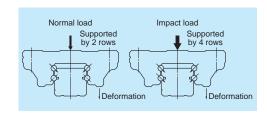
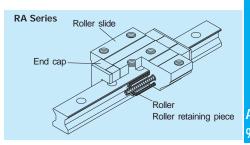



Fig. 5 Shock-resistance

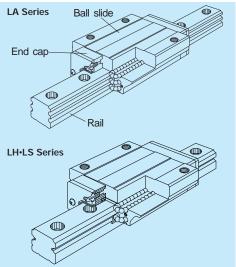


Fig. 2 Structure of NSK linear guides

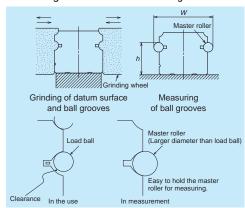


Fig. 4 Processing and measuring grooves

Measuring grooves is easy. You can obtain highly accurate results for all types of NSK series. This is why you can purchase rails and slides separately for random matching.

(3) Types and Characteristics of NSK Linear Guides

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure
		SH	AN BN			
			AL BL		↓	
g capacity type	type		EL GL			\$
ical load carryin	High vertical load carrying capacity type Self-aligning type		FL HL		T	
High vert				EM GM		
			High-load		EL, FL, EM	<u>L</u> 1
					+ T =	

Applications	Page
Semiconductor manufacturing equipment Liquid crystal display manufacturing equipment Cartesian type robots Robots that remove plastic molds from injection machine Material hardling Food processing machines Packaging/packing machines Printing machines Woodworking machines Measuring equipment Inspecting equipment Medical equipment Electric discharge machines Press Tool grinders Flat surface grinders Machining centers ATC	A115
GL, HL, GM	
	Semiconductor manufacturing equipment Liquid crystal display manufacturing equipment Cartesian type robots Robots that remove plastic molds from injection machine Material hardling Food processing machines Packaging/packing machines Printing machines Woodworking machines Measuring equipment Inspecting equipment Medical equipment Electric discharge machines Press Tool grinders Flat surface grinders NC lathes Machining centers ATC

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure		
		SS	CL AL		↓ ↑ ↑			
			JL EL					
ying capacity type	ig type		KL FL					
High vertical load carrying capacity type	Self-aligning type		SS	SS	SS	JM EM		
Hig				High-load type				
				AL	L ₁			
				EL, FL, EM	L1			

Characteristics	Applications	Page
The SS series has achieved lower noise, gentler tone, and smoother motion, and has a low and compact design. Random assembly products of rails and ball slides are available as a standard. Lower noise and gentler tone. Compact, low in height The contact angle between the ball and the ball groove is set at 50 degrees. The load carrying capacity against vertical directions, which is prevalent in most operations, increases by this design. The DF contact structure greatly absorbs the error in the perpendicular direction of rail at time of installation. Thanks to the offset Gothic arch groove, balls make contacts at two points. This keeps friction small. Great resistance against shock load. Gothic arch groove renders measuring groove accurate and easy. Standardized random-matching type allows separate purchase of rails and ball slide. Stainless steel type is also available.	Semiconductor manufacturing equipment Liquid crystal display manufacturing equipment Cartesian type robots Robots that remove plastic molds from injection machine Material handling Food processing machines Packaging/packing machines Printing machines Woodworking machines Paper machines Measuring equipment Inspection equipment Medical equipment Electric discharge machines Laser cutting machines Press	A139
Medium-load type CL L1		
JL, KL, JM		

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure
			AN BN			
		LH	AL BL		+ +	
g capacity type	.ype		EL GL			\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
High vertical load carrying capacity type	Self-aligning type		FL HL			
High vert	High verti		EM GM			
			High-load		EL, FL, EM	L1

Characteristics	Applications	Page
The LH series is applicable to a wide range of uses from general industrial use to high-accuracy application. Random assembly products of rails and ball slides are available as a standard. The contact angle between the ball and ball groove is set at 50 degrees. The load carrying capacity against the vertical directions, which is practical in most operations, increases by this design. The DF contact structure greatly absorbs the error in the perpendicular direction to rail at the time of installation. Balls make contacts at two points thanks to the offset Gothic arch groove. This keeps friction to a minimum. Structural resistance against shock load. Gothic arch groove renders measuring of ball grooves accurate and easy. Standardized random-matching type allows separate purchase of rails and ball slides. Stainless steel type is also available (- #30).	 Cartesian type robots Robots that remove plastic molds from injection machine Material handling Food processing machines Packaging/packing machines Printing machines Woodworking machines Paper machines Measuring equipment Inspecting equipment Semiconductor manufacturing equipment Liquid crystal display manufacturing equipment Medical equipment Electric discharge machines Laser cutting machines Press Tool grinders Flat surface grinders NC lathes Machining centers ATC 	A161
Super-high-load type BL, BN L1	GL, HL, GM	

A97 A98

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure	
		LS	CL AL		↓ ←		
4)			JL EL				
ying capacity type	ig type		KL FL				
High vertical load carrying capacity type	Self-aligning type		LS	LS	JM EM		
Ξ̈́				High-load type		1	
						L1	\Rightarrow
				EL, FL, EM	L1	\exists	

Characteristics	Applications	Page
The LS series is low in height, and applicable to a wide range of uses from general industrial use to high-accuracy application. Random assembly products of rails and ball slides are available as a standard. Compact, low in height The contact angle between the ball and the groove is set at 50 degrees. The load carrying capacity against vertical directions, which is prevalent in most operations, increases by this design. The DF contact structure greatly absorbs the error in the perpendicular direction of rail at time of installation. Thanks to the offset Gothic arch groove, balls make contacts at two points. This keeps friction small. Great resistance against shock load. Gothic arch groove renders measuring groove accurate and easy. Standardized random-matching type allows separate purchase of rails and ball slide. Stainless steel type is also available.	 Cartesian type robots Robots that remove plastic molds from injection machine Material handling Food processing machines Packaging/packing machines Printing machines Woodworking machines Paper machines Measuring equipment Inspection equipment Semiconductor manufacturing equipment Liquid crystal display manufacturing equipment Medical equipment Electric discharge machines Laser cutting machines Press 	A185
Medium-load type CL JL, KL, JM L1		

Page

Applications

Characteristics

The VI and Ic environ Rando slides: The race capper this The error time Than ball: frict Great Gott accu. Star sepse Less. Ope envi
High-m most s Rando slides a The mon rigid Ball arch High Stan sepa
The TS

5.1a. doto. 15.155	7.100.110.110	rage
The VH series delivers outstanding functionality and long operating life under contaminated environments. Random assembly products of rails and ball slides are available as a standard. The contact angle between the ball and the raceway is set at 50 degrees. The load carrying capacity against vertical directions, which is prevalent in most operations, increases by this design. The DF contact structure greatly absorbs the error in the perpendicular direction of rail at time of installation. Thanks to the offset Gothic arch groove, balls make contacts at two points. This keeps friction small. Great resistance against shock load. Gothic arch groove renders measuring groove accurate and easy. Standardized random-matching type allows separate purchase of rails and ball slide. Less than 1/10 the level of fine contaminants. Operating life under contaminated environments is more than 5 times longer.	 Automotive manufacturing equipment Press Machine tools loader/un-loader Tire molding machine Woodworking machine Automatic doors 	A207
Super-high-load type	FL, EM L1 HL, GM	
High-moment rigidity and low profile products are most suited for a single linear guideway system. Random assembly products of rails and ball slides are available as a standard. The rail is wide. This contributes to a high rolling moment carrying capacity and to great moment rigidity when only single linear guide is in use. Balls contact at two points in the offset Gothic arch groove, keeping friction small. High resistance against shock load Standardized random-matching assemblies allows separate purchase of rails and ball slides.	Semiconductor manufacturing equipment Liquid crystal display manufacturing equipment Conveyor systems Medical equipment Microscope XY stage	A229
 The TS series is suitable for transfer equipment. Newly developed manufacturing process contribute to low cost. Standardized random-matching assemblies allows separate purchase of rails and ball slides. 	 Automotive manufacturing equipment Press Machine tools loader/un-loader Tire molding machine Woodworking machine Automatic doors 	A243

Four-directional iso- High vertical load carrying load carrying type capacity type Standard type

Slide

shape

ΑN BN

ALBL

EL

GL

FL HL

ΕM GM

EL

ΑN

Shape/installation method | Load direction/capacity | Rolling element contact structure

Series

Category

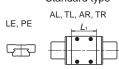
High vertical load carrying capacity type

Self-aligning type

High moment capacity type

LW

TS


VH

Cate	egory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure		
rying type			AN BN		_			
Four-directional iso-load carrying type	Super-rigid type	RA	AL BL		+	45°		
Four-direct			EM GM					
he			AN BN					
o-load carrying ty	Four-directional iso-load carrying type Super-rigid type	igid type	Super-rigid type	LA	AL BL		↓	\$ \$\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ur-directional is	Super-	- iadho	EL GL		1			
9			FL HL					

Characteristics	Applications	Page
The RA series roller guides have realized the world highest load capacity. Super-high rigidity and smooth motion contribute to high performance of machine tools. Unique design of rollers and optimum parts design facilitate the high-load capacity and high rigidity. High-performance seals, a standard feature in the roller guides, maintain the initial performance for a prolonged time. The installation of retaining piece achieves smooth motion. Random assembly products of rails and roller slides are available as a standard.	 Machining centers NC lathes Heavy cutting machine tools Gear cutters Electric discharge machines Press Grinders 	A251
High-load type AL, AN L1	EM L ₁	
Super-high-load type BL, BN L1	GM L ₁	
 The LA series provides a top class high-load capacity for the ball linear guides, even with not high friction. The series is most suited for machine tools. The contact angle between the ball and the raceway is set at 45 degrees. This makes load carrying capacity and rigidity equal in vertical and lateral directions. Six-row ball grooves support load from vertical and lateral directions, enhancing rigidity and increasing load carrying capacity. Appropriate friction Best for machine tools. 	 Machining centers NC lathes Heavy cutting machine tools Gear cutters Electric discharge machines Press Grinders 	A269
High-load type AL, AN EL,	FL L.	
Super-high-load type BL, BN GL, GL,	, HL	

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure
	Standard type	PU	AL AR TR UR BL		↓ →	\$ \$
	High moment capacity type	PE	AR TR UR BR		↓ → !	\$5.
Miniature type	Standard type	LU	AL TL AR TR BL UL		↓ ← ↑	\$50
Miniat	High moment capacity type	LE	AL TL AR TR BL UL CL SL AR TR		↓ ← †	₩ 1 ₩ 3
				Standard type AL, TL, AR, TR LU, PU	High-load type BL, UL, UR	
	Lightweight type	LL	PL		↓ → □ ← 1	\$ 1 \$\frac{1}{2}\$

Characteristics	Applications	Page
Low inertia and low dust generation miniature series. Low dust generation, highly smooth operation Super-small size Stainless steel Series with a ball retainer Standardized random matching allows separate purchase of rails and ball slides.	Semiconductor manufacturing equipment Liquid crystal display manufacturing equipment Medical equipment Optical stage Microscope XY stage	A289
Low inertia and low dust generation miniature wide series. Low dust generation, highly smooth operation Super-small size Stainless steel is standard as the material. Series with a ball retainer is standardized. Standardized random matching allows separate purchase of rails and ball slides.	Conveying optical fiber Small robots Computer peripheral equipment Pneumatic equipment	A299
Miniature series Super-small size Stainless steel is standard as the material. Series with a ball retainer is standardized. Standardized random matching allows separate purchase of rails and ball slides.	Semiconductor manufacturing equipment Liquid crystal display manufacturing equipment Medical equipment Optical stage Microscope XY stage	A309
Miniature wide series Super-small size in wide rail type Stainless steel is standard as the material. Series with a ball retainer is standardized. Standardized random matching allows separate purchase of rails and ball slides.	Conveying optical fiber Small robots Computer peripheral equipment Pneumatic equipment	A321
**	High-load type Medium-load type UL, BR, UR CL, SL (LE only)	

The LL series is a compact and lightweight miniature linear guide for press molding.

■ Rails and ball slides are thin steel plate, therefore they are lightweight.

■ Stainless steel as a standard material

- · Part of platter pen head
- Robot hand
- Pneumatic equipment

A335

A105 A106

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure	
type	be		a	AN		_	4
Four-directional iso-load carrying type	Super rigidity, high-precision type	НА	AL		+ + +	\$5.	
Four-directional	Super rigidity,		EM		_	,	
				AL, AN	L1		
capacity type	cision type		AL		•		
High vertical load carrying capacity type	Self-aligning, super-precision type	HS	EM		1		
Ι				AL	L ₁	1	

Characteristics	Applications	Page
The HA Series ball guide with high-precision and high-load carrying capacity, featuring highmotion accuracy equivalent to hydrostatic bearings. Ball passage vibration has been reduced to one-third of conventional models by ultra-long ball slides and specification of new design. The contact angle between the ball and the raceway is set at 45 degrees. This makes load carrying capacity and rigidity equal in vertical and lateral directions. High motion accuracy is realized by superfinished ball groove feature (option). End seal, bottom seal, and inner seal of high dust proof specification are available as a standard. Best for high-grade working machine.	 Die and mold tooling machine center Precision processing machine Heavy cutting machine tools Gear cutters Press machines Grinders 	A341
EM Li		
The HS Series ball guide with high-precision featuring high-motion accuracy equivalent to hydrostatic bearings. Ball passage vibration has been reduced to one-third of conventional models by ultra-long ball slides and specification of new design. The contact angle between the ball and the raceway is set at 50 degrees. The load carrying capacity against vertical directions, which is prevalent in most operations, increases by this design. The DF contact structure greatly absorbs the error in the perpendicular direction of rail at time of installation. Thanks to the offset Gothic arch groove, balls make contacts at two points. This keeps friction small.	Precision processing machine Electric discharge machines Grinders Liquid crystal display manufacturing equipment	A355

A107 A108

(4) Guide to Technical Services

CAD drawing data

NSK offers CAD data for linear guides. Please downlode it from the website of NSK.

NSK website

http://www.nsk.com

- · Data in drawings are filed in the actual size (some parts are simplified). You can use these data without processing
- · Drawings are three-views projection.
- · Dimension lines are omitted to render the data as standard drawing for database.

Data offered by CAD

NSK linear guides

SH Series

SS Series

LH Series

LS Series LA Series

LW Series

PU Series

PF Series

LU Series

LE Series

RA Series

(2) Telephone consultation with NSK engineers

This catalog contains technical explanation for each section. However, some descriptions and explanations may be insufficient due to page limitation, etc. To amend this shortcoming, NSK offers telephone assistance. NSK engineers are pleased to help you. Our local offices are listed in the last part of this catalogue. Call local NSK office or representative in your area.

(5) Linear Guides: Handling Precautions

NSK linear guides are high quality and are easy to use. NSK places importance on safety in design. For maximum safety, please follow precautions as outlined below.

1. Lubrication

- a. If your linear guide is rust prevention specification, thoroughly wipe the rust prevention oil, and put lubricant inside of slide before using
- b. If you are using oil as lubricant, the oil may not reach the raceway depending on how the slide is installed. Consult NSK in such case.

2. Handling

Do not give impact.

- a. Random-matching slides are installed to the provisional rail when they leave the factory. Handle the slide with care during installation to the rail.
- b. Do not disassemble the guide unless absolutely necessary. Not only does it allow dust to enter, but it lessens precision.
- c. Slide may move by simply leaning the rail. Make sure that the slide does not disengage from the rail.
- d. Standard end cap is made of plastic. Beating it or hitting it against an object may cause damage.

3. Precautions in use

Do not contaminate. Temperature limitation.

Do not hang upside down.

- a. Make every effort not to allow dust and foreign objects to enter.
- b. Please apply splash guard or bellows to the linear guide to prevent sticking resolvent or coolant when it contains corrosive material.
- c. The temperature of the place where linear guides are used should not exceed 80°C (excluding heatresistant type linear guides). A higher temperature may damage the plastic end cap.
- d. If the user cuts the rail, thoroughly remove burrs and sharp edges on the cut surface.
- e. When hanging upside-down (e.g. the rail is installed upside-down on the ceiling in which the slide faces downward), should the end cap be damaged, causing the balls or rollers to fall out, the slide may be detached from the rail and fall. For such use, take measures including installing a safety device.

4. Storage

Store in the correct position.

a. Linear guide may bend if the rail is stored in inappropriate position. Place it on a suitable surface, and store it in a flat position.

(6) Design Precautions

The following points must be heeded in examining the life.

In case of oscillating stroke

- If the balls or rollers do not rotate all the way, but only halfway, and if this minute stroke is repeated, lubricant disappears from the contact surface of balls or rollers and raceways. This generates "fretting," a premature wear. Fretting cannot be entirely prevented, but it can be mitigated.
- A grease which prevents fretting is recommended for oscillating stroke operations. Using a standard grease, life can be markedly prolonged by adding a normal stroke travel (about the slide length) once every several thousand cycles.

When applying pitching or yawing moment

- Load applied to the ball or roller rows inside the slide is inconsistent if pitching or yawing moment load is applied. Loads are heavy on the balls or rollers on each end of the row.
- In such case, a heavy load lubricant grease or oil are recommended. Another countermeasure is using one size larger model of linear guide to reduce the load per ball or roller.
- Moment load is insignificant for 2-rail, 4-slides combination which is commonly used.

When an extraordinary large load is applied during stroke

- If an extraordinary large load is applied at certain position of the stroke, calculate not only the life based on the mean effective load, but also the life based on the load in this range.
- When an extraordinary heavy load is applied and thus the application of high tensile stress to fixing bolts of the rails and slides is foreseen, the strength of the bolts should be considered.

When calculated life is extraordinarily short (Less than 3000 km in calculated life.)

- In such case, the contact pressure to the balls or rollers and the rolling contact surface is extraordinarily high.
- Operated under such state continually, the life is significantly affected by the loss of lubrication and the presence of dust, and the actual life becomes shorter than calculated.
- It is necessary to reconsider arrangement, the number of slide, and the type of model in order to reduce the load to the slide.
- It is necessary to consider preload for calculation of rating life, when selecting Z3 (medium preload) or Z4 (heavy preload) as a preload. Please consult NSK.

Application at high speed

- The standard maximum allowable speed of a linear guide under normal conditions is 100 m/min.
 However, the maximum allowable speed can be affected by accuracy of installation, temperature, external loading etc.
- The end cap with high speed specification must be used when operating speed exceeds the permissible speed. Please consult NSK.

A111 A112

A-5 Technical Description and Dimension Table for NSK Linear Guides

1. SH Series	A115
2. SS Series	A139
3. LH Series	A161
4. LS Series	A185
5. VH Series	A207
6. LW Series	A229
7. TS Series	A243

NSK

A-5-1 General Industrial Use

A113 A114

NSK

A-5-1.1 SH Series

(1) Features1. Lower noise and gentler tone

Incorporating a retainer piece and optimizing the circulation path enables steel ball circulation stability and the prevention of ball collision, resulting in noise reduction.

2. Smoother motion

Improved steel ball circulation stability, free of interference between the balls improves dynamic friction characteristics, resulting in smooth and stable motion, which is especially effective for low speed motion.

3. Low dust generation

A resin retaining piece, which prevents steel balls collision, features effective low dust generation characteristics compared to conventional products.

4. High self-aligning capability (rolling direction)

Same as the DF combination in angular contact bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, reducing moment rigidity. This increases the capacity to absorb errors in installation.

5. High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, increasing load carrying capacity as well as rigidity in vertical direction.

6. High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is generally carried by the top rows, where balls are contacting at two points. Because of this design, the bottom rows will carry load when a large impact load is applied vertically as shown in Fig. 3. This assures high resistance to the impact load.

7. High accuracy

As showing in Fig. 4, fixing the master rollers is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

8. Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery.

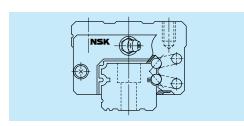


Fig. 1 SH Series

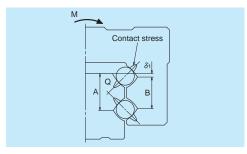


Fig. 2 Enlarged illustration of the offset Gothic arch groove

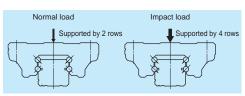


Fig. 3 When load is applied

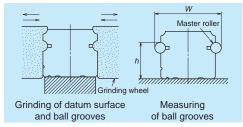


Fig. 4 Rail grinding and measuring

(2) Ball slide shape

Ball slide		Ту	pe
Model	Shape/installation method	High-load type	Super-high-load type
AN BN		AN L1	BN L ₁
AL BL		AL L1	BL
EL GL		EL L1	GL L1
FL HL		FL L1	HL L1
EM GM		EM L ₁	GM L ₁

(3) Accuracy and preload

1. Running parallelism of ball slide

Table 1 Unit: µ									
	Preloaded assembly (not random matching)								
Rail over all length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC			
- 50	2	2	2	4.5	6	6			
50 – 80	2	2	3	5	6	6			
80 – 125	2	2	3.5	5.5	6.5	6.5			
125 – 200	2	2	4	6	7	7			
200 – 250	2	2.5	5	7	8	8			
250 – 315	2	2.5	5	8	9	9			
315 – 400	2	3	6	9	11	11			
400 – 500	2	3	6	10	12	12			
500 – 630	2	3.5	7	12	14	14			
630 – 800	2	4.5	8	14	16	16			
800 – 1000	2.5	5	9	16	18	18			
1000 – 1250	3	6	10	17	20	20			
1250 – 1600	4	7	11	19	23	23			
1600 – 2000	4.5	8	13	21	26	26			
2000 – 2500	5	10	15	22	29	29			
2500 – 3150	6	11	17	25	32	32			
3150 – 4000	9	16	23	30	34	34			

2. Accuracy standard

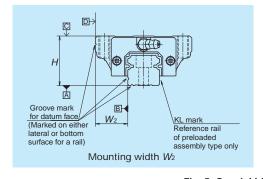
The preloaded assembly has five accuracy grades; Ultra precision P3, Super precision P4, High precision P5, Precision P6 and Normal PN grades, while the random-matching type has Normal PC grade.

Tolerance of preloaded assembly

Table 2								
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN			
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15	±80 25			
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20	±100 30			
Running parallelism of face C to face A Running parallelism of face D to face B		Shown in Ta	ıble 1, Fig. 5 ar	nd Fig. 6				

• Toerance of random-matching type; Normal grade, PC

Table 3						
Model No. Characteristics	SH15, 20, 25, 30, 35	SH45, 55				
Mounting height H	±20	±30				
Variation of mounting height H	15① 30②	20① 35②				
Mounting width W ₂ or W ₃	±30	±35				
Variation of mounting width W_2 or W_3	25	30				
Running parallelism of face C to face A Running parallelism of face D to face B	See Table 1, Fig. 5 and Fig. 6					


Note: ① Variation on the same rail ② Variation on multiple rails

3. Combinations of accuracy and preload

Table 4

			Accuracy grade								
		Ultra precision	Super precision	High precision	Precision grade	Normal grade	Normal grade				
Wi	thout NSK K1 lubrication unit	P3	P4	P5	P6	PN	PC				
Wi	th NSK K1 lubrication unit	K3	K4	K5	K6	KN	KC				
	Fine clearance	0	0	0	0	0	_				
Preload	ZO										
	Slight preload Z1	0	0	0	0	0	_				
	Medium preload Z3	0	0	0	0	_	_				
	Random-matching type with slight preload ZZ	_	_	_	_	_	0				

4. Assembled accuracy

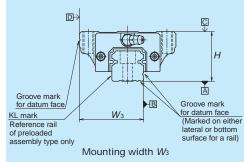
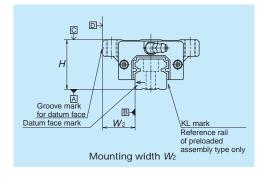



Fig. 5 Special high carbon steel

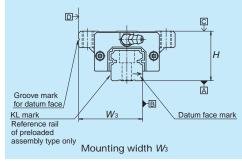


Fig. 6 Stainless steel

5. Preload and rigidity

We offer four levels of preload: slight preload Z1, medium preload Z3 and fine clearance Z0, along with random-matching type of slight preload ZZ. Values for preload and rigidity of the preloaded assembly are shown in Table 5. Rigidities are for the median of the preload range.

Preload and rigidity of preloaded assembly

Table 5

	lable 5										
		Drolo	Rigidity (N/μm)								
		Preio	ad (N)	Vertical	direction	Lateral o	direction				
	Model No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload				
		(Z1)	(Z3)	(Z1)	(Z3)	(Z1)	(Z3)				
	SH15 AN, EL, FL, EM	78	441	127	215	88	166				
a)	SH20 AN, EL, FL, EM	147	784	157	274	127	225				
type	SH25 AN, AL, EL, FL, EM	196	1180	186	343	137	255				
adı	SH30 AN, AL	245	1470	196	363	137	265				
High-load	SH30 EL, FL, EM	294	1670	245	441	176	323				
-ligi	SH35 AN, AL, EL, FL, EM	390	2160	294	529	205	382				
_	SH45 AN, AL, EL, FL, EM	635	3700	397	727	283	529				
	SH55 AN, AL, EL, FL, EM	930	5600	482	891	336	635				
type	SH15 BN, GL, HL, GM	98	637	186	333	137	264				
	SH20 BN, GL, HL, GM	196	1080	235	421	186	343				
oac	SH25 BN, BL, GL, HL, GM	245	1570	284	529	196	382				
gh-I	SH30 BN, BL, GL, HL, GM	343	2160	333	627	235	451				
į.	SH35 BN, BL, GL, HL, GM	490	2840	411	755	284	529				
Super-high-load	SH45 BN, BL, GL, HL, GM	785	4600	515	944	367	686				
S	SH55 BN, BL, GL, HL, GM	1180	6750	631	1148	440	817				

Note: Clearance for fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15 µm.

Clearance and preload of random-matching type

Table 6

unit: µm

Model No.	Slight preload ZZ
SH15	-4 - 0
SH20	-5 - 0
SH25	-5 - 0
SH30	-7 - 0
SH35	-7 - 0
SH45	-7 - 0
SH55	-8 - 0

(4) Available length of rail

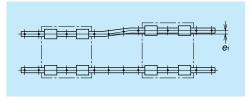

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Table 7 Length limitation of rails Unit: mm Size Series 15 25 45 Material 20 30 35 55 Special high 2000 3960 3960 4000 4000 3990 3960 carbon steel SH Stainless steel 1800 3500 3500 3500

Note: Rails can be butted if user requirement exceeds the rail length shown in the Table. Please consult NSK.

(5) Installation

1. Permissible values of mounting error

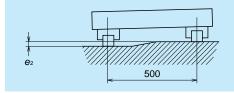
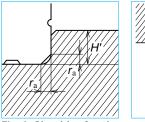



Fig. 7

Fig. 8

Table 8										
Value	Preload				Model No.					
value	Freibau	SH15	SH20	SH25	SH30	SH35	SH45	SH55		
Permissible values of	ZO, ZT	22	30	40	45	55	65	80		
	Z1, ZZ	18	20	25	30	35	45	55		
parallelism in two rails e_1	Z3	13	15	20	25	30	40	45		
Permissible values of	ZO, ZT			375	5 μm/500 r	nm				
parallelism (height) in two rails $\it e_{\rm 2}$	Z1, ZZ, Z3		330 μm/500 mm							

2. Shoulder height of the mounting face and corner radius r

rail datum face

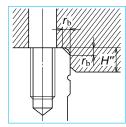


Fig. 9 Shoulder for the Fig. 10 Shoulder for the ball slide datum face

		Table 9		Unit : mm	
Model No.	Corner radiu:	s (maximum)	Shoulder height		
Model No.	$r_{\rm a}$	$r_{\rm b}$	H'	H"	
SH 15	0.5	0.5	4	4	
SH 20	0.5	0.5	4.5	5	
SH 25	0.5	0.5	5	5	
SH 30	0.5	0.5	6	6	
SH 35	0.5	0.5	6	6	
SH 45	0.7	0.7	8	8	
SH 55	0.7	0.7	10	10	

(6) Lubrication components

Refer to page A38 and D13 for the lubrication of linear guides.

1. Types of lubrication accessories

Figure 11 and Table 10 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

Please ask NSK for stainless lubrication accessories.

2. Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 12)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of M6 × 1, you require a connector to connect to a grease fitting mounting hole with M6 × 0.75. The connector is available from NSK.

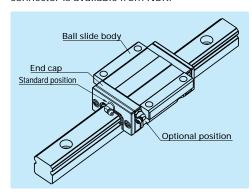


Fig. 12 Mounting position of lubrication accessories A121

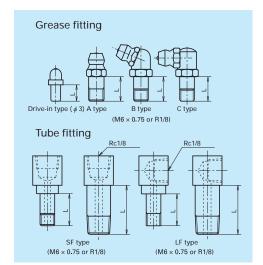


Fig. 11 Grease fitting and tube fitting

	T	able 10	Unit: mm	
Model No.	Dust proof	Grease fitting	Tube fitting	
	specification	Thread body length L	Thread body length L	
	Standard	5	-	
SH15	With NSK K1	10	-	
2010	Double seal	*	-	
	Protector	*	-	
	Standard	5	-	
SH20	With NSK K1	12	-	
3H2U	Double seal	10	-	
	Protector	10	-	
	Standard	5	6**	
SH25	With NSK K1	12	11**	
3H23	Double seal	10	9**	
	Protector	10	9**	
	Standard	5	6	
SH30	With NSK K1	14	13	
31130	Double seal	12	11	
	Protector	12	11	
	Standard	5	6	
SH35	With NSK K1	14	13	
2033	Double seal	12	11	
	Protector	12	11	
	Standard	8	17	
SH45	With NSK K1	18	21.5	
3П43	Double seal	14	17	
	Protector	14	17	
	Standard	8	17	
SH55	With NSK K1	18	21.5	
3000	Double seal	14	17	
	Protector	14	17	

^{*)} Please contact NSK as a connector is required.

(7) Dust proof components

1. Standard specification

To keep foreign matters from entering inside the ball slide, SH Series has an end seal on both ends, and bottom seals at the bottom.

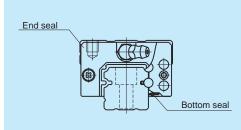


Fig. 13

Table 11 Seal friction per ball slide (maximum value)

						Į	Jnit : N
Series Size	15	20	25	30	35	45	55
SH	8	9	10	10	12	17	22

2. NSK K1[™]

Table 12 shows the dimension of linear guides equipped with the NSK K1.

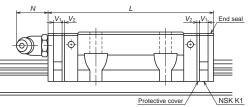


Table 12

		_	
Protective cover	7		=

Unit: mm

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V ₂	Protruding area of the grease fitting N	
SH15	Standard	AN, EL, FL, EM	55	65.6	4.5	0.8	(E)	
2H12	Long	BN, GL, HL, GM	74	84.6	4.5	0.8	(5)	
SH20	Standard	AN, EL, FL, EM	69.8	80.4	4.5	0.8	(1.4)	
3H2U	Long	BN, GL, HL, GM	91.8	102.4	4.5	0.8	(14)	
CLIDE	Standard	AN, AL, EL, FL, EM	79.0	90.6	5.0	0.0	(1.4)	
SH25	Long	BN, BL, GL, HL, GM	107	118.6	5.0	0.8	(14)	
	Standard	AN, AL	85.6	97.6		1.0	(14)	
SH30	Flange type	EL, FL, EM	98.6	110.6	5.0			
	Long	BN, BL, GL, HL, GM	124.6	136.6				
CLIDE	Standard	AN, AL, EL, FL, EM	109	122		1.0	(4.4)	
SH35	Long	BN, BL, GL, HL, GM	143	156	5.5	1.0	(14)	
CLIAE	Standard	AN, AL, EL, FL, EM	139	154	, -	1.0	(4.5)	
SH45	Long	BN, BL, GL, HL, GM	171	186	6.5	1.0	(15)	
CLIEF	Standard	AN, AL, EL, FL, EM	163	178	, ,	1.0	(15)	
SH55	Long	BN, BL, GL, HL, GM	201	216	6.5	1.0	(15)	

Note: Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V₁ × Number of NSK K1) + (Thickness of the protective cover, V₂ × 2)

^{**)} Only available for AN and BN type ball slides.

3. Double seal

Use a double seal set as showing in Table 13, when installing an extra seal to completed standard products. (Fig. 14)

When installing a grease fitting after the installation of double seals, a connector is required.

Ball slide End cap End seal Connector washer Collar End seal Connector Rease fitting

Fig. 14 Double seal

Table 13 Double-seal set

Model No.	Referer	Increased	
Model No.	Without connector	With connector	thickness V₁
SH15	LH15WS-01	*	2.5
SH20	LH20WS-01	LH20WSC-01	2.5
SH25	LH25WS-01	LH25WSC-01	2.8
SH30	LH30WS-01	LH30WSC-01	3.6
SH35	LH35WS-01	LH35WSC-01	3.6
SH45	LH45WS-01	LH45WSC-01	4.3
SH55	LH55WS-01	LH55WSC-01	4.3

4. Protector

Use a protector set as showing Table 14, when installing a protector to completed standard products. (Fig.15)

When installing a grease fitting after the installation of protectors, a connector is required.

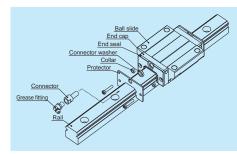


Fig. 15 Protector

Table 14 Protector set

Model No.	Referer	Increased	
woder No.	Without connector	With connector	thickness V ₂
SH15	LH15PT-01	*	2.7
SH20	LH20PT-01	LH20PTC-01	2.9
SH25	LH25PT-01	LH25PTC-01	3.2
SH30	LH30PT-01	LH30PTC-01	4.2
SH35	LH35PT-01	LH35PTC-01	4.2
SH45	LH45PT-01	LH45PTC-01	4.9
SH55	LH55PT-01	LH55PTC-01	4.9

^{*)} For installation of a connector to a drive-in type grease fitting, contact NSK.

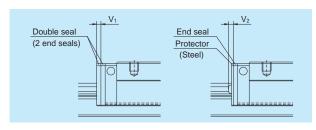


Fig. 16

5. Cap to cover the bolt hole for rail mounting

Table 15 Caps to cover rail bolt hole

Model No.	Bolt to	Cap	Quantity		
wouer no.	secure rail	reference No.	/case		
SH15	M4	LG-CAP/M4	20		
SH20	M5	LG-CAP/M5	20		
SH25	M6	LG-CAP/M6	20		
SH30, SH35	M8	LG-CAP/M8	20		
SH45	M12	LG-CAP/M12	20		
SH55 M14		LG-CAP/M14	20		

6. Inner seal

Inner seal can be manufactured for models shown below.

Table 16

Series	Model No.
SH	SH20, SH25, SH30, SH35, SH45, SH55

Use a bellows fastener kit as showing Table 17, when installing bellows to completed standard products. A bellows fastener kit is supplied with one of bellows fastener, two of M1 set screws, two of M2 set screws, and two collars for M2 set screw.

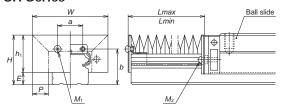

7. Bellows

Table 17 Bellows fastner kit reference No.

Model No.	Kit reference No.
SH20	LH20FS-01
SH25	LH25FS-01
SH30	LH30FS-01
SH35	LH35FS-01
SH45	LH45FS-01
SH55	LH55FS-01

A123 A124

Dimension tables of bellows SH Series

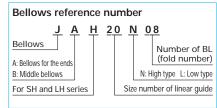
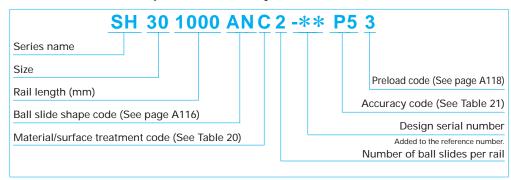


Fig. 17 Dimensions of bellows

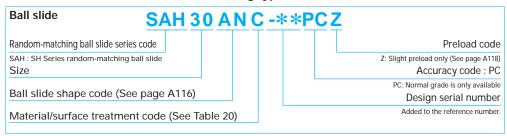
Table 18 Dimensions of bellows Unit: mm											
Model No.	Н	h₁	Ε	W	P	а	b	BL minimum length	M₁Tap x depth	M₂Tap x depth	
JAH20N	29.5	24.5	5	48	10	13	22	17	M3×5	M2.5×16	
JAH25L	35	28	7	51	10	16	26	17	M3×5	M3×18	
JAH25N	39	32	/	61	15	10	20	17	IVI3X5	IVI3X 18	
JAH30L	41	32	9	60	12	18	31	17	M4×6	M4×22	
JAH30N	44	35	9	66	15	18	31	17	IVI4X0	IVI4X22	
JAH35L	47	37.5	9.5	72	15	24	34	17	M4×6	N4422	
JAH35N	54	44.5	9.5	82	20	24	34	17	IVI4X0	M4×23	
JAH45L	59	45	14	83	15	32	44.5	17	M5×8	M5×28	
JAH45N	69	55	14	103	25	32	44.5	17	IVIDX8	IVIDXZ8	
JAH55L	69	54	15	101	20	40	50.5	17	M5×8	M5×30	
IAHSSN	70	64	13	121	30	40	00.5	1/	IVIOX8	IVIOX3U	

	Table 19 Numbers of folds (BL) and lengths of bellows Unit: m									Unit: mm	
Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
iviodei ivo.	Lmin	34	68	102	136	170	204	238	272	306	340
JAH20N	Stroke	106	212	318	424	530	636	742	848	954	1060
JAHZUN	Lmax	140	280	420	560	700	840	980	1120	1260	1400
JAH25L	Stroke	106	212	318	424	530	636	742	848	954	1060
JAHZJE	Lmax	140	280	420	560	700	840	980	1120	1260	1400
JAH25N	Stroke	176	352	528	704	880	1056	1232	1408	1584	1760
JAHZJIN	Lmax	210	420	630	840	1050	1260	1470	1680	1890	2100
JAH30L	Stroke	134	268	402	536	670	804	938	1072	1206	1340
JAHOUL	Lmax	168	336	504	672	840	1008	1176	1344	1512	1680
JAH30N	Stroke	176	352	528	704	880	1056	1232	1408	1584	1760
JAHIJUN	Lmax	210	420	630	840	1050	1260	1470	1680	1890	2100
JAH35L	Stroke	176	352	528	704	880	1056	1232	1408	1584	1760
JAI 133L	Lmax	210	420	630	840	1050	1260	1470	1680	1890	2100
JAH35N	Stroke	246	492	738	984	1230	1476	1722	1968	2214	2460
JAI 13314	Lmax	280	560	840	1120	1400	1680	1960	2240	2520	2800
JAH45L	Stroke	176	352	528	704	880	1058	1232	1408	1584	1760
JAI143L	Lmax	210	420	630	840	1050	1260	1470	1680	1890	2100
JAH45N	Stroke	316	632	948	1264	1580	1896	2212	2528	2844	3160
JA114311	Lmax	350	700	1050	1400	1750	2100	2450	2800	3150	3500
JAH55L	Stroke	246	492	738	984	1230	1476	1722	1968	2214	2460
JAI 199E	Lmax	280	560	840	1120	1400	1680	1960	2240	2520	2800
JAH55N	Stroke	386	772	1158	1544	1930	2316	2702	3088	3474	3860
JAI 19914	Lmax	420	840	1260	1680	2100	2520	2940	3360	3780	4200

Remarks: Values of odd numbers BL (3, 5, 7, ...) can be obtained by adding two values of even number BLs on both sides, then dividing the sum by two.


Note: We recommend using SH Series in a clean environment in order to utilize their full range of capabilities.

(8) Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

1. Reference number for preloaded assembly

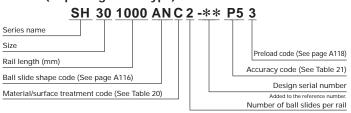
2. Reference number for random-matching type

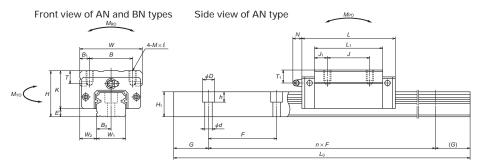
L1H 30 1200 L	<u>CN -** PC Z</u>
Random-matching rail series code	Preload code
L1H : LH/SH Series random-matching rail	Z: Slight preload only (See page A118)
Size	Accuracy code : PC
Rail length (mm)	PC: Normal grade is only available Design serial number
Rail shape code: L	Added to the reference number.
L : Standard	*Butting rail specification
Material/surface treatment code (See Table 20)	N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.

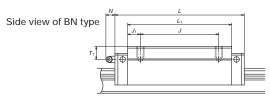
Reference number for assembly of random-matching ball slide and rail is the same as the coding of preloaded assembly. However, preload code is slight preload "Z" (Refer to page A118).

Table 20 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel (SH15 to SH30 only)
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special

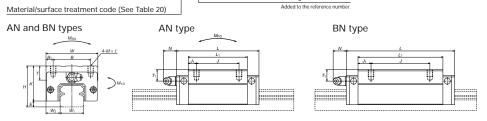

Table 21 Accuracy code


Standard (Without NSK K1)	With NSK K1		
P3	K3		
P4	K4		
P5	K 5		
P6	K6		
PN	KN		
PC	KC		
	P3 P4 P5 P6 PN		


Note: Refer to Page A38 for NSK K1 lubrication unit.

(9) Dimensions SH-AN (High-load type)

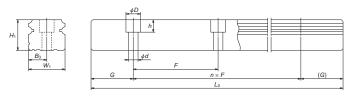
SH-BN (Super-high-load type)



	A:	ssem	bly				Ball slide									
Model No.	Height			Width	Length		Mou	nting hole						Greas	e fittir	ng
iviouei no.	Н	Ε	W ₂	W	L	В	J	M×pitch×ℓ	B₁	L_1	J_1	К	Т	Hole size	<i>T</i> ₁	Ν
SH15AN SH15BN	28	4.6	9.5	34	55 74	26	26	M4×0.7×6	4	39 58	6.5 16	23.4	8	φ 3	8.5	3.3
SH20AN SH20BN	30	5	12	44	69.8 91.8	32	36 50	M5×0.8×6	6	50 72	7 11	25	12	M6×0.75	5	11
SH25AN SH25BN	40	7	12.5	48	79 107	35	35 50	M6×1×9	6.5	58 86	11.5 18	33	12	M6×0.75	10	11
SH30AN SH30BN	45	9	16	60	85.6 124.6	40	40 60	M8×1.25×10	10	59 98	9.5 19	36	14	M6×0.75	10	11
SH35AN SH35BN	55	9.5	18	70	109 143	50	50 72	M8×1.25×12	10	80 114	15 21	45.5	15	M6×0.75	15	11
SH45AN SH45BN	70	14	20.5	86	139 171	60	60 80	M10×1.5×17	13	105 137	22.5 28.5	56	17	Rc1/8	20	13
SH55AN SH55BN	80	15	23.5	100	163 201	75	75 95	M12×1.75×18	12.5	126 164	25.5 34.5	65	18	Rc1/8	21	13

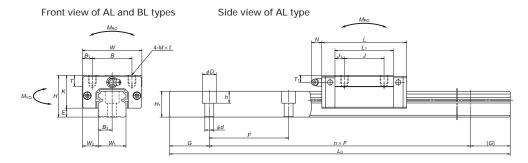
Remarks: 1) The external appearance of stainless steel ball slides differs from those of standard material ball slide. A129

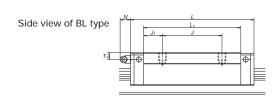
SAH 30 AN C -**PCZ Ball slide Random-matching ball slide series code Preload code SAH : SH Series random-matching ball slide Z: Slight preload only (See page A118) Accuracy code: PC PC: Normal grade is only available Ball slide shape code (See page A116) Design serial number


Reference number for ball slide of random-matching type

Reference number for rail of random-matching type

Rail	L1H30 1200 L C	<u> -** PC Z</u>
Random-matching rai	series code	Preload code
L1H : LH/SH Series ran Size	idom-matching rail	Z: Slight preload only (See page A118) Accuracy code : PC
Rail length (mm	1)	PC: Normal grade is only available Design serial number
Rail shape code	: L	Added to the reference number.
L : Standard		*Butting rail specification
Material/surface	e treatment code (See Table 20)	N: Non-butting. L: Butting specification

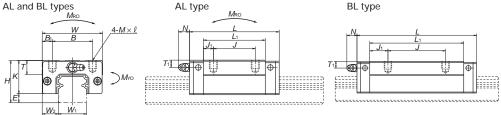

*Please consult with NSK for butting rail specification



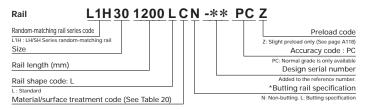
Unit: mm

			Rail					Basic	load ra	ting		Ball dia.	We	ight
Width	Height	Pitch	Mounting		G	Max. length	Dynamic	Static	Sta	tic mom	ent		Ball	Rail
W_1	H ₁	F	bolt hole d×D×h	B ₂	(reference)	L _{omax} () for stainless	(N)	C ₀	M _{RO} (N⋅m)	M _{PO} (N⋅m)	M _{YO} (N⋅m)	D_{w}	slide	(ka/m)
VV ₁	Π1	F	u xD xII	<i>D</i> ₃	(rererence)	.,		(N)	. ,	` /	,		(kg)	(kg/m)
15	15	60	4.5×7.5×5.3	7.5	20	2 000 (1 800)	10 100 13 400			87 193	73 162	3.175	0.18	1.6
20	18	60	6×9.5×8.5	10	20	3 960 (3 500)	16 300 21 600			167 360	141 305	3.968	0.33 0.48	2.6
23	22	60	7×11×9	11.5	20	3 960 (3 500)	22 400 32 000			246 615	207 515	4.762	0.55 0.82	3.6
28	26	80	9×14×12	14	20	4 000 (3 500)	31 000 46 000			365 1 060	305 885	5.556	0.77 1.3	5.2
34	29	80	9×14×12	17	20	4 000	47 500 61 500	80 500 117 000		780 1 600	655 1 340	6.35	1.5 2.1	7.2
45	38	105	14×20×17	22.5	22.5	3990		128 000 175 000		1 550 2 760	1 300 2 320	7.937	3.0 3.9	12.3
53	44	120	16×23×20	26.5	30	3960		181 000 247 000		2 640 4 800	2 210 4 050	9.525	4.7 6.1	16.9

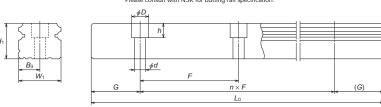
²⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C₁∞ for 100 km rating fatigue life, divide the C by 1.26.



	A	ssem	bly						Ball	slide						
Model No	Height			Width	Length		Mou	nting hole						Grease	efittir	ıg
IVIOUEI NO	Н	Ε	W ₂	W	L	В	J	M×pitch×ℓ	B_1	L ₁	$J_{\scriptscriptstyle 1}$	К	Т	Hole size	<i>T</i> ₁	N
SH25AL SH25BL	36	7	12.5	48	79 107	35	35 50	M6×1×6	6.5	58 86	11.5 18	29	12	M6×0.75	6	11
SH30AL SH30BL	42	9	16	60	85.6 124.6	40	40 60	M8×1.25×8	10	59 98	9.5 19	33	14	M6×0.75	7	11
SH35AL SH35BL	48	9.5	18	70	109 143	50	50 72	M8×1.25×8	10	80 114	15 21	38.5	15	M6×0.75	8	11
SH45AL SH45BL	60	14	20.5	86	139 171	60	60 80	M10×1.5×10	13	105 137	22.5 28.5	46	17	Rc1/8	10	13
SH55AL SH55BL	70	15	23.5	100	163 201	75	75 95	M12×1.75×13	12.5	126 164	25.5 34.5	55	15	Rc1/8	11	13


Remarks: 1) The external appearance of stainless steel ball slides differs from those of standard material ball slide.

Reference number for ball slide of random-matching type


SAH 30 AL C-**PCZ Ball slide Random-matching ball slide series code Preload code SAH : SH Series random-matching ball slide Z: Slight preload only (See page A118) Accuracy code: PC PC: Normal grade is only available Ball slide shape code (See page A116) Design serial number Added to the reference number. Material/surface treatment code (See Table 20)

Reference number for rail of random-matching type

*Please consult with NSK for butting rail specification.

Unit: mm

			Rail					Basic	load rat	ting		Ball dia.	We	ight
Width	Height	Pitch	Mounting		G	Max. length	Dynamic	Static	Sta	tic mom	ent		Ball	Rail
			bolt hole			$L_{ m omax}$	С	C_{0}	$M_{\scriptscriptstyle{RO}}$	M_{PO}	$M_{\scriptscriptstyle YO}$	D_{w}	slide	
W_1	H_1	F	$d \times D \times h$	B_3	(reference)	() for stainless	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
23	22	60	7×11×9	11.5	20	3 960	22 400	37 500	295	246	207	4.762	0.46	3.6
23	22	00	7.411.49	11.5	20	(3 500)	32 000	62 500	490	615	515	4.702	0.69	3.0
28	26	80	9×14×12	14	20	4 000	31 000	51 500	490	365	305	5.556	0.69	5.2
	20	00	7/14/12	14	20	(3 500)	46 000	91 500	870	1 060	885	3.330	1.16	5.2
34	29	80	9×14×12	17	20	4 000	47 500	80 500	950	780	655	6.35	1.2	7.2
34	27	80	7/14/12	17	20	4 000	61 500	117 000	1 380	1 600	1 340	0.33	1.7	1.2
45	38	105	14×20×17	22.5	22.5	3990	76 500	128 000	1 970	1 550	1 300	7.937	3.0	12.3
40	30	103	14820817	22.5	22.5	3770	94 500	175 000	2 680	2 760	2 320	1.731	3.9	12.3
53	44	120	16×23×20	26.5	30	3960	113 000	181 000	3 300	2 640	2 210	9.525	4.7	16.9
55	44	120	10×23×20	20.5	30	3900	140 000	247 000	4 550	4 800	4 050	9.020	6.1	10.9

²⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C₁∞ for 100 km rating fatigue life, divide the C by 1.26.

A131 A132

SH-EL (High-load type) SH-GL (Super-high-load type)

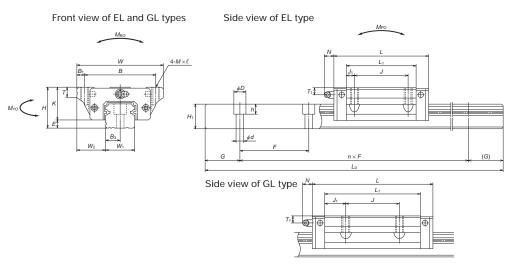
Series name

Size

Rail length (mm)

Ball slide shape code (See page A116)

Material/surface treatment code (See Table 20)


Preload code (See page A118)

Accuracy code (See Table 21)

Design serial number

Added to the reference number.

Number of ball slides per rail

	A:	ssem	bly						Ball	slide						
Model No.	Height			Width	Length		Mou	inting hole						Grease	fittin	g
iviodei No.	Н	Ε	W_2	W	L	В	J	M×pitch×ℓ	B ₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
SH15EL SH15GL	24	4.6	16	47	55 74	38	30	M5×0.8×8	4.5	39 58	4.5 14	19.4	8	φ 3	4.5	3.3
SH20EL SH20GL	30	5	21.5	63	69.8 91.8	53	40	M6×1×10	5	50 72	5 16	25	10	M6×0.75	5	11
SH25EL SH25GL	36	7	23.5	70	79 107	57	45	M8×1.25×16 (M8×1.25×12)	6.5	58 86	6.5 20.5	29	11 (12)	M6×0.75	6	11
SH30EL SH30GL	42	9	31	90	98.6 124.6	72	52	M10×1.5×18 (M10×1.5×15)	9	72 98	10 23	33	11 (15)	M6×0.75	7	11
SH35EL SH35GL	48	9.5	33	100	109 143	82	62	M10×1.5×20	9	80 114	9 26	38.5	12	M6×0.75	8	11
SH45EL SH45GL	60	14	37.5	120	139 171	100	80	M12×1.75×24	10	105 137	12.5 28.5	46	13	Rc1/8	10	13
SH55EL SH55GL	70	15	43.5	140	163 201	116	95	M14×2×28	12	126 164	15.5 34.5	55	15	Rc1/8	11	13

Remarks: 1) Parenthesized dimensions are applicable to stainless steel products.

Reference number for ball slide of random-matching type

Ball slide

SAH 30 EL C -**PCZ

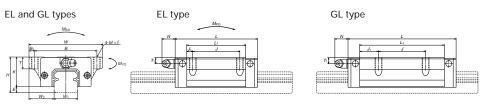
Random-matching ball slide series code

SAH: SH Series random-matching ball slide
Size

Ball slide shape code (See page A116)

Material/surface treatment code (See Table 20)

Preload code

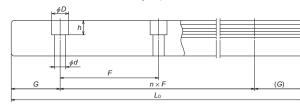

2: Slight preload only (See page A118)

Accuracy code: PC

PC: Normal grade is only available

Design serial number

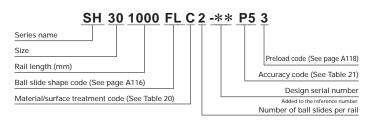
Added to the reference number.

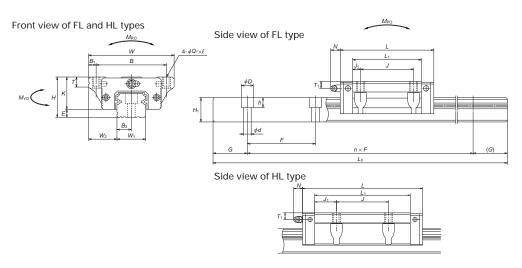


Reference number for rail of random-matching type

Rail	L1H30 1200	ĻÇ	N -**	PC	Z
Random-matching	rail series code				Preload code
L1H : LH/SH Series Size	random-matching rail				Z: Slight preload only (See page A118) Accuracy code : PC
Rail length (n	nm)				PC: Normal grade is only available Design serial number
Rail shape co	de: L				Added to the reference number. *Butting rail specification
	ace treatment code (See Table	20)			N: Non-butting. L: Butting specification

*Please consult with NSK for butting rail specification

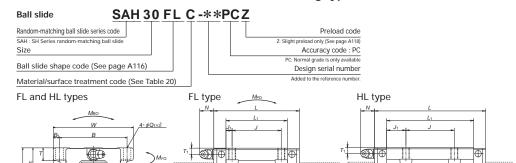


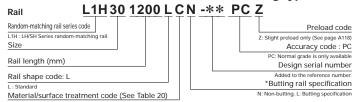

Unit: mm

			Rail					Basic	load ra	ting		Ball dia.	We	ight
Width	Height	Pitch	Mounting		G	Max. length	Dynamic	Static	Sta	tic mom	ent		Ball	Rail
			bolt hole			$L_{ m 0max}$	С	C_{0}	$M_{\scriptscriptstyle{ ext{RO}}}$	M_{PO}	$M_{\scriptscriptstyle YO}$	$D_{\rm w}$	slide	
W_1	H_1	F	$d \times D \times h$	B_3	(reference)	() for stainless	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
15	15	60	4.5×7.5×5.3	7.5	20	2 000 (1 800)	10 100 13 400	18 800 28 200	98 147	87 193	73 162	3.175	0.17 0.25	1.6
20	18	60	6×9.5×8.5	10	20	3 960 (3 500)	16 300 21 600	29 600 44 500	199 298	167 360	141 305	3.968	0.45 0.65	2.6
23	22	60	7×11×9	11.5	20	3 960 (3 500)	22 400 32 000	37 500 62 500	295 490	246 615	207 515	4.762	0.63 0.93	3.6
28	26	80	9×14×12	14	20	4 000 (3 500)	35 500 46 000	63 000 91 500	600 870	540 1 060	450 885	5.556	1.2 1.6	5.2
34	29	80	9×14×12	17	20	4 000	47 500 61 500	80 500 117 000	950 1 380	780 1 600	655 1 340	6.35	1.7 2.4	7.2
45	38	105	14×20×17	22.5	22.5	3 990		128 000 175 000	1 970 2 680	1 550 2 760	1 300 2 320	7.937	3.0 3.9	12.3
53	44	120	16×23×20	26.5	30	3 960		181 000 247 000		2 640 4 800	2 210 4 050	9.525	5.0 6.5	16.9

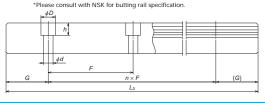
³⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C₁₀₀ for 100 km rating fatigue life, divide the C by 1.26.

SH-FL (High-load type) SH-HL (Super-high-load type)




	A:	ssem	bly						Ball	slide						
Model No.	Height			Width	Length		Mou	nting hole						Grease	fittin	g
iviouei no.	Н	Ε	W_2	W	L	В	J	$Q_1\!\! imes\!\ell$	B ₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	Ν
SH15FL SH15HL	24	4.6	16	47	55 74	38	30	4.5×7	4.5	39 58	4.5 14	19.4	8	φ 3	4.5	3.3
SH20FL SH20HL	30	5	21.5	63	69.8 91.8	53	40	6×9.5	5	50 72	5 16	25	10	M6×0.75	5	11
SH25FL SH25HL	36	7	23.5	70	79 107	57	45	7×10(7×11.5)	6.5	58 86	6.5 20.5	29	11 (12)	M6×0.75	6	11
SH30FL SH30HL	42	9	31	90	98.6 124.6	72	52	9×12(9×14.5)	9	72 98	10 23	33	11 (15)	M6×0.75	7	11
SH35FL SH35HL	48	9.5	33	100	109 143	82	62	9×13	9	80 114	9 26	38.5	12	M6×0.75	8	11
SH45FL SH45HL	60	14	37.5	120	139 171	100	80	11×15	10	105 137	12.5 28.5	46	13	Rc1/8	10	13
SH55FL SH55HL	70	15	43.5	140	163 201	116	95	14×18	12	126 164	15.5 34.5	55	15	Rc1/8	11	13

Remarks: 1) Parenthesized dimensions are applicable to stainless steel products.

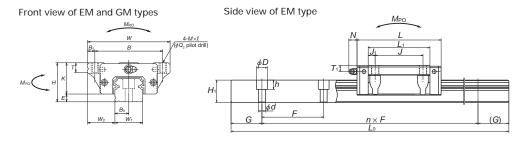

Reference number for ball slide of random-matching type

Reference number for rail of random-matching type

H₁ B₃ W₁

Unit: mm

			Rail					Basic	load ra	ting		Ball dia.	We	eight
Width	Height	Pitch	Mounting		G	Max. length	Dynamic	Static	Sta	tic mom	ent		Ball	Rail
			bolt hole			$L_{ m omax}$	С	C_{0}	$M_{\scriptscriptstyle{RO}}$	M_{PO}	M_{YO}	D_{w}	slide	
W_1	H_1	F	d×D×h	B_3	(reference)	() for stainless	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
15	15	60	4.5×7.5×5.3	7.5	20	2000 (1800)	10100 13400		98 147	87 193	73 162	3.175	0.17 0.25	1.6
20	18	60	6×9.5×8.5	10	20	3960 (3500)	16300 21600		199 298	167 360	141 305	3.968	0.45 0.65	2.6
23	22	60	7×11×9	11.5	20	3960 (3500)	22400 32000		295 490	246 615	207 515	4.762	0.63 0.93	3.6
28	26	80	9×14×12	14	20	4000 (3500)	35500 46000		600 870	540 1060	450 885	5.556	1.2 1.6	5.2
34	29	80	9×14×12	17	20	4000	47500 61500		950 1380	780 1600	655 1340	6.35	1.7 2.4	7.2
45	38	105	14×20×17	22.5	22.5	3990		128000 175000	1970 2680	1550 2760	1300 2320	7.937	3 3.9	12.3
53	44	120	16×23×20	26.5	30	3960		181000 247000		2640 4800	2210 4050	9.525	5 6.5	16.9

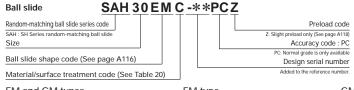

³⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C_{1m} for 100 km rating fatigue life, divide the C by 1.26.

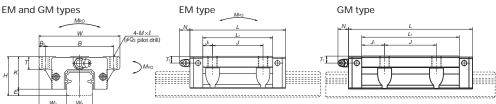
A135 A136

²⁾ The external appearance of stainless steel ball slides differs from those of standard material ball slide.

SH-EM (High-load type) SH-GM (Super-high-load type)

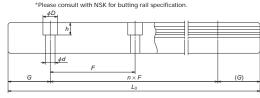
SH 30 1000 EMC 2 -** P5 3 Series name Size Preload code (See page A118) Rail length (mm) Accuracy code (See Table 21) Ball slide shape code (See page A116) Design serial number Material/surface treatment code (See Table 20) Added to the reference number. Number of ball slides per rail


Side view of GM type


- 1	<u>L</u>	1	. 1
	$\frac{1}{J_1}$ $\frac{1}{J_2}$	1	
T₁			₩
		(!)	

	A:	ssem	bly						Ва	all slid	le						
Model No.	Height			Width	Length		М	ounting hole							Grease	e fittir	ng
wiodei No.	Н	Ε	$W_{\scriptscriptstyle 2}$	W	L	В	J	M×pitch× <i>l</i>	Q_2	B₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
SH15EM SH15GM	24	4.6	16	47	55 74	38	30	M5×0.8×7	4.4	4.5	39 58	4.5 14	19.4	8	φ 3	4.5	3.3
SH20EM SH20GM	30	5	21.5	63	69.8 91.8	53	40	M6×1×9.5	5.3	5	50 72	5 16	25	10	M6×0.75	5	11
SH25EM SH25GM	36	7	23.5	70	79 107	57	45	M8×1.25×10 (M8×1.25×11.5)	6.8	6.5	58 86	6.5 20.5	29	11 (12)	M6×0.75	6	11
SH30EM SH30GM	42	9	31	90	98.6 124.6	72	52	M10×1.5×12 (M10×1.5×14.5)	8.6	9	72 98	10 23	33	11 (15)	M6×0.75	7	11
SH35EM SH35GM	48	9.5	33	100	109 143	82	62	M10×1.5×13	8.6	9	80 114	9 26	38.5	12	M6×0.75	8	11
SH45EM SH45GM	60	14	37.5	120	139 171	100	80	M12×1.75×15	10.5	10	105 137	12.5 28.5	46	13	Rc1/8	10	13
SH55EM SH55GM	70	15	43.5	140	163 201	116	95	M14×2×18	12.5	12	126 164	15.5 34.5	55	15	Rc1/8	11	13

Remarks: 1) Parenthesized dimensions are applicable to stainless steel products.


Reference number for ball slide of random-matching type

Reference number for rail of random-matching type

L1H30 1200 LCN -** PC Z Rail Random-matching rail series code Preload code L1H : LH/SH Series random-matching rail Z: Slight preload only (See page A118) Accuracy code : PC PC: Normal grade is only available Rail length (mm) Design serial number Rail shape code: L Added to the reference number. *Butting rail specification L : Standard N: Non-butting. L: Butting specification Material/surface treatment code (See Table 20)

Unit: mm

													OH	it. IIIIII
			Rail					Basic	load ra	ting		Ball dia.	We	ight
Width	Height	Pitch	Mounting		G	Max. length	Dynamic	Static	Sta	tic mom	ent		Ball	Rail
			bolt hole			L_{omax}	С	C_{0}	M_{RO}	M_{PO}	M _{YO}	$D_{\rm w}$	slide	
W_1	H_1	F	d×D×h	B_3	(reference)	() for stainless	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
15	15	60	4.5×7.5×5.3	7.5	20	2000	10100	18800	98	87	73	3.175	0.17	1.6
15	13	00	4.57.575.5	7.5	20	(1800)	13400	28200	147	193	162	3.173	0.25	1.0
20	18	60	6×9.5×8.5	10	20	3960	16300	29600	199	167	141	3.968	0.45	2.6
20	10	00	0.7.5.0.5	10	20	(3500)	21600	44500	298	360	305	3.700	0.65	2.0
23	22	60	7×11×9	11.5	20	3960	22400	37500	295	246	207	4.762	0.63	3.6
23	22	00	7.411.47	11.5	20	(3500)	32000	62500	490	615	515	4.702	0.93	3.0
28	26	80	9×14×12	14	20	4000	35500	63000	600	540	450	5.556	1.2	5.2
20	20	00	7/14/12	14	20	(3500)	46000	91500	870	1060	885	3.330	1.6	3.2
34	29	80	9×14×12	17	20	4000	47500	80500	950	780	655	6.35	1.7	7.2
34	27	00	7/14/12	17	20	4000	61500	117000	1380	1600	1340	0.55	2.4	1.2
45	38	105	14×20×17	22.5	22.5	3990	76500	128000	1970	1550	1300	7.937	3	12.3
45	38	105	14XZUX17	22.5	22.5	3990	94500	175000	2680	2760	2320	1.937	3.9	12.3
53	44	120	16×23×20	26.5	30	3960	113000	181000	3300	2640	2210	9.525	5	16.9
55	44	120	10/23/20	20.5	30	3700	140000	247000	4550	4800	4050	7.323	6.5	10.9

³⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C₁∞ for 100 km rating fatigue life, divide the C by 1.26.

A137 A138

²⁾ The external appearance of stainless steel ball slides differs from those of standard material ball slide.

A-5-1.2 SS Series

(1) Features1. Lower noise and gentler tone

Incorporating a retainer piece and optimizing the circulation path enables steel ball circulation stability and the prevention of ball collision, resulting in noise reduction.

2. Smoother motion

Improved steel ball circulation stability, free of interference between the balls improves dynamic friction characteristics, resulting in smooth and stable motion, which is especially effective for low speed motion.

3. Low dust generation

A resin retaining piece, which prevents steel balls collision, features effective low dust generation characteristics compared to conventional products.

4. High self-aligning capability (rolling direction)

Same as the DF combination in angular contact bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, reducing moment rigidity. This increases the capacity to absorb errors in installation.

5. High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, increasing load carrying capacity as well as rigidity in vertical direction.

6. High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is generally carried by the top rows, at where balls are contacting at two points. Because of this design, the bottom rows will carry load when a large impact load is applied vertically as shown in Fig. 3. This assures high resistance to the impact load.

7. High accuracy

As showing in Fig. 4, fixing the master rollers is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

8. Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery.

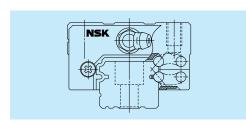


Fig. 1 SS Series

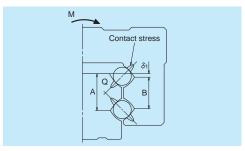


Fig. 2 Enlarged illustration of the offset Gothic arch groove

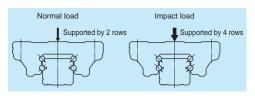


Fig. 3 When load is applied

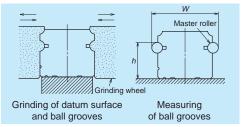


Fig. 4 Rail grinding and measuring

(2) Ball slide shape

Ball slide Model	Shape/installation method	Ty Modium load type	pe
AL CL		Medium-load type CL L1	High-load type AL L1
EL JL		JL L1	EL L1
FL KL		KL L ₁	FL L ₁
EM JM		JM L ₁	EM L ₁

A139 A140

(3) Accuracy and preload

1. Running parallelism of ball slide

Table 1

Unit: µm

Rail over all length (mm) over or less Over or less							
length (mm) over or less Outra precision P3 Super precision P4 P4 Precision P5 P6 Normal grade P6 Normal grade P0 PC -50 2 2 2 4.5 6 6 6 50 - 80 2 2 3 5 6 6 6 80 - 125 2 2 3.5 5.5 6.5 6.5 125 - 200 2 2 4 6 7 7 200 - 250 2 2.5 5 7 8 8 8 250 - 315 2 2.5 5 8 9 9 9 315 - 400 2 3 6 9 11 11 11 400 - 500 2 3 6 10 12 12 500 - 630 2 3.5 7 12 14 14 630 - 800 2 4.5 8 14 16 16 800 -		F)				
50 - 80 2 2 3 5 6 6 80 - 125 2 2 3.5 5.5 6.5 6.5 125 - 200 2 2 4 6 7 7 200 - 250 2 2.5 5 7 8 8 250 - 315 2 2.5 5 8 9 9 315 - 400 2 3 6 9 11 11 11 400 - 500 2 3 6 10 12 12 12 500 - 630 2 3.5 7 12 14 14 14 630 - 800 2 4.5 8 14 16 16 16 800 - 1000 2.5 5 9 16 18 18 18 1000 - 1250 3 6 10 17 20 20 20 1250 - 1600 4 7 11 19 23 23 23 1600 - 2000 4.5 8 13 21	length (mm)	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6		
80 - 125 2 2 3.5 5.5 6.5 125 - 200 2 2 4 6 7 7 200 - 250 2 2.5 5 7 8 8 250 - 315 2 2.5 5 8 9 9 315 - 400 2 3 6 9 11 11 400 - 500 2 3 6 10 12 12 500 - 630 2 3.5 7 12 14 14 630 - 800 2 4.5 8 14 16 16 800 - 1000 2.5 5 9 16 18 18 1000 - 1250 3 6 10 17 20 20 1250 - 1600 4 7 11 19 23 23 1600 - 2000 4.5 8 13 21 26 26	- 50	2	2	2	4.5	6	6
125 - 200 2 2 4 6 7 7 200 - 250 2 2.5 5 7 8 8 250 - 315 2 2.5 5 8 9 9 315 - 400 2 3 6 9 11 11 400 - 500 2 3 6 10 12 12 500 - 630 2 3.5 7 12 14 14 630 - 800 2 4.5 8 14 16 16 800 - 1000 2.5 5 9 16 18 18 1000 - 1250 3 6 10 17 20 20 1250 - 1600 4 7 11 19 23 23 1600 - 2000 4.5 8 13 21 26 26	50 – 80	2	2	3	5	6	6
200 - 250 2 2.5 5 7 8 8 250 - 315 2 2.5 5 8 9 9 315 - 400 2 3 6 9 11 11 400 - 500 2 3 6 10 12 12 500 - 630 2 3.5 7 12 14 14 630 - 800 2 4.5 8 14 16 16 800 - 1000 2.5 5 9 16 18 18 1000 - 1250 3 6 10 17 20 20 1250 - 1600 4 7 11 19 23 23 1600 - 2000 4.5 8 13 21 26 26	80 – 125	2	2	3.5	5.5	6.5	6.5
250 - 315 2 2.5 5 8 9 9 315 - 400 2 3 6 9 11 11 400 - 500 2 3 6 10 12 12 500 - 630 2 3.5 7 12 14 14 630 - 800 2 4.5 8 14 16 16 800 - 1000 2.5 5 9 16 18 18 1000 - 1250 3 6 10 17 20 20 1250 - 1600 4 7 11 19 23 23 1600 - 2000 4.5 8 13 21 26 26	125 – 200	2	2	4	6	7	7
315 - 400 2 3 6 9 11 11 400 - 500 2 3 6 10 12 12 500 - 630 2 3.5 7 12 14 14 630 - 800 2 4.5 8 14 16 16 800 - 1000 2.5 5 9 16 18 18 1000 - 1250 3 6 10 17 20 20 1250 - 1600 4 7 11 19 23 23 1600 - 2000 4.5 8 13 21 26 26	200 – 250	2	2.5	5	7	8	8
400 - 500 2 3 6 10 12 12 500 - 630 2 3.5 7 12 14 14 630 - 800 2 4.5 8 14 16 16 800 - 1000 2.5 5 9 16 18 18 1000 - 1250 3 6 10 17 20 20 1250 - 1600 4 7 11 19 23 23 1600 - 2000 4.5 8 13 21 26 26	250 – 315	2	2.5	5	8	9	9
500 - 630 2 3.5 7 12 14 14 630 - 800 2 4.5 8 14 16 16 800 - 1000 2.5 5 9 16 18 18 1000 - 1250 3 6 10 17 20 20 1250 - 1600 4 7 11 19 23 23 1600 - 2000 4.5 8 13 21 26 26	315 – 400	2	3	6	9	11	11
630 - 800 2 4.5 8 14 16 16 800 - 1000 2.5 5 9 16 18 18 1000 - 1250 3 6 10 17 20 20 1250 - 1600 4 7 11 19 23 23 1600 - 2000 4.5 8 13 21 26 26	400 – 500	2	3	6	10	12	12
800 - 1000 2.5 5 9 16 18 18 1000 - 1250 3 6 10 17 20 20 1250 - 1600 4 7 11 19 23 23 1600 - 2000 4.5 8 13 21 26 26	500 - 630	2	3.5	7	12	14	14
1000 - 1250 3 6 10 17 20 20 1250 - 1600 4 7 11 19 23 23 1600 - 2000 4.5 8 13 21 26 26	630 – 800	2	4.5	8	14	16	16
1250 - 1600 4 7 11 19 23 23 1600 - 2000 4.5 8 13 21 26 26	800 – 1000	2.5	5	9	16	18	18
1600 – 2000 4.5 8 13 21 26 26	1000 – 1250	3	6	10	17	20	20
	1250 – 1600	4	7	11	19	23	23
2000 2500 5 10 15 22 20 20	1600 – 2000	4.5	8	13	21	26	26
2000 - 2300 3 10 13 22 29 29	2000 – 2500	5	10	15	22	29	29
2500 - 3150 6 11 17 25 32 32	2500 – 3150	6	11	17	25	32	32
3150 – 4000 9 16 23 30 34 34	3150 – 4000	9	16	23	30	34	34

2. Accuracy standard

The preloaded assembly has five accuracy grades; Ultra precision P3, Super precision P4, High precision P5, Precision P6 and Normal PN grades, while the random-matching type has Normal PC grade.

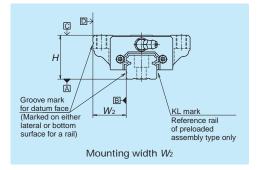
Tolerance of preloaded assembly

Table 2 Unit: μm					
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15	±80 25
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20	±100 30
Running parallelism of face C to face A Running parallelism of face D to face B		Shown in Ta	ıble 1, Fig. 5, aı	nd Fig. 6	

• Tolerance of random-matching type; Normal grade PC

т	able 3 Unit: μm
Model No. Characteristics	SS15, 20, 25, 30, 35
Mounting height H	±20
Variation of mounting height H	15①
	30②
Mounting width W_2 or W_3	±30
Variation of mounting width W_2 or W_3	25
Running parallelism of face C to face A Running parallelism of face D to face B	See Table 1, Fig. 5, and Fig. 6

Note: ① Variation on the same rail ② Variation on multiple rails


A141

3. Combinations of accuracy and preload

Table 4

		Accuracy grade					
		Ultra precision	Super precision	High precision	Precision grade	Normal grade	Normal grade
Wit	hout NSK K1 lubrication unit	P3	P4	P5	P6	PN	PC
With NSK K1 lubrication unit		К3	K4	K5	K6	KN	KC
	Fine clearance						
	ZO						_
	Slight preload						
Preload	Z 1						_
le l	Medium preload						
-	Z 3					_	_
	Random-matching type with slight preload						
	ZZ	_	_	_	_	_	

4. Assembled accuracy

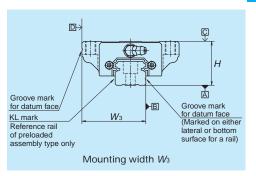
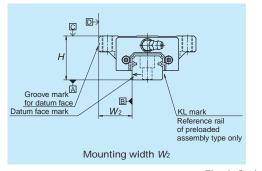



Fig. 5 Special high carbon steel

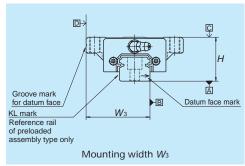


Fig. 6 Stainless steel

5. Preload and rigidity

We offer four levels of preload: slight preload Z1, medium preload Z3 and fine clearance Z0, along with random-matching type of slight preload ZZ. Values for preload and rigidity of the preloaded assembly are shown in Table 5. Rigidities are for the median of the preload range.

· Preload and rigidity of preloaded assembly

Table 5

	Tuble 5								
Model No.		Preload (N)		Rigidity (N/μm)					
				Vertical	direction	Lateral o	direction		
	Model No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload		
		(Z1)	(Z3)	(Z1)	(Z3)	(Z1)	(Z3)		
type	SS15 AL, EL, FL, EM	69	392	118	216	88	157		
	SS20 AL, EL, FL, EM	88	490	147	255	108	186		
loac	SS25 AL, EL, FL, EM	147	833	196	353	137	255		
High-load	SS30 AL, EL, FL, EM	245	1370	245	441	176	323		
Ξ	SS35 AL, EL, FL, EM	294	1860	284	539	205	392		
be	SS15 CL, JL, KL, JM	39	245	69	127	49	88		
ad ty	SS20 CL, JL, KL, JM	59	343	88	157	59	118		
n-lo	SS25 CL, JL, KL, JM	98	588	108	206	78	147		
Medium-load type	SS30 CL, JL, KL, JM	147	882	127	235	98	176		
ĕ	SS35 CL, JL, KL, JM	196	1180	166	304	117	225		

Note: Clearance for fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15 µm.

· Clearance and preload of random-matching type

Table 6 unit: µm

Model No.	Slight preload ZZ
SS15	-4 - 0
SS20	-4 - 0
SS25	-5 - 0
SS30	-5 - 0
SS35	-6 - 0

(4) Available length of rail

Material

Special high

carbon steel

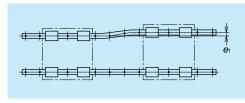
Stainless steel

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by

Table 7 Length limitation of rails

Table 7	Unit : mm			
15	20	25	30	35
2000	3960	3960	4000	4000
1700	3500	3500	3500	3500

Note: Rails can be butted if user requirement exceeds the rail length shown in the Table. Please consult NSK.


(5) Installation

Series

SS

1. Permissible values of mounting error

Size

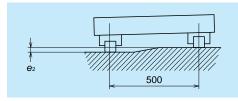


Fig. 7

Fig. 8

Table 8							
Value	Preload			Model No.			
value	Freibau	SS15	SS20	SS25	SS30	SS35	
Permissible values of parallelism in two rails e_1	ZO, ZT	20	22	30	35	40	
	Z1, ZZ	15	17	20	25	30	
	Z3	12	15	15	20	25	
Permissible values of	ZO, ZT	375 μm/500 mm					
parallelism (height) in two rails e2	Z1, ZZ, Z3		330 μm/500 mm				

2. Shoulder height of the mounting face and corner radius r

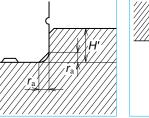
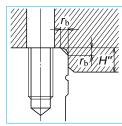



Fig. 9 Shoulder for the Fig. 10 Shoulder for the ball rail datum face

slide datum face

		Table 9		Unit : mm	
Model No.	Corner radiu:	s (maximum)	Shoulder height		
Model IVO.	$\Gamma_{\rm a}$	$r_{\rm b}$	H'	H"	
SS 15	0.5	0.5	4	4	
SS20	0.5	0.5	4.5	5	
SS 25	0.5	0.5	5	5	
SS 30	0.5	0.5	6	6	
SS 35	0.5	0.5	6	6	

(6) Lubrication components

Refer to page A38 and D13 for the lubrication of linear guides.

1. Types of lubrication accessories

Figure 11 and Table 10 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

Please ask NSK for stainless lubrication accessories.

2. Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 12)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of M6 \times 1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

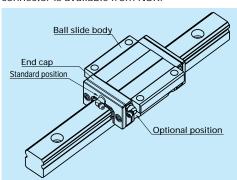


Fig. 12 Mounting position of lubrication accessories

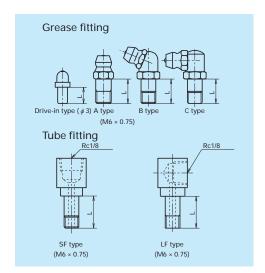


Fig. 11 Grease fitting and tube fitting

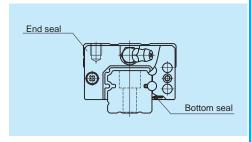
	T	Unit : mm	
Model No.	Dust proof	Grease fitting	Tube fitting
	specification	Thread body length L Thread body length L	Thread body length L
	Standard	5	_
SS15	With NSK K1	10	-
3313	Double seal	*	-
	Protector	*	-
	Standard	5	-
SS20	With NSK K1	10	-
5520	Double seal	8	_
	Protector	8	-
SS25	Standard	5	6
	With NSK K1	12	11
	Double seal	10	9
	Protector	10	9
	Standard	5	6
SS30	With NSK K1	14	13
3330	Double seal	12	11
	Protector	12	11
	Standard	5	6
SS35	With NSK K1	14	13
3333	Double seal	12	11
	Protector	12	11

*) Please contact NSK as a connector is required.

(7) Dust proof components

1. Standard specification

To keep foreign matters from entering inside the ball slide, SS Series has an end seal on both ends, and bottom seals at the bottom.



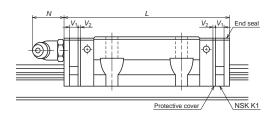

Fig. 13

Table 11 Seal friction per ball slide (maximum value)

				l	Jnit : N
Series Size	15	20	25	30	35
SS	8	9	9	9	10

2. NSK K1[™]

Table 12 shows the dimension of linear guides equipped with the NSK K1.

Model No.	Ball slide length	Ball slide model			Per NSK K1 thickness V ₁	Protective cover thickness V ₂	Protruding area of the grease fitting N	
SS15	Standard	AL, EL, FL, EM	56.8	66.4	4.0	0.8	(5)	
3310	Short	CL, JL, KL, JM	40.4	50	4.0	0.6	(5)	
SS20	Standard	AL, EL, FL, EM	65.2	75.8	4.5	0.8	(14)	
3320	Short	CL, JL, KL, JM	47.2	57.8	4.5	0.6	(14)	
SS25	Standard	AL, EL, FL, EM	81.6	92.2	4.5	0.0	0.8	(14)
3320	Short	CL, JL, KL, JM	59.6	70.2	4.5	0.6	(14)	
SS30	Standard	AL, EL, FL, EM	96.4	108.4	5.0	1.0	(14)	
5530	Short	CL, JL, KL, JM	67.4	79.4	5.0	1.0	(14)	
SS35	Standard	AL, EL, FL, EM	108	121	5.5	1.0	(14)	
3333	Short	CL, JL, KL, JM	77	90	0.5	1.0	(14)	

Table 12

Note: Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V₁ × Number of NSK K1) + (Thickness of the protective cover, V₂ × 2)

A145 A146

3. Double seal

Use a double seal set as showing in Table 13, when installing an extra seal to completed standard products. (Fig. 14)

When installing a grease fitting after the installation of double seals, a connector is required.

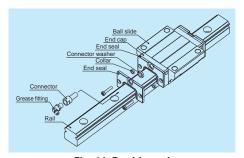


Fig. 14 Double seal

4. Protector

Use a protector set as showing Table 14, when installing a protector to completed standard products. (Fig.15)

When installing a grease fitting after the installation of protectors, a connector is required.

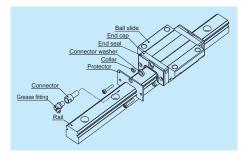


Fig. 15 Protector

Table 13 Double-seal set

Referer	Increased	
Without connector	With connector	thickness V
LS15WS-01	*	2.8
LS20WS-01	LS20WSC-01	2.5
LS25WS-01	LS25WSC-01	2.8
LS30WS-01	LS30WSC-01	3.6
LS35WS-01	LS35WSC-01	3.6
	Without connector LS15WS-01 LS20WS-01 LS25WS-01 LS30WS-01	LS15WS-01 * LS20WS-01 LS20WSC-01 LS25WS-01 LS25WSC-01 LS30WS-01 LS30WSC-01

Table 14 Protector set

Model No.	Referer	Increased	
WIOGEI NO.	Without connector	thickness V ₂	
SS15	LS15PT-01	*	3
SS20	LS20PT-01	LS20PTC-01	2.7
SS25	LS25PT-01	LS25PTC-01	3.2
SS30	LS30PT-01	LS30PTC-01	4.2
SS35	LS35PT-01	LS35PTC-01	4.2

^{*)} For installation of a connector to a drive-in type grease fitting, contact NSK.

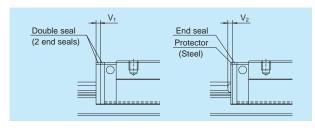


Fig. 16

5. Cap to cover the bolt hole for rail mounting Table 15 Caps to cover rail bolt hole

	•		
odel No.	Bolt to	Сар	Quantity
	secure rail	reference No.	/case
SS15	M3	LG-CAP/M3	20

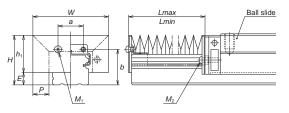
Model No.		'	
	secure rail	reference No.	/case
SS15	M3	LG-CAP/M3	20
SS15	M4	LG-CAP/M4	20
SS20	M5	LG-CAP/M5	20
SS25, SS30	M6	LG-CAP/M6	20
SS35	M8	LG-CAP/M8	20

6. Inner seal

Inner seal can be manufactured for models shown

Table 16

Series	Model No.
SS	SS20, SS25, SS30, SS35


7. Bellows

Use a bellows fastener kit as showing Table 17, when installing bellows to completed standard products. A bellows fastener kit is supplied with one of bellows fastener, two of M1 set screws, two of M2 set screws, and two collars for M2 set screw.

Table 17 Bellows fastner kit reference No.

Model No.	Kit reference No.
SS15	LS15FS-01
SS20	LS20FS-01
SS25	LS25FS-01
SS30	LS30FS-01
SS35	LS35FS-01

Dimension tables of bellows SS Series

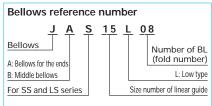


Fig. 17 Dimension of bellows

Unit: mm

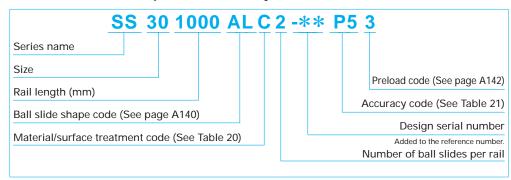
Model No.	Н	h ₁	Ε	W	Р	а	b	BL minimum length	M₁Tap x depth	M₂Tap x depth
JAS15L	23.5	18.9	4.6	43	10	8	16.5	17	M3×5	M3×14
JAS20L	27	21	6	48	10	13	19.7	17	M3×5	M2.5×14
JAS25L	32	25	7	51	10	15	23.2	17	M3×5	M3×18
JAS30L	41	32	9	66	15	16	29	17	M4×6	M4×19
JAS35L	47	36.5	10.5	72	15	22	33.5	17	M4×6	M4×22

Table 19 Numbers of folds (BL) and lengths of bellows

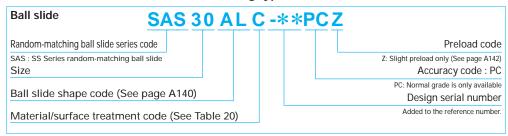
Unit: mm

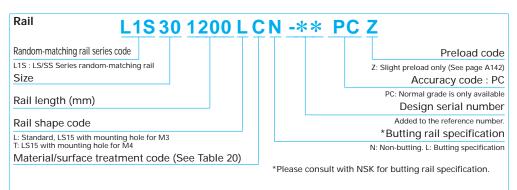
Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
Wiodel No.	Lmin	34	68	102	136	170	204	238	272	306	340
JAS15L	Stroke	106	212	318	424	530	636	742	848	954	1060
JASISE	Lmax	140	280	420	560	700	840	980	1120	1260	1400
JAS20L	Stroke	106	212	318	424	530	636	742	848	954	1060
JASZUL	Lmax	140	280	420	560	700	840	980	1120	1260	1400
IACOEI	Stroke	106	212	318	424	530	636	742	848	954	1060
JAS25L	Lmax	140	280	420	560	700	840	980	1120	1260	1400
145301	Stroke	176	352	528	704	880	1056	1232	1408	1584	1760
JAS30L	Lmax	210	420	630	840	1050	1260	1470	1680	1890	2100
IACOEI	Stroke	176	352	528	704	880	1056	1232	1408	1584	1760
JAS35L	Lmax	210	420	630	840	1050	1260	1470	1680	1890	2100

Remarks: Values of odd number BL (3, 5, 7, ...) can be obtained by adding two values of even number BLs on both side, then dividing the sum by two.


Note: We recommend using SS Series in a clean environment in order to utilize their full range of capabilities.

(8) Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.


Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

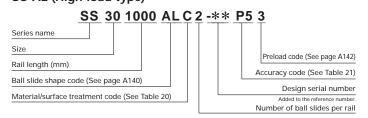
1. Reference number for preloaded assembly

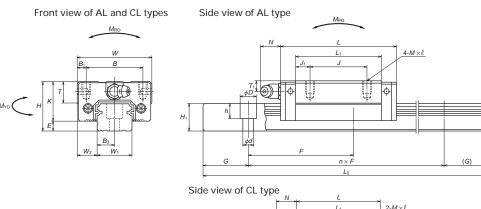
2. Reference number for random-matching type

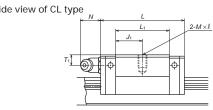
Reference number for assembly of random-matching ball slide and rail is the same as the coding of preloaded assembly. However, preload code is slight preload "Z" (Refer to page A142).

Table 20 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special


Table 21 Accuracy code


Accuracy	Standard (Without NSK K1)	With NSK K1
Ultra precision grade	P3	K3
Super precision grade	P4	K4
High precision grade	P5	K5
Precision grade	P6	K6
Normal grade	PN	KN
Normal grade (random-matching type)	PC	KC


Note: Refer to Page A38 for NSK K1 lubrication unit.

A151 A152

(9) Dimensions SS-CL (Medium-load type) SS-AL (High-load type)

	А	ssem	bly						Ball	slide						
Model No	Height			Width	Length		Mou	nting hole						Grease	fitting	
iviouei ivo	H	E	W_2	W	L	$B \mid J \mid M \times pitch \times \ell \mid B_1$		B ₁	L ₁	J_1	Κ	T	Hole size	T_1	N	
SS15CL SS15AL	24	4.6	9.5	34	40.4 56.8	26	- 26	M4×0.7×6	4	23.6 40	11.8 7	19.4	10	φ 3	6	3
SS20CL SS20AL	28	6	11	42	47.2 65.2	32	- 32	M5×0.8×7	5	30 48	15 8	22	12	M6×0.75	5.5	11
SS25CL SS25AL	33	7	12.5	48	59.6 81.6	35	- 35	M6×1×9	6.5	38 60	19 12.5	26	12	M6×0.75	7	11
SS30CL SS30AL	42	9	16	60	67.4 96.4	40	- 40	M8×1.25×12	10	42 71	21 15.5	33	13	M6×0.75	8	11
SS35CL SS35AL	48	10.5	18	70	77 108	50	- 50	M8×1.25×12	10	49 80	24.5 15	37.5	14	M6×0.75	8.5	11

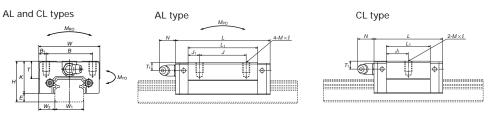
Remarks: 1) The external appearance of stainless steel ball slides differs from those of standard material ball slide.

Reference number for ball slide of random-matching type

Ball slide

SAS 30 AL C -**PC Z

Random-matching ball slide series code

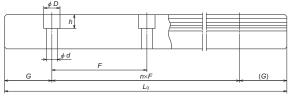

SAS: SS Series random-matching ball slide

Size

Ball slide shape code (See page A140)

Material/surface treatment code (See Table 20)

PAdded to the reference number.



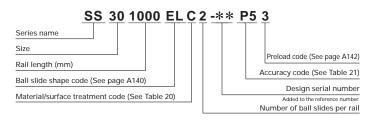
*Please consult with NSK for butting rail specification.

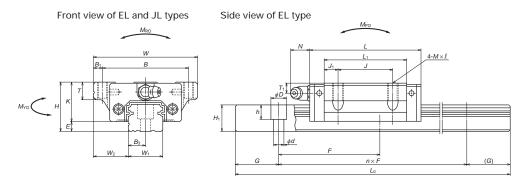
Reference number for rail of random-matching type

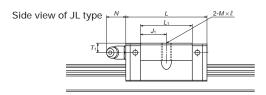
Rail	L1S 30 1200 L C	N -** PC Z
Random-matching i	ail series code	Preload code
L1S : LS/SS Series i	andom-matching rail	Z: Slight preload only (See page A142)
Size		Accuracy code : PC
Rail length (m	m)	PC: Normal grade is only available
Kali leligili (ii	111)	Design serial number
Rail shape coo	de	Added to the reference number.
		*Butting rail specification
T: LS15 with mount	vith mounting hole for M3 ing hole for M4	N: Non-butting. L: Butting specification
Material/surfa	ce treatment code (See Table 20)	,

71113

- 1	Init-	mn

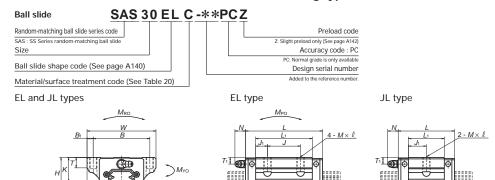

			Rail					Basic	load ra	ting		Ball dia.	We	ight
Width	Height	Pitch	Mounting		G	Max. length	Dynamic	Static	Sta	tic mom	ent		Ball	Rail
			bolt hole			$L_{ m omax}$	С	C_{0}	M_{RO}	M_{PO}	$M_{\scriptscriptstyle YO}$	$D_{\rm w}$	slide	
W_1	H_1	F	d×D×h	B_3	(reference)	() for stainless	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
15	12.5	60	* 3.5×6×4.5	7.5	20	2 000	4 900	7 800	39	21.1	17.7	2.778	0.14	1.4
13	12.3	00	4.5×7.5×5.3	7.5	20	(1 700)	7 900	15 600	78	73.5	61.5	2.770	0.2	1.4
20	15.5	60	6×9.5×8.5	10	20	3 960	7 250	11 800	80	40.5	34	3.175	0.19	2.3
20	13.3	00	0.7.5.0.5	10	20	(3 500)	11 100	21 800	149	124	104	3.173	0.28	2.3
23	18	60	7×11×9	11.5	20	3 960	12 700	20 800	164	96.5	81	3.968	0.34	3.1
23	10	00	7.411.49	11.5	20	(3 500)	17 900	33 500	266	242	203	3.700	0.51	3.1
28	23	80	7×11×9	14	20	4 000	18 700	29 600	282	153	128	4.762	0.58	4.8
20	23	00	/ / 1 1 / 7	14	20	(3 500)	27 300	50 500	480	415	350	4.702	0.85	4.0
34	27.5	80	9×14×12	17	20	4 000	26 000	40 000	465	234	196	5.556	0.86	7
34	27.5	30	7/14/12	17	20	(3 500)	38 000	68 500	800	620	520	3.330	1.3	/


The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface.
When converting the basic dynamic load rating C to the dynamic load rating C₁₀₀ for 100 km rating fatigue life, divide the C by 1.26.


^{*} Standard mounting hole of SS15 rail is for M3 bolts (Hole size: 3.5×6×4.5).

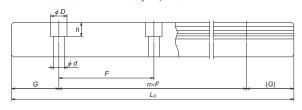
If you require the mounting hole for M4 bolts (Hole size: 4.5×7.5×5.3), please specify it when ordering.

SS-JL (Medium-load type) SS-EL (High-load type)



	A	ssem	bly						Ball	slide						
Model No.	Height			Width	Length		Mou	nting hole						Grease	fittin	g
woder No.	Н	Ε	W_2	W	L	B J M×pitch×l B		B₁	<i>L</i> ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N	
SS15JL SS15EL	24	4.6	18.5	52	40.4 56.8	41	- 26	M5×0.8×6	5.5	23.6 40	11.8 7	19.4	8	ø 3	6	3
SS20JL SS20EL	28	6	19.5	59	47.2 65.2	49	- 32	M6×1×10	5	30 48	15 8	22	10	M6×0.75	5.5	11
SS25JL SS25EL	33	7	25	73	59.6 81.6	60	- 35	M8×1.25×12	6.5	38 60	19 12.5	26	11 (12)	M6×0.75	7	11
SS30JL SS30EL	42	9	31	90	67.4 96.4	72	- 40	M10×1.5×18 (M10×1.5×15)	9	42 71	21 15.5	33	11 (15)	M6×0.75	8	11
SS35JL SS35EL	48	10.5	33	100	77 108	82	- 50	M10×1.5×20 (M10×1.5×15)	9	49 80	24.5 15	37.5	12 (15)	M6×0.75	8.5	11

Remarks: 1) Parenthesized dimensions are applicable to stainless steel products.

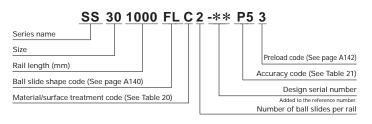

Reference number for ball slide of random-matching type

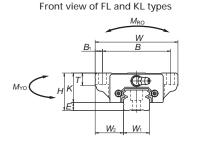
Reference number for rail of random-matching type

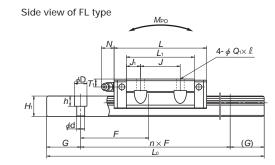
			5 5.
Rail	L1S 30 1200	LCN-*	* PC Z
Random-matching	rail series code	TTTTT	Preload code
L1S : LS/SS Series Size	random-matching rail		Z: Slight preload only (See page A142) Accuracy code : PC
Rail length (r	nm)		PC: Normal grade is only available Design serial number
Rail shape co	ode		Added to the reference number.
T: LS15 with mour	with mounting hole for M3 iting hole for M4 ace treatment code (See Table 2	D)	*Butting rail specification N: Non-butting. L: Butting specification
	,	*Please ci	onsult with NSK for butting rail specification.

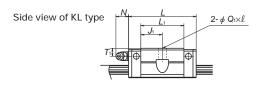
ni		

			Rail					Basic	load ra	ting		Ball dia.	We	ight
Width	Height	Pitch	Mounting		G	Max. length	Dynamic	Static	Sta	tic mom	ent		Ball	Rail
			bolt hole			L_{omax}	С	C_0	$M_{\scriptscriptstyle{ extsf{RO}}}$	M_{PO}	$M_{\scriptscriptstyle YO}$	D_{w}	slide	
W_1	H ₁	F	$d \times D \times h$	B₃	(reference)	() for stainless	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
15	12.5	60	* 3.5×6×4.5	7.5	20	2 000	4 900	7 800	39	21.1	17.7	2.778	0.17	1.4
15	12.5	00	4.5×7.5×5.3	7.5	20	(1 700)	7 900	15 600	78	73.5	61.5	2.770	0.26	1.4
20	15.5	60	6×9.5×8.5	10	20	3 960	7 250	11 800	80	40.5	34	3.175	0.24	2.3
20	15.5	00	0.7.5.0.5	10	20	(3 500)	11 100	21 800	149	124	104	3.173	0.35	2.3
23	18	60	7×11×9	11.5	20	3 960	12 700	20 800	164	96.5	81	3.968	0.44	3.1
23	10	00	/ / 1 1 / 7	11.5	20	(3 500)	17 900	33 500	266	242	203	3.700	0.66	3.1
28	23	80	7×11×9	14	20	4 000	18 700	29 600	282	153	128	4.762	0.76	4.8
20	23	00	/ / / / / / / / / / / / / / / / / / / /	14	20	(3 500)	27 300	50 500	480	415	350	4.702	1.2	4.0
34	27.5	80	9×14×12	17	20	4 000	26 000	40 000	465	234	196	5.556	1.2	7
54	27.5	00	9X14X12	17	20	(3 500)	38 000	68 500	800	620	520	5.556	1.7	/

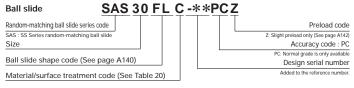

³⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C to 00 km rating fatigue life, divide the C by 1.26.

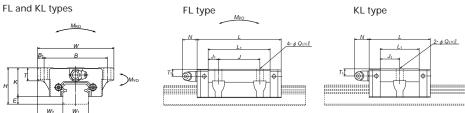

²⁾ The external appearance of stainless steel ball slides differs from those of standard material ball slide.


^{*} Standard mounting hole of SS15 rail is for M3 bolts (Hole size: 3.5×6×4.5).


If you require the mounting hole for M4 bolts (Hole size: 4.5×7.5×5.3), please specify it when ordering.

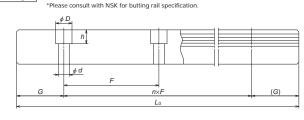
SS-KL (Medium-load type) SS-FL (High-load type)





	Assembly								Ball	slide						
Model No.	Height			Width	Length		Mou	inting hole						Grease	fittin	g
Model No.																
	Н	Ε	W_2	W	L	B J $Q_1 \times l$ B_1		B_1	L_1	J_1	Κ	T	Hole size	T_1	Ν	
SS15KL SS15FL	24	4.6	18.5	52	40.4 56.8	41	- 26	4.5×7	5.5	23.6 40	11.8 7	19.4	8	ø 3	6	3
SS20KL SS20FL	28	6	19.5	59	47.2 65.2	49	- 32	5.5×9(5.5×9.5)	5	30 48	15 8	22	10	M6×0.75	5.5	11
SS25KL SS25FL	33	7	25	73	59.6 81.6	60	- 35	7×10(7×11.5)	6.5	38 60	19 12.5	26	11 (12)	M6×0.75	7	11
SS30KL SS30FL	42	9	31	90	67.4 96.4	72	- 40	9×12(9×14.5)	9	42 71	21 15.5	33	11 (15)	M6×0.75	8	11
SS35KL SS35FL	48	10.5	33	100	77 108	82	- 50	9×13(9×14.5)	9	49 80	24.5 15	37.5	12 (15)	M6×0.75	8.5	11

Remarks: 1) Parenthesized dimensions are applicable to stainless steel products.

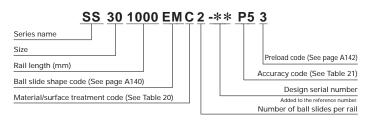

Reference number for ball slide of random-matching type

Reference number for rail of random-matching type

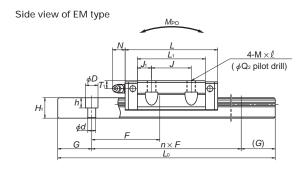
Rail <u>L1S 30 1200 L C</u>	<u>N -** PC Z</u>
Random-matching rail series code	Preload code
L1S : LS/SS Series random-matching rail	Z: Slight preload only (See page A142)
Size	Accuracy code : PC
Rail length (mm)	PC: Normal grade is only available Design serial number
Rail shape code	Added to the reference number.
L: Standard, LS15 with mounting hole for M3	*Butting rail specification
T: LS15 with mounting hole for M4 Material/surface treatment code (See Table 20)	N: Non-butting. L: Butting specification
iviateriai/surface treatment code (See Table 20)	

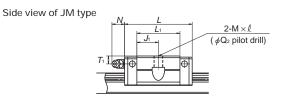
Unit:	mm

			Rail					Basic	load ra	ting		Ball dia.	We	ight
Width	Height	Pitch	Mounting		G	Max. length	Dynamic	Static	Sta	tic mom	ent		Ball	Rail
			bolt hole			$L_{ m 0max}$	С	C_{0}	M_{RO}	M_{PO}	$M_{\scriptscriptstyle YO}$	D_{w}	slide	
W_1	H_1	F	$d \times D \times h$	B_3	(reference)	() for stainless	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
15	12.5	60	* 3.5×6×4.5	7.5	20	2000	4900	7800	39	21.1	17.7	2.778	0.17	1.4
10	12.5	00	4.5×7.5×5.3	7.5	20	(1700)	7900	15600	78	73.5	61.5	2.770	0.26	1.4
20	15.5	60	6×9.5×8.5	10	20	3960	7250	11800	80	40.5	34	3.175	0.24	2.3
20	15.5	00	0.7.5.0.5	10	20	(3500)	11100	21800	149	124	104	3.173	0.35	2.3
23	18	60	7×11×9	11.5	20	3960	12700	20800	164	96.5	81	3.968	0.44	3.1
23	10	00	7.411.47	11.5	20	(3500)	17900	33500	266	242	203	3.700	0.66	3.1
28	23	80	7×11×9	14	20	4000	18700	29600	282	153	128	4.762	0.76	4.8
20	23	00	/ / / / / / / / / / / / / / / / / / / /	14	20	(3500)	27300	50500	480	415	350	4.702	1.2	4.0
34	27.5	80	9×14×12	17	20	4000	26000	40000	465	234	196	5.556	1.2	7
34	27.5	00	9X14X12	17	20	(3500)	38000	68500	800	620	520	5.556	1.7	/


³⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C₁∞ for 100 km rating fatigue life, divide the C by 1.26.

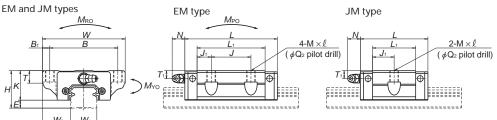
²⁾ The external appearance of stainless steel ball slides differs from those of standard material ball slide.


^{*} Standard mounting hole of SS15 rail is for M3 bolts (Hole size: 3.5×6×4.5).


If you require the mounting hole for M4 bolts (Hole size: 4.5×7.5×5.3), please specify it when ordering.

SS-JM (Medium-load type) SS-EM (High-load type)

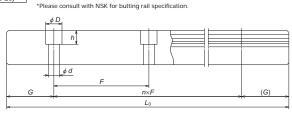
Front view of EM and JM types



	A:	ssem	bly							Ва	ıll slid	е					
Model No.	Height			Width	Width Length Mounting hole										Grease	e fittir	ng
Model No.																	
	Н	Ε	W_2	W	L	В	J	M×pitch×l	1×pitch× ℓ Q_2 ℓ		L_1	J_1	Κ	T	Hole size	T_1	Ν
SS15JM SS15EM	24	4.6	18.5	52	40.4 56.8	41	- 26	M5×0.8×7	4.4	5.5	23.6 40	11.8 7	19.4	8	ø 3	6	3
SS20JM SS20EM	28	6	19.5	59	47.2 65.2	49	- 32	M6×1×9 (M6×1×9.5)	5.3	5	30 48	15 8	22	10	M6×0.75	5.5	11
SS25JM SS25EM	33	7	25	73	59.6 81.6	60	- 35	M8×1.25×10 (M8×1.25×11.5)	6.8	6.5	38 60	19 12.5	26	11 (12)	M6×0.75	7	11
SS30JM SS30EM	42	9	31	90	67.4 96.4	72	- 40	M10×1.5×12 (M10×1.5×14.5)	8.6	9	42 71	21 15.5	33	11 (15)	M6×0.75	8	11
SS35JM SS35EM	48	10.5	33	100	77 108	82	- 50	M10×1.5×13 (M10×1.5×14.5)	8.6	9	49 80	24.5 15	37.5	12 (15)	M6×0.75	8.5	11

Remarks: 1) Parenthesized dimensions are applicable to stainless steel products.

Reference number for ball slide of random-matching type

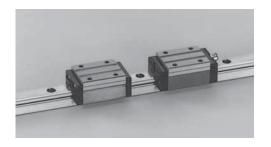

SAS 30 EM C -**PCZ Ball slide Random-matching ball slide series code Preload code SAS : SS Series random-matching ball slide Z: Slight preload only (See page A142) Accuracy code : PC PC: Normal grade is only available Ball slide shape code (See page A140) Design serial number Added to the reference number Material/surface treatment code (See Table 20)

Reference number for rail of random-matching type

L1S301200LCN-** PCZ Random-matching rail series code Preload code L1S : LS/SS Series random-matching rail Z: Slight preload only (See page A142) Size Accuracy code: PC PC: Normal grade is only available Rail length (mm) Design serial number Added to the reference number. Rail shape code *Butting rail specification L: Standard, LS15 with mounting hole for M3 T: LS15 with mounting hole for M4 N: Non-butting. L: Butting specification Material/surface treatment code (See Table 20)

			Dell											Weight		
			Rail					Basic	ioad ra	ung		Ball dia.	vve	igni		
Width	Height	Pitch	Mounting		G	Max. length	Dynamic	Static	Sta	tic mom	ent		Ball	Rail		
			bolt hole			L_{omax}	С	C_{0}	$M_{\scriptscriptstyle{ m RO}}$	M_{PO}	$M_{\scriptscriptstyle YO}$	D_{w}	slide			
$W_{\scriptscriptstyle 1}$	H_1	F	$d \times D \times h$	B_3	(reference)	() for stainless	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)		
15	12.5	60	* 3.5×6×4.5	7.5	20	2000	4900	7800	39	21.1	17.7	2.778	0.17	1.4		
15	12.5	00	4.5×7.5×5.3	7.5	20	(1700)	7900	15600	78	73.5	61.5	2.770	0.26	1.4		
20	15.5	60	6×9.5×8.5	10	20	3960	7250	11800	80	40.5	34	3.175	0.24	2.3		
20	15.5	00	0.7.5.0.5	10	20	(3500)	11100	21800	149	124	104	3.173	0.35	2.3		
23	18	60	7×11×9	11.5	20	3960	12700	20800	164	96.5	81	3.968	0.44	3.1		
23	10	00	/ / 1 1 / 7	11.5	20	(3500)	17900	33500	266	242	203	3.700	0.66	3.1		
28	23	80	7×11×9	14	20	4000	18700	29600	282	153	128	4.762	0.76	4.8		
20	23	80	/ / / / / / /	14	20	(3500)	27300	50500	480	415	350	4.702	1.2	4.0		
34	27.5	80	9×14×12	17	20	4000	26000	40000	465	234	196	5.556	1.2	7		
34	27.3	00	9X14X12	17	20	(3500)	38000	68500	800	620	520	5.556	1.7	/		

³⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C_{100} for 100 km rating fatigue life, divide the C by 1.26.


A159

Unit: mm

²⁾ The external appearance of stainless steel ball slides differs from those of standard material ball slide.

^{*} Standard mounting hole of SS15 rail is for M3 bolts (Hole size: 3.5×6×4.5). If you require the mounting hole for M4 bolts (Hole size: 4.5×7.5×5.3), please specify it when ordering.

A-5-1.3 LH Series

1. High self-aligning capability (rolling direction)

Same as the DF combination in angular contact bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, reducing moment rigidity.

This increases the capacity to absorb errors in installation.

2. High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, increasing load carrying capacity as well as rigidity in vertical direction.

3. High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is generally carried by the top rows, where balls are contacting at two points. Because of this design, the bottom rows will carry load when a large impact load is applied vertically as shown in Fig. 3. This assures high resistance to the impact load.

4. High accuracy

As showing in Fig. 4, fixing the master rollers is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

5. Easy to handle, and designed with safety in mind.

Balls are retained in the retainer, therefore they do not fall out when the ball slide is withdrawn from the rail. (LH10 to LH65)

6. Abundant models and sizes

Each series has various models of ball slides, rendering the linear guide available for numerous uses.

7. Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery. (LH15 to LH65)

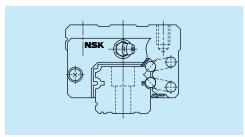


Fig. 1 LH Series

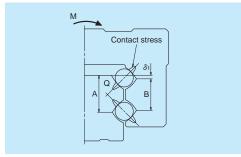


Fig. 2 Enlarged illustration of the offset Gothic arch groove

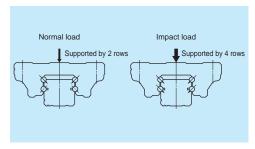


Fig. 3 When load is applied

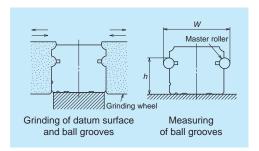


Fig. 4 Rail grinding and measuring

(2) Ball slide shape

Ball slide		Tv	ре
Model	Shape/installation method	High-load type	Super-high-load type
AN BN		AN L1	BN L ₁
AL BL		AL L1	BL
EL GL		EL L1	GL L1
FL HL		FL L1	HL L1
EM GM		EM L ₁	GM L ₁

(3) Accuracy and preload

1. Running parallelism of ball slide

Table 1

	Unit: µm
ching)	Random- matching type
rmal grade	Normal grade

		Preloaded assembly (not random matching)											
Rail over all length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC							
- 50	2	2	2	4.5	6	6							
50 – 80	2	2	3	5	6	6							
80 – 125	2	2	3.5	5.5	6.5	6.5							
125 – 200	2	2	4	6	7	7							
200 – 250	2	2.5	5	7	8	8							
250 – 315	2	2.5	5	8	9	9							
315 – 400	2	3	6	9	11	11							
400 – 500	2	3	6	10	12	12							
500 - 630	2	3.5	7	12	14	14							
630 - 800	2	4.5	8	14	16	16							
800 – 1000	2.5	5	9	16	18	18							
1000 – 1250	3	6	10	17	20	20							
1250 – 1600	4	7	11	19	23	23							
1600 – 2000	4.5	8	13	21	26	26							
2000 – 2500	5	10	15	22	29	29							
2500 – 3150	6	11	17	25	32	32							
3150 – 4000	9	16	23	30	34	34							

Note: LH08, 10, and 12 are not available in random matching. For LH08,10, and 12, P4, P5, P6, and PN grades are available.

2. Accuracy standard

The preloaded assembly has five accuracy grades; Ultra precision P3, Super precision P4, High precision P5, Precision P6 and Normal PN grades, while the random-matching type has Normal PC grade.

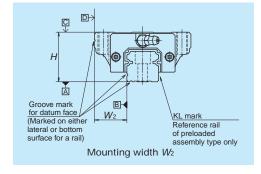
Tolerance of preloaded assembly

Tolerance of preloaded assembly	Ta	ıble 2						Un	it: µm
Accuracy grade Characteristics	Ultra precision P3	Super pr		High pre		Precision P6		Normal PN	
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	LH08,10,12 ±10 3	LH15 - ±10 5	LH08,10,12 ±20 5	LH15 - ±20 7	LH08,10,12 ±40 7	LH15 - ±40 15	LH08,10,12 ±80 15	LH15 - ±80 25
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	LH08,10,12 ±10 5	LH15 - ±15 7	LH08,10,12 ±15 7	LH15 - ±25 10	LH08,10,12 ±25 10	LH15 - ±50 20	LH08,10,12 ±50 20	LH15 - ±100 30
Running parallelism of face C to face A Running parallelism of face D to face B		5	Shown	in Table	1, Fig.	5, and Fi	g. 6		

Note: For LH08, 10, and 12, accuracy of P4, P5, P6, and PN grades are available.

Tolerance of random-matching type: Normal grade PC

	Table 3	Unit: µm			
Model No. Characteristics	LH15, 20, 25, 30, 35	LH45, 55, 65			
Mounting height H	±20	±30			
Variation of mounting height H	15① 30②	20① 35②			
Mounting width W_2 or W_3	±30	±35			
Variation of mounting width W ₂ or W ₃	25	30			
Running parallelism of face C to face A Running parallelism of face D to face B	See Table 1, Fig. 5 and Fig. 6				


Note: 1) LH08, 10, 12 are not available in random matching. 2) ① Variation on the same rail ② Variation on multiple rails

3. Combinations of accuracy and preload

Table 4

	Accuracy grade										
Ultra precision Super precision High precision Precision grade Normal gra											
hout NSK K1 lubrication unit	P3	P4	P5	P6	PN	PC					
h NSK K1 lubrication unit	K3	K4	K5	K6	KN	KC					
NSK K1 for food and medical equipment	F3	F4	F5	F6	FN	FC					
Fine clearance											
ZO											
Slight preload											
Z1						_					
Medium preload											
Z3					_	_					
Random-matching type with fine clearance											
ZT	_	_	_	_	_						
Random-matching type with slight preload											
ZZ	_	_	_	_	_	0					
	hout NSK K1 lubrication unit h NSK K1 lubrication unit NSK K1 for food and medical equipment Fine clearance Z0 Slight preload Z1 Medium preload Z3 Random-matching type with fine clearance ZT Random-matching type with slight preload	hout NSK K1 lubrication unit h NSK K1 lubrication unit K3 NSK K1 for food and medical equipment F3 Fine clearance Z0 Slight preload Z1 Medium preload Z3 Random-matching type with fine clearance ZT Random-matching type with slight preload	hout NSK K1 lubrication unit h NSK K1 lubrication unit K3 K4 NSK K1 for food and medical equipment F3 F4 Fine clearance Z0 Slight preload Z1 Medium preload Z3 Random-matching type with fine clearance ZT Random-matching type with slight preload	Ultra precision Super precision High precision hout NSK K1 lubrication unit P3 P4 P5 h NSK K1 lubrication unit K3 K4 K5 NSK K1 for food and medical equipment F3 F4 F5 Fine clearance C0 C0 Slight preload C1 C1 Medium preload C2 C3 Random-matching type with fine clearance C1 C1 Random-matching type with slight preload C1 Random-matching	Ultra precision Super precision High precision Precision grade hout NSK K1 lubrication unit P3 P4 P5 P6 h NSK K1 lubrication unit K3 K4 K5 K6 NSK K1 for food and medical equipment F3 F4 F5 F6 Fine clearance Z0 Slight preload Z1 Slight preload Z3 Sandom-matching type with fine clearance ZT Sandom-matching type with slight preload Z1 Sandom-matching type with slight preload Z3 Sandom-matching type with slight preload Z5 Sandom-matching type with slight preload Sandom-mat	Ultra precision Super precision High precision Precision grade Normal grade hout NSK K1 lubrication unit P3 P4 P5 P6 PN h NSK K1 lubrication unit K3 K4 K5 K6 KN NSK K1 for food and medical equipment F3 F4 F5 F6 FN Fine clearance Z0 Slight preload Z1 Slight preload Z1 Slight preload Z3 Z3 Z4 Slight preload Z4 Z5 Z5 Z5 Z5 Z5 Z5 Z5					

4. Assembled accuracy

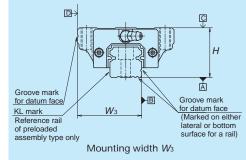
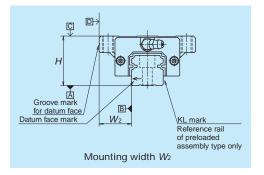



Fig. 5 Special high carbon steel

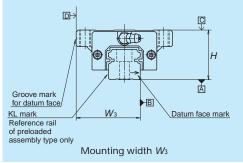


Fig. 6 Stainless steel

5. Preload and rigidity

We offer five levels of preload: slight preload Z1, medium preload Z3 and fine clearance Z0, along with random-matching type of fine clearance ZT and slight preload ZZ. Values for preload and rigidity of the preloaded assembly are shown in Table 5. Rigidities are for the median of the preload range.

· Preload and rigidity of preloaded assembly

Table 5

			Table 5				
		Duala	l (NI)		Rigidity	(N/µm)	
	Madal Na	Preio	ad (N)	Vertical	direction	Lateral	direction
	LH10 AN LH12 AN LH15 AN, EL, FL, EM LH20 AN, EL, FL, EM LH25 AN, AL, EL, FL, EM LH30 AN, AL LH30 EL, FL, EM LH35 AN, AL, EL, FL, EM LH45 AN, AL, EL, FL, EM LH45 AN, AL, EL, FL, EM LH55 AN, AL, EL, FL, EM LH55 AN, EL, FL, EM LH55 AN, EL, FL, EM LH20 BN, GL, HL, GM LH20 BN, GL, HL, GM LH30 BN, BL, GL, HL, GM LH35 BN, BL, GL, HL, GM LH35 BN, BL, GL, HL, GM LH35 BN, BL, GL, HL, GM LH35 BN, BL, GL, HL, GM LH35 BN, BL, GL, HL, GM LH35 BN, BL, GL, HL, GM	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload
		Z1	Z3	Z1	Z3	Z1	Z3
	LH08 AN	5	_	33	_	23	_
	LH10 AN	9	_	44	_	31	_
	LH12 AN	22	_	68	_	47	_
Ф	LH15 AN, EL, FL, EM	78	490	137	226	98	186
type	LH20 AN, EL, FL, EM	147	835	186	335	137	245
	LH25 AN, AL, EL, FL, EM	196	1270	206	380	147	284
ě	LH30 AN, AL	245	1570	216	400	157	294
High-load	LH30 EL, FL, EM	294	1770	265	480	186	355
I	LH35 AN, AL, EL, FL, EM	390	2350	305	560	216	390
	LH45 AN, AL, BL, EL, FL, EM	635	3900	400	745	284	540
	LH55 AN, AL, EL, FL, EM	980	5900	490	910	345	645
	LH65 AN, EL, FL, EM	1470	8900	580	1070	400	755
ē	LH15 BN, GL, HL, GM	98	685	196	345	137	284
type	LH20 BN, GL, HL, GM	196	1080	265	480	196	355
ad	LH25 BN, BL, GL, HL, GM	245	1570	294	560	216	400
9	LH30 BN, BL, GL, HL, GM	390	2260	360	665	265	480
uper-high-load	LH35 BN, BL, GL, HL, GM	490	2940	430	795	305	570
r-h	LH45 BN, BL, GL, HL, GM	785	4800	520	960	370	695
adr	LH55 BN, BL, GL, HL, GM	1180	7050	635	1170	440	835
S	LH65 BN, GL, HL, GM	1860	11300	805	1480	550	1040

Note: Clearance for fine clearance Z0 is 0 to 3µm. Therefore, preload is zero.

However, Z0 of PN grade is 0 to 15µm.

· Clearance and preload of random-matching type

	Table 6	Unit: µm
Model No.	Fine clearance ZT	Slight preload ZZ
LH15	-4 - 15	-4 - 0
LH20		-5 - 0
LH25		-5 - 0
LH30		-7 - 0
LH35	- 5 - 15	-7 - 0
LH45		-7 - 0
LH55		-9 - 0
LH65		-9 - 0

Note: 1) Minus sign denotes that a value is an amount of preload (elastic deformation of balls).

(4) Available length of rail

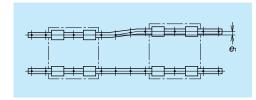

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

	Table 7 Length limitations of rails Unit: n											it: mm
Series	Size											
	Material	08	10	12	15	20	25	30	35	45	55	65
	Special high carbon steel				2000	3960	3960	4000	4000	3990	3960	3900
LH	Stainless steel	375	600	800	1800	3500	3500	3500				

Note: Rails can be butted if user requirement exceeds the rail length shown in the Table. Please consult NSK.

(5) Installation

1. Permissible values of mounting error

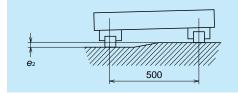
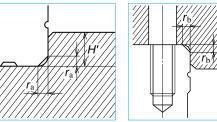



Fig. 7

Fig. 8

			Ta	ble 8							Un	it: µm
Value	Preload	Model No.										
Value	Treload	LH08	LH10	LH12	LH15	LH20	LH25	LH30	LH35	LH45	LH55	LH65
Permissible values of	ZO, ZT	9	12	19	22	30	40	45	55	65	80	110
parallelism in two rails e_1	Z1, ZZ	8	11	18	18	20	25	30	35	45	55	70
parallelisiti iti two ralis e ₁	Z3	-	-	-	13	15	20	25	30	40	45	60
Permissible values of	Z0, ZT 375 μm/500 mm											
parallelism (height) in two rails e ₂	Z1, ZZ, Z3					330) µm/5	00 mr	n			

2. Shoulder height of the mounting face and corner radius r

rail datum face

Fig. 9 Shoulder for the Fig. 10 Shoulder for the ball slide datum face

				Unit: mr	n
Model No.	Corner radiu:	s (maximum)	Shoulder height		
iviouel ivo.	$r_{\rm a}$	$r_{\rm b}$	H'	H"	
LH08	0.3	0.5	1.8	3	
LH10	0.3	0.5	2.1	4	
LH12	0.5	0.5	2.7	4	
LH15	0.5	0.5	4	4	
LH20	0.5	0.5	4.5	5	
LH25	0.5	0.5	5	5	
LH30	0.5	0.5	6	6	
LH35	0.5	0.5	6	6	
LH45	0.7	0.7	8	8	
LH55	0.7	0.7	10	10	
LH65	1	1	11	11	

Table 9

²⁾ LH08, 10, and 12 are not available in random matching.

(6) Lubrication components

Refer to page A38 and D13 for the lubrication of linear guides.

1. Types of lubrication accessories

Figure 11 and Table 10 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

Please ask NSK for stainless lubrication accessories.

2. Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 12)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of M6×1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

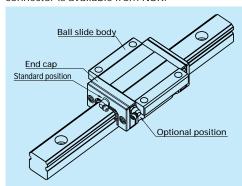


Fig. 12 Mounting position of lubrication accessories
A167

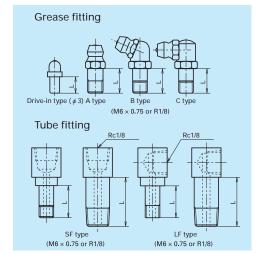
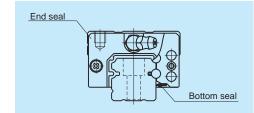


Fig. 11 Grease fitting and tube fitting

	T	able 10	Unit: mm
Model No.	Dust proof	Grease fitting	Tube fitting
	specification	Thread body length L	Thread body length L
	Standard	5	-
LH12	With NSK K1	10	-
LHIZ	Double seal	*	-
	Protector	*	-
	Standard	5	-
LH15	With NSK K1	10	-
LHIS	Double seal	*	-
	Protector	*	-
	Standard	5	-
LH20	With NSK K1	12	-
LH20	Double seal	10	-
	Protector	10	-
	Standard	5	6**
LH25	With NSK K1	12	11**
LHZS	Double seal	10	9**
	Protector	10	9**
	Standard	5	6
LH30	With NSK K1	14	13
LH3U	Double seal	12	11
	Protector	12	11
	Standard	5	6
LH35	With NSK K1	14	13
ГПЭЭ	Double seal	12	11
	Protector	12	11
	Standard	8	17
LH45	With NSK K1	18	21.5
LITAJ	Double seal	14	17
	Protector	14	17
	Standard	8	17
LH55	With NSK K1	18	21.5
LH33	Double seal	14	17
	Protector	14	17
	Standard	8	17
LH65	With NSK K1	20	25.5
LHOS	Double seal	16	19
	Protector	16	17

*) Please contact NSK as a connector is required.


**) Only available for AN and BN type ball slides.

(7) Dust proof components

1. Standard specification

To keep foreign matters from entering inside the ball slide, LH Series has an end seal on both ends, and bottom seals at the bottom.

However, the bottom seals are not used to LH08 and 10.

Fia. 13

Table 11 Seal friction per ball slide (maximum value)

Table 11 Seal friction per ball slide (maximum value)											Unit : N
Size	80	10	12	15	20	25	30	35	45	55	65
LH	0.5	1	1.5	8	9	10	10	12	17	22	29

2. NSK K1[™]

Series

Table 12 shows the dimension of linear guides equipped with the NSK K1.

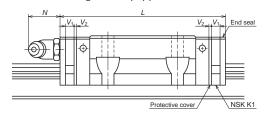


Table 12

Unit · mm

Table 12 Unit : r										
Model No.	Model No Dall Slide model		Standard ball Slide length Ball slide length installed with two NSK K1 L		Per NSK K1 thickness V ₁	Protective cover thickness V ₂	Protruding area of the grease fitting N			
LH08	Standard	AN	24	31	3	0.5	_			
LH10	Standard	AN	31	40	4	0.5	_			
LH12	Standard	AN	45	54	4	0.5	(4)			
	Standard	AN, EL, FL, EM	55	65.6	4.5	0.0	(5)			
LH15	Long	BN, GL, HL, GM	74	84.6	4.5	0.8	(5)			
11120	Standard	AN, EL, FL, EM	69.8	80.4	4.5	0.0	(1.4)			
LH20	Long	BN, GL, HL, GM	91.8	102.4	4.5	0.8	(14)			
LUOF	Standard	AL, AN, EL, FL, EM	79.0	90.6	F O	0.0	(1.4)			
LH25	Long	BL, BN, GL, HL, GM	107	118.6	5.0	0.8	(14)			
	Standard	AL, AN	85.6	97.6	5.0					
LH30	Flange type	EL, FL, EM	98.6	110.6		1.0	(14)			
	Long	BL, BN, GL, HL, GM	124.6	136.6						
11125	Standard	AL, AN, EL, FL, EM	109	122		1.0	(1.4)			
LH35	Long	BL, BN, GL, HL, GM	143	156	5.5	1.0	(14)			
LILIAE	Standard	AL, AN, EL, FL, EM	139	154	, -	1.0	(15)			
LH45	Long	BL, BN, GL, HL, GM	171	186	6.5	1.0	(15)			
LUEE	Standard	AL, AN, EL, FL, EM	163	178	, -	1.0	(15)			
LH55	Long	BL, BN, GL, HL, GM	201	216	6.5	1.0	(15)			
LUZE	Standard	AN, EL, FL, EM	193	211	0.0	1.0	(14)			
LH65	Long	BN, GL, HL, GM	253	271	8.0	1.0	(16)			

Note: 1) NSK K1 for food and medical equipments are available for LH12 to LH35.

Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V₁ × Number of NSK K1) + (Thickness of the protective cover, V₂ × 2)

3. Double seal

Use a double seal set as showing in Table 13, when installing an extra seal to completed standard products. (Fig. 14)

When installing a grease fitting after the installation of double seals, a connector is required.

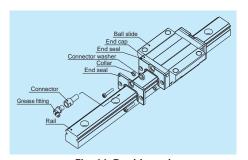


Fig. 14 Double seal

Table 13 Double-seal set

Model No.	Referer	Increased	
Model No.	Without connector	With connector	thickness V ₁
LH15	LH15WS-01	*	2.5
LH20	LH20WS-01	LH20WSC-01	2.5
LH25	LH25WS-01	LH25WSC-01	2.8
LH30	LH30WS-01	LH30WSC-01	3.6
LH35	LH35WS-01	LH35WSC-01	3.6
LH45	LH45WS-01	LH45WSC-01	4.3
LH55	LH55WS-01	LH55WSC-01	4.3
LH65	LH65WS-01	LH65WSC-01	4.9

4. Protector

Use a protector set as showing Table 14, when installing a protector to completed standard products. (Fig.15)

When installing a grease fitting after the installation of protectors, a connector is required.

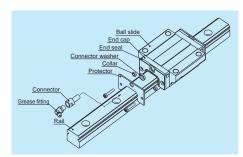


Fig. 15 Protector

Table 14 Protector set

Model No.	Refere	Increased	
Wiodel No.	Without connector	With connector	thickness V ₂
LH15	LH15PT-01	*	2.7
LH20	LH20PT-01	LH20PTC-01	2.9
LH25	LH25PT-01	LH25PTC-01	3.2
LH30	LH30PT-01	LH30PTC-01	4.2
LH35	LH35PT-01	LH35PTC-01	4.2
LH45	LH45PT-01	LH45PTC-01	4.9
LH55	LH55PT-01	LH55PTC-01	4.9
LH65	LH65PT-01	LH65PTC-01	5.5

*) For installation of a connector to a drive-in type grease fitting, contact NSK. Note: Double seal and protector for LH08, 10, and 12, please consult NSK.

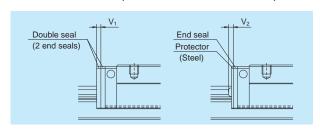


Fig. 16

5. Cap to cover the bolt hole for rail mounting Table 15 Caps to cover rail bolt hole

Model No.	Bolt to	Cap	Quantity
woder wo.	secure rail	reference No.	/case
LH10, LH12	M3	LG-CAP/M3	20
LH15	M4	LG-CAP/M4	20
LH20	M5	LG-CAP/M5	20
LH25	M6	LG-CAP/M6	20
LH30, LH35	M8	LG-CAP/M8	20
LH45	M12	LG-CAP/M12	20
LH55	M14	LG-CAP/M14	20
LH65	M16	LG-CAP/M16	20

6. Inner seal

	Table 16
C	NA - J. LNI -

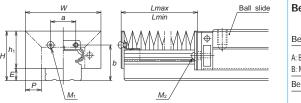
Inner seal can be manufactured for models shown

 Series
 Model No.

 LH
 LH20, LH25, LH30, LH35, LH45, LH55, LH65

ener kit as showing Table 17, Table 17 Bellows fastner kit reference No.

Model No.	Kit reference No.
LH20	LH20FS-01
LH25	LH25FS-01
LH30	LH30FS-01
LH35	LH35FS-01
LH45	LH45FS-01
LH55	LH55FS-01
LH65	LH65FS-01


7. Bellows

Use a bellows fastener kit as showing Table 17, when installing bellows to completed standard products. A bellows fastener kit is supplied with one of bellows fastener, two of M1 set screws, two of M2 set screws, and two collars for M2 set screw.

The bellows for LH08, 10, 12, and 15, please consult NSK.

A169 A170

Dimension tables of bellows LH Series

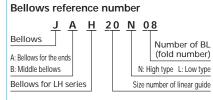


Fig. 17 Dimensions of bellows

Table 18 Dimensions of bellows

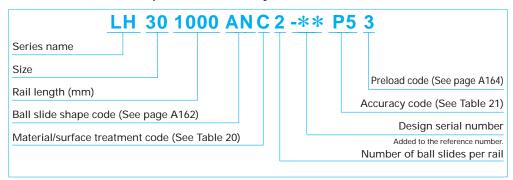
Unit: mm

Model No.	Н	h ₁	Е	W	Р	а	b	BL minimum length	M₁Tap x depth	M₂Tap x depth	
JAH20N	29.5	24.5	5	48	10	13	22	17	M3×5	M2.5×16	
JAH25L	35	28	7	51	10	16	26	17	M3×5	M3×18	
JAH25N	39	32	/	61	15	10		17	IVIOXO	IVIOX IO	
JAH30L	41	32	9	60	12	10	18 31	17	17 M4×6	M4×22	
JAH30N	44	35	9	66	15	10		17			
JAH35L	47	37.5	9.5	72	15	24	34	17	M4×6	M4×23	
JAH35N	54	44.5	7.0	82	20	24	24 34	17	1014.00	1017/23	
JAH45L	59	45	14	83	15	32	32 44.5	17	M5×8	M5×28	
JAH45N	69	55	14	103	25	32	44.5	17	IVIDXO	IVIDXZO	
JAH55L	69	54	15	101	20	40	50.5	17	M5×8	M5×30	
JAH55N	79	64	13	121	30	40	50.5	17	IVIJXO	IVIOX3U	
JAH65N	89	73	16	131	30	48	61	17	M6×8	M6×35	

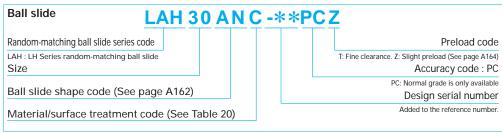
Table 19 Numbers of folds (BL) and lengths of bellows

Unit: mm

Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
iviouei no.	Lmin	34	68	102	136	170	204	238	272	306	340
IALIOONI	Stroke	106	212	318	424	530	636	742	848	954	1060
JAH20N	Lmax	140	280	420	560	700	840	980	1120	1260	1400
JAH25L	Stroke	106	212	318	424	530	636	742	848	954	1060
JAHZOL	<u>L</u> max	140	280	420	560	700	840	980	1120	1260	1400
JAH25N	Stroke	176	352	528	704	880	1056	1232	1408	1584	1760
JAHZJIV	Lmax	210	420	630	840	1050	1260	1470	1680	1890	2100
JAH30L	Stroke	134	268	402	536	670	804	938	1072	1206	1340
JAHIJUL	<u>L</u> max	168	336	504	672	840	1008	1176	1344	1512	1680
JAH30N	Stroke	176	352	528	704	880	1056	1232	1408	1584	1760
JAHSUN	Lmax	210	420	630	840	1050	1260	1470	1680	1890	2100
JAH35L	Stroke	176	352	528	704	880	1056	1232	1408	1584	1760
JAHIJJE	Lmax	210	420	630	840	1050	1260	1470	1680	1890	2100
JAH35N	Stroke	246	492	738	984	1230	1476	1722	1968	2214	2460
JAHIJJIN	Lmax	280	560	840	1120	1400	1680	1960	2240	2520	2800
JAH45L	Stroke	176	352	528	704	880	1058	1232	1408	1584	1760
JAH43L	Lmax	210	420	630	840	1050	1260	1470	1680	1890	2100
JAH45N	Stroke	316	632	948	1264	1580	1896	2212	2528	2844	3160
JAI 1451V	<u>L</u> max	350	700	1050	1400	1750	2100	2450	2800	3150	3500
JAH55L	Stroke	246	492	738	984	1230	1476	1722	1968	2214	2460
JAHIJJE	Lmax	280	560	840	1120	1400	1680	1960	2240	2520	2800
JAH55N	Stroke	386	772	1158	1544	1930	2316	2702	3088	3474	3860
JAHOJIN	<u>L</u> max	420	840	1260	1680	2100	2520	2940	3360	3780	4200
JAH65N	Stroke	386	772	1158	1544	1930	2316	2702	3088	3474	3860
MICOLING	Lmax	420	840	1260	1680	2100	2520	2940	3360	3780	4200


 $\textbf{Remarks:} \ \ \text{Values of odd numbers BL (3, 5, 7, ...) can be obtained by adding two values of even number BLs on both sides, then dividing the sum by two.$

(8) Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

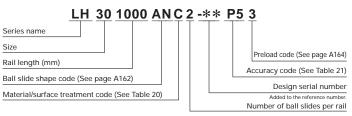
1. Reference number for preloaded assembly

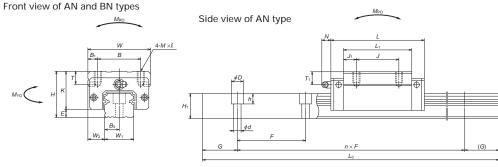
2. Reference number for random-matching type

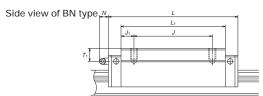
Rail L1H 30 1200 L	CN -** PC Z
Random-matching rail series code	Preload code
L1H : LH Series random-matching rail Size	T: Fine clearance. Z: Slight preload (See page A164) Accuracy code: PC
Rail length (mm)	PC: Normal grade is only available Design serial number
Rail shape code: L	Added to the reference number.
L : Standard	*Butting rail specification
Material/surface treatment code (See Table 20)	N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.

Reference number for assembly of random-matching ball slide and rail is the same as the coding of preloaded assembly. However, preload code is fine clearance "T" or slight preload "Z" (Refer to page A164).

Table 20 Material/surface treatment code


Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel (LH08 to LH30 only)
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special


Table 21 Accuracy code


Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Ultra precision grade	P3	K3	F3
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
Normal grade (random-matching type)	PC	KC	FC

Note: Refer to Page A38 and A61 for NSK K1 lubrication unit.

(9) Dimensions LH-AN (High-load type) LH-BN (Super-high-load type)

	A:	ssemb	oly					В	all slid	le						
Model No.	Height			Width	Length		Mour	nting hole						Grease	fittin	g
iviodei No.	Н	Ε	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	B ₁	L ₁	J_1	K	T	Hole size	<i>T</i> ₁	Ν
LH08AN LH10AN LH12AN	11 13 20	2.1 2.4 3.2	4 5 7.5	16 20 27	24 31 45	10 13 15	10 12 15	M2×0.4×2.5 M2.6×0.45×3 M4×0.7×5	3 3.5 6	15 20.2 31	2.5 4.1 8	8.9 10.6 16.8	— 6 6	— — • 3	_ _ 5	_ _ 4
LH15AN LH15BN	28	4.6	9.5	34	55 74	26	26	M4×0.7×6	4	39 58	6.5 16	23.4	8	ø 3	8.5	3.3
LH20AN LH20BN	30	5	12	44	69.8 91.8	32	36 50	M5×0.8×6	6	50 72	7 11	25	12	M6×0.75	5	11
LH25AN LH25BN	40	7	12.5	48	79 107	35	35 50	M6×1×9	6.5	58 86	11.5 18	33	12	M6×0.75	10	11
LH30AN LH30BN	45	9	16	60	85.6 124.6	40	40 60	M8×1.25×10	10	59 98	9.5 19	36	14	M6×0.75	10	11
LH35AN LH35BN	55	9.5	18	70	109 143	50	50 72	M8×1.25×12	10	80 114	15 21	45.5	15	M6×0.75	15	11
LH45AN LH45BN	70	14	20.5	86	139 171	60	60 80	M10×1.5×17	13	105 137	22.5 28.5	56	17	Rc1/8	20	13
LH55AN LH55BN	80	15	23.5	100	163 201	75	75 95	M12×1.75×18	12.5	126 164	25.5 34.5	65	18	Rc1/8	21	13
LH65AN LH65BN	90	16	31.5	126	193 253	76	70 120	M16×2×20	25	147 207	38.5 43.5	74	23	Rc1/8	19	13

Remarks: 1) LH08 does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

2) The external appearance of stainless steel ball slides differs from those of standard material ball slide.

3) Only stainless steel models are available for LH08 to LH12.

Reference number for ball slide of random-matching type

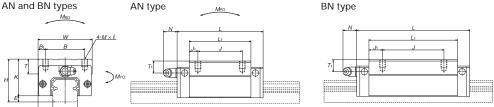
Ball slide

LAH 30 AN C -**PCZ

Random-matching ball slide series code

LAH: LH Series random-matching ball slide
Size

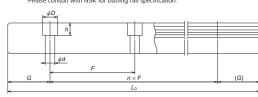
Ball slide shape code (See page A162)


Material/surface treatment code (See Table 20)

Preload code

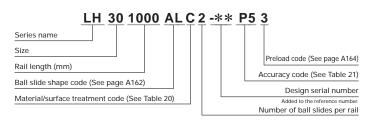
T. Fine clearance. Z: Slight preload (See page A164)

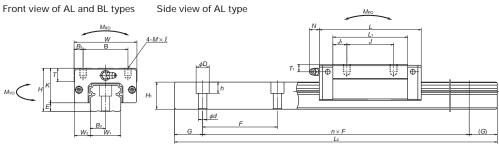
Accuracy code: PC
PC: Normal grade is only available
Design serial number

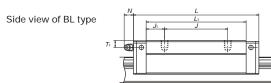

Added to the reference number.

Reference number for rail of random-matching type

L1H30 1200 L C N -** PC Z Rail Random-matching rail series code Preload code L1H : LH Series random-matching rail T: Fine clearance. Z: Slight preload (See page A164) Size Accuracy code: PC PC: Normal grade is only available Rail length (mm) Design serial number Added to the reference number. Rail shape code: L *Butting rail specification N: Non-butting. L: Butting specification Material/surface treatment code (See Table 20) *Please consult with NSK for butting rail specification.


Unit: mm


			Rail					Basi	c load ra	ating		Ball dia.	Wei	ght
Width	Height	Pitch	Mounting		G	Max. length	Dynamic	Static	Sta	tic mom	ent		Ball slide	Rail
			bolt hole			L_{0max} .	С	$C_{\rm o}$	M_{RO}	M_{PO}	M_{YO}	$D_{\rm w}$		
W_1	H_1	F	$d \times D \times h$	B_3	(reference)	() for stainless	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
8	5.5	20	2.4×4.2×2.3	4	7.5	(375)	1240	2630	7.25	4.55	3.8	1.2000	0.013	0.31
10	6.5	25	3.5×6×3.5	5	10	(600)	2250	4500	16.2	10.5	8.8	1.5875	0.026	0.44
12	10.5	40	3.5×6×4.5	6	15	(800)	5650	11300	47.5	41.5	35	2.3812	0.082	0.88
15	15	60	4.5×7.5×5.3	7.5	20	2000 (1800)	10800 14600	20700 32000	108 166	94.5 216	79.5 181	3.175	0.18 0.26	1.6
20	18	60	6×9.5×8.5	10	20	3960	17400	32500	219	185	155	3.968	0.33	2.6
20	10	00	0.7.5.0.5	10	20	(3500)	23500	50500	340	420	355	3.700	0.48	2.0
23	22	60	7×11×9	11.5	20	3960	25600	46000	360	320	267	4.762	0.55	3.6
		- 00	721127	11.5	20	(3500)	34500	71000	555	725	610	7.702	0.82	5.0
28	26	80	9×14×12	14	20	4000	31000	51500	490	350	292	5.556	0.77	5.2
20	20	00	77.147.12		20	(3500)	46000	91500	870	1030	865	3.550	1.3	5.2
34	29	80	9×14×12	17	20	4000	47500	80500	950	755	630	6.350	1.5	7.2
- 54	2,	00	7717712	' '	20	4000	61500	117000	1380	1530	1280	0.550	2.1	7.2
45	38	105	14×20×17	22.5	22.5	3990	81000	140000	2140	1740	1460	7.937	3.0	12.3
43	30	103	14/20/17	22.5	22.5	3770	99000	187000	2860	3000	2520	7.757	3.9	12.5
53	44	120	16×23×20	26.5	30	3960		198000	3600	3000	2510	9.525	4.7	16.9
	74	120	10^23^20	20.5	30	3700		264000	4850	5150	4350	7.323	6.1	10.9
63	53	150	18×26×22	31.5	35	3900		281000	6150	4950	4150	11.906	7.7	24.3
03	55	130	10/20/22	31.3	55	3700	235000	410000	8950	10100	8450	11.900	10.8	24.3


⁴⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C₁₀₀ for 100 km rating fatigue life, divide the C by 1.26.

⁵⁾ Random matching is available for LH15 to LH65.

LH-AL (High-load type) LH-BL (Super-high-load type)

	As	ssemb	ly					В	Ball slid	le						
Model No.	Height			Width	Length		Mour	nting hole						Grease	fittin	ıg
Model No.	Н	Ε	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	B_1	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
LH25AL LH25BL	36	7	12.5	48	79 107	35	35 50	M6×1×6	6.5	58 86	11.5 18	29	12	M6×0.75	6	11
LH30AL LH30BL	42	9	16	60	85.6 124.6	40	40 60	M8×1.25×8	10	59 98	9.5 19	33	14	M6×0.75	7	11
LH35AL LH35BL	48	9.5	18	70	109 143	50	50 72	M8×1.25×8	10	80 114	15 21	38.5	15	M6×0.75	8	11
LH45AL LH45BL	60	14	20.5	86	139 171	60	60 80	M10×1.5×10	13	105 137	22.5 28.5	46	17	Rc1/8	10	13
LH55AL LH55BL	70	15	23.5	100	163 201	75	75 95	M12×1.75×13	12.5	126 164		55	15	Rc1/8	11	13

Remarks: 1) The external appearance of stainless steel ball slides differs from those of standard material ball slide

Reference number for ball slide of random-matching type

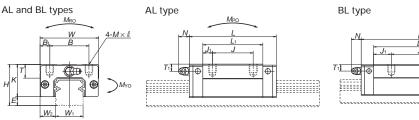
Ball slide

LAH 30 AL C -**PCZ

Random-matching ball slide series code

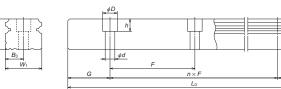
LAH: LH Series random-matching ball slide
Size

Ball slide shape code (See page A162)


Material/surface treatment code (See Table 20)

Preload code

1. Fine clearance. Z: Slight preload (See page A164)

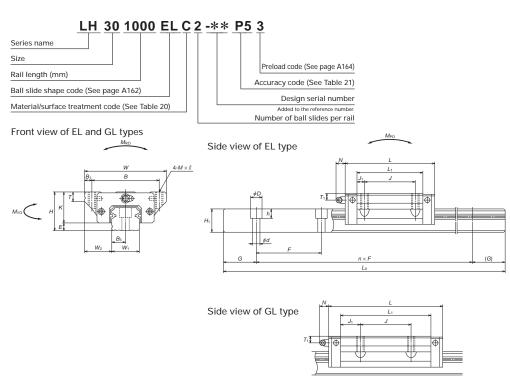

Accuracy code: PC
Per. Normal sets only available
Design serial number

Added to the reference number.

Reference number for rail of random-matching type

L1H30 1200 L C N -** PC Z Rail Random-matching rail series code Preload code L1H : LH Series random-matching rail T: Fine clearance. Z: Slight preload (See page A164) Size Accuracy code: PC PC: Normal grade is only available Rail length (mm) Design serial number Added to the reference number. Rail shape code: L *Butting rail specification N: Non-butting. L: Butting specification Material/surface treatment code (See Table 20) *Please consult with NSK for butting rail specification.

Unit: mm

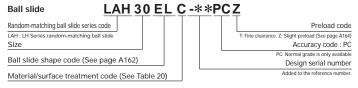

(G)

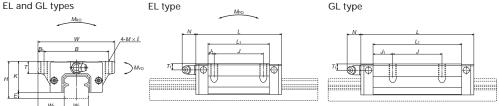
			Rail					Basi	ic load ra	iting		Ball dia.	Wei	ght
Width	Height	Pitch	Mounting		G	Max. length	Dynamic	Static	Sta	tic mom	ent		Ball slide	Rail
			bolt hole			L_{0max} .	С	C_{0}	M_{RO}	M_{PO}	$M_{\scriptscriptstyle YO}$	$D_{\rm w}$		
W_1	H_1	F	$d \times D \times h$	B_3	(reference)	() for stainless	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
23	22	60	7×11×9	11.5	20	3960 (3500)	25600 34500	46000 71000	360 555	320 725	267 610	4.762	0.46 0.69	3.6
28	26	80	9×14×12	14	20	4000 (3500)	31000 46000	51500 91500	490 870	350 1030	292 865	5.556	0.69 1.16	5.2
34	29	80	9×14×12	17	20	4000	47500 61500	80500 117000	950 1380	755 1530	630 1280	6.350	1.2 1.7	7.2
45	38	105	14×20×17	22.5	22.5	3990	81000 99000	140000 187000	2140 2860	1740 3000	1460 2520	7.937	2.2 2.9	12.3
53	44	120	16×23×20	26.5	30	3960		198000 264000		3000 5150	2510 4350	9.525	3.7 4.7	16.9

²⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface.

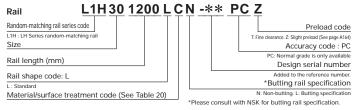
When converting the basic dynamic load rating C to the dynamic load rating C_{100} for 100 km rating fatigue life, divide the C by 1.26.

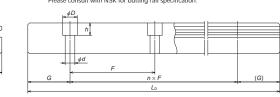
LH-EL (High-load type) LH-GL (Super-high-load type)



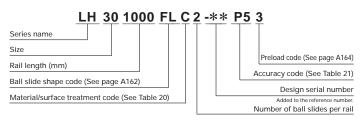

	A:	ssemb	ly					В	Ball slid	le						
Model No.	Height			Width	Length		Mour	nting hole						Grease	fittin	g
wodel No.		_														
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	B_1	L_1	J_1	K	T	Hole size	T_1	N
LH15EL LH15GL	24	4.6	16	47	55 74	38	30	M5×0.8×8	4.5	39 58	4.5 14	19.4	8	ø 3	4.5	3.3
LH20EL LH20GL	30	5	21.5	63	69.8 91.8	53	40	M6×1×10	5	50 72	5 16	25	10	M6×0.75	5	11
LH25EL LH25GL	36	7	23.5	70	79 107	57	45	M8×1.25×16 (M8×1.25×12)	6.5	58 86	6.5 20.5	29	11 (12)	M6×0.75	6	11
LH30EL	42	9	31	90	98.6 124.6	72	52	M10×1.5×18 (M10×1.5×15)	9	72 98	10 23	33	11 (15)	M6×0.75	7	11
LH35EL LH35GL	48	9.5	33	100	109 143	82	62	M10×1.5×20	9	80 114	9 26	38.5	12	M6×0.75	8	11
LH45EL LH45GL	60	14	37.5	120	139 171	100	80	M12×1.75×24	10	105 137	12.5 28.5	46	13	Rc1/8	10	13
LH55EL LH55GL	70	15	43.5	140	163 201	116	95	M14×2×28	12	126 164	15.5 34.5	55	15	Rc1/8	11	13
LH65EL LH65GL	90	16	53.5	170	193 253	142	110	M16×2×24	14	147 207	18.5 48.5	74	23	Rc1/8	19	13

Remarks: 1) Parenthesized dimensions are for items made of stainless steel.

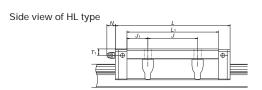

2) The external appearance of stainless steel ball slides differs from those of standard material ball slide.


Reference number for ball slide of random-matching type

Reference number for rail of random-matching type


Unit: mm

			Rail					Basi	c load ra	ating		Ball dia.	Wei	ght
Width	Height	Pitch	Mounting		G	Max. length	Dynamic	Static	Sta	tic mom	ent		Ball slide	Rail
			bolt hole			L_{0max} .	С	C_{0}	$M_{\scriptscriptstyle{RO}}$	M_{PO}	$M_{\scriptscriptstyle YO}$	$D_{\rm w}$		
W_1	H_1	F	$d \times D \times h$	B_3	(reference)	() for stainless	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
15	15	60	4.5×7.5×5.3	7.5	20	2000 (1800)	10800 14600	20700 32000	108 166	94.5 216	79.5 181	3.175	0.17 0.25	1.6
20	18	60	6×9.5×8.5	10	20	3960	17400	32500	219	185	155	3.968	0.45	2.6
						(3500)	23500	50500 46000	340 360	420 320	355 267		0.65	
23	22	60	7×11×9	11.5	20	(3500)	34500	71000	555	725	610	4.762	0.93	3.6
28	26	80	9×14×12	14	20	4000 (3500)	35500 46000	63000 91500	600 870	505 1030	425 865	5.556	1.2 1.6	5.2
34	29	80	9×14×12	17	20	4000	47500 61500	80500 117000	950 1380	755 1530	630 1280	6.350	1.7 2.4	7.2
45	38	105	14×20×17	22.5	22.5	3990	81000 99000	140000 187000	2140 2860	1740 3000	1460 2520	7.937	3.0 3.9	12.3
53	44	120	16×23×20	26.5	30	3960		198000 264000	3600 4850	3000 5150	2510 4350	9.525	5.0	16.9
63	53	150	18×26×22	31.5	35	3900	181000	281000 410000	6150	4950 10100	4150 8450	11.906	10.0 14.1	24.3


³⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C₁₀₀ for 100 km rating fatigue life, divide the C by 1.26.

A179 A180

LH-FL (High-load type) LH-HL (Super-high-load type)

	As	sem	bly					Ва	all slid	е						
Model No.	Height			Width	Length		N	Mounting hole						Grease	fittin	g
iviouei no.	Н	Ε	W_2	W	L	В	J	$Q_1 \times \ell$	B ₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
LH15FL LH15HL	24	4.6	16	47	55 74	38	30	4.5×7	4.5	39 58	4.5 14	19.4	8	ø 3	4.5	3.3
LH20FL LH20HL	30	5	21.5	63	69.8 91.8	53	40	6×9.5	5	50 72	5 16	25	10	M6×0.75	5	11
LH25FL LH25HL	36	7	23.5	70	79 107	57	45	7×10 (7×11.5)	6.5	58 86	6.5 20.5	29	11 (12)	M6×0.75	6	11
LH30FL LH30HL	42	9	31	90	98.6 124.6	72	52	9×12 (9×14.5)	9	72 98	10 23	33	11 (15)	M6×0.75	7	11
LH35FL LH35HL	48	9.5	33	100	109 143	82	62	9×13	9	80 114	9 26	38.5	12	M6×0.75	8	11
LH45FL LH45HL	60	14	37.5	120	139 171	100	80	11×15	10	105 137	12.5 28.5	46	13	Rc1/8	10	13
LH55FL LH55HL	70	15	43.5	140	163 201	116	95	14×18	12	126 164	15.5 34.5	55	15	Rc1/8	11	13
LH65FL LH65HL	90	16	53.5	170	193 253	142	110	16×24	14	147 207	18.5 48.5	74	23	Rc1/8	19	13

Remarks: 1) Parenthesized dimensions are for items made of stainless steel.

2) The external appearance of stainless steel ball slides differs from those of standard material ball slide.

Reference number for ball slide of random-matching type

Ball slide

LAH 30 FL C -**PCZ

Random-matching ball slide series code

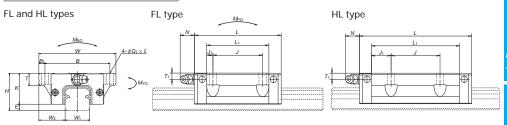
LAH: LH Series random-matching ball slide

Size

Ball slide shape code (See page A162)

Material/surface treatment code (See Table 20)

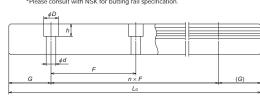
Preload code


T. Fine clearance. Z: Slight preload (See page A164)

Accuracy code: PC

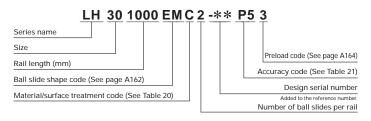
PC: Normal grade is only available

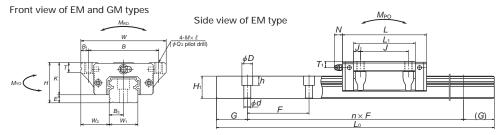
Design serial number

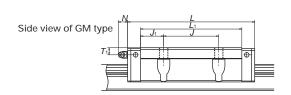

Added to the reference number.

Reference number for rail of random-matching type

L1H30 1200 L C N -** PC Z Random-matching rail series code Preload code L1H : LH Series random-matching rail T: Fine clearance. Z: Slight preload (See page A164) Size Accuracy code: PC PC: Normal grade is only available Rail length (mm) Design serial number Added to the reference number. Rail shape code: L *Butting rail specification Material/surface treatment code (See Table 20) N: Non-butting. L: Butting specification *Please consult with NSK for butting rail specification.


Unit: mm


			Rail					Bas	ic load ra	ating		Ball dia.	We	ight
Width	Height	Pitch	Mounting		G	Max. length	Dynamic	Static	Sta	tic mom	ent		Ball	Rail
			bolt hole			L_{omax} .	C	C_{0}	M_{RO}	M_{PO}	$M_{\scriptscriptstyle YO}$	D_{w}	slide	
W_1	H_1	F	$d \times D \times h$	B_3	(reference)	() for stainless	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
15	15	60	4.5×7.5×5.3	7.5	20	2000	10800	20700	108	94.5	79.5	3.175	0.17	1.6
						(1800)	14600	32000	166	216	181		0.25	
20	18	60	6×9.5×8.5	10	20	3960	17400	32500	219	185	155	3.968	0.45	1 / 6
						(3500)	23500	50500	340	420	355		0.65	
23	22	60	7×11×9	11.5	20	3960	25600	46000	360	320	267	4.762	0.63	1 3 0
						(3500)	34500	71000	555	725	610		0.93	0.0
28	26	80	9×14×12	14	20	4000	35500	63000	600	505	425	5.556	1.2	5.2
	20	00	7// 1// 12		20	(3500)	46000	91500	870	1030	865	0.000	1.6	0.2
34	29	80	9×14×12	17	20	4000	47500	80500	950	755	630	6.35	1.7	7.2
34	27	00	7/14/12	17	20	4000	61500	117000	1380	1530	1280	0.55	2.4	1.2
45	38	105	14×20×17	22.5	22.5	3990	81000	140000	2140	1740	1460	7.937	3	12.3
43	30	105	14/20/17	22.5	22.5	3770	99000	187000	2860	3000	2520	1.731	3.9	12.3
53	44	120	16×23×20	26.5	30	3990	119000	198000	3600	3000	2510	9.525	5	16.9
55	44	120	10023020	20.5	30	3990	146000	264000	4850	5150	4350	9.525	6.5	10.9
63	53	150	18×26×22	31.5	35	3900	181000	281000	6150	4950	4150	11.906	10	24.3
03	53	130	10X20X22	31.5	33	3900	235000	410000	8950	10100	8450	11.906	14.1	24.3


³⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C₁₀₀ for 100 km rating fatigue life, divide the C by 1.26.

A181 A182

LH-EM (High-load type) LH-GM (Super-high-load type)

	As	ssem	bly						Bal	l slide							
Model No.	Height			Width	Length		N	Nounting hole							Grease	fittin	g
iviodei No.	Н	Ε	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	Q_2	<i>B</i> ₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
LH15EM LH15GM	24	4.6	16	47	55 74	38	30	M5×0.8×7	4.4	4.5	39 58	4.5 14	19.4	8	ø 3	4.5	3.3
LH20EM LH20GM	30	5	21.5	63	69.8 91.8	53	40	M6×1×9.5	5.3	5	50 72	5 16	25	10	M6×0.75	5	11
LH25EM LH25GM	36	7	23.5	70	79 107	57	45	M8×1.25×10 (M8×1.25×11.5)	6.8	6.5	58 86	6.5 20.5	29	11 (12)	M6×0.75	6	11
LH30EM LH30GM	42	9	31	90	98.6 124.6	72	52	M10×1.5×12 (M10×1.5×14.5)	8.6	9	72 98	10 23	33	11 (15)	M6×0.75	7	11
LH35EM LH35GM	48	9.5	33	100	109 143	82	62	M10×1.5×13	8.6	9	80 114	9 26	38.5	12	M6×0.75	8	11
LH45EM LH45GM	60	14	37.5	120	139 171	100	80	M12×1.75×15	10.5	10	105 137	12.5 28.5	46	13	Rc1/8	10	13
LH55EM LH55GM	70	15	43.5	140	163 201	116	95	M14×2×18	12.5	12	126 164	15.5 34.5	55	15	Rc1/8	11	13
LH65EM LH65GM	90	16	53.5	170	193 253	142	110	M16×2×24	14.6	14	147 207	18.5 48.5	74	23	Rc1/8	19	13

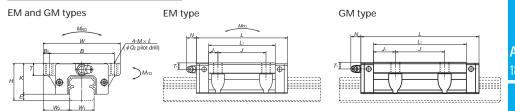
Remarks: 1) Parenthesized dimensions are for items made of stainless steel.

2) The external appearance of stainless steel ball slides differs from those of standard material ball slide.

Reference number for ball slide of random-matching type

Ball slide

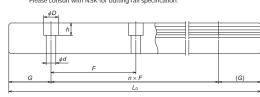
Random-matching ball slide series code


LAH: L'H Series random-matching ball slide
Size

Ball slide shape code (See page A162)

Material/surface treatment code (See Table 20)

Preload code
T: Fine clearance. Z: Slight preload (See page A164)
Accuracy code: PC
PC: Normal grade is only available
Design serial number.


Added to the reference number.

Reference number for rail of random-matching type

L1H30 1200 L C N -** PC Z Rail Random-matching rail series code Preload code L1H : LH Series random-matching rail T: Fine clearance. Z: Slight preload (See page A164) Size Accuracy code: PC PC: Normal grade is only available Rail length (mm) Design serial number Added to the reference number. Rail shape code: L *Butting rail specification N: Non-butting. L: Butting specification Material/surface treatment code (See Table 20) *Please consult with NSK for butting rail specification.

Unit: mm

			Rail					Basi	ic load ra	ating		Ball dia.	We	ight
Width	Height	Pitch	Mounting		G	Max. length	Dynamic	Static	Sta	tic mom	ent		Ball	Rail
			bolt hole			L_{omax} .	С	C_{0}	M_{RO}	M_{PO}	$M_{\scriptscriptstyle YO}$	D_{w}	slide	
W_1	H_1	F	$d \times D \times h$	B_3	(reference)	() for stainless	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
15	15	60	4.5×7.5×5.3	7.5	20	2000	10800	20700	108	94.5	79.5	3.175	0.17	1 1 0
						(1800)	14600	32000	166	216	181		0.25	
20	18	60	6×9.5×8.5	10	20	3960	17400	32500	219	185	155	3.968	0.45	2.6
20	10	00	0 . 7 . 3 . 0 . 3	10	20	(3500)	23500	50500	340	420	355	3.700	0.65	2.0
22	22	/ 0	7110	11 5	20	3960	25600	46000	360	320	267	4 7/0	0.63	2 /
23	22	60	7×11×9	11.5	20	(3500)	34500	71000	555	725	610	4.762	0.93	I .5 O
20	27	00	01410	1.4	20	4000	35500	63000	600	505	425	F FF/	1.2	F 2
28	26	80	9×14×12	14	20	(3500)	46000	91500	870	1030	865	5.556	1.6	5.2
0.4	20	00	0 14 10	4.7	20	4000	47500	80500	950	755	630	/ 25	1.7	7.0
34	29	80	9×14×12	17	20	4000	61500	117000	1380	1530	1280	6.35	2.4	7.2
4.5	0.0	405	44 00 47	00.5	00.5	0000	81000	140000	2140	1740	1460	7.007	3	40.0
45	38	105	14×20×17	22.5	22.5	3990	99000	187000	2860	3000	2520	7.937	3.9	12.3
5.0		400	1/ 00 00	015	0.0	2000		198000	3600	3000	2510	0.505	E	4 (0
53	44	120	16×23×20	26.5	30	3990	146000	264000	4850	5150	4350	9.525	6.5	16.9
	F-0	150	10 07 00	01.5	0.5	2000	181000	281000	6150	4950	4150	11.00/	10	0.4.0
63	53	150	18×26×22	31.5	35	3900	235000	410000	8950	10100	8450	11.906	14.1	24.3
2) Th - h -		:-	rating is a load	41a 4 6	alakaa F	O luna makima 6		th to a count				l Halida asa		

3) The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dyna

A-5-1.4 LS Series

(1) Features

1. High self aligning capability (rolling direction)

Same as the DF combination in angular contact bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, reducing moment rigidity. This increases the capacity to absorb errors in installation.

2. High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, increasing load carrying capacity as well as rigidity against the load in vertical direction.

3. High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is usually carried by top 2 rows, where balls are contacting at two points. Because of this design, the bottom rows will carry the load when a large impact load is applied as shown in Fig. 3. This assures high resistance to the impact load.

4. High accuracy

As showing in Fig. 4, fixing the measuring rollers is simple thanks to the Gothic arch groove. This makes easy and accurate measuring of ball- grooves.

5. Easy to handle, and designed with safety in mind.

Balls are retained in the retainer and do not fall out when the ball slide is withdrawn from the rail.

6. Abundant models and sizes come in series.

Each series has several ball slide models, rendering the linear guide available for numerous uses. The LS Series also has standardized long stainless- steel rail (maximum: 3 500 mm).

7. Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery.

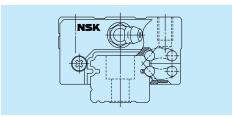


Fig. 1 LS Series

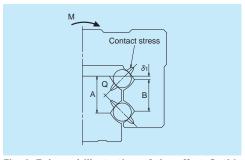


Fig. 2 Enlarged illustration of the offset Gothic arch groove

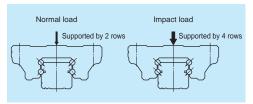


Fig. 3 When load is applied

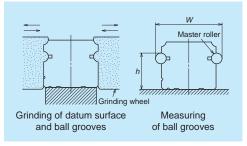


Fig. 4 Rail-grinding and measuring

(2) Ball slide shape

Ball slide Model	Shape/installation method	Ty Medium-load type	pe High-load type
AL CL		CL L1	AL L1
EL JL		JL L1	EL L1
FL KL		KL L1	FL L1
EM JM		JM L ₁	EM L ₁

(3) Accuracy and preload

1. Running parallelism of ball slide

Table 1 Unit: um

						Οπι. μπ
	F	Random- matching type				
Rail over all length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC
- 50	2	2	2	4.5	6	6
50 – 80	2	2	3	5	6	6
80 – 125	2	2	3.5	5.5	6.5	6.5
125 – 200	2	2	4	6	7	7
200 – 250	2	2.5	5	7	8	8
250 – 315	2	2.5	5	8	9	9
315 – 400	2	3	6	9	11	11
400 – 500	2	3	6	10	12	12
500 – 630	2	3.5	7	12	14	14
630 – 800	2	4.5	8	14	16	16
800 – 1000	2.5	5	9	16	18	18
1000 – 1250	3	6	10	17	20	20
1250 – 1600	4	7	11	19	23	23
1600 – 2000	4.5	8	13	21	26	26
2000 – 2500	5	10	15	22	29	29
2500 – 3150	6	11	17	25	32	32
3150 – 4000	9	16	23	30	34	34

2. Accuracy standard

The preloaded assembly has five accuracy grades; Ultra precision P3, Super precision P4, High precision P5, Precision P6 and Normal PN grades, while the random-matching type has Normal PC grade.

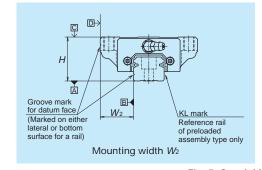
· Tolerance of preloaded assembly

Table 2					
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal glade PN
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15	±80 25
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20	±100 30
Running parallelism of face C to face A Running parallelism of face D to face B		See Table	e 1, Fig. 5 and I	ig. 6	

• Tolerance of random-matching type: Normal grade PC

Table 3				
Model No. Characteristics	LS15, 20, 25, 30, 35			
Mounting height H	±20			
Variation of mounting height H	15①			
	30②			
Mounting width W_2 or W_3	±30			
Variation of mounting width W_2 or W_3	25			
Running parallelism of face C to face A Running parallelism of face D to face B	See Table 1, Fig. 5 and Fig. 6			

Note: ① Variation on the same rail ② Variation on multiple rails


A187

3. Combinations of accuracy and preload

Table 4

Table 4								
		Accuracy grade						
		Ultra precision	Super precision	High precision	Precision grade	Normal grade	Normal grade	
Without NSK K1 lubrication unit		P3	P4	P5	P6	PN	PC	
With NSK K1 lubrication unit		K3	K4	K5	K6	KN	KC	
With NSK K1 for food and medical equipment		F3	F4	F5	F6	FN	FC	
Preload	Fine clearance							
	ZO	O					_	
	Slight preload							Α
	Z1						_	18
	Medium preload							10
	Z3					_	_	
	Random-matching type with fine clearance	_		_	_	_	0	
	ZT							
	Random-matching type with slight preload							
	ZZ	_	_	_	_	_		

4. Assembled accuracy

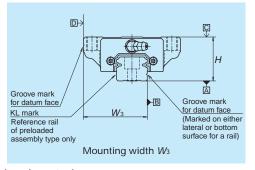
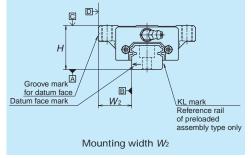



Fig. 5 Special high carbon steel

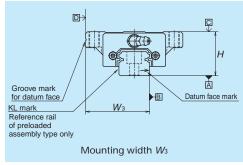


Fig. 6 Stainless steel

5. Preload and rigidity

We offer five levels of preload: slight preload Z1, medium preload Z3 and fine clearance Z0, along with random-matching type of fine clearance ZT and slight preload ZZ. Values for preload and rigidity of the preloaded assembly are shown in Table 5. Rigidities are for the median of the preload range.

· Preload and rigidity of preloaded assembly

ıa	Ie.	

	Table 5						
		Preload (N)		Rigidity (N/µm)			
	Model No.	Preio	au (IV)	Vertical	direction	Lateral	direction
	Model No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload
		Z1	Z3	Z1	Z3	Z1	Z3
type	LS15 AL, EL, FL, EM	69	390	127	226	88	167
	LS20 AL, EL, FL, EM	88	540	147	284	108	206
loac	LS25 AL, EL, FL, EM	147	880	206	370	147	275
High-load	LS30 AL, EL, FL, EM	245	1370	255	460	186	345
王	LS35 AL, EL, FL, EM	345	1960	305	550	216	400
ype	LS15 CL, JL, KL, JM	49	294	78	147	59	108
Medium-load type	LS20 CL, JL, KL, JM	69	390	108	186	78	137
9-	LS25 CL, JL, KL, JM	98	635	127	235	88	177
diun	LS30 CL, JL, KL, JM	147	980	147	275	108	206
Med	LS35 CL, JL, KL, JM	245	1370	186	335	137	245

Note: Clearance for fine clearance Z0 is 0 to 3µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15µm.

· Clearance and preload of random-matching type

	Table 6	Unit: µm
Model No.	Fine clearance	Slight preload
Model No.	ZT	ZZ
LS15	-4 - 15	-4 - 0
LS20	-4 - 15	-4 - 0
LS25	-5 - 15	-5 - 0
LS30	-5 - 15	-5 - 0
1 535	_5 _ 15	-6 - O

Note: Minus sign denotes that a value is an amount of preload (elastic deformation of balls).

(4) Available length of rail

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Table 7 Length limitations of rails

Unit: mm

Series	Size Material	15	20	25	30	35
LS	Special high carbon steel	2000	3960	3960	4000	4000
LS	Stainless steel	1700	3500	3500	3500	3500

Note: Rails can be butted if user requirement exceeds the rail length shown in the Table. Please consult NSK.

(5) Installation

1. Permissible values of mounting error

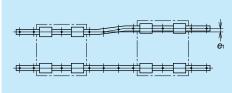


Fig. 7

Fig. 8

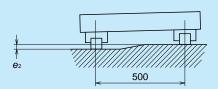


Table 8

Unit: um

Value	Declarat	Model No.				
	Preload	LS15	LS20	LS25	LS30	LS35
Permissible values of parallelism in two rails e_1	ZO, ZT	20	22	30	35	40
	Z1, ZZ	15	17	20	25	30
	Z3	12	15	15	20	25
Permissible values of	ZO, ZT	375 μm/500 mm				
parallelism (height) in two rails e, Z1, ZZ, Z3 330 µm/500 mm				n		

2. Shoulder height of the mounting face and corner radius r

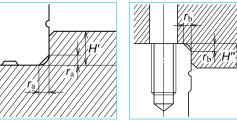
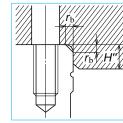



Fig. 9 Shoulder for the Fig. 10 Shoulder for the ball rail datum face

slide datum face

		Table 9		Unit: mm
Model No.	Corner radiu:	s (maximum)	Shoulder height	
iviodei ivo.	$\Gamma_{\rm a}$	$r_{\rm b}$	H'	H"
LS15	0.5	0.5	4	4
LS20	0.5	0.5	4.5	5
LS25	0.5	0.5	5	5
LS30	0.5	0.5	6	6
LS35	0.5	0.5	6	6

(6) Lubrication components

Refer to page A38 and D13 for the lubrication of linear guides.

1. Types of lubrication accessories

Figure 11 and Table 10 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

Please ask NSK for stainless lubrication accessories.

2. Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 12)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of M6×1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

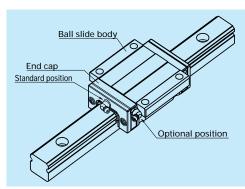


Fig. 12 Mounting position of lubrication accessories

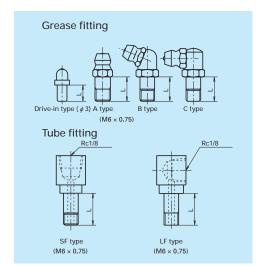


Fig. 11 Grease fitting and tube fitting

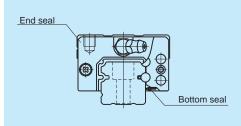
	Unit: mm		
Model No.	Dust proof	Grease fitting	Tube fitting
	specification	Thread body length L	Thread body length L
	Standard	5	-
LS15	With NSK K1	10	-
L313	Double seal	*	_
	Protector	*	-
	Standard	5	-
LS20	With NSK K1	10	-
L320	Double seal	8	-
	Protector	8	-
	Standard	5	6
LS25	With NSK K1	12	11
L323	Double seal	10	9
	Protector	10	9
	Standard	5	6
LS30	With NSK K1	14	13
L330	Double seal	12	11
	Protector	12	11
	Standard	5	6
1.005	With NSK K1	14	13
LS35	Double seal	12	11
	Protector	12	11

*) Please contact NSK as a connector is required.

(7) Dust proof components

1. Standard specification

To keep foreign matters from entering inside the ball slide, LS Series has an end seal on both ends, and bottom seals at the bottom.



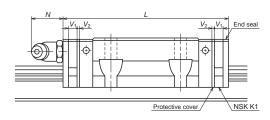

Fig. 13

Table 11 Seal friction per ball slide (maximum value)

				Į	Jnit : N
Series Size	15	20	25	30	35
LS	8	9	9	9	10

2. NSK K1[™]

Table 12 shows the dimension of linear guides equipped with the NSK K1.

Table	12		Unit: mm

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V ₂	Protruding area of the grease fitting N
LS15	Standard	AL, EL, FL, EM	56.8	66.4	4.0	0.8	(5)
L315	Short	CL, JL, KL, JM	40.4	50	4.0	0.6	(5)
LS20	Standard	AL, EL, FL, EM	65.2	75.8	4.5	0.8	(14)
L320	Short	CL, JL, KL, JM	47.2	57.8	4.5		(14)
LS25	Standard	AL, EL, FL, EM	81.6	92.2	4.5	0.8	(14)
L325	Short	CL, JL, KL, JM	59.6	70.2	4.5		
LS30	Standard	AL, EL, FL, EM	96.4	108.4	F 0	5.0 1.0	(1.4)
L530	Short	CL, JL, KL, JM	67.4	79.4	3.0		(14)
1 635	Standard	AL, EL, FL, EM	108	121	5.5	1.0	(1.4)
LS35	Short	CL, JL, KL, JM	77	90	5.5 1.0		(14)

Note: Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V₁ × Number of NSK K1)

+ (Thickness of the protective cover, $V_2 \times 2$)

3. Double seal

Use a double seal set as showing in Table 13, when installing an extra seal to completed standard products. (Fig. 14)

When installing a grease fitting after the installation of double seals, a connector is required.

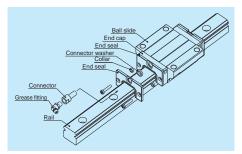


Fig. 14 Double seal

4. Protector

Use a protector set as showing Table 14, when installing a protector to completed standard products. (Fig.15)

When installing a grease fitting after the installation of protectors, a connector is required.

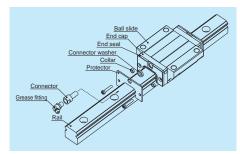


Fig. 15 Protector

Table 13 Double-seal set

Model No.	Referer	Increased	
Model No.	Without connector	With connector	thickness V₁
LS15	LS15WS-01	*	2.8
LS20	LS20WS-01	LS20WSC-01	2.5
LS25	LS25WS-01	LS25WSC-01	2.8
LS30	LS30WS-01	LS30WSC-01	3.6
LS35	LS35WS-01	LS35WSC-01	3.6

Table 14 Protector set

Model No.	Referer	Increased	
wiodei ivo.			thickness V ₂
LS15	LS15PT-01	*	3
LS20	LS20PT-01	LS20PTC-01	2.7
LS25	LS25PT-01	LS25PTC-01	3.2
LS30	LS30PT-01	LS30PTC-01	4.2
LS35	LS35PT-01	LS35PTC-01	4.2

^{*)} For installation of a connector to a drive-in type grease fitting, contact NSK.

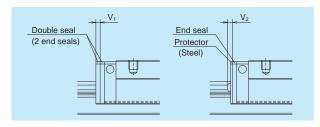


Fig. 16

5. Cap to cover the bolt hole for rail mounting

Table 15 Caps to cover rail bolt hole

Model No.	Bolt to	Cap	Quantity
Wiodel 140.	secure rail	reference No.	/case
LS15	M3	LG-CAP/M3	20
LS15	M4	LG-CAP/M4	20
LS20	M5	LG-CAP/M5	20
LS25, LS30	M6	LG-CAP/M6	20
LS35	M8	LG-CAP/M8	20

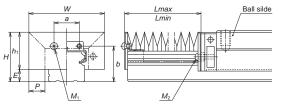
6. Inner seal

Inner seal can be manufactured for models shown below

Table 16

Series	Model No.
LS	LS20, LS25, LS30, LS35

L520, L525, L530, L535


7. Bellows

Use a bellows fastener kit as showing Table 17, when installing bellows to completed standard products. A bellows fastener kit is supplied with one of bellows fastener, two of M1 set screws, two of M2 set screws, and two collars for M2 set screw.

Table 17 Bellows fastner kit reference No.

Model No.	Kit reference No.
LS15	LS15FS-01
LS20	LS20FS-01
LS25	LS25FS-01
LS30	LS30FS-01
LS35	LS35FS-01

Dimension tables of bellows LS Series

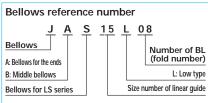


Fig. 17 Dimensions of bellows

Table 1	a D	imensio	ons of	bellows
IUDICI	$^{\circ}$	1111011310	JI 13 OI	DCIIOVV3

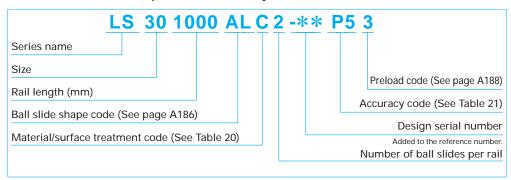
Unit: mm

Model No.	Н	h ₁	Ε	W	Р	а	b	BL minimum length	M₁Tap x depth	M₂Tap x depth
JAS15L	23.5	18.9	4.6	43	10	8	16.5	17	M3×5 M3	
JAS20L	27	21	6	48	10	13	19.7	17	M3×5	M2.5×14
JAS25L	32	25	7	51	10	15	23.2	17	M3×5	M3×18
JAS30L	41	32	9	66	15	16	29	17	M4×6	M4×19
JAS35L	47	36.5	10.5	72	15	22	33.5	17	M4×6	M4×22

Table 19 Numbers of folds (BL) and lengths of bellows

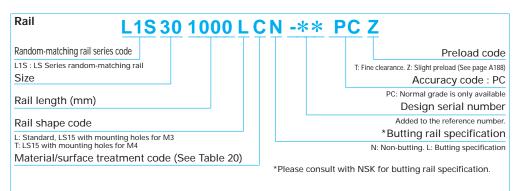
Unit: mm

Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
IVIOUEI NO.	Lmin	34	68	102	136	170	204	238	272	306	340
JAS15L	Stroke	106	212	318	424	530	636	742	848	954	1060
JASTOL	Lmax	140	280	420	560	700	840	980	1120	1260	1400
145301	Stroke	106	212	318	424	530	636	742	848	954	1060
JAS20L	Lmax	140	280	420	560	700	840	980	1120	1260	1400
IACOEI	Stroke	106	212	318	424	530	636	742	848	954	1060
JAS25L	Lmax	140	280	420	560	700	840	980	1120	1260	1400
145301	Stroke	176	352	528	704	880	1056	1232	1408	1584	1760
JAS30L	Lmax	210	420	630	840	1050	1260	1470	1680	1890	2100
IACAFI	Stroke	176	352	528	704	880	1056	1232	1408	1584	1760
JAS35L	Lmax	210	420	630	840	1050	1260	1470	1680	1890	2100


Remarks: Values of odd number BL (3, 5, 7, ...) can be obtained by adding two values of even number BLs on both side, then dividing the sum by two.

(8) Reference number

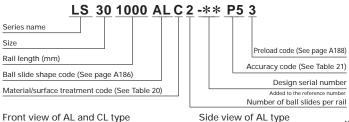
Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

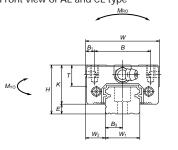

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

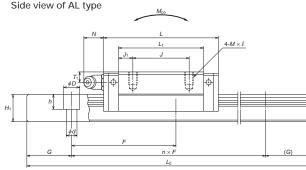
1. Reference number for preloaded assembly

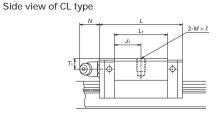
2. Reference number for random-matching type

Reference number for assembly of random-matching ball slide and rail is the same as the coding of preloaded assembly. However, preload code is fine clearance "T" or slight preload "Z" (Refer to page A188).

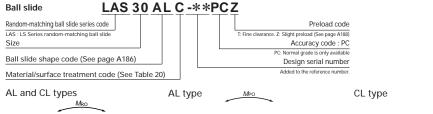

Table 20 Material/surface treatment code

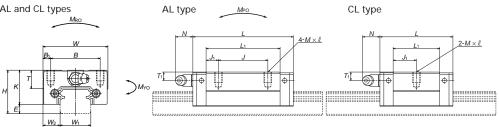

Description
Special high carbon steel (NSK standard)
Stainless steel
Special high carbon steel with surface treatment
Stainless steel with surface treatment
Other, special


Table 21 Accuracy code

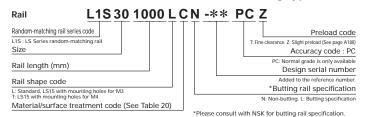

Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Ultra precision grade	P3	K3	F3
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
Normal grade (random-matching type)	PC	KC	FC

Note: Refer to Page A38 and A61 for NSK K1 lubrication unit.

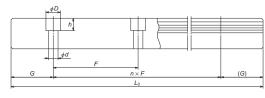




Ī		A:	ssemb	ly		Ball slide											
Λ	lodel No.	Height			Width	Length	Mounting hole								Grease	fittin	g
10	nouel No.	Н	F	W₂	W	,	В	,	$M \times \text{pitch} \times \ell$	В,	,	,	K		Hole size	<i>T</i> .	N
_		11	L	V V 2	VV	L	D	J	IVI X PILCIT X Ł	<i>D</i> ₁	L ₁	J_1			Hole Size	11	/ V
	LS15CL LS15AL	24	4.6	9.5	34	40.4 56.8	26	$\frac{1}{26} \left \frac{1}{26} \right M4 \times 0.7 \times 6$		4	23.6 40	11.8	19.4	10	ø 3	6	3
	LS20CL LS20AL	28	6	11	42	47.2 65.2	32	— 32	M5×0.8×7	5	30 48	15 8	22	12	M6×0.75	5.5	11
	LS25CL LS25AL	33	7	12.5	48	59.6 81.6	35	— 35	M6×1×9	6.5		19 12.5	26	12	M6×0.75	7	11
	LS30CL LS30AL	42	9	16	60	67.4 96.4	40	— 40	M8×1.25×12	10		21 15.5	33	13	M6×0.75	8	11
	LS35CL LS35AL	48	10.5	18	70	77 108	50	0 = M8×1.25		10		24.5 15	37.5	14	M6×0.75	8.5	11

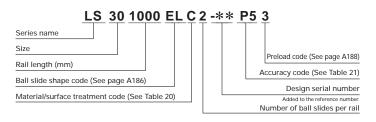

Remarks: 1) The external appearance of stainless steel ball slides differs from those of standard material ball slide.

Reference number for ball slide of random-matching type

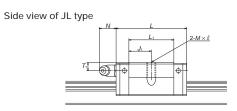


Reference number for rail of random-matching type

Unit: mm

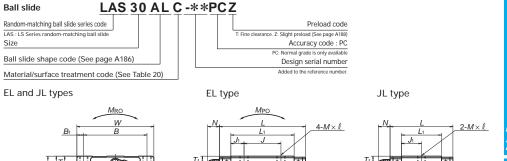

			Rail					Bas	ic load ra	ating		Ball dia.	We	ight						
Width	Height	Pitch	Mounting bolt hole		G	Max. length	Dynamic	,		rnamic Static C C ₀		,				tic moment M _{PO} M _{YO}		_	Ball slide	Rail
W_1	H_1	F	$d \times D \times h$	B_3	(reference)	L _{Omax} . () for stainless	(N)	(N)	/V/ _{RO} (N·m)	(N·m)	/v/ _{YO} (N⋅m)	D_{w}	(kg)	(kg/m)						
15	12.5	60	*3.5×6×4.5 4.5×7.5×5.3	7.5	20	2000 (1700)	5400 8350	9100 16900	45.5 84.5	24.5 77	20.5 64.5	2.778	0.14 0.20	1.4						
20	15.5	60	6×9.5×8.5	10	20	3960 (3500)	7900 11700	13400 23500	91.5 160	46.5 133	39 111	3.175	0.19 0.28	2.3						
23	18	60	7×11×9	11.5	20	3960 (3500)	12700 18800	20800 36500	164 286	91 258	76 217	3.968	0.34 0.51	3.1						
28	23	80	7×11×9	14	20	4000 (3500)	18700 28800	29600 55000	282 520	139 435	116 365	4.762	0.58 0.85	4.8						
34	27.5	80	9×14×12	17	20	4000 (3500)	26000 40000	40000 74500	465 865	220 695	185 580	5.556	0.86 1.3	7.0						

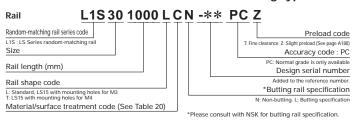
²⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C to for 100 km rating fatigue life, divide the C by 1.26.


^{*} Standard mounting hole of LS15 rail is for M3 bolts (Hole size: 3.5×6×4.5).

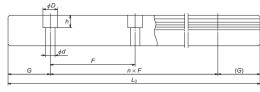
If you require the mounting hole for M4 bolts (Hole size: 4.5×7.5×5.3), please specify it when ordering.

LS-JL (Medium-load type) LS-EL (High-load type)




		As	ssemb	ly		Ball slide											
Mode	ol No	Height			Width	Length		Mounting hole							Grease	fittin	g
IVIOGC	21140.	Н	Ε	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	B_1	<i>L</i> ₁	J_1	К	T	Hole size	<i>T</i> ₁	N
LS1		24	4.6	18.5	52	40.4 56.8	41	M5×0.8×8		5.5	23.6 40	11.8 7	19.4	8	ø 3	6	3
LS2		28	6	19.5	59	47.2 65.2	49	 32	M6×1×10	5	30 48	15 8	22	10	M6×0.75	5.5	11
LS2 LS2	5EL	33	7	25	73	59.6 81.6	60	— 35	M8×1.25×12	6.5		19 12.5	26	11 (12)	M6×0.75	7	11
LS3	0EL	42	9	31	90	67.4 96.4	72	<u>-</u>	10110/11.0/110			21 15.5	33	11 (15)	M6×0.75	8	11
LS3		48	10.5	33	100	77 108	82	— M10×1.5×2 50 (M10×1.5×1		9	49 80	24.5 15	37.5	12 (15)	M6×0.75	8.5	11

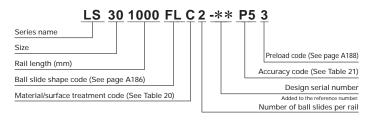
Remarks: 1) The external appearance of stainless steel ball slides differs from those of standard material ball slide.

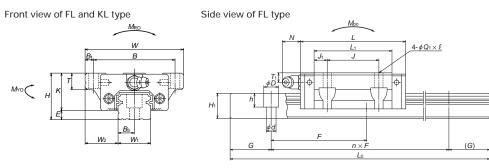

Reference number for ball slide of random-matching type

Reference number for rail of random-matching type

Unit: mm

			Rail				Basic load rating					Ball dia.	We	ight
Width	Height	Pitch	Mounting		G	Max. length	Dynamic	Dynamic Static Static moment					Ball	Rail
			bolt hole			L_{0max} .	С	C_{0}	M_{RO}	M_{PO}	$M_{\scriptscriptstyle YO}$	D_{w}	slide	
W_1	H_1	F	$d \times D \times h$	B₃	(reference)	() for stainless	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
15	12.5	60	*3.5×6×4.5 4.5×7.5×5.3	7.5	20	2000 (1700)	5400 8350	9100 16900	45.5 84.5	24.5 77	20.5 64.5	2.778	0.17	1.4
20	15.5	60	6×9.5×8.5	10	20	3960 (3500)	7900 11700	13400 23500	91.5 160	46.5 133	39 111	3.175	0.24 0.35	2.3
23	18	60	7×11×9	11.5	20	3960 (3500)	12700 18800	20800 36500	164 286	91 258	76 217	3.968	0.44 0.66	3.1
28	23	80	7×11×9	14	20	4000 (3500)	18700 28800	29600 55000	282 520	139 435	116 365	4.762	0.76 1.2	4.8
34	27.5	80	9×14×12	17	20	4000 (3500)	26000 40000	40000 74500	465 865	220 695	185 580	5.556	1.2 1.7	7.0

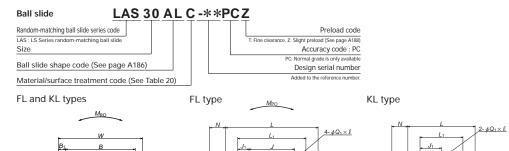

³⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating *C* to the dynamic load rating *C*_{1∞} for 100 km rating fatigue life, divide the *C* by 1.26.


If you require the mounting hole for M4 bolts (Hole size: $4.5\times7.5\times5.3$), please specify it when ordering.

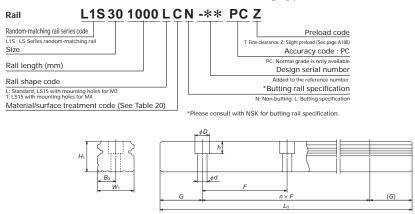
²⁾ Parenthesized dimensions are for items made of stainless steel.

^{*} Standard mounting hole of LS15 rail is for M3 bolts (Hole size: 3.5×6×4.5).

LS-KL (Medium-load type) LS-FL (High-load type)



Side view of KL type $\frac{L}{L_1}$


		As	ssemb	ly		Ball slide											
Mo	del No.	Height			Width	Length			Mounting hole						Grease	fittin	g
		Н	Ε	W ₂	W	L	В	$B \mid J \mid Q_1 \times \ell$		B_1	L ₁	J_1	К	T	Hole size	T ₁	N
	15KL 15FL	24	4.6	18.5	52	40.4 56.8	41	— 26	4.5×7	5.5	23.6 40	11.8 7	19.4	8	ø 3	6	3
	20KL 20FL	28	6	19.5	59	47.2 65.2	49	 32	5.5×9 (5.5×9.5)	5	30 48	15 8	22	10	M6×0.75	5.5	11
	25KL 25FL	33	7	25	73	59.6 81.6	60	35	7×10 (7×11.5)	6.5	38 60	19 12.5	26	11 (12)	M6×0.75	7	11
	30KL 30FL	42	9	31	90	67.4 96.4	72	40	9×12 (9×14.5)	9	42 71	21 15.5	33	11 (15)	M6×0.75	8	11
	35KL 35FL	48	10.5	33	100	77 108	82	50	9×13 (9×14.5)	9	49 80	24.5 15		12 (15)	M6×0.75	8.5	11

Remarks: 1) The external appearance of stainless steel ball slides differs from those of standard material ball slide.

Reference number for ball slide of random-matching type

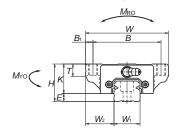
Reference number for rail of random-matching type

Unit: mm

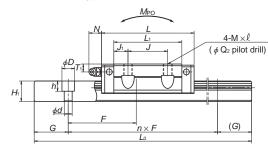
	Rail						Basic load rating					Ball dia.	We	ight
Width	Height	Pitch	Mounting		G	Max. length	Dynamic	Static	Sta	tic mom	ent		Ball	Rail
			bolt hole			L_{omax} .	С	C_{0}	M_{RO}	M_{PO}	$M_{\scriptscriptstyle YO}$	D_{w}	slide	
W_1	H_1	F	$d \times D \times h$	B_3	(reference)	() for stainless	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
15	12.5		*3.5×6×4.5 4.5×7.5×5.3	7.5	20	2000 (1700)	5400 8350	9100 16900	45.5 84.5	24.5 77	20.5 64.5	2.778	0.17	1.4
20	15.5	60	6×9.5×8.5	10	20	3960 (3500)	7900 11700	13400 23500	91.5 160	46.5 133	39 111	3.175	0.24	2.3
23	18	60	7×11×9	11.5	20	3960 (3500)	12700 18800	20800 36500	164 286	91 258	76 217	3.968	0.44	3.1
28	23	80	7×11×9	14	20	4000 (3500)	18700 28800	29600 55000	282 520	139 435	116 365	4.762	0.76 1.2	4.8
34	27.5	80	9×14×12	17	20	4000 (3500)	26000 40000	40000 74500	465 865	220 695	185 580	5.556	1.2 1.7	7

³⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C to the dynamic load rating to the dynamic load rating the basic dynamic load rating C to the dynam

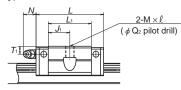
²⁾ Parenthesized dimensions are for items made of stainless steel.


^{*} Standard mounting hole of LS15 rail is for M3 bolts (Hole size: 3.5×6×4.5).

If you require the mounting hole for M4 bolts (Hole size: 4.5×7.5×5.3), please specify it when ordering.

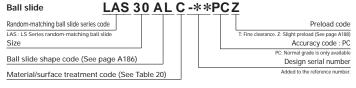

LS-JM (Medium-load type) LS-EM (High-load type)

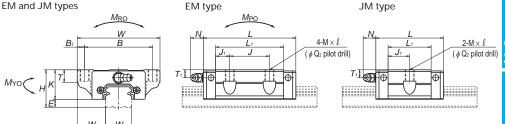
LS 30 1000 EMC 2 -** P5 3 Series name Size Rail length (mm) Ball slide shape code (See page A186) Material/surface treatment code (See Table 20) Preload code (See page A188) Accuracy code (See Table 21) Design serial number Added to the reference number. Number of ball slides per rail


Front view of EM and JM type

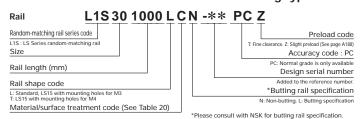
Side view of EM type

Side view of JM type

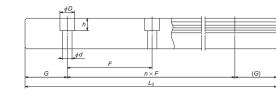



	A	ssemb	ly		Ball slide												
Model No	Height			Width	Length	Mounting hole								Grease	fittin	g	
IVIOGEI NO	Н	Ε	W_2	W	L	В	$B \mid J \mid M \times \text{pitch} \times \ell \mid Q$		$Q_{\scriptscriptstyle 2}$	B_1	L ₁	J_1	К	Т	Hole size	T_1	N
LS15JM LS15EM	24	4.6	18.5	52	40.4 56.8	41	— 26	M5×0.8×7	4.4	5.5	23.6 40	11.8 7	19.4	8	ø 3	6	3
LS20JM LS20EM		6	19.5	59	47.2 65.2	49	 32	M6×1×9 (M6×1×9.5)	5.3	5	30 48	15 8	22	10	M6×0.75	5.5	11
LS25JM LS25EM	33	7	25	73	59.6 81.6	60	— 35	M8×1.25×10 (M8×1.25×11.5)	6.8	6.5	38 60	19 12.5	26	11 (12)	M6×0.75	7	11
LS30JM LS30EM		9	31	90	67.4 96.4	72	_ 40	M10×1.5×12 (M10×1.5×14.5)	8.6	9	42 71	21 15.5	33	11 (15)	M6×0.75	8	11
LS35JM LS35EM	48	10.5	33	100	77 108	82	— 50	M10×1.5×13 (M10×1.5×14.5)	8.6	9	49 80	24.5 15	37.5	12 (15)	M6×0.75	8.5	11

Remarks: 1) The external appearance of stainless steel ball slides differs from those of standard material ball slide.


2) Parenthesized dimensions are for items made of stainless steel.

Reference number for ball slide of random-matching type



Reference number for rail of random-matching type

ricase consult with Not for Butting run specimentor

Unit: mm

	Rail						Basic load rating					Ball dia.	We	ight
Widt	h Height	Pitch	Mounting		G	Max. length	Dynamic	Static	Sta	Static moment			Ball	Rail
			bolt hole			L_{omax} .	С	C_{0}	M_{RO}	M_{PO}	$M_{\scriptscriptstyle YO}$	D_{w}	slide	
W_1	H_1	F	$d \times D \times h$	B_3	(reference)	() for stainless	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
15	12.5	60	*3.5×6×4.5 4.5×7.5×5.3	7.5	20	2000 (1700)	5400 8350	9100 16900	45.5 84.5	24.5 77	20.5 64.5	2.778	0.17	1.4
20	15.5	60	6×9.5×8.5	10	20	3960 (3500)	7900 11700	13400 23500	91.5 160	46.5 133	39 111	3.175	0.24 0.35	2.3
23	18	60	7×11×9	11.5	20	3960 (3500)	12700 18800	20800 36500	164 286	91 258	76 217	3.968	0.44	3.1
28	23	80	7×11×9	14	20	4000 (3500)	18700 28800	29600 55000	282 520	139 435	116 365	4.762	0.76 1.2	4.8
34	27.5	80	9×14×12	17	20	4000 (3500)	26000 40000	40000 74500	465 865	220 695	185 580	5.556	1.2 1.7	7

3) The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating *C* to the dynamic load rating C_{1∞} for 100 km rating fatigue life, divide the *C* by 1.26.

A205 A206

^{*} Standard mounting hole of LS15 rail is for M3 bolts (Hole size: 3.5×6×4.5).

If you require the mounting hole for M4 bolts (Hole size: 4.5×7.5×5.3), please specify it when ordering.

A-5-1.5 VH Series

(1) Features

1. High-performance end seals

High-performance end seals with a multi-lip structure prevent the entry of various foreign matters.

2. NSK K1™ lubrication unit (standard)

Outstanding lubrication support of NSK K1 further improves sealing capability and durability. Additional NSK K1 units can be mounted for specific usage conditions and environments.

3. Tapped holes on a rail bottom face (optional)

In addition to standard mounting bolt holes (counterbores on a rail top face), a specification for tapped holes on a rail bottom face for enhanced sealing capability is available for the VH Series. (Refer to the dimension table)

4. High self-aligning capability (rolling direction)

Same as the DF combination in angular contact bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, reducing moment rigidity.

This increases the capacity to absorb errors in installation.

5. High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, increasing load carrying capacity as well as rigidity in vertical direction.

6. High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is generally carried by the top rows, at where balls are contacting at two points. Because of this design, the bottom rows will carry load when a large impact load

is applied vertically as shown in Fig. 3. This assures high resistance to the impact load.

7. High accuracy

As showing in Fig. 4, fixing the master rollers is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

8. Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery.

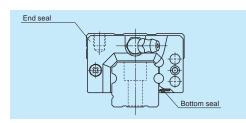


Fig. 1 VH Series

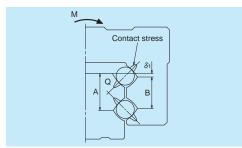


Fig. 2 Enlarged illustration of the offset Gothic arch groove

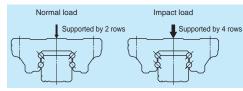


Fig. 3 When load is applied

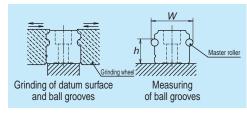


Fig. 4 Rail grinding and measuring

Comparison with NSK standard products

Less than 1/10 the level of fine contaminants

Results of dust-proof tests reveal that the entry of fine contaminants is reduced to less than one-tenth of existing standard series due to improvements in sealing capability.

Specimen : VH30AN
Speed : 16.7 mm/sec
Foreign matter : Graphite powder

(average grain size: 0.037 mm) +

Grease

Opereting life under contaminated environments is more than 5 times longer

Durability test with rubber fragments

Extreme durability tests under contaminated environments using rubber fragments show that durability of the VH Series extended more than five times longer than the existing standard series, as shown in the graph.

Specimen : VH30AN, preload with Z1 (preload of 245 N)
Rail orientation : Horizontal (wall mount)

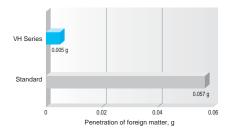
Speed : 500 mm/sec Lubrication : AS2 Grease

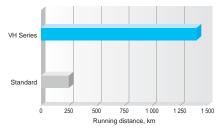
(charged only at the beginning)

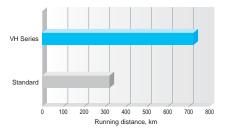
Foreign matter : Rubber fragments

Durability test with fine wood particles

Extreme durability tests in a contaminated environment using fine wood particles show that durability of the VH Series is more than doubled compared to the standard series, as shown in the graph.


Specimen : VH30AN


(preload of 3 200 N)
Rail orientation : Horizontal (wall mount)


Feed rate : 400 mm/sec Lubrication : AS2 Grease

(charged only at the beginning)

Foreign matter : Fine wood particles

Before passage of ball slide (Significant foreign matter remains)

After passage of ball slide (All foreign matter is swept away)

(2) Ball slide shape

Ball slide Model	Shape/installation method	Type High-load type Super-high-load type
AN BN		AN BN L1
AL BL		AL BL
FL HL		FL HL L1
EL GL		EL GL L1
EM GM		EM GM L1

(3) Accuracy and preload

1. Running parallelism of ball slide

Table 1 Unit: µm Random-matching type Preloaded assembly (not random matching) Rail over all Ultra Super High precision K3 precision K4 precision Precision grade K6 Normal grade KN KC length (mm) over or less - 50 4.5 50 - 8080 - 125 3.5 5.5 6.5 6.5 125 – 200 200 - 250 2.5 250 - 315 2.5 315 - 400 400 - 500 500 - 630 3.5 630 - 800 4.5 2.5 800 - 1000 1000 – 1250 1250 - 1600 1600 - 2000 4.5 2000 - 2500 2500 - 3150 3150 - 4000

2. Accuracy standard

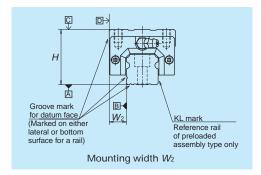
The preloaded assembly has five accuracy grades; Ultra precision K3, Super precision K4, High precision K5, Precision K6, and Normal KN grades, while the random-matching type has Normal KC grade.

· Tolerance of preloaded assembly

Table 2 Ur									
Accuracy grade Characteristics	Ultra precision K3	Super precision K4	High precision K5	Precision grade K6	Normal grade KN				
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15	±80 25				
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20	±100 30				
Running parallelism of face C to face A Running parallelism of face D to face B		Shown in Ta	ble 1, Fig. 5 an	d Fig. 6					

Tolerance of random-matching type: Normal grade KC

	Table 3	Unit: µm
Model No. Characteristics	VH15, 20, 25, 30, 35	VH45, 55
Mounting height H	±20	±30
Variation of mounting height H	15① 30②	20① 35②
Mounting width W_2 or W_3	±30	±35
Variation of mounting width W_2 or W_3	25	30
Running parallelism of face C to face A Running parallelism of face D to face B	See Table 1, Fi	ig. 5 and Fig. 6


Note: ① Variation on the same rail ② Variation on multiple rails

3. Combinations of accuracy and preload

Table 4

	Table 4										
				Accurac	y grade						
		Ultra precision	Super precision	High Precision	Precision grade	Normal grade	Normal grade				
Wit	h NSK K1 lubrication unit	K3	K4	K5	K6	KN	KC				
	Fine clearance)							
	ZO										
	Slight preload										
_	Z1										
Preload	Medium preload										
Pre	Z3		0			_					
	Random-matching type with fine clearance										
	ZT	_		_	_						
	Random-matching type with slight preload	_	_	_	_	_					
	ZZ										

4. Assembled accuracy

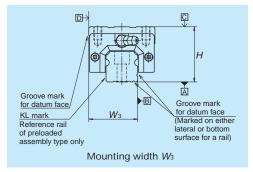
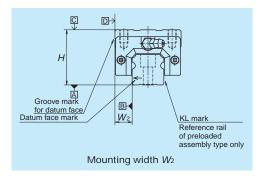



Fig. 5 Special high carbon steel

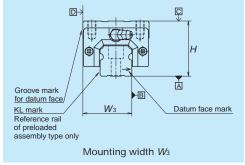


Fig. 6 Stainless steel

5. Preload and rigidity

We offer five levels of preload: slight preload Z1, medium preload Z3 and fine clearance Z0, along with random-matching type of fine clearance ZT and slight preload ZZ. Values for preload and rigidity of the preloaded assembly are shown in Table 5. Rigidities are for the median of the preload range.

Preload and rigidity of preloaded assembly

Table 5	

		Prelo	ad (NI)	Rigidity (N/µm)					
	Model No.	Preio	au (IV)	Vertical c	lirections	Lateral direction			
	Model No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload		
		Z1	Z3	Z1	Z3	Z1	Z3		
	VH15 AN, EL, FL, EM	78	490	137	226	98	186		
4)	VH20 AN, EL, FL, EM	147	835	186	335	137	245		
type	VH25 AN, AL, EL, FL, EM	196	1270	206	380	147	284		
ad t	VH30 AN, AL	245	1570	216	400	157	294		
High-load	VH30 EL, FL, EM	294	1770	265	480	186	355		
4jg	VH35 AN, AL, EL, FL, EM	390	2350	305	560	216	390		
_	VH45 AN, AL, EL, FL, EM	635	3900	400	745	284	540		
	VH55 AN, AL, EL, FL, EM	980	5900	490	910	345	645		
96	VH15 BN, GL, HL, GM	98	685	196	345	137	284		
type	VH20 BN, GL, HL, GM	196	1080	265	480	196	355		
oad	VH25 BN, BL, GL, HL, GM	245	1570	294	560	216	400		
Jh-I	VH30 BN, BL, GL, HL, GM	390	2260	360	665	265	480		
įį	VH35 BN, BL, GL, HL, GM	490	2940	430	795	305	570		
Super-high-load	VH45 BN, BL, GL, HL, GM	785	4800	520	960	370	695		
S	VH55 BN, BL, GL, HL, GM	1180	7050	635	1170	440	835		

Note: Clearance for fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15 μm .

· Preload of random-matching type

	3 31					
	Table 6	Unit: µm				
Model No.	Fine clearance	Slight preload				
Model No.	ZT	ZZ				
VH15	-4 - 15	-4 - 0				
VH20		-5 - 0				
VH25		-5 - 0				
VH30	_5 _ 15	-7 - 0				
VH35	-5 - 15	-7 - 0				
VH45		-7 - 0				
VH55		-9 - 0				

(4) Available length of rail

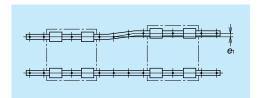

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Table 7 Length limitations of rails									
Series	Size								
001103	Material	15	20	25	30	35	45	55	
VH	Special high carbon steel	2000	3960	3960	4000	4000	3990	3960	
VП	Stainless steel	1800	3500	3500	3500				

Note: Rails can be butted if user requirement exceeds the rail length shown in the Table. Please consult NSK.

(5) Installation

1. Permissible values of mounting error

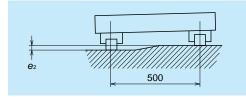


Fig. 7

Preload

ZO, ZT

Z1, ZZ

Z3

ZO, ZT

Fig. 8

	Iable	Unit: µm										
	Model No.											
	VH20	VH25	VH25 VH30		VH45	VH55						
	30	40	45	55	65	80						
	20	25 30		35	45	55						
	15	20	25	30	40	45						
375 μm/500 mm												
330 μm/500 mm												

2. Shoulder height of the mounting face and corner radius r

VH15

22

18

13

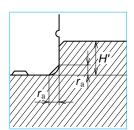


Fig. 9 Shoulder for the

rail datum face

Value

Permissible values of

parallelism in two rails e_1

Permissible values of

parallelism (height) in two rails e_2 Z1, ZZ, Z3

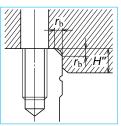


Table 9

Fig. 10 Shoulder for the ball slide datum face

Corner radius (maximum) Shoulder height Model No H' H" Th. VH15 0.5 0.5 4 4 VH20 0.5 0.5 4.5 5 VH25 0.5 0.5 5 VH30 0.5 0.5 6 6 VH35 0.5 0.5 6 6 VH45 0.7 0.7 8 8 VH55 0.7 0.7 10 10

Table 9

Unit: mm

3. Specification for tapped holes on a rail bottom surface

- Accuracy grades are precision grade (K6) and normal grades (KN and KC).
- Minimum rail length for production is 400 mm.
- Tapping pitch is the same as the pitch for regular mounting bolt holes. Please refer to the dimension table.

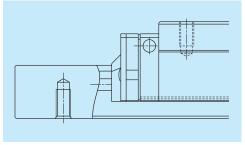


Fig. 11

(6) Lubrication components

Refer to page A38 and D13 for the lubrication of linear guides.

1. Types of lubrication accessories

Figure 12 and Table 10 show grease fittings and tube fittings.

We provide Iubrication accessories with extended thread body length (L) for the addition of dust proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

Please ask NSK for stainless lubrication accessories.

2. Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 13)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of M6×1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

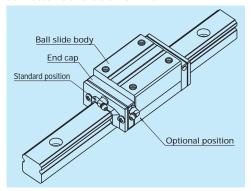


Fig. 13 Mounting position of lubrication accessories

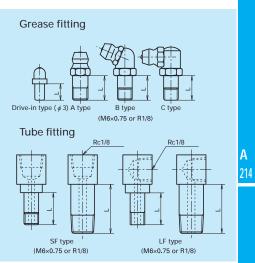


Fig. 12 Grease fitting and tube fitting

	T	able 10	Unit: mn
Model No.	Dust proof	Grease fitting	Tube fitting
	specification	Thread body length L	Thread body length L
	Standard	10*	-
V/114.E	With NSK K1	-	-
VHID	Double seal	**	-
VH15 VH20 VH25 VH30 VH35	Protector	**	-
	Standard	12*	_
V/1120	With NSK K1	-	-
VH20	Double seal	18	-
	Protector	18	-
	Standard	12*	17***
VILIOE	With NSK K1	-	_
VH25	Double seal	18	23***
	Protector	18	19***
	Standard	14*	18
1/1120	With NSK K1	-	-
VH30	Double seal	22	25
	Protector	22	19
	Standard	14*	15
1/1/05	With NSK K1	-	-
VH35	Double seal	22	25
	Protector	22	22
	Standard	18*	21.5
V/114E	With NSK K1	-	-
VH45	Double seal	22	32
	Protector	28	30
	Standard	18*	20
\/I.IEE	With NSK K1	-	-
VH55	Double seal	22	32
	Protector	28	30
*) NISK K1	unite are mou	ntod as a standa	ard enocification

- *) NSK K1 units are mounted as a standard specification for VH series.
- **) Please contact NSK as a connector is required.
- ***) Only available for AN and BN type ball slides.

(7) Dust proof components

1. Standard specification

To keep foreign matters from entering inside the ball slide, VH Series has an end seal on both ends, and bottom seals at the bottom.

Two NSK K1, one at each end, are installed as standard equipment.

15

11

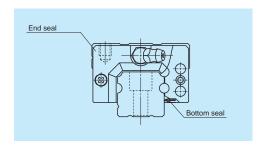


Fig. 14

Table 11 Seal friction per ball slide (maximum value) 25

14

30

17

35

23

20

13

)	Unit : N
45	55
33	44

2. Double seal and protector

Size

Series

VH

For VH Series, double-seal and protector can be installed only before shipping from the factory. Please consult NSK.

Table 12 shows the ball slide length when a double seal set and a protector are installed.

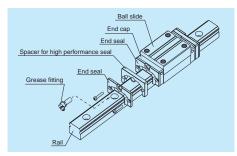


Fig. 15 Double seal

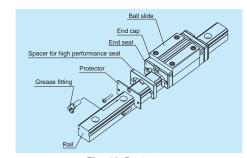


Fig. 16 Protector

Table 12 Dimension of installing dust proof optional components

Unit: mm

Model No.	Ball slide	Ball slide length						
woder No.	model	Standard	Double seal installation	Protector installation				
VH15	AN, EL, FL, EM	70.6	81.6	77				
VIII3	BN, GL, HL, GM	89.6	100.6	96				
VH20	AN, EL, FL, EM	87.4	100.4	94.2				
V П 2 U	BN, GL, HL, GM	109.4	122.4	116.2				
VH25	AN, AL, EL, FL, EM	97	110	104.4				
VHZO	BN, BL, GL, HL, GM	125	138	132.4				
	AN, AL	104.4	120.4	114.8				
VH30	EL, FL, EM	117.4	133.4	127.8				
	BN, BL, GL, HL, GM	143.4	159.4	153.8				
VH35	AN, AL, EL, FL, EM	128.8	144.8	139.2				
VUSS	BN, BL, GL, HL, GM	162.8	178.8	173.2				
VH45	AN, AL, EL, FL, EM	161.4	180.4	174.2				
V F143	BN, BL, GL, HL, GM	193.4	212.4	206.2				
VH55	AN, AL, EL, FL, EM	185.4	204.4	198.2				
V F100	BN, BL, GL, HL, GM	223.4	242.4	236.2				

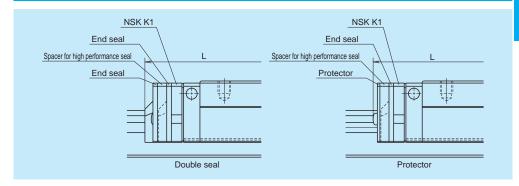


Fig. 17

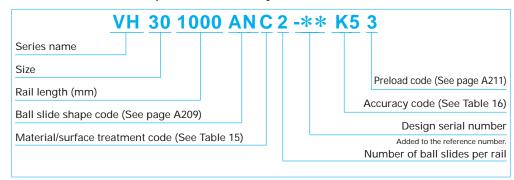
3. Cap to cover the bolt hole for rail mounting Table 13 Caps to cover rail bolt hole

Model No.	Bolt to	Cap	Quantity
Woder No.	secure rail	reference No.	/case
VH15	M4	LG-CAP/M4	20
VH20	M5	LG-CAP/M5	20
VH25	M6	LG-CAP/M6	20
VH30, VH35	M8	LG-CAP/M8	20
VH45	M12	LG-CAP/M12	20
VH55	M14	LG-CAP/M14	20

4. Inner seal

Inner seal can be manufactured for models shown below.

Table 14


Series VH	Model No.						
VH	VH20, VH25, VH30, VH45, VH55						

(8) Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

1. Reference number for preloaded assembly

2. Reference number for random-matching type

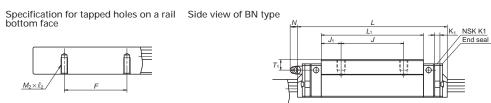
Rail V1H 30 100	00 L C N -** KC Z
Random-matching rail series code	Preload code
V1H : VH Series random-matching rail	T: Fine clearance. Z: Slight preload (See page A211)
Size	Accuracy code : KC
Dail lanath (man)	KC: Normal grade is only available
Rail length (mm)	Design serial number
Rail shape code: L	Added to the reference number.
L : Standard	*Butting rail specification
Material/surface treatment code (See Tab	le 15) N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.

Reference number for assembly of random-matching ball slide and rail is the same as the coding of preloaded assembly. However, preload code is fine clearance "T" or slight preload "Z" (Refer to page A211).

Table 15 Material/surface treatment code

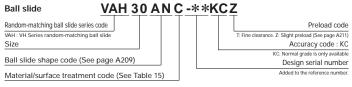

Code	Description							
С	Special high carbon steel (NSK standard) + counterbores on a rail top surface							
K	Stainless steel + counterbores on a rail top surface							
D	Special high carbon steel with surface treatment + counterbores on a rail top surface							
Н	Stainless steel with surface treatment + counterbores on a rail top surface							
V	Special high carbon steel (NSK standard) + tapped holes on a rail bottom surface							
J	Stainless steel + tapped holes on a rail bottom surface							
W	Special high carbon steel with surface treatment + tapped holes on a rail bottom surface							
S	Stainless steel with surface treatment + tapped holes on a rail bottom surface							
Z	Other, special							

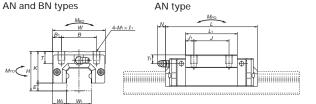
Table 16 Accuracy code

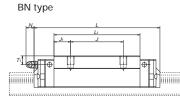

Accuracy	Standard (with NSK K1)						
Ultra precision grade	K3						
Super precision grade	K4						
High precision grade	K5						
Precision grade	K6						
Normal grade	KN						
Normal grade (random-matching type)	KC						

Note: Refer to Page A38 for NSK K1 lubrication unit.

A217 A218

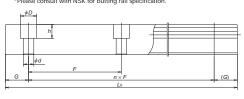



	Assembly								Ball slide								
	Height			Width	Length		Moı	unting hole							Gre	ase 1	itting
No.																	
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	B_1	L ₁	J_1	Κ	Τ	K ₁	Hole size	T_1	Ν
VH15AN VH15BN	28	4.6	9.5	34	70.6〈 77〉 89.6〈 96〉	26	26	M4×0.7×6	4	39 58	6.5 16	23.4	8	4.5	φ 3	8.5	1 〈 8.2〉
VH20AN VH20BN	30	5	12	44	87.4 (94.2) 109.4 (116.2)	32	36 50	1 1//52(1) 826 1		50 72	7 11	25	12	4.5	M6×0.75	5	11.1 (12.3)
VH25AN VH25BN	40	7	12.5	48	97 (104.4) 125 (132.4)	35	35 50	M6×1×9	6.5	58 86	11.5 18	33	12	5	M6×0.75	10	9.6 (12.9)
VH30AN VH30BN	45	9	16	60	104.4 (114.8) 143.4 (153.8)	40	40 60	M8×1.25×10	10	59 98	9.5 19	36	14	5	M6×0.75	10	11.4 (14.2)
VH35AN VH35BN	55	9.5	18	70	128.8 (139.2) 162.8 (173.2)	50	50 72	M8×1.25×12	10	80 114	21	45.5	15	5.5	M6×0.75	15	10.9 (13.7)
VH45AN VH45BN	70	14	20.5	86	161.4 (174.2) 193.4 (206.2)	60	60 80	M10×1.5×17	13	137	22.5 28.5	56	17	6.5	Rc1/8	20	12.5 (14.1)
VH55AN VH55BN	80	15	23.5	100	185.4 (198.2) 223.4 (236.2)	75	75 95	M12×1.75×18	12.5		25.5 34.5	65	18	6.5	Rc1/8	21	12.5 (14.1)


Remarks: 1) Figure inside $\langle \ \rangle$ is the dimension when equipped with the protector.

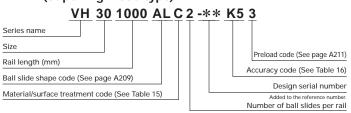
- 2) VH Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.
- 3) The external appearance of stainless steel ball slides differs from those of standard material ball slide.

Reference number for ball slide of random-matching type

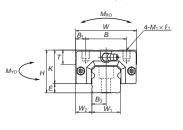


Reference number for rail of random-matching type

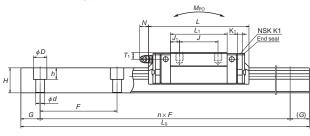
Rail V1H30 1000 L C	N -** KC Z
Random-matching rail series code	Preload code
V1H : VH Series random-matching rail Size	T: Fine clearance. Z: Slight preload (See page A211) Accuracy code : KC
Rail length (mm)	KC: Normal grade is only available Design serial number
Rail shape code: L	Added to the reference number. *Butting rail specification
L : Standard Material/surface treatment code (See Table 15)	N: Non-butting. L: Butting specification


Unit: mm

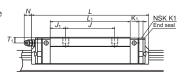
				Rail				Basic load rating					Ball dia.	We	ight	
Width	Height	Pitch	Counterbore	Tapped hole		G	Maximum	Dynamic	Static	Sta	tic mom	ent		Ball	Rail	
							length L_{omax}	С	C_{0}	M_{RO}	M_{PO}	$M_{\scriptscriptstyle YO}$	$D_{\rm w}$	slide		
W_1	H_1	F	$d \times D \times h$	$M \times \text{pitch} \times \ell_2$	B_3	(reference)		(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)	
15	15	60	4.5×7.5×5.3	M5×0.8×8	7.5	20	2 000	10 800	20 700	108	94.5		3.175	0.18	1 1 6	
							[1 800] 3 960	14 600 17 400	32 000 32 500	166 219	216 185	181 155		0.26	_	
20	18	60	6×9.5×8.5	M6×1×10	10	20	[3 500]	23 500	50 500	340	420	355	3.968	0.48	1 / 6	
23	22	60	7×11×9	M6×1×12	11.5	20	3 960	25 600	46 000	360	320	267	4.762	0.55	3.6	
23	22	00	7.411.47	IVIOXIXIZ	11.5	20	20	[3 500]	34 500	71 000	555	725	610	4.702	0.82	3.0
28	26	80	9×14×12	M8×1.25×15	14	20	4 000	31 000	51 500	490	350		5.556	0.77	5.2	
							[3 500]	46 000	91 500	870	1 030	865		1.3		
34	29	80	9×14×12	M8×1.25×17	17	20	4 000	47 500 61 500	80 500 117 000	950 1 380	755 1 530	630 1 280	6.350	1.5	7.2	
									140 000	2 140	1 740			3.0		
45	38	105	14×20×1/	M12×1.75×24	22.5	22.5	3 990	99 000	187 000	2 860	3 000	2 520	7.937	3.9	12.3	
53	44	120	16×23×20	M14×2×24	26.5	30	3 960	119 000 146 000		3 600 4 850	3 000 5 150	2 510 4 350	9.525	4.7 6.1	16.9	


4) The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C to for 100 km rating fatigue life, divide the C by 1.26.

A219 A220


VH-AL (High-load type) VH-BL (Super-high-load type)

Front view of AL and BL type


Side view of AL type

Specification for tapped holes on a rail bottom face

Side view of BL type

	A:	ssem	bly						Ball	slide	9						
Model	Height			Width	Length		Mounting hole								Gre	ase	fitting
No.																	
	Н	Ε	W_2	W	L	В	J	$M \times pitch \times \ell$	B_1	L_1	J_1	Κ	Τ	K ₁	Hole size	T_1	Ν
VH25AL VH25BL	36	7	12.5	48	97 (104.4) 125 (132.4)		35 50	M6×1×6	6.5	58 86	11.5 18	29	12	5	M6×0.75	6	9.6 (12.9)
VH30AL VH30BL	42	9	16		104 4/114 8		40 60	M8×1.25×8	10	59 98	9.5 19	33	14	5	M6×0.75	7	11.4 (14.2)
VH35AL VH35BL	48	9.5	18	/0	1162 87173 2	50	50 72	M8×1.25×8	10	80 114	15 21	38.5	15	5.5	M6×0.75	8	10.9 (13.7)
VH45AL VH45BL	60	14	20.5	86	161.4 (174.2) 193.4 (206.2)	60	60 80	M10×1.5×10	13		22.5 28.5		17	6.5	Rc1/8	10	12.5 (14.1)
VH55AL VH55BL	70	15	23.5		185.4 (198.2) 223.4 (236.2)		75 95	M12×1.75×12	12.5		25.5 34.5	55	18	6.5	Rc1/8	11	12.5 (14.1)

Remarks: 1) Figure inside $\langle \ \rangle$ is the dimension when equipped with the protector.

- 2) VH Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.
- 3) The external appearance of stainless steel ball slides differs from those of standard material ball slide.

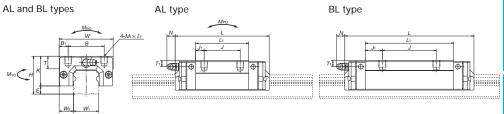
Reference number for ball slide of random-matching type

Ball slide

VAH 30 AL C -**KCZ

Random-matching ball slide series code

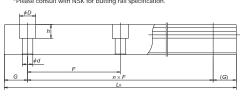
VAH: VH Series random-matching ball slide
Size


Ball slide shape code (See page A209)

Material/surface treatment code (See Table 15)

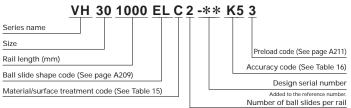
Preload code
T: Fine clearance. Z: Slight preload (See page A211)
ACCURACY CODE: KC

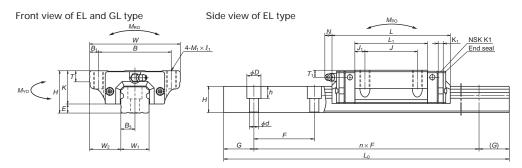
KC: Normal grade is only available
Design serial number


Added to the reference number.

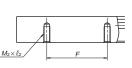
Reference number for rail of random-matching type

Rail	V1H30 1000 L	<u>CN -** KC Z</u>
Random-matching	rail series code	Preload code
V1H : VH Series rai Size	ndom-matching rail	T: Fine clearance. Z: Slight preload (See page A211) Accuracy code : KC
Rail length (n	nm)	KC: Normal grade is only available Design serial number
Rail shape co	de: L	Added to the reference number.
L: Standard Material/surfa	ace treatment code (See Table 15)	*Butting rail specification N: Non-butting. L: Butting specification
		*Dioaco concult with NSV for butting rail enocification

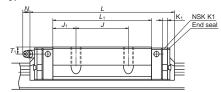

Unit: mm


				Rail					Basic	load rati	ing		Ball dia.	We	ight
Width	Height	Pitch	Counterbore	Tapped hole		G	Maximum	Dynamic	Static	Sta	tic mom	ent		Ball	Rail
							length L_{omax}	С	C_{0}	$M_{\scriptscriptstyle{ ext{RO}}}$	M_{PO}	$M_{\scriptscriptstyle YO}$	$D_{\rm w}$	slide	
W_1	H_1	F	$d \times D \times h$	$M \times \text{pitch} \times \ell_2$	B_3	(reference)		(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
23	22	60	7×11×9	M6×1×12	11.5	20	3 960	25 600	46 000	360	320	267	4.762	0.46	1 3 6
		00	,,,,,,,	1110/11/12			[3 500]	34 500	71 000	555	725	610	117 02	0.69	0.0
28	26	80	9×14×12	M8×1.25×15	14	20	4 000	31 000	51 500	490	350	292	5.556	0.69	1 5つ
	20	00	7/11/12	100001.20010		20	[3 500]	46 000	91 500	870	1 030	865	0.000	1.16	0.2
34	29	80	9×14×12	M8×1.25×17	17	20	4 000	47 500	80 500	950	755	630	6.350	1.2	7.2
34	27	00	7/14/12	1010 × 1.23 × 17	17	20	4 000	61 500	117 000	1 380	1 530	1 280	0.550	1.7	1.2
45	38	105	14,20,17	M12×1.75×24	22 5	22 5	3 990	81 000	140 000	2 140	1 740	1 460	7.937	2.2	12.3
45	30	103	14X2UX17	IVI I 2X I . / 3X24	22.3	22.5	3 990	99 000	187 000	2 860	3 000	2 520	7.937	2.9	12.3
53	44	120	16×23×20	M14×2×24	26.5	20	3 960	119 000	198 000	3 600	3 000	2 510	9.525	3.7	16.9
55	44	120	10X23X20	IVI 14X2X24	20.5	30	3 900	146 000	264 000	4 850	5 150	4 350	9.525	4.7	10.9

⁴⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C to 100 km rating fatigue life, divide the C by 1.26.

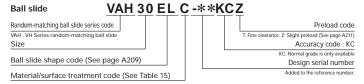

A221 A222

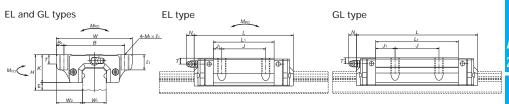
VH-EL (High-load type) VH-GL (Super-high-load type)



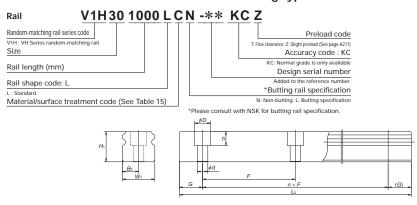
Specification for tapped holes on a rail bottom face

Side view of GL type



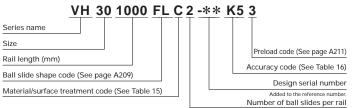

	A:	ssem	bly						Ball	slide)						
Model	Height			Width	Length		Moı	unting hole							Gre	ase t	fitting
No.																	
	Н	Ε	W_2	W	L	В	J	$M_1 \times \text{pitch} \times \ell_1$	B_1	L_1	J_1	Κ	Τ	K ₁	Hole size	T_1	Ν
VH15EL VH15GL	24	4.6	16	47	70.6 ⟨ 77⟩ 89.6 ⟨ 96⟩	38	30	M5×0.8×8	4.5	39 58	4.5 14	19.4	8	4.5	φ 3	4.5	1 〈 8.2〉
VH20EL VH20GL	30	5	21.5	63	87.4 (94.2) 109.4 (116.2)	53	40	M6×1×10	5	50 72	5 16	25	10	4.5	M6×0.75	5	11.1 (12.3)
VH25EL VH25GL	36	7	23.5	70	97 (104.4) 125 (132.4)	57	45	M8×1.25×16 [M8×1.25×12]	6.5	58 86	6.5 20.5	29	11 [12]	5	M6×0.75	6	9.6 (12.9)
VH30EL VH30GL	42	9	31	90	117.4 (127.8) 143.4 (153.8)	72	52	M10×1.5×18 [M10×1.5×15]	9	72 98		33	11 [15]	5	M6×0.75	7	11.4 (14.2)
VH35EL VH35GL	48	9.5	33	100	128.8 (139.2) 162.8 (173.2)	82	62	M10×1.5×20	9	80 114	9 26	38.5	12	5.5	M6×0.75	8	10.9 (13.7)
VH45EL VH45GL	60	14	37.5			100		M12×1.75×24	10	105 137	12.5 28.5	46	13	6.5	Rc1/8	10	12.5 (14.1)
VH55EL VH55GL	70	15	43.5	140	185.4 (198.2) 223.4 (236.2)	116	95	M14×2×28	12	126 164	15.5 34.5	55	15	6.5	Rc1/8	11	12.5 (14.1)

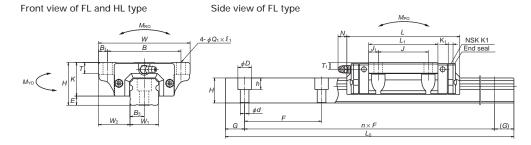
Remarks: 1) Figure inside () is the dimension when equipped with the protector.


- 2) Figure inside [] is applied to stainless products.
- 3) VH Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.
- 4) The external appearance of stainless steel ball slides differs from those of standard material ball slide.

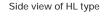
Reference number for ball slide of random-matching type

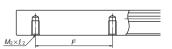
Reference number for rail of random-matching type

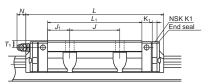

Unit: mm


				Rail					Basic	load rati	ng		Ball dia.	We	ight
Width	Height	Pitch	Counterbore	Tapped hole		G	Maximum	Dynamic	Static	Sta	ic mom	ent		Ball	Rail
							length L_{omax}	С	C_0	M_{RO}	M_{PO}	$M_{\scriptscriptstyle YO}$	$D_{\rm w}$	slide	
W_1	H_1	F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	B_3	(reference)		(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
15	15	60	4.5×7.5×5.3	M5×0.8×8	7.5	20	2 000 [1 800]	10 800 14 600	20 700 32 000	108 166	94.5 216	79.5 181	3.175	0.17 0.25	1 1 6
20	18	60	6×9.5×8.5	M6×1×10	10	20	3 960 [3 500]	17 400 23 500	32 500 50 500	219 340	185 420	155 355	3.968	0.45 0.65	1 / 6
23	22	60	7×11×9	M6×1×12	11.5	20	3 960 [3 500]	25 600 34 500	46 000 71 000	360 555	320 725	267 610	4.762	0.63 0.93	1 3 6
28	26	80	9×14×12	M8×1.25×15	14	20	4 000 [3 500]	35 500 46 000	63 000 91 500	600 870	505 1 030	425 865	5.556	1.2 1.6	5.2
34	29	80	9×14×12	M8×1.25×17	17	20	4 000	47 500 61 500	80 500 117 000	950 1 380	755 1 530	630 1 280	6.350	1.7 2.4	7.2
45	38	105	14×20×17	M12×1.75×24	22.5	22.5	3 990		140 000 187 000	2 140 2 860	1 740 3 000	1 460 2 520	7.937	3.0 3.9	12.3
53	44	120	16×23×20	M14×2×24	26.5	30	3 960	119 000 146 000		3 600 4 850	3 000 5 150	2 510 4 350	9.525	5.0 6.5	16.9

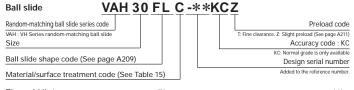
⁵⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C to for 100 km rating fatigue life, divide the C by 1.26.

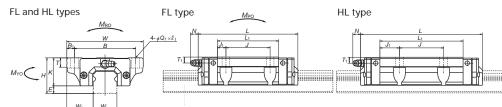

A223 A224


VH-FL (High-load type) VH-HL (Super-high-load type)

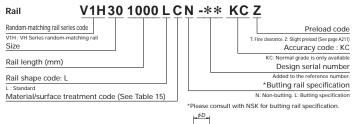


Specification for tapped holes on a rail bottom face

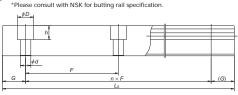



	A:	ssem	bly						Ball	slide)						
Model	Height			Width	Length		Moı	unting hole							Gre	ase t	fitting
No.																	
	Н	Ε	W_2	W	L	В	J	$Q_1 \times \ell_1$	B_1	L ₁	J_1	Κ	Τ	K ₁	Hole size	T_1	Ν
VH15FL VH15HL	24	4.6	16	47	70.6 〈 77〉 89.6 〈96〉	38	30	4.5×7	4.5	39 58	4.5 14	19.4	8	4.5	φ 3	4.5	1 〈 8.2〉
VH20FL VH20HL	30	5	21.5	63	87.4 (94.2) 109.4(116.2)		40	6×9.5	5	50 72	5 16	25	10	4.5	M6×0.75	5	11.1 (12.3)
VH25FL VH25HL	36	7	23.5	70	97 (104.4) 125 (132.4)	l	45	7×10[7×11.5]	6.5	58 86	6.5 20.5	29	11 [12]	5	M6×0.75	6	9.6 (12.9)
VH30FL VH30HL	42	9	31	90	117.4 (127.8) 143.4 (153.8)		52	9×12[9×14.5]	9	72 98	10 23	33	11 [15]	5	M6×0.75	7	11.4 (14.2)
VH35FL VH35HL	48	9.5	33	100	128.8 (139.2) 162.8 (173.2)	82	62	9×13	9	80 114	9 26	38.5	12	5.5	M6×0.75	8	10.9 (13.7)
VH45FL VH45HL	60	14	37.5		161.4 (174.2) 193.4 (206.2)	100		11×15	10	105 137	12.5 28.5	46	13	6.5	Rc1/8	10	12.5 (14.1)
VH55FL VH55HL	70	15	43.5	140	185.4 (198.2) 223.4 (236.2)	116	95	14×18	12	126 164	15.5 34.5	55	15	6.5	Rc1/8	11	12.5 (14.1)

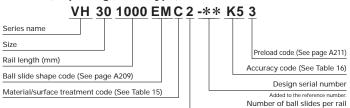
Remarks: 1) Figure inside () is the dimension when equipped with the protector.


- 2) Figure inside [] is applied to stainless products.
- 3) VH Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.
- 4) The external appearance of stainless steel ball slides differs from those of standard material ball slide.

Reference number for ball slide of random-matching type

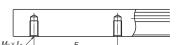


Reference number for rail of random-matching type

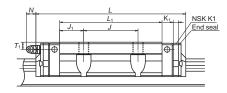

Unit: mm

				Rail					Basic	load rati	ing		Ball dia.	We	ight
Width	Height	Pitch	Counterbore	Tapped hole		G	Maximum	Dynamic	Static	Sta	tic mom	ent		Ball	Rail
							length L_{omax}	С	C_0	$M_{\scriptscriptstyle{RO}}$	M_{PO}	$M_{\scriptscriptstyle YO}$	$D_{\rm w}$	slide	
W_1	H_1	F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	B_3	(reference)		(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
15	15	60	4.5×7.5×5.3	M5×0.8×8	7.5	20	2 000 [1 800]	10 800 14 600	20 700 32 000	108 166	94.5 216	79.5 181	3.175	0.17 0.25	1.6
	10			NA(1 10	10	20	3 960	17 400	32 500	219	185	155	2.040	0.45	0.4
20	18	60	6×9.5×8.5	M6×1×10	10	20	[3 500]	23 500	50 500	340	420	355	3.968	0.65	2.6
23	22	60	7×11×9	M6×1×12	11.5	20	3 960	25 600	46 000	360	320	267	4.762	0.63	3.6
							[3 500]	34 500	71 000	555	725	610		0.93	
28	26	80	9×14×12	M8×1.25×15	14	20	4 000 [3 500]	35 500 46 000	63 000 91 500	600 870	505 1 030	425 865	5.556	1.2 1.6	5.2
34	29	80	9×14×12	M8×1.25×17	17	20	4 000	47 500	80 500	950	755	630	6.350	1.7	7.2
34	27	00	7/14/12	1010 × 1.25 × 17	17	20	4 000	61 500	117 000	1 380	1 530	1 280	0.330	2.4	1.2
45	38	105	1/1>20>17	M12×1.75×24	22.5	22.5	3 990	81 000	140 000	2 140	1 740	1 460	7.937	3.0	12.3
43	30	103	14/20/17	10112/1.75/24	22.5	22.5	3 770	99 000	187 000	2 860	3 000	2 520	7.737	3.9	12.5
53	44	120	16×23×20	M14×2×24	26.5	30	3 960	119 000 146 000		3 600 4 850	3 000 5 150	2 510 4 350	9.525	5.0 6.5	16.9

⁵⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C_{100} for 100 km rating fatigue life, divide the C by 1.26.


A225 A226

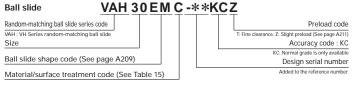
VH-EM (High-load type) VH-GM (Super-high-load type)

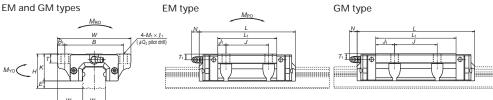


Front view of EM and GM type Side view of EM type $\frac{M_{\text{PO}}}{W} = \frac{A \cdot M_{1} \times \ell_{1}}{W} =$

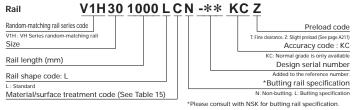
Specification for tapped holes on a rail bottom face

Side view of GM type

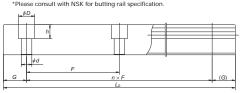



	As	sem	bly						В	all sli	ide							
Model	Height			Width	Length		Ν	Nounting hole								Gr	ease	fitting
No.								$Q_1 \times \ell_1$										
	Н	Ε	W_2	W	L	В	J	$M_1 \times \text{pitch} \times \ell_1$	Q_2	B_1	L ₁	J_1	Κ	Τ	<i>K</i> ₁	Hole size	T_1	N
VH15EM VH15GM	1.7/	4.6	16	47	70.6 〈 77〉 89.6 〈 96〉	38	30	M5×0.8×7	4.4	4.5	39 58	4.5 14	19.4	8	4.5	ø 3	4.5	1 〈 8.2〉
VH20EM VH20GM	30	5	21.5	63	87.4 (94.2) 109.4 (116.2)	53	40	M6×1×9.5	5.3	5	50 72	5 16	25	10	4.5	M6×0.75	5	11.1 (12.3)
VH25EM VH25GM	36	7	23.5	70	97 (104.4) 125 (132.4)	57	45	M8×1.25×10 [M8×1.25×11.5]	6.8	6.5	58 86	6.5 20.5	.)()	11 [12]	5	M6×0.75	6	9.6 (12.9)
VH30EM VH30GM	42	9	31	90	117.4 (127.8) 143.4 (153.8)	72	52	M10×1.5×12 [M10×1.5×14.5]	8.6	9	72 98	10 23	33	11 [15]	5	M6×0.75	7	11.4 (14.2)
VH35EM VH35GM	148	9.5	33	100	1162.8 (1/3.2)	82			8.6		80 114	9 26	38.5	12	5.5	M6×0.75	8	10.9 (13.7)
VH45EM VH45GM	60	14	37.5	120	161.4 (174.2) 193.4 (206.2)	100	80	M12×1.75×15	10.5	10	105 137	128.5	46	13	6.5	Rc1/8	10	12.5 (14.1)
VH55EM VH55GM	70	15	43.5	140	185.4 (198.2) 223.4 (236.2)	116	95	M14×2×18	12.5	12	126 164	15.5 34.5	55	15	6.5	Rc1/8	11	12.5 (14.1)

Remarks: 1) Figure inside () is the dimension when equipped with the protector.


- 2) Figure inside [] is applied to stainless products.
- 3) VH Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.
- 4) The external appearance of stainless steel ball slides differs from those of standard material ball slide.

Reference number for ball slide of random-matching type



Reference number for rail of random-matching type

Unit: mm

				Rail					Basic	load rati	ng		Ball dia.	We	ight
Width	Height	Pitch	Counterbore	Tapped hole		G	Maximum	Dynamic	Static	Sta	tic mom	ent		Ball	
							length L_{0max}	С	C_0	M_{RO}	M_{PO}	$M_{\scriptscriptstyle YO}$	$D_{\rm w}$	slide	
W_1	H_1	F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	B_3	(reference)		(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
15	15	60	4.5×7.5×5.3	M5×0.8×8	7.5	20	2 000 [1 800]	10 800 14 600	20 700 32 000	108 166	94.5 216	79.5 181	3.175	0.17 0.25	1 1 6
20	18	60	6×9.5×8.5	M6×1×10	10	20	3 960 [3 500]	17 400 23 500	32 500 50 500	219 340	185 420	155 355	3.968	0.45 0.65	1 / 6
23	22	60	7×11×9	M6×1×12	11.5	20	3 960 [3 500]	25 600 34 500	46 000 71 000	360 555	320 725	267 610	4.762	0.63 0.93	1 3 6
28	26	80	9×14×12	M8×1.25×15	14	20	4 000 [3 500]	35 500 46 000	63 000 91 500	600 870	505 1 030	425 865	5.556	1.2 1.6	5.2
34	29	80	9×14×12	M8×1.25×17	17	20	4 000	47 500 61 500	80 500 117 000	950 1 380	755 1 530	630 1 280	6.350	1.7 2.4	7.2
45	38	105	14×20×17	M12×1.75×24	22.5	22.5	3 990		140 000 187 000	2 140 2 860	1 740 3 000		7.937	3.0 3.9	12.3
53	44	120	16×23×20	M14×2×24	26.5	30	3 960	119 000 146 000	198 000 264 000	3 600 4 850	3 000 5 150		9.525	5.0 6.5	16.9

⁵⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C to the dynamic load rating to the dynamic load rating fatigue life, divide the C by 1.26.

A227 A228

A-5-1.6 LW Series

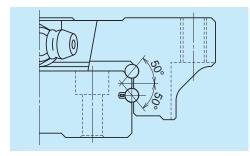


Fig. 1 Balls in contact

(1) Features

1. Ideal for use of single rail

Thanks to the wide rail, rigidity and load carrying capacity are high against moment load from rolling direction. This makes LW Series ideal in use of single rail as the linear guide.

2. High load carrying capacity to vertical direction

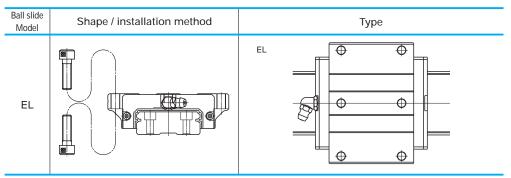
The contact angle is set at 50 degrees, increasing load carrying capacity as well as rigidity in vertical direction.

3. High resistance against impact load

Same as the LH and LS series, the offset Gothic arch grooves support a large load, such as an impact, by four rows.

4. High accuracy

Fixing master rollers is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.


5. Easy to handle, and designed with safety in mind.

Balls are retained in the retainer and do not fall out when a ball slide is withdrawn from the rail.

6. Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery.

(2) Ball slide shape

(3) Accuracy and preload

1. Running parallelism of ball slide

		Table 1		Unit: µm
	Preloaded ass	embly (not rand	om matching)	Random- matching type
Rail over all length (mm) over or less	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC
- 50	2	4.5	6	6
50 – 80	3	5	6	6
80 – 125	3.5	5.5	6.5	6.5
125 – 200	4	6	7	7
200 – 250	5	7	8	8
250 – 315	5	8	9	9
315 – 400	6	9	11	11
400 – 500	6	10	12	12
500 - 630	7	12	14	14
630 – 800	8	14	16	16
800 – 1000	9	16	18	18
1000 – 1250	10	17	20	20
1250 – 1600	11	19	23	23
1600 – 2000	13	21	26	26
2000 – 2500	15	22	29	29
2500 – 3150	17	25	32	32
3150 – 4000	23	30	34	34

2. Accuracy standard

The preloaded assembly has three accuracy grades; High precision P5, Precision P6, and Normal PN grades, while the random-matching type has Normal PC grade.

· Tolerance of preloaded assembly type

Ta	able 2		Unit: µm
Accuracy grade Characteristics	High precision P5	Precision glade P6	Normal glade PN
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±20 7	±40 15	±80 25
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±25 10	±50 20	±100 30
Running parallelism of face C to face A Running parallelism of face D to face B	Showr	in Table 1 and	l Fig. 2

Tolerance of random-matching type: Normal grade PC

Т.	able 3 Unit: µm
Model No. Characteristics	LW17, 21, 27, 35, 50
Mounting height H	±20
Variation of mounting height H	15①
	30②
Mounting width W_2 or W_3	±30
Variation of mounting width W_2 or W_3	25
Running parallelism of face C to face A Running parallelism of face D to face B	See Table 1 and Fig. 2

Note: 1 Variation on the same rail

2 Variation on multiple rails


3. Combination of accuracy and preload

Table 4

		Table 4			
				Accurac	cy grade
		High precision	Precision grade	Normal grade	Random matching
Wi	thout NSK K1 lubrication unit	P5	P6	PN	PC
Wi	th NSK K1 lubrication unit	K5	K6	KN	KC
Wit	h NSK K1 for food and medical equipment	F5	F6	FN	FC
Sli	Fine clearance Z0	0	0	0	_
	Slight preload Z1	0	0	0	_
	Medium preload Z3	0	0	_	_
	Random-matching type with fine clearance ZT	_	_	_	0
	Random-matching type with slight preload ZZ	_	_	_	0

Note: Z3 medium preload are LW35 and 50 only

4. Assembled accuracy

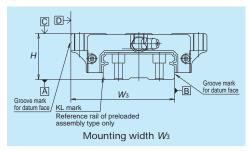


Fig. 2

5. Preload and rigidity

We offer five levels of preload: slight preload Z1, medium preload Z3 and fine clearance Z0, along with random-matching type of fine clearance ZT and slight preload ZZ. Values for preload and rigidity of the preloaded assembly are shown in Table 5. Rigidities are for the median of the preload range.

· Preload and rigidity of preloaded assembly

Table 5

		idbic c					
	Duele	l (NI)		Rigidity (N/µm)			
Model No.	Preload (N) Vertical direction		lirections	ections Lateral direction			
Model No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload	
	Z1	Z3	Z1	Z3	Z1	Z3	
LW17 EL	0 – 245	-	156	-	112	-	
LW21 EL	0 – 294	-	181	-	130	-	
LW27 EL	0 – 390	-	226	-	167	-	
LW35 EL	0 – 490	785	295	440	213	315	
LW50 EL	0 – 590	1470	345	600	246	425	

Note: Clearance for fine clearance Z0 is 0 to 3µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15µm.

· Clearance and preload of random-matching type

	Table 6	Unit: µm
Madal Na	Fine clearance	Slight preload
Model No.	ZT	ZZ
LW17	−3 – 15	-3.5 - 0
LW21	-3 - 15	-3.5 - 0
LW27	-4 - 15	-4 - 0
LW35	-5 - 15	-5 - 0
LW50	- 5 - 15	-7 - 0

Note: Minus sign denotes that a value is an amount of preload (elastic deformation of balls).

(5) Installation

1. Permissible values of mounting error

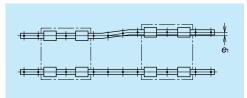


Fig. 3

(4) Available length of rail

· Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Table 7 Length limitations of rails

Unit: mm							
Size				Cim			
Material	17	21	27	35	50		
Special high carbon steel	1000	1600	2000	2400	3000		
	Size Material	Size Material 17	Size Material 17 21	Size	Size Unit		

Note: Rails can be butted if user requirement exceeds the rail length shown in the Table. Please consult NSK.

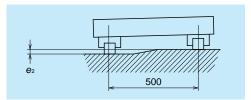


Fig. 4

Table 8		Unit: µr
	Model No	

Value	Preload			Model No.		
value	Preioau	LW17	LW21	LW27	LW35	LW50
Permissible values of	ZO, ZT	20	20	25	38	50
parallelism in two rails e_1	Z1	9	9	13	23	34
Permissible values of	ZO, ZT	100 μm/500 mm				
parallelism (height) in two rails e2	Z1	45 μm/500 mm				

2. Shoulder height of the mounting face and corner radius r

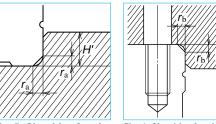


Fig. 5 Shoulder for the rail datum face

r _b ////////////////////////////////////

Fig. 6 Shoulder for the ball slide datum face

		Table 9		Unit: mm
Model No.	Corner radius (maximum)		Shoulder height	
iviouei ivo.	$\Gamma_{\rm a}$	$r_{\rm b}$	H'	H"
LW17	0.3	0.3	2.2	4
LW21	0.3	0.3	2.5	5
LW27	0.5	0.5	3.5	5
LW35	0.5	0.8	3.5	5
LW50	0.8	0.8	4	6

(6) Lubrication components

Refer to page A38 and D13 for the lubrication of linear guides.

1. Types of lubrication accessories

Figure 11 and Table 10 show grease fittings and tube fittings.

We provide Iubrication accessories with extended thread body length (L) for the addition of dust proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

Please ask NSK for stainless lubrication accessories.

	Unit: mm		
Model No.	Dust proof specification	Grease fitting	Tube fitting
	specification	Thread body length L	Thread body length L
	Standard	5	-
LW17	With NSK K1	10	-
LVV I /	Double seal	*	-
	Protector	*	-
	Standard	5	-
LW21	With NSK K1	12	_
LVVZI	Double seal	10	-
	Protector	10	-
	Standard	5	-
LW27	With NSK K1	12	-
LVVZ/	Double seal	10	-
	Protector	10	-
	Standard	5	6
LW35	With NSK K1	14	13
LVV33	Double seal	10	9
	Protector	10	9
	Standard	8	17
LW50	With NSK K1	18	19
LVVOU	Double seal	14	17
	Protector	14	17

^{*)} Please contact NSK as a connector is required.

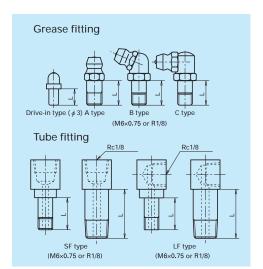


Fig. 7 Grease fitting and tube fitting

2. Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for LW27, 35, and 50 as an option. (Fig. 8)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of M6 \times 1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

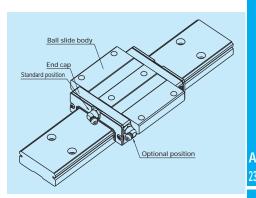


Fig. 8 Mounting position of lubrication accessories

A233 A234

(7) Dust proof components

1. Standard Specification

To keep foreign matters from entering inside the ball slide, LW Series has an end seal on both ends, and bottom seals at the bottom.

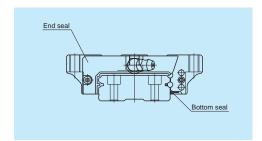


Fig. 9

Table 11 Seal friction per ball slide (maximum value)

					O
Series Size	17	21	27	35	50
LW	6	8	12	16	20

2. NSK K1[™]

Table 12 shows the dimension of linear guides equipped with the NSK K1.

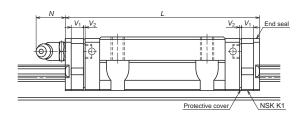


Table 12

(Unit : mm)

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V_2	Protruding area of the grease fitting N
LW17	Standard	EL	51.4	61.6	4.5	0.6	(5)
LW21	Standard	EL	58.8	71.4	5.5	0.8	(13)
LW27	Standard	EL	74	86.6	5.5	0.8	(13)
LW35	Standard	EL	108	123	6.5	1.0	(13)
LW50	Standard	EL	140.6	155.6	6.5	1.0	(14)

Note: NSK K1 for food and medical equipments are available for LW17 to LW35.

3. Double seal

Use a double seal set as showing in Table 13, when installing an extra seal to completed standard products. (Fig. 10)

When installing a grease fitting after the installation of double seals, a connector is required.

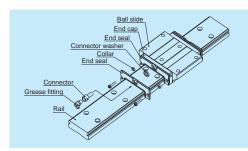


Fig. 10 Double seal

Table 13 Double-seal set

Unit: mm							
Model No.	Referer	Increased					
iviouei ivo.	Without connector With connector		thicknessV ₁				
LW17	LW17WS-01	*	2.6				
LW21	LW21WS-01	LW21WSC-01	2.8				
LW27	LW27WS-01	LW27WSC-01	2.5				
LW35	LW35WS-01	LW35WSC-01	3				
LW50	LW50WS-01	LW50WSC-01	3.6				

*) For installation of a connector to a drive-in type grease fitting, contact NSK.

4. Protector

Use a protector set as showing Table 14, when installing a protector to completed standard products. (Fig.11)

When installing a grease fitting after the installation of protectors, a connector is required.

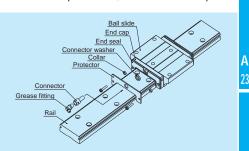


Fig. 11 Protector seal

Table 14 Protector set

	Unit: mm		
Model No.	Referer	Increased	
iviouei ivo.	Without connector	With connector	thicknessV ₂
LW17	LW17PT-01	*	3.2
LW21	LW21PT-01	LW21PTC-01	3.2
LW27	LW27PT-01	LW27PTC-01	2.9
LW35	LW35PT-01	LW35PTC-01	3.6
LW50	LW50PT-01	LW50PTC-01	4.2

*) For installation of a connector to a drive-in type grease fitting, contact NSK.

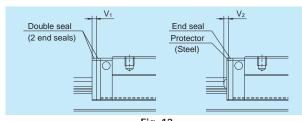
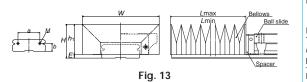
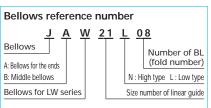


Fig. 12

5. Cap to cover the bolt hole for rail mounting Table 15 Caps to cover rail bolt hole


	•		
Model No.	Bolt to	Cap	Quantity
Wiodel No.	secure rail	reference No.	/case
LW17, LW21, LW27	M4	LG-CAP/M4	20
LW35	M6	LG-CAP/M6	20
LW50	M8	LG-CAP/M8	20


A236

6. Bellows

- · While removing machine screws which secure the end seal to install the bellows to the slide, for LW17 and 21, hold the end cap by hand not to be detached from the slide.
- · Make tap holes to the rail end face to fix the bellows mounting plate. NSK processes tap holes to the rail end face when ordered with a linear guide.

Dimension tables of bellows LW series

Table 16 Dimensions of bellows

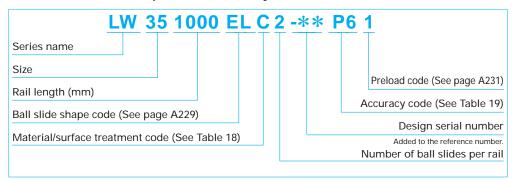
u	Jn	П	٠.	m	m

Model No.	Н	h ₁	Ε	W	Р	а	b	BL minimum length	Tap (<i>M</i>) x depth	
JAW17N	25.5	23	2.5	68	15	22	6	17	M3×6	
JAW21N	29	26	3	75	17	26	7	17	M3×6	
JAW27N	37	33	4	85	20	28	10	17	M3×6	
JAW35L	34	30	4	100	14	48	12	17	M4×8	
JAW35N	41	37	7	115	20	40	12	17	1V14×8	
JAW50L	46.5	42	4.5	135	20	70	14	17	M4×8	
JAW50N	56.5	52	4.5	160	30	70	14	17	1014/0	

Table 17 Numbers of folds (BL) and length of bellows

Unit: mm

Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
Model No.	Lmin	34	68	102	136	170	204	238	272	306	340
JAW17N	Stroke	176	352	528	704	880	1056	1232	1408	1584	1760
JAVVI/IV	Lmax	210	420	630	840	1050	1260	1470	1680	1890	2100
JAW21N	Stroke	204	408	612	816	1020	1224	1428	1632	1836	2040
JAVVZIIV	Lmax	238	476	714	952	1190	1428	1666	1904	2142	2380
JAW27N	Stroke	246	492	738	984	1230	1476	1722	1968	2214	2460
JAVVZ/IV	Lmax	280	560	840	1120	1400	1680	1960	2240	2520	2800
JAW35L	Stroke	162	324	486	648	810	972	1134	1296	1458	1620
JAWSSL	Lmax	196	392	588	784	980	1176	1372	1568	1764	1960
JAW35N	Stroke	218	436	654	872	1090	1308	1526	1744	1962	2180
JAVVSSIV	Lmax	252	504	756	1008	1260	1512	1764	2016	2268	2520
JAW50L	Stroke	246	492	738	984	1230	1476	1722	1968	2214	2460
JAVVOUL	Lmax	280	560	840	1120	1400	1680	1960	2240	2520	2800
JAW50N	Stroke	386	772	1158	1544	1930	2316	2702	3088	3474	3860
JAVVOUN	Lmax	420	840	1260	1680	2100	2520	2940	3360	3780	4200


Remarks: Values of odd numbers BL (3, 5, 7, ...) can be obtained by adding two values of even number BLs on both sides, then dividing the sum by two.

(8) Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

1. Reference number for preloaded assembly

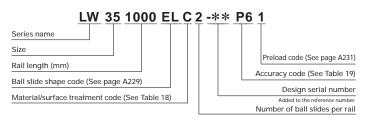
2. Reference number for random-matching type

Rail L1W35 10	00 L C N -** PC Z
Random-matching rail series code	Preload code
L1W : LW Series random-matching rail	T: Fine clearance. Z: Slight preload (See page A231)
Size	Accuracy code : PC
Dail lan oth (resea)	PC: Normal grade is only available
Rail length (mm)	Design serial number
Rail shape code: L	Added to the reference number.
L : Standard	*Butting rail specification
Material/surface treatment code (See Ta	ble 15) N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.

Reference number for assembly of random-matching ball slide and rail is the same as the coding of preloaded assembly. However, preload code is fine clearance "T" or slight preload "Z" (Refer to page A231).

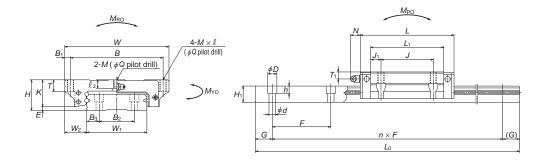
Table 18 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special

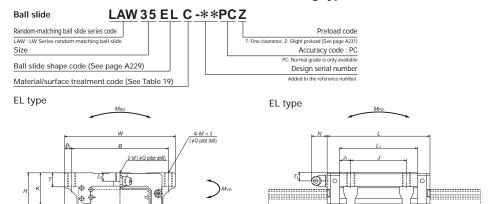

Table 19 Accuracy code

lable 17 Accuracy code											
Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment								
High precision grade	P5	K5	F5								
Precision grade	P6	K6	F6								
Normal grade	PN	KN	FN								
Normal grade (random-matching type)	PC	KC	FC								

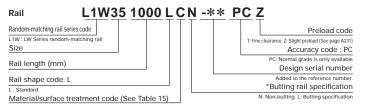
Note: Refer to Page A38 and A61 for NSK K1 lubrication unit.


(9) Dimensions

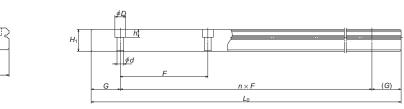
LW-EL


Front view of EL types

Side view of EL type



	As	semb	bly Ball slide															
Model No.	Height			Width	dth Length Mounting hole											Grease	fittin	g
Model No.																		
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	ℓ_2	Q	B_1	L ₁	J_1	Κ	Τ	Hole size	T_1	Ν
LW17EL	17	2.5	13.5	60	51.4	53	26	M4×0.7×6	3.2	3.3	3.5	35	4.5	14.5	6	φ 3	4	3
LW21EL	21	3	15.5	68	58.8	60	29	M5×0.8×8	3.7	4.4	4	41	6	18	8	M6×0.75	4.5	11
LW27EL	27	4	19	80	74	70	40	M6×1×10	6	5.3	5	56	8	23	10	M6×0.75	6	11
LW35EL	35	4	25.5	120	108	107	60	M8×1.25×14	9	6.8	6.5	84	12	31	14	M6×0.75	8	11
LW50EL	50	4.5	36	162	140.6	144	80	M10×1.5×18	14	8.6	9	108	14	45.5	18	Rc1/8	14	14


Reference number for ball slide of random-matching type

Reference number for rail of random-matching type

*Please consult with NSK for butting rail specification.

Unit: mm

	Rail								Basic load rating					Ball dia.	We	ight
١	Nidth	Height		Pitch	Mounting		G	Maximum	Dynamic	Static	Sta	tic mom	ent		Ball	Rail
					bolt hole		(Reference)	length	С	C_0	M_{RO}	M_{PO}	$M_{\scriptscriptstyle YO}$	$D_{\rm w}$	slide	
	W_1	H_1	B_2	F	$d \times D \times h$	B_3	(Kelelelice)	$L_{ m 0max}$	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
	33	8.7	18	40	4.5×7.5×5.3	7.5	15	1000	5600	11300	135	44	37	2.381	0.2	2.1
	37	10.5	22	50	4.5×7.5×5.3	7.5	15	1600	6450	13900	185	65.5	55	2.381	0.3	2.9
	42	15	24	60	4.5×7.5×5.3	9	20	2000	12800	26900	400	171	143	3.175	0.5	4.7
	69	19	40	80	7×11×9	14.5	20	2400	33000	66500	1690	645	545	4.762	1.5	9.6
	90	24	60	80	9×14×12	15	20	3000	61500	117000	3900	1530	1280	6.350	4.0	15.8

Remarks: 1) The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface.

When converting the basic dynamic load rating C to the dynamic load rating C_{1m} for 100 km rating fatigue life, divide the C by 1.26.

A-5-1.7 TS Series

(1) Features

1. Inexpensive

Newly developed manufacturing process of rail, and design review of ball slide contribute to substantial cost reductions.

2. High capacity

Optimum ball diameter for higher capacity design.

3. High dust proof capability

Dust-tight high performance end seals, bottom seals, and inner seals are built-in as a standard feature. (Optional protector is available for protection against hot debris such as welding spatters or hard contamination.)

4. Maintenance free

NSK K1 lubrication unit is equipped as a standard specification for long-term maintenance-free operation.

5. Rust prevention

NSK provides a lineup of products with antirust surface treatment for corrosive environments.

6. Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery.

(2) Ball slide shape

Ball slide Model	Shape / installation method	Туре
AN		AN

(3) Accuracy and preload

Accuracy grade: Normal grade for transportation Torelance of mounting height *H*: ±0.1 mm

Running parallelism: 100 µm or less

Running parallelism (height): 500 µm/500 mm

Clearance: 60 µm or less

(4) Available length of rail

Table 1 shows the limitations of rail length (maximum length).

Table 1 Length limitations of rails

	•				Uni	t: mm
Series	Size				*	*
301103	Material	15	20	25	30	35
TS	Special high carbon steel	1960	2920	4000	4040	4040

Note: Rails can be butted if user requirement exceeds the rail length shown in the Table. Please consult NSK. *)The maximum length of fluoride low temperature chrome plated products is 4 000 (G = 80).

(5) Lubrication components

Refer to page A38 and D13 for the lubrication of linear guides.

1. Types of lubrication accessories

Figure 2 and Table 2 show grease fittings and tube fittings.

2. Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 2)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of M6 \times 1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

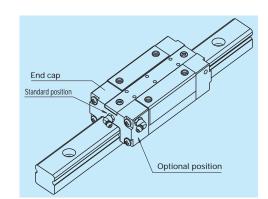


Fig. 2 Mounting position of lubrication accessories

(6) Dust proof components

1. Standard specification

To keep foreign matters from entering inside the ball slide, TS series has an end seal and NSK K1 on both ends, and bottom seals at the bottom. Also, the inner seal is a standard equipment.

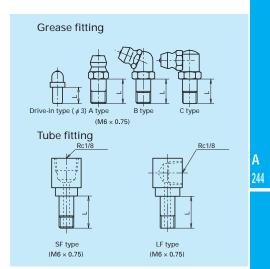


Fig. 1 Grease fitting and tube fitting

	7	Table 2	Unit: mm
Model No.	Dust proof	Grease fitting	Tube fitting
	specification	Thread body length L	Thread body length L
TS15	Standard*	5	-
1515	Protector	5	-
TS20	Standard*	5	6
1320	Protector	5	6
TS25	Standard*	5	6
1323	Protector	5	6
TS30	Standard*	5	6
1330	Protector	5	6
TC2F	Standard*	5	6
TS35	Protector	5	6

 NSK K1 units are mounted as a standard specification for TS series.

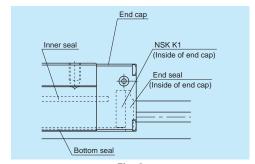


Fig. 3

2. Protector

It is possible to mount a protector to TS series as an option.

Please consult NSK as the protector for TS series can be installed only before shipping from the factory.

Fig. 4 and Table 3 show the ball slide length when protector is installed.

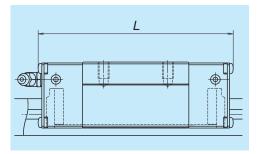


Fig. 4

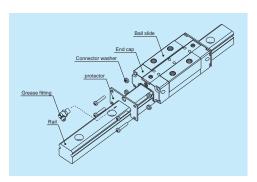


Fig. 5 Protector

Table 3 Dimension when equipped with the protector

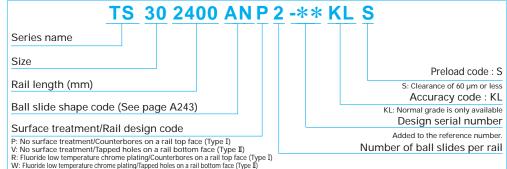
Model No.	Ball slide length L					
iviodei No.	Standard length Protector installation*		Increased thickness			
TS15	72.2	77.6	2.7			
TS20	87	92.8	2.9			
TS25	100	106.4	3.2			
TS30	115	123.4	4.2			
TS35	135.8	144.2	4.2			

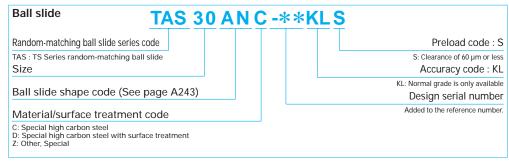
^{*)} Showing the ball slide length when one protector is installed in both ends.

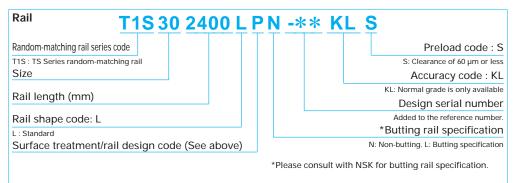
3. Cap to cover the bolt hole for rail mounting

Table 4 Caps to cover rail bolt hole

Model No.	Bolt to	Сар	Quantity
	secure rail	reference No.	/case
TS15	M4	LG-CAP/M4	20
TS20	M5	LG-CAP/M5	20
TS25	M6	LG-CAP/M6	20
TS30, TS35	M8	LG-CAP/M8	20

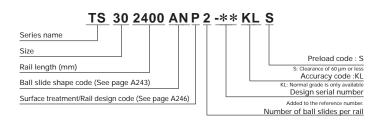

Note: Cap to cover the bolt hole for rail mounting is exclusive for rail design of type I.

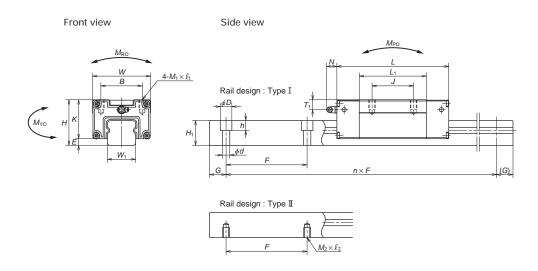

(7) Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

1. Reference number for assembly of random-matching ball slide and rail

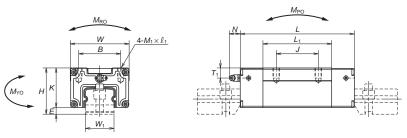




NSK

(8) Dimensions

Combinations of random-matching type

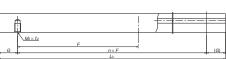


	Assembly Ball slide														
Model No.	Height		Width	Length		Моц	inting hole			Grease	fittino	9	width	height	Pitch
Wiodel We.	H _{±0.1}	Ε	W	L	В	J	$M \times \text{pitch} \times \ell_{\scriptscriptstyle 1}$	L ₁	К	Hole size	<i>T</i> ₁	N	W₁	H_1	F
TS15AN	28	3	34	72.2	26	26	M4×0.7×6	39	25	ø 3	6.5	(5)	15	14	120
TS20AN	30	3	44	87	32	36	M5×0.8×8	50	27	M6×0.75	6.5	(14)	20	15	120
TS25AN	40	4	48	100	35	35	M6×1×9	58	36	M6×0.75	9.5	(14)	23	20	120
TS30AN	45	6.5	60	115	40	40	M8×1.25×10	70	38.5	M6×0.75	9.5	(14)	28	25	160
TS35AN	55	8	70	135.8	50	50	M8×1.25×12	81.8	47	M6×0.75	12	(14)	34	30	160

Remarks: 1) TS Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

Reference number for ball slide of random-matching type

TAS 30 AN C-**KLS Ball slide Random-matching ball slide series code Preload code : S TAS : TS Series random-matching ball slide S: Clearance of 60 µm or less Accuracy code: KL KL: Normal grade is only available
Design serial number Ball slide shape code (See page A243) Added to the reference number. Material/surface treatment code (See page A246)


Reference number for rail of random-matching type T1S30 2400 LPN -** KL S

Random-matching rail series code Preload code : S T1S : TS Series random-matching rail S: Clearance of 60 um or less Accuracy code: KL KL: Normal grade is only available Rail length (mm) Design serial number Rail shape code: L Added to the reference number. *Butting rail specification N: Non-butting. L: Butting specification Surface treatment/rail design code (See A246) *Please consult with NSK for butting rail specification.

> Rail design : Type I Rail design : Type II

Unit: mm

Rail					Basic load rating				Ball dia.	We	ight	
	Mounti	ng hole	G	Maximum	Dynamic	Static	Sta	tic mom	ent		Ball	Rail
	Type I	Type II		length	С	Co	M_{RO}	M_{PO}	$M_{\scriptscriptstyle YO}$	D_{w}	slide	
	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(Reference)	$L_{ m 0max}$	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
	4.5×7.5×5.3	M4×0.7×6	20	1 960	9 800	11 800	92	63.5	63.5	3.968	0.21	1.5
	6×9.5×8.5	M5×0.8×8	20	2 920	15 700	19 100	196	137	137	4.762	0.37	2.1
	7×11×9	M6×1×9	20	4 000	21 800	26 000	320	217	217	5.556	0.47	3.4
	9×14×12	M8×1.25×12	20	4 040*	31 000	37 500	565	395	395	6.350	0.77	5.3
	9×14×12	M8×1.25×12	20	4 040*	46 500	53 000	970	635	635	7.937	1.3	7.7

²⁾ The basic dynamic load rating C is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. To convert C to C100 for a 100 km fatigue life, divide C by 1.26.

³⁾ Consult with NSK when using a TS series in a single rail configuration.

^{*} The maximum length of fluoride low temperature chrome plated products is 4 000 (G = 80).

1. RA Series

A251

2. LA Series

A269

A-5-2 Machine Tools

A249 A250

A-5-2.1 RA Series

(1) Features

1. Super-high load capacity

By installing rollers that are the largest possible diameter and length within the existing standard cross-section dimension in a rational layout based on analysis technology, we have realized the world's highest load capacity,* far superior to conventional roller guides. Super-long life is achieved and impact load can be sufficiently handled.

* Compared with products of the same size, as of September 1, 2003, researched by NSK.

2. Super-high rigidity

Using NSK's advanced analysis technology, we pursued a complete, optimal design, down to the detailed shape of roller slides and rails, thereby realizing super-high rigidity superior to that of competitor's roller guides.

3. Super-high motion accuracy

NSK has developed its own unique method of simulating rolling element passage vibration and method of designing optimal roller slide specifications for damping roller passage vibration. These developments have dramatically enhanced roller slide motion accuracy for the RA series.

4. Smooth motion

Installing a retaining piece between rollers and restraining the skew peculiar to roller bearings achieve smooth motion.

5. Low friction

Using rollers for rolling elements helps minimize dynamic friction.

6. Fast delivery

Lineup of random-matching rails and roller slides supports random matching and facilitates fast delivery. (RA25 to RA65)

Fig. 1 RA Series

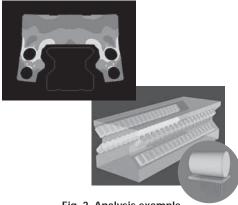


Fig. 2 Analysis example

Fig. 3 Random-matching type

(2) Roller slide shape

` '	•		
Roller slide Model	Shape/installation method	Ty High-load type	pe Super-high-load type
AN BN		AN	BN
AL BL		AL	BL
EM GM		EM	GM

(3) Accuracy and preload

1. Running parallelism of roller slide

Table 1

Unit: µm

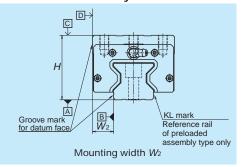
	Preloaded assembly Random-matching type						
Rail over all length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6			
- 50	2	2	2	4.5			
50 – 80	2	2	3	5			
80 – 125	2	2	3.5	5.5			
125 – 200	2	2	4	6			
200 – 250	2	2.5	5	7			
250 – 315	2	2.5	5	8			
315 – 400	2	3	6	9			
400 – 500	2	3	6	10			
500 - 630	2	3.5	7	12			
630 – 800	2	4	8	14			
800 – 1 000	2.5	4.5	9	16			
1 000 – 1 250	3	5	10	17			
1 250 – 1 600	4	6	11	19			
1 600 – 2 000	4.5	7	13	21			
2 000 – 2 500	5	8	15	22			
2 500 – 3 150	6	9.5	17	25			
3 150 – 3 500	9	16	23	30			

A251 A252

2. Accuracy standard

The preloaded assembly has four accuracy grades; Ultra precision P3, Super precision P4, High precision P5, and Precision P6 grades, while the random-matching type has Precision P6 grade.

· Tolerance of preloaded assembly


Table 2 Unit: μm								
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6				
Mounting height H	±8	±10	±20	±40				
Variation of H	3	5	7	15				
(All roller slides on a set of rails)								
Mounting width W_2 or W_3	±10	±15	±25	±50				
Variation of W_2 or W_3	3	7	10	20				
(All roller slides on reference rail)								
Running parallelism of face C to face A Running parallelism of face D to face B Shown in Table 1 and Fig. 4								

· Tolerance of random-matching type

Та	ıble 3 Unit: μm				
Accuracy grade Characteristics	Random-matching with precision grade P6				
Mounting height H	±20				
Variation of mounting height H	15①				
	30②				
Mounting width W ₂ or W ₃	±25				
Variation of mounting width W_2 or W_3	20				
Running parallelism of face C to face A Running parallelism of face D to face B	See Table 1 and Fig. 4				

Note: ① Variation on the same rail ② Variation on multiple rails

3. Assembled accuracy

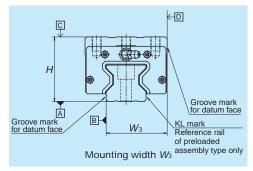


Fig. 4

4. Preload and rigidity

Preload is set for the RA series by slightly changing the size of the roller used. Applying preload enhances rigidity and minimizes elastic deformation.

With the characteristics of the roller guide, there is minimal variation in rigidity according to amount of preload, and it offers stable, high rigidity. Because of that, for the RA series, only medium preload type Z3 (preload: 10% of C, where C is the basic dynamic load rating) is set. Preload is shown in Table 4, and theoretical rigidity lines are shown in Fig. 6 and Fig. 7.

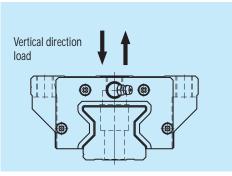
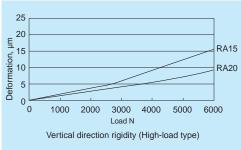
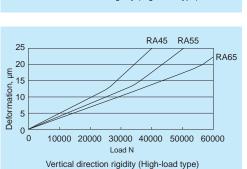




Fig. 5 Direction of load

Table 4 Preload Unit: N									
Model No.	High-load type Medium preload (Z3)	Super-high-load type Medium preload (Z3)							
RA15	1 030	1 300							
RA20	1 920	2 400							
RA25	2 920	3 540							
RA30	3 890	4 760							
RA35	5 330	6 740							
RA45	9 280	11 600							
RA55	12 900	16 800							
RA65	21 000	28 800							

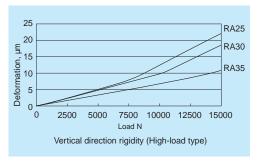
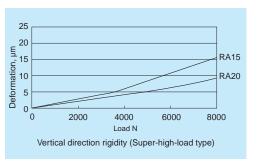
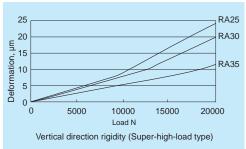




Fig. 6 Vertical direction theoretical rigidity line: High-load type (Roller slide shape: AN, AL, EM)

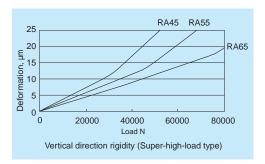


Fig. 7 Vertical direction theoretical rigidity line: Super-high-load type (Roller slide shape: BN, BL, GM)

(4) Available length of rail

Size

Table 5 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

RA30

3500

Table 5 Length limitation of rails

RA25

3000

UI Talis	l	Jnit : mm	
RA35	RA45	RA55	RA65
3500	3500	3500	3500

Note: Rails can be butted if user requirement exceeds the rail length shown in the Table. Please consult NSK.

(5) Installation

RA

Series

1. Permissible values of mounting error

RA15

2000

RA20

3000

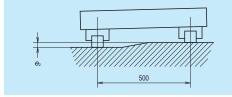
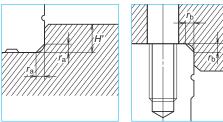



Fig. 8

Fig. 9

	Table 6									
Value	Preload				Mod	el No.				
value	Freibau	RA15	RA20	RA25	RA30	RA35	RA45	RA55	RA65	
Permissible values of	Z3	5	7	Q	11	13	17	19	30	
parallelism in two rails e ₁	23	3	,	,	' '	13	17	17	30	
Permissible values of parallelism (height) in two rails e ₂	1 /3				150 μm/	500 mm				

2. Shoulder height of the mounting face and corner radius r

rail datum face

Fig. 10 Shoulder for the Fig. 11 Shoulder for the roller slide datum face

		Table 7		Unit : mm
Model No.	Corner radius (maximun		Shoulde	r height
IVIOUEI IVO.	$r_{\rm a}$	$\Gamma_{\rm b}$	H'	H'
RA15	0.5	0.5	3	4
RA20	0.5	0.5	4	5
RA25	0.5	1	4	5
RA30	1	1	5	6
RA35	1	1	5	6
RA45	1.5	1	6	8
RA55	1.5	1.5	7	10
RA65	1.5	1.5	11	11

(6) Lubrication components

Refer to page A38 and D13 for the lubrication of linear guides.

1. Types of lubrication accessories

Figure 14 and Table 10 show grease fittings and tube fittings.

2. Mounting position of lubrication accessories

The standard position of grease fittings is the end face of roller slide. We mount them on a side of end cap for an option. (Fig. 12) Mounting positions are shown in Fig.12, 13, Table 8 and 9. Please consult NSK for installation of grease or tube fittings to the roller slide body or side of end cap.

When using a piping unit with thread of M6×1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

A lubrication hole can also be provided on the top of the end cap. Fig.13, Table 8 and 9 show the mounting position.

A spacer is required for AN and BN type of roller slides.

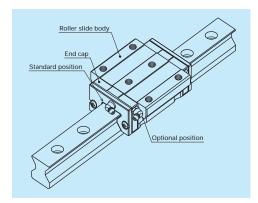


Fig. 12 Mounting position of lubrication accessories

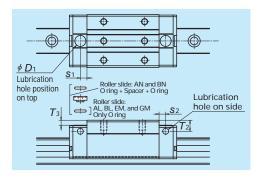


Fig.13 Top and side lubrication hole positions

Unit: mm

Unit: mm

Table 8	Top and side	lubrication	hole positions
---------	--------------	-------------	----------------

	Office							Offit. Hilli	
Model No.	Roller slide shape code		S_2	T_2	O ring (JIS)	Spacer	D_1	S ₁	T_3
RA15		ø 3	4	7	P5	Necessary	8.2	4.4	4.2
RA20		\$ 3	4	4	P6	_	9.2	5.4	0.2
RA25		M6×0.75	6	10	P7	Necessary	10.2	6	4.5
RA30	AN, BN	M6×0.75	5	10	P7	Necessary	10.2	6	3.5
RA35		M6×0.75	5.5	15	P7	Necessary	10.2	7	7.4
RA45		Rc 1/8	7.2	20	P7	Necessary	10.2	7.2	10.4
RA55		Rc 1/8	7.2	21	P7	Necessary	10.2	7.2	10.4
RA65		Rc 1/8	7.2	19	P7	_	10.2	7.2	0.4

Table 9	Top and side	lubrication	hole	positions

Model No.	Roller slide shape code	Grease fitting size	S_2	T_2	O ring (JIS)	<i>D</i> ₁	S ₁	T_3
RA15	AL, BL, EM, GM	φ 3	4	3	P5	8.2	4.4	0.2
RA20	EM, GM	\$ 3	4	4	P6	9.2	5.4	0.2
RA25		M6×0.75	6	6	P7	10.2	6	0.4
RA30		M6×0.75	5	7	P7	10.2	6	0.4
RA35	AL, BL, EM, GM	M6×0.75	5.5	8	P7	10.2	7	0.4
RA45		Rc 1/8	7.2	10	P7	10.2	7.2	0.4
RA55		Rc 1/8	7.2	11	P7	10.2	7.2	0.4
RA65	EM, GM	Rc 1/8	7.2	19	P7	10.2	7.2	0.4

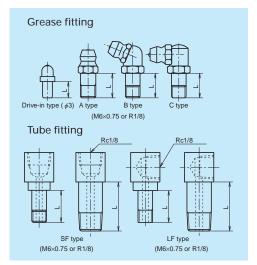


Fig. 14 Grease fitting and tube fitting

(7) Dust proof components

1. Standard specification

RA series is equipped with end, inner* and bottom seals to prevent foreign matter from entering the inside of the roller slide. Under normal applications, the RA series can be used without modification.

For severe usage conditions, optional rail covers** are available. Contact NSK for information on how to mount the cover.

- *) Inner seals for RA15 and RA20 are available as options.
- **) Rail cover is applicable to RA25 to RA65.

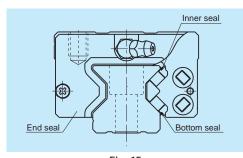


Fig. 15

	Unit: mm		
Model No.	Dust-proof	Greas fitting Drive-in fitting	Tube fitting
	specification	Thread body length L	Thread body length L
	Standard	5	-
RA15	With NSK K1	10	-
KAIS	Double seal	8	-
	Protector	8	-
	Standard	5	-
RA20	With NSK K1	10	-
KA20	Double seal	8	-
	Protector	10	-
	Standard	5	5
DAGE	With NSK K1	12	12
RA25	Double seal	10	9
	Protector	10	9
-	Standard	5	6
RA30	With NSK K1	14	15
KASU	Double seal	12	11
	Protector	12	11
	Standard	5	6
DAGE	With NSK K1	14	15
RA35	Double seal	12	11
	Protector	12	11
	Standard	8	17
RA45	With NSK K1	18	21.5
KA45	Double seal	14	17
	Protector	14	17
	Standard	8	17
RA55	With NSK K1	18	21.5
	Double seal	14	17
	Protector	14	17
	Standard	8	17
RA65	With NSK K1	20	20
KA65	Double seal	14	17
	Protector	14	17

Fig. 16 Rail cover

Table 11 Seal friction per roller slide (maximum value)

Table 11 Seal friction per roller slide (maximum value)					Unit : N			
Series Size	15	20	25	30	35	45	55	65
RA	4	5.5	5	5	6	8	8	14

A257 A258

Table 12 shows the dimension of linear guides equipped with the NSK K1.

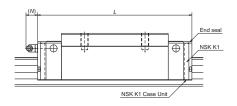


Table 12

Unit: mm

			Table 12			Offic. Hilli	
Model No.	Roller slide length	Roller slide model	Standard roller slide length	Roller slide length installed with NSK K1 Case Unit L	Per NSK K1 case unit thickness	Protruding area of the grease fitting N	
RA15	Standard	AN, AL, EM	70	79	4.5	(2)	
KAIS	Long	BN, BL, GM	85.4	94.4	4.5	(3)	
DA20	Standard	AN, EM	86.5	95.5	4.5	(2)	
RA20	Long	BN, GM	106.3	115.3	4.5	(3)	
DAGE	Standard	AN, AL,EM	97.5	107.5	5	(11)	
RA25	Long	BN, BL, GM	115.5	125.5	5	(11)	
RA30	Standard	AN, AL, EM	110.8	122.8	6	(11)	
KA3U	Long	BN, BL, GM	135.4	147.4	0		
DAGE	Standard	AN, AL, EM	123.8	136.8	, ,	(11)	
RA35	Long	BN, BL, GM	152	165	6.5	(11)	
RA45	Standard	AN, AL, EM	154	168	7	(1.4)	
KA45	Long	BN, BL, GM	190	204	/	(14)	
DAFE	Standard	AN, AL, EM	184	198	7	(1.4)	
RA55	Long	BN, BL, GM	234	248	7	(14)	
RA65	Standard	AN, EM	228.4	243.4	7 6	(2.4)	
KAOS	Long	BN, GM	317.5	317.5	7.5	(14)	

Roller slide length equipped with NSK K1 case unit=

(Standard roller slide length) + (Thickness of NSK K1 case unit × Number of NSK K1 case unit)

3. Double seal and protector

For RA Series, double seal and protector can be installed only before shipping from the factory. Table 13 shows the increased thickness when end seal and protector are installed.

Table 13

Model No.	Thickness of end seal	Thickness of protector
RA15	3	2.7
RA20	3	3.3
RA25	3.2	3.3
RA30	3.4	3.6
RA35	3.4	3.6
RA45	4	4.2
RA55	4	4.2
RA65	5	5.5

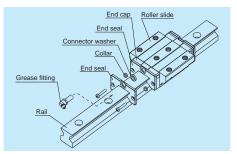


Fig. 17 Double seal

4. Rail cover

When the rail cover is used, use the cover bracket to secure the rail cover. Fig.19 shows the dimensions for the cover bracket. The required room at the end of the rail is:

- Inside: 10.5 mm or less
- Outside: 4 mm or less (Common to the models of RA25 to 65)
- Please confirm the interference with your machine at the stroke end.
- Machine stroke
- · Room for the end of the rail

The height of the rail with the rail cover is shown in Table 14.

5. Cap to cover the bolt hole for rail mounting

Table 15 Caps to cover rail bolt hole

Model No	Bolt to	Сар	Quantity
iviodei ivo.	secure rail	reference No.	/case
RA15	M4	LG-CAP/M4	20
RA20	M5	LG-CAP/M5	20
RA25	M6	LG-CAP/M6	20
RA30, RA35	M8	LG-CAP/M8	20
RA45	M12	LG-CAP/M12	20
RA55	M14	LG-CAP/M14	20
RA65	M16	LG-CAP/M16	20

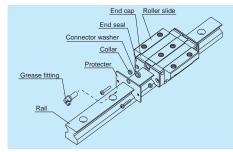


Fig. 18 Protector

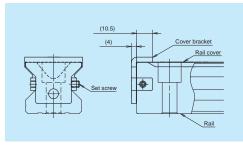
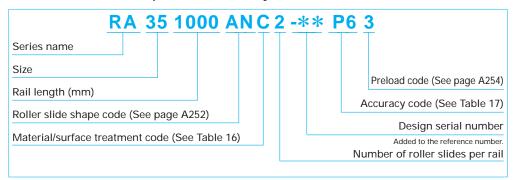


Fig. 19 End configuration of rail equipped with the rail cover

Table 14 Height of rails equipped with rail cover

Model No.	Standard height H ₁	Cover installation
RA25	24	24.25
RA30	28	28.25
RA35	31	31.25
RA45	38	38.3
RA55	43.5	43.8
RA65 55		55.3


A259 A260

(8) Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

1. Reference number for preloaded assembly

2. Reference number for random-matching type

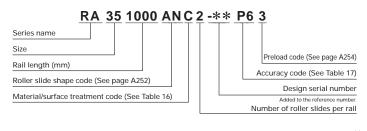
Rail R1A30	1000 L C	N -** P6 Z
Random-matching rail series code		Preload code : Z
R1A : RA Series random-matching rail		Z: Medium preload is only available
Size		Accuracy code
Dail langth (mm)		P6 and K6: Precision grade is only available.
Rail length (mm)		Design serial number
Rail shape code: L		Added to the reference number.
L : Standard		*Butting rail specification
Material/surface treatment code	See Table 16)	N: Non-butting. L: Butting specification
	,	*Please consult with NSK for butting rail specification.

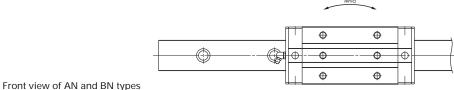
Reference number for assembly of random-matching roller slide and rail is the same as the coding of preloaded assembly. However, preload code is medium preload "Z".

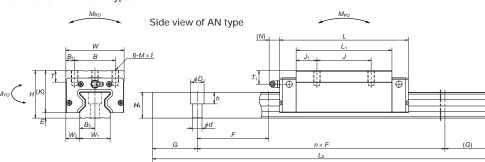
Table 16 Material/surface treatment code

Description
Special high carbon steel (NSK standard)
Special high carbon steel with surface treatment
Other, special

Table 17 Accuracy code


Accuracy	Standard (Without NSK K1)	With NSK K1
Ultra precision grade	P3	K3
Super precision grade	P4	K4
High precision grade	P5	K5
Precision grade	P6	K6


Note: Refer to Page A38 for NSK K1 lubrication unit.


A 24

(9) Dimensions RA-AN (High-load type)

RA-BN (Super-high-load type)

	A:	ssemb	ly						Rolle	er slide						
Model No.	Height			Width	Length		Mo	ounting hole						Grease	fittin	g
Model No.																
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	B_1	L_1	J_1	Κ	T	Hole size	T_1	Ν
RA15AN RA15BN	28	4	9.5	34	70 85.4	26	26	M4×0.7×6	4	44.8 60.2	9.4 17.1	24	8	ф3	8	3
RA20AN RA20BN	30	5	12	44	86.5 106.3	32	36 50	M5×0.8×6	6	57.5 77.3	10.75 13.65	25	12	ф3	4	3
RA25AN RA25BN	40	5	12.5	48	97.5 115.5	35	35 50	M6×1×9	6.5	65.5 83.5	15.25 16.75	35	12	M6×0.75	10	11
RA30AN RA30BN	45	6.5	16	60	110.8 135.4	40	40 60	M8×1.25×11	10	74 98.6	17 19.3	38.5	14	M6×0.75	10	11
RA35AN RA35BN	55	6.5	18	70	123.8 152	50	50 72	M8×1.25×12	10	83.2 111.4	16.6 19.7	48.5	15	M6×0.75	15	11
RA45AN RA45BN	70	8	20.5	86	154 190	60	60 80	M10×1.5×17	13	105.4 141.4	22.7 30.7	62	17	Rc1/8	20	14
RA55AN RA55BN	80	9	23.5	100	184 234	75	75 95	M12×1.75×18	12.5	128 178	26.5 41.5	71	18	Rc1/8	21	14
RA65AN RA65BN	90	13	31.5	126	228.4 302.5	76	70 120	M16×2×20	25	155.4 229.5	42.7 54.75	77	22	Rc1/8	19	14

Remarks: 1) Select either one of dimensions for pitch of holes for rail fixing F without parenthesis for standard dimension and with parenthesis for semi-standard dimension.

Reference number for roller slide of random-matching type

Random-matching roller slide series code

Random-matching roller slide series code

Random-matching roller slide series code

Random-matching roller slide

Size

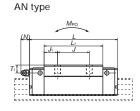
Roller slide shape code (See page A252)

Material/surface treatment code (See Table 16)

Random-matching roller slide

2: Medium preload code : Z

2: Medium preload sony available


Accuracy code

P6 and K6: Precision grade is only available

Design serial number

Added to the reference number.

AN and BN types

(N) L L 1

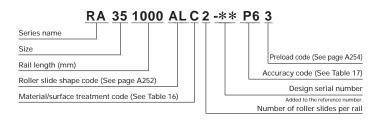
BN type

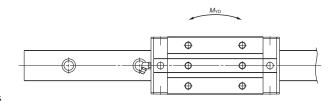

Reference number for rail of random-matching type

6-M × Pitch

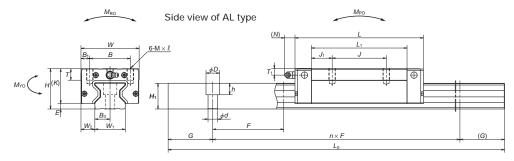
Depth &

R1A30 1000 LCN -** P6 Z Random-matching rail series code Preload code : Z R1A : RA Series random-matching rail Z: Medium preload is only available Size Accuracy code P6 and K6: Precision grade is only available. Rail length (mm) Design serial number Added to the reference number. Rail shape code: L *Butting rail specification L : Standard N: Non-butting. L: Butting specification Material/surface treatment code (See Table 16) *Please consult with NSK for butting rail specification


			Rail					Bas	sic load rat	ing		We	ight
Width	Height	Pitch	Mounting		G	Maximum	Dynamic	Static	St	atic mome	nt	Roller	Rail
			bolt hole			length	С	C_{0}	M_{RO}	M_{PO}	$M_{\scriptscriptstyle YO}$	slide	
W_1	H₁	F	$d \times D \times h$	B ₃	(Reference)	$L_{\scriptscriptstyle Omax}$	(N)	(N)	(N·m)	(N·m)	(N·m)	(kg)	(kg/m)
15	16.3	60 (30)	4.5×7.5×5.3	7.5	20	2 000	10 300 13 000	27 500 37 000	260 350	210 375	210 375	0.21	1.6
20	20.8	60 (30)	6×9.5×8.5	10	20	3 000	19 200 24 000	52 500 70 000	665 890	505 900	505 900	0.38	
23	24	30	7×11×9	11.5	20	3 000	29 200 35 400	72 700 92 900	970 1 240	760 1 240	760 1 240	0.60 0.91	3.4
28	28	40	9×14×12	14	20	3 500	38 900 47 600	93 500 121 000	1 670 2 170	1 140 1 950	1 140 1 950	1.0 1.3	4.9
34	31	40	9×14×12	17	20	3 500	53 300 67 400	129 000 175 000	2 810 3 810	1 800 3 250	1 800 3 250	1.6 2.1	6.8
45	38	52.5	14×20×17	22.5	22.5	3 500	92 800 116 000	229 000 305 000	6 180 8 240	4 080 7 150	4 080 7 150	3.0 4.1	10.9
53	43.5	60	16×23×20	26.5	30	3 500	129 000 168 000	330 000 462 000	10 200 14 300	7 060 13 600	7 060 13 600	4.9 6.7	14.6
63	55	75	18×26×22	31.5	35	3 500	210 000 288 000	504 000 756 000	19 200 28 700	12 700 28 600	12 700 28 600	9.3 12.2	22.0


²⁾ RA25 to RA65 are available in random matching.

³⁾ The basic load rating complies with ISO standards (ISO14728-1, ISO14728-2). If the basic dynamic load rating (100 km rating) is converted into 50 km rating, use the following formula: $C_{50\,\mathrm{km}} = 1.23 \times C_{100\,\mathrm{km}}$


RA-AL (High-load type)

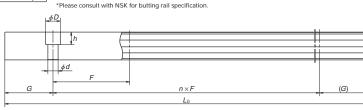
RA-BL (Super-high-load type)

	A:	ssemb	oly						Rolle	er slide						
Model No.	Height			Width	Length		Mounting hole							Grease	fittin	g
Wiodel No.	Н	Ε	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	B ₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
RA15AL RA15BL	24	4	9.5	34	70 85.4	26	26	M4×0.7×5.5	4	44.8 60.2	9.4 17.1	20	8	ф3	4	3
RA25AL RA25BL	36	5	12.5	48	97.5 115.5	35	35 50	M6×1×8	6.5	65.5 83.5	15.25 16.75	31	12	M6×0.75	6	11
RA30AL RA30BL	42	6.5	16	60	110.8 135.4	40	40 60	M8×1.25×11	10	74 98.6	17 19.3	35.5	14	M6×0.75	7	11
RA35AL RA35BL	48	6.5	18	70	123.8 152	50	50 72	M8×1.25×12	10	83.2 111.4	16.6 19.7	41.5	15	M6×0.75	8	11
RA45AL RA45BL	60	8	20.5	86	154 190	60	60 80	M10×1.5×16	13	105.4 141.4	22.7 30.7	52	17	Rc1/8	10	14
RA55AL RA55BL	70	9	23.5	100	184 234	75	75 95	M12×1.75×18	12.5	128 178	26.5 41.5	61	18	Rc1/8	11	14

Remarks: 1) Select either one of dimensions for pitch of holes for rail fixing F without parenthesis for standard dimension and with parenthesis for semi-standard dimension.

Reference number for roller slide of random-matching type

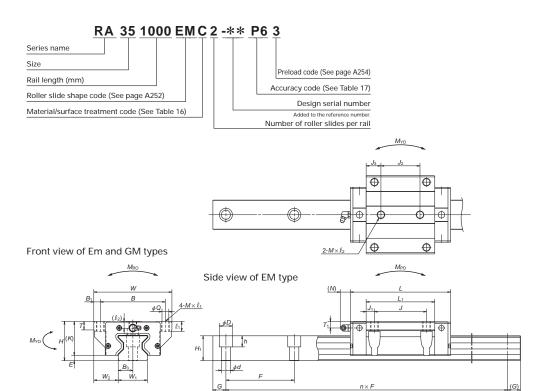
RAA 35 AL C -**P6 Z Roller slide Random-matching roller slide series code Preload code : Z RAA: RA Series random-matching roller slide Z: Medium preload is only available Accuracy code P6 and K6: Precision grade is only available Roller slide shape code (See page A252) Design serial number Added to the reference number. Material/surface treatment code (See Table 16)


AL and BL types AL type T1 1 1 W_2

Reference number for rail of random-matching type R1A30 1000 LCN -** P6 Z Rail

Random-matching rail series code Preload code : Z R1A : RA Series random-matching rail Z: Medium preload is only available Accuracy code P6 and K6: Precision grade is only available. Rail length (mm) Design serial number Rail shape code: L *Butting rail specification L : Standard N: Non-butting. L: Butting specification Material/surface treatment code (See Table 16)

			Rail					Bas	sic load rat	ing		We	ight
Width	Height	Pitch	Mounting		G	Maximum	Dynamic	Static	St	atic mome	atic moment		Rail
			bolt hole			length	С	C_{0}	M_{RO}	M_{PO}	M _{YO}	slide	
W_1	H_1	F	$d \times D \times h$	B_3	(Reference)	L_{0max}	(N)	(N)	(N·m)	(N·m)	(N·m)	(kg)	(kg/m)
15	16.3	60 (30)	4.5×7.5×5.3	7.5	20	2 000	10 300 13 000	27 500 37 000	260 350	210 375	210 375	0.17 0.25	
23	24	30	7×11×9	11.5	20	3 000	29 200 35 400	72 700 92 900	970 1 240	760 1 240	760 1 240	0.45 0.80	3.4
28	28	40	9×14×12	14	20	3 500	38 900 47 600	93 500 121 000	1 670 2 170	1 140 1 950	1 140 1 950	0.85 1.1	4.9
34	31	40	9×14×12	17	20	3 500	53 300 67 400	129 000 175 000	2 810 3 810	1 800 3 250	1 800 3 250	1.2 1.7	6.8
45	38	52.5	14×20×17	22.5	22.5	3 500	92 800 116 000	229 000 305 000	6 180 8 240	4 080 7 150	4 080 7 150	2.5 3.4	10.9
53	43.5	60	16×23×20	26.5	30	3 500	129 000 168 000	330 000 462 000	10 200 14 300	7 060 13 600	7 060 13 600	4.1 5.7	14.6

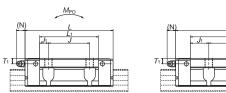

2) RA25 to RA55 are available in random matching.

If the basic dynamic load rating (100 km rating) is converted into 50 km rating, use the following formula: $C_{50 \text{ km}} = 1.23 \times C_{100 \text{ km}}$

³⁾ The basic load rating complies with ISO standards (ISO14728-1, ISO14728-2).

A268

RA-EM (High-load type) RA-GM (Super-high-load type)


	As	sem	bly						Roller sli	de						
Model No.	Height			Width	dth Length Mounting hole											
Model No.																
	Н	Ε	W_2	W	L	В	J	J_2	$M \times \text{pitch} \times \ell_1(\ell_2)$	Q_2	B_1	L ₁	J_1	$J_{\scriptscriptstyle 3}$	Κ	Τ
RA15EM RA15GM	24	4	16	47	70 85.4	38	30	26	M5×0.8×8.5 (6.5)	4.4	4.5	44.8 60.2	7.4 15.1	9.4 17.1	20	8
RA20EM RA20GM	30	5	21.5	63	86.5 106.3	53	40	35	M6×1×9.5 (8)	5.3	5	57.5 77.3	8.75 18.65	11.25 21.15	25	10
RA25EM RA25GM	36	5	23.5	70	97.5 115.5	57	45	40	M8×1.25×10 (11)	6.8	6.5	65.5 83.5	10.25 19.25	12.75 21.75	31	11
RA30EM RA30GM	42	6.5	31	90	110.8 135.4	72	52	44	M10×1.5×12 (12.5)	8.6	9	74 98.6	11 23.3	15 27.3	35.5	11
RA35EM RA35GM	48	6.5	33	100	123.8 152	82	62	52	M10×1.5×13 (7)	8.6	9	83.2 111.4	10.6 24.7	15.6 29.7	41.5	12
RA45EM RA45GM	60	8	37.5	120	154 190	100	80	60	M12×1.75×15 (10.5)	10.5	10	105.4 141.4	12.7 30.7	22.7 40.7	52	13
RA55EM RA55GM	70	9	43.5	140	184 234	116	95	70	M14×2×18 (13)	12.5	12	128 178	16.5 41.5	29 54	61	15
RA65EM RA65GM	90	13	53.5	170	228.4 302.5	142	110	82	M16×2×24 (18.5)	14.6	14	155.4 229.5	22.7 59.75	36.7 73.75	77	22

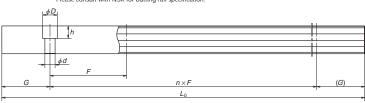
Remarks: 1) Select either one of dimensions for pitch of holes for rail fixing F without parenthesis for standard dimension and with parenthesis for semi-standard dimension.

Reference number for roller slide of random-matching type

RAA 35 EM C -P6 Z** Roller slide Random-matching roller slide series code Preload code : Z RAA: RA Series random-matching roller slide Z: Medium preload is only available Accuracy code P6 and K6: Precision grade is only available Roller slide shape code (See page A252) Design serial number Added to the reference number. Material/surface treatment code (See Table 16)

EM and GM types

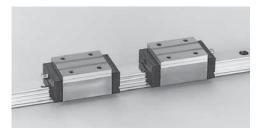
GM type


EM type

 $4\text{-M} \times \ell_1$

Reference number for rail of random-matching type

R1A30 1000 LCN -** P6 Z Random-matching rail series code Preload code : Z R1A : RA Series random-matching rai Z: Medium preload is only available Size Accuracy code P6 and K6: Precision grade is only available. Rail length (mm) Design serial number Rail shape code: L Added to the reference number. *Butting rail specification L : Standard Material/surface treatment code (See Table 16) N: Non-butting. L: Butting specification *Please consult with NSK for butting rail specification.



						Rail					Basic	load rat	ing		Weig	ıht
Grease	fitti	ng	Width	Height	Pitch	Mounting		G	Maximum	Dynamic	Static	Stat	ic mor	nent	Roller	Rail
Hole						bolt hole			length	С	C _o	M_{RO}	M _{PO}	M _{YO}	slide	
size	T_1	Ν	W_1	H_1	F	$d \times D \times h$	B_3	(Reference)	L_{0max}	(N)	(N)	(N·m)	(N·m)	(N·m)	(kg)	(kg/m)
ф3	4	3	15	16.3	60 (30)	4.5×7.5×5.3	7.5	20	2 000	10 300 13 000	27 500 37 000			210 375	0.21 0.28	1.6
ф3	4	3	20	20.8	60 (30)	6×9.5×8.5	10	20	3 000	19 200 24 000	52 500 70 000	665 890	505 900	505 900	0.45 0.65	2.6
M6×0.75	6	11	23	24	30	7×11×9	11.5	20	3 000	29 200 35 400	72 700 92 900	970 1 240	760 1 240	760 1 240	0.80 1.1	3.4
M6×0.75	7	11	28	28	40	9×14×12	14	20	3 500	38 900 47 600	93 500 121 000	1 670 2 170	1 140 1 950	1 140 1 950	1.3 1.7	4.9
M6×0.75	8	11	34	31	40	9×14×12	17	20	3 500	53 300 67 400	129 000 175 000	2 810 3 810	1 800 3 250	1 800 3 250	1.7 2.3	6.8
Rc1/8	10	14	45	38	52.5	14×20×17	22.5	22.5	3 500	92 800 116 000	229 000 305 000	6 180 8 240	4 080 7 150	4 080 7 150	3.2 4.3	10.9
Rc1/8	11	14	53	43.5	60	16×23×20	26.5	30	3 500	129 000 168 000	330 000 462 000	10 200 14 300	7 060 13 600	7 060 13 600	5.4 7.5	14.6
Rc1/8	19	14	63	55	75	18×26×22	31.5	35	3 500	210 000 288 000	504 000 756 000		12 700 28 600		12.2 16.5	22.0

²⁾ RA25 to RA65 are available in random matching.

³⁾ The basic load rating complies with ISO standards (ISO14728-1, ISO14728-2). If the basic dynamic load rating (100 km rating) is converted into 50 km rating, use the following formula: $C_{50 \text{ km}} = 1.23 \times C_{100 \text{ km}}$

A-5-2.2 LA Series

(1) Features

1. High rigidity and high load carrying capacity

A set of three ball grooves is made on both sides. This contributes to the increased rigidity and load carrying capacity. The top and bottom groove are formed in the circular arc with a closer radius of ball, which ensures great rigidity and load carrying capacity. With the Gothic arch center groove, rigidity and load carrying capacity are further increased.

2. Moderate friction

A well-balanced combination of 2-point contacts at the top and bottom grooves and 4 points contact at the center groove provides moderate friction while ensuring rigidity by appropriate preload.

3. Load distribution four directions

Contact angle is set at 45 degrees in all grooves, dispersing the load to four rows irrespective of load direction. This realizes equal rigidity and load carrying capacity in vertical and lateral directions and provides well-balanced design.

4. Strong against shock load

Load from any direction, vertical and lateral, is received by four rows at all times. The number of rows which receive the load is larger than in other linear guides, making this series stronger against shock load.

5. High accuracy

Fixing the measuring rollers is easy thanks to the Gothic arch groove. Ball-groove measuring is accurate and simple. This benefits a highly precise and stable manufacturing.

6. The dust protection design

The rail's cross section is designed as simple as possible. Furthermore, the improved seal enhances the sealing function. Inner seal is available as an option.

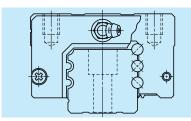


Fig. 1 LA Series

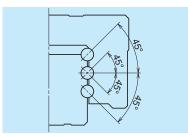


Fig. 2 Super rigidity design

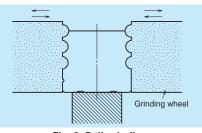


Fig. 3 Rail grinding

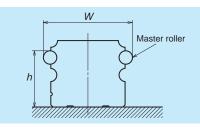


Fig. 4 Measuring groove accuracy

(2) Ball slide shape

	-		
Ball slide Model	Shape/installation method	Type High-load type Super-high-load type	
AN BN		AN L1 BN L1	ļ
AL BL		AL BL L1	
EL GL		EL L1 GL L1	<u> </u>
FL HL		FL L1	

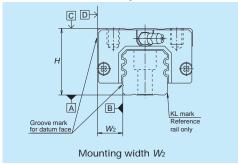
(3) Accuracy and preload

1. Running parallelism of ball slide

Table 1

Unit: um

	Onit: μm									
		Preloaded assembly (not random matchin	g)						
Rail over all length (mm) over or less	Ultra precision Page 1	Super precision P4	High precision P5	Precision grade P6						
- 50	2	2	2	4.5						
50 – 80	2	2	3	5						
80 – 125	2	2	3.5	5.5						
125 – 200	2	2	4	6						
200 – 250	2	2.5	5	7						
250 – 315	2	2.5	5	8						
315 – 400	2	3	6	9						
400 - 500	2	3	6	10						
500 - 630	2	3.5	7	12						
630 – 800	2	4.5	8	14						
800 – 1000	2.5	5	9	16						
1000 – 1250	3	6	10	17						
1250 – 1600	4	7	11	19						
1600 – 2000	4.5	8	13	21						
2000 – 2500	5	10	15	22						
2500 – 3150	6	11	17	25						
3150 – 4000	9	16	23	30						


A269 A270

2. Accuracy standard

LA series have four degrees such as ultra precision P3, super precision P4, high precision P5, and precision grade P6.

	Table 2 Unit: μι											
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6								
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15								
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20								
Running parallelism of face C to face A Running parallelism of face D to face B		Shown in Tabl	e 1 and Fig. 5									

3. Assembled accuracy

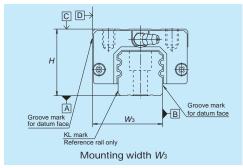


Fig. 5

4. Preload and rigidity

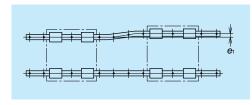
Table 3 shows preload and rigidity of LA Series.

LA Series has two types of preload Z3 (medium preload) and Z4 (heavy preload).

Table 3

	Model No.	Preloa	ad (N)	Rigidity	(N/µm)					
	Model No.	Medium preload Z3	Heavy preload Z4	Medium preload Z3	Heavy preload Z4					
	LA25 AL, AN, EL, FL	1670	2110	475	550					
/pe	LA30 AL, AN, EL, FL	2450	3140	705	835					
ad ty	LA35 AL, AN, EL, FL	3450	4300	825	970					
High-load type	LA45 AL, AN, EL, FL	5050	6350	1100	1240					
Hig	LA55 AL, AN, EL, FL	A55 AL, AN, EL, FL 8100 10200 1400		1400	1540					
	LA65 AN, EL, FL	13800	18800	1730	2030					
be	LA25 BL, BN, GL, HL	2260	2840	700	820					
d ty	LA30 BL, BN, GL, HL	3250	4050	1000	1180					
ı-loa	LA35 BL, BN, GL, HL	4450	5650	1200	1400					
high	LA45 BL, BN, GL, HL	6150	7750	1450	1640					
Super-high-load type	LA55 BL, BN, GL, HL	9550	12100	1840	2020					
Su	LA65 BN, GL, HL	18000	24400	2450	2840					

(4) Available length of rail


Show the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Ur									
Series Size	25	25 30 35 45 55							
LA	3960	4000	4000	3990	3960	3900			

Note: Rails can be butted if user requirement exceeds the rail length shown in the Table. Please consult NSK.

(5) Installation

1. Permissible values of mounting error

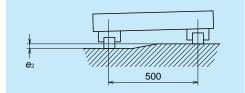
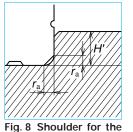



Fig. 6

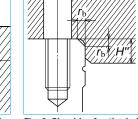

Fig. 7

			Table 5				Unit: µm
Value	Preload			Mode	el No.		
value	Freibau	LA25	LA30	LA35	LA45	LA55	LA65
Permissible values of	Z3	15	17	20	25	30	40
parallelism in two rails e1	Z4	13	15	17	20	25	30
Permissible values of	70 74	185 μm/500 mm					
parallelism (height) in two rails e2	Z3, Z4			røs µm	/500 mm		

2. Shoulder height of the mounting face and corner radius r

rail datum face

re Fig. 9 Shoulder for the ball slide datum face

Table 6 Unit: mm									
Model No.	Corner radiu	s (maximum)	Shoulde	r height					
Model No.	$\Gamma_{\rm a}$	$r_{\rm b}$	H'	H"					
LA25	0.5	0.5	5	5					
_LA30	0.5	0.5	6	6					
LA35	0.5	0.5	6	6					
LA45	0.7	0.7	8	8					
LA55	0.7	0.7	10	10					
LA65	1	1	11	11					

27

(6) Lubrication components

Refer to page A38 and D13 for the lubrication of linear guides.

1. Types of lubrication accessories

Figure 10 and Table 7 show grease fittings and tube fittings.

2. Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 11).

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of M6×1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

Table 7 Unit: mm								
Model No.	Dust proof	Grease fitting	Tube fitting					
	specification	Thread body length L	Thread body length L					
	Standard	5	6*					
LA25	With NSK K1	14	13*					
LAZS	Double seal	10	9*					
	Protector	10	9*					
	Standard	5	6					
LA30	With NSK K1	14	13					
LASU	Double seal	12	11					
	Protector	12	11					
	Standard	5	6					
LA35	With NSK K1	14	13					
LASS	Double seal	12	11					
	Protector	12	11					
	Standard	8	17					
LA45	With NSK K1	18	21.5					
LA45	Double seal	14	17					
	Protector	14	17					
	Standard	8	17					
LA55	With NSK K1	18	21.5					
LASS	Double seal	14	17					
	Protector	14	17					
	Standard	8	17					
LA65	With NSK K1	22	25.5					
LAOS	Double seal	16	19					
*) 0 1	Protector	16	17					

^{*)} Only available for AN and BN type ball slides.

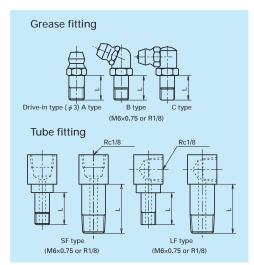


Fig. 10 Grease fitting and tube fitting



Fig. 11 Mounting position of lubrication accessories

(7) Dust proof components

1. Standard Specification

To keep foreign matters from entering inside the ball slide, LA Series has an end seal on both ends, and bottom seals at the bottom. Inner seal is available as an option.

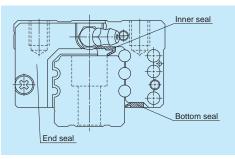
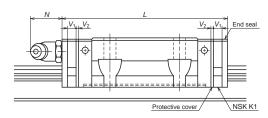



Fig. 12

Table 8 Seal friction per ball slide (maximum value) Unit: N Size 25 65 30 35 45 Series 17 23 LA 11 11 12 17

2. NSK K1™

Table 9 shows the dimension of linear guides equipped with the NSK K1.

Table 9

Unit: mm

Model No.	Model No. Ball slide model Standard Ball ins		Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V ₂	Protruding area of the grease fitting N		
LA25	Standard	AL, AN, EL, FL	79.8	91.8	5.0	1.0	(14)	
LAZS	Long	BL, BN, GL, HL	107.8	119.8	3.0	1.0	(14)	
LA30	Standard	AL, AN, EL, FL	100.2	113.2	E E	1.0	(14)	
LASU	Long	BL, BN, GL, HL	126.2	139.2		1.0	(14)	
1.405	Standard	AL, AN, EL, FL	110.6	123.6	5.5	1.0	(14)	
LA35	Long	BL, BN, GL, HL	144.6	157.6	3.5	1.0	(14)	
LA45	Standard	AL, AN, EL, FL	141.4	156.4	6.5	1.0	(15)	
LA45	Long	BL, BN, GL, HL	173.4	188.4	0.5	1.0		
LAFE	Standard	AL, AN, EL, FL	165.4	180.4	4.5	1.0	(4.5)	
LA55	Long	BL, BN, GL, HL	203.4	218.4	6.5	1.0	(15)	
	Standard	AN, EL, FL	196.2	214.2	0.0	1.0	(14)	
LA65	Long	BN, GL, HL	256.2	274.2	8.0	1.0	(16)	

Note: Ball slide length equipped NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, $V_1 \times N$ Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

3. Double seal and protector

For LA series, double seal and protector can be installed only before shipping from the factory. Please consult with NSK.

Table 10 shows the increased thickness of V_1 and V_2 when end seals and protectors are installed (Fig. 15).

	Table 10	Unit: mm			
Model No.	Thickness	Thickness			
woder No.	of end seal: V ₁	of protector: V2			
LA25	3.2	3.6			
LA30	4.4	4.2			
LA35	4.4	4.2			
LA45	5.5	4.9			
LA55	5.5	4.9			
L A65	6.5	5.5			

4. Cap to cover the bolt hole for rail mounting Table 11 Caps to cover rail bolt hole

Model No.	Bolt to	Сар	Quantity
iviouei ivo.	secure rail reference No.		/case
LA25	M6	LG-CAP/M6	20
LA30, LA35	M8	LG-CAP/M8	20
LA45	M12	LG-CAP/M12	20
LA55	M14	LG-CAP/M14	20
LA65	M16	LG-CAP/M16	20

5. Bellows

Make tap holes to the rail end face to fix the bellows mounting plate.

NSK processes tap holes to the rail end face when ordered with a linear guide.

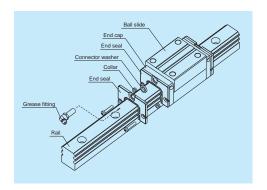


Fig. 13 Double seal

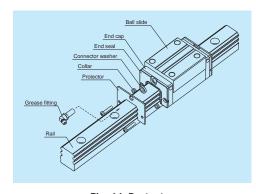


Fig. 14 Protector

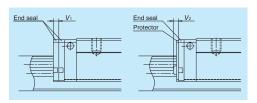


Fig. 15

Dimension tables of bellows LA Series

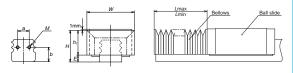


Fig. 16 An installed bellows

Bellows reference number J A A 30 L 08 Bellows Bellows for the ends B: Middle bellows Bellows for LA series Bellows reference number Number of BL (fold number) N: High type L: Low type Size number of linear guide

Table. 12 Dimensions of bellow

Unit:	mm

Model No.	Н	h ₁	Ε	W	Р	а	b	Length of BL	Tap (M) xdepth
JAA25L	35	29.5	5.5	55	12	12	13.8	17	M3×5
JAA25N	39	33.5	5.5	61	15	12	13.8	17	M3×5
JAA30L	41	33.5	7.5	60	12	14	17.5	17	M4×6
JAA30N	44	36.5	7.5	66	15	14	17.5	17	M4×6
JAA35L	47	39.5	7.5	72	15	15	18.8	17	M4×6
JAA35N	54	46.5	7.5	82	20	15	18.8	17	M4×6
JAA45L	59	49	10	93	20	25	22.5	17	M5×8
JAA45N	69	59	10	113	30	25	22.5	17	M5×8
JAA55L	69	57	12	101	20	35	27.1	17	M5×8
JAA55N	79	67	12	121	30	35	27.1	17	M5×8
JAA65N	89	75	14	131	30	40	33.3	17	M6×12

Table. 13 Numbers of folds	(BL) and length of bellows
----------------------------	----------------------------

Unit: mm

Tuno	Model No.	Length of BL	2	4	6	8	10	12	14	16	18	20
Туре	IVIOUEI IVO.	Lmin	34	68	102	136	170	204	238	272	306	340
	14.4051	Stroke	134	268	402	536	670	804	938	1072	1206	1340
Low type	JAA25L	Lmax	168	336	504	672	840	1008	1176	1344	1512	1680
I II ada da mara	IA A OFNI	Stroke	176	352	528	704	880	1056	1232	1408	1584	1760
High type	JAA25N	Lmax	210	420	630	840	1050	1260	1470	1680	1890	2100
	14 4 201	Stroke	134	268	402	536	670	804	938	1072	1206	1340
Low type	JAA30L	Lmax	168	336	504	672	840	1008	1176	1344	1512	1680
I Park I	14 4 0 0 4 1	Stroke	176	352	528	704	880	1056	1232	1408	1584	1760
High type	JAA30N	Lmax	210	420	630	840	1050	1260	1470	1680	1890	2100
1 4	14 4 251	Stroke	176	352	528	704	880	1056	1232	1408	1584	1760
Low type	JAA35L	Lmax	210	420	630	840	1050	1260	1470	1680	1890	2100
I Bala kuma	14 4 2 5 1	Stroke	246	492	738	984	1230	1476	1722	1968	2214	2460
High type	JAA35N	Lmax	280	560	840	1120	1400	1680	1960	2240	2520	2800
Lovertuno	100451	Stroke	246	492	738	984	1230	1476	1722	1968	2214	2460
Low type	JAA45L	Lmax	280	560	840	1120	1400	1680	1960	2240	2520	2800
High tupo	JAA45N	Stroke	386	772	1158	1544	1930	2316	2702	3088	3474	3860
High type	JAA45IN	Lmax	420	840	1260	1680	2100	2520	2940	3360	3780	4200
Louistino	JAA55L	Stroke	246	492	738	984	1230	1476	1722	1968	2214	2460
Low type	JAASSL	Lmax	280	560	840	1120	1400	1680	1960	2240	2520	2800
I limb to us a	14 4 5 5 1	Stroke	386	772	1158	1544	1930	2316	2702	3088	3474	3860
High type	JAA55N	Lmax	420	840	1260	1680	2100	2520	2940	3360	3780	4200
Low/high	IAAAENI	Stroke	386	772	1158	1544	1930	2316	2702	3088	3474	3860
type	JAA65N	Lmax	420	840	1260	1680	2100	2520	2940	3360	3780	4200

Note (1) Bellows for LA65 is for both low and high types.

Remarks: Values of odd number BLs are obtained by adding values of the even number BLs on both sides, then dividing the sum by two.

(8) Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

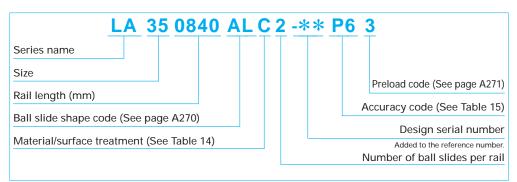
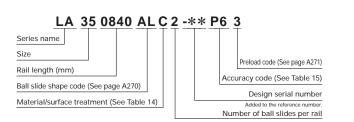
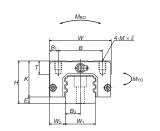


Table 14 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special

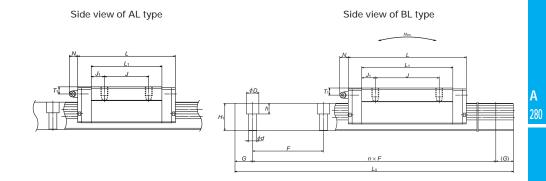
Table 15 Accuracy code


Accuracy	Standard (Without NSK K1)	With NSK K1
Ultra precision grade	P3	K3
Super precision grade	P4	K4
High precision grade	P5	K5
Precision grade	P6	K6


Note: Refer to Page A38 for NSK K1 lubrication unit.

(9) Dimensions

LA-AL (High-load type) LA-BL (Super-high-load type)

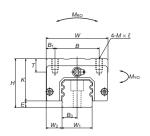

Front view of AL and BL types

	As	ssemb	ly					В	Ball slid	le						_
Model No.	Height			Width	Length		Mour	nting hole						Grease	fittin	g
	Н	Ε	$W_{\scriptscriptstyle 2}$	W	L	В	J	<i>M</i> ×pitch×ℓ	B ₁	L ₁	J_1	К	Т	Hole size	T_1	N
LA25AL					79.8		35			58	11.5					
LA25BL	36	5.5	12.5	48	107.8	35	50	M6×1×7	6.5	86	18	30.5	8	M6×0.75	6	11
LA30AL					100.2		40			72	16					
LA30BL	42	7.5	16	60	126.2	40	60	M8×1.25×10	10	98	19	34.5	11	M6×0.75	6.5	11
LA35AL					110.6		50			80	15					
LA35BL	48	7.5	18	70	144.6	50	72	M8×1.25×10	10	114	21	40.5	15	M6×0.75	8	11
LA45AL					141.4		60			105	22.5					
LA45BL	60	10	20.5	86	173.4	60	80	M10×1.5×16	13	137	28.5	50	17	Rc1/8	10	13
LA55AL					165.4		75			126	25.5					
LA55BL	70	12	23.5	100	203.4	75	95	M12×1.75×16	12.5	164	34.5	58	18	Rc1/8	11	13

Remarks: 1) LA Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail

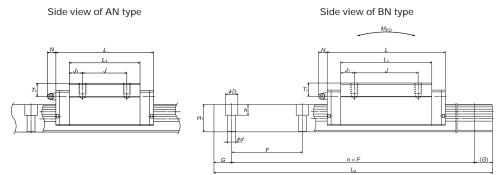
Unit: mm

							Offic: min							
			Rail					Basic	load rat	ing		Ball dia.	Wei	ight
Width	Height	Pitch	Mounting bolt hole		G	Max. Iength	Dynamic C	Static C ₀	Stat M _{RO}	ic mome	ent M _{YO}	Dw	Ball slide	Rail
W_1	H ₁	F	d×D×h	B_3	(Reference)	L_{0max}	(N)	(N)	(N·m)	(N·m)	(N·m)	"	(kg)	(kg/m)
23	22	60	7×11×9	11.5	20	3960	30000	50000	290	410	410	3.968	0.5	3.7
23	22	00	7.7.17.7	11.5	20	3700	40500	77000	445	935	935	3.700	0.8	3.7
28	28	80	9×14×12	14	20	4000	47000	77500	535	820	820	4.762	0.8	5.8
	20	00			20	,000	58000	105000	725	1470	1470	11702	1.2	0.0
34	30.8	80	9×14×12	17	20	4000	61500	98000	845	1130	1130	5.556	1.3	7.7
34	30.8	80	72 142 12	17	20	4000	80500	143000	1240	2330	2330	3.330	1.6	7.7
45	36	105	14×20×17	22.5	22.5	3990	91000	148000	1840	2210	2210	6.350	2.5	12.0
43	30	103	14X2UX17	22.5	22.5	3770	111000	197000	2460	3850	3850	0.330	3.2	12.0
53	43.2	120	16×23×20	26.5	20	3960	139000	215000	3150	3800	3800	7.937	3.9	17.2
53	43.2	120	10×23×20	20.5	30	3400	172000	292000	4250	6800	6800	1.931	5.1	17.2


²⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface.

When converting the basic dynamic load rating C to the dynamic load rating C_{100} for 100 km rating fatigue life, divide the C by 1.26.

LA-AN (High-load type) LA-BN (Super-high-load type)


LA 35 0840 ANC 2 -** P6 3 Series name Size Rail length (mm) Ball slide shape code (See page A270) Material/surface treatment (See Table 14) Preload code (See page A271) Accuracy code (See Table 15) Design serial number Added to the reference number. Number of ball slides per rail

Front view of AN and BN types

	A	ssemb	ly					В	all slid	le						
Model No.	Height			Width	Length		Mour	nting hole						Grease	fittin	g
Wiodel No.	Н	Ε	$W_{\scriptscriptstyle 2}$	W	L	В	J	<i>M</i> ×pitch×ℓ	B ₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
LA25AN LA25BN	40	5.5	12.5	48	79.8 107.8	35	35 50	M6×1×10	6.5	58 86	11.5 18	34.5	12	M6×0.75	10	11
LA30AN LA30BN	45	7.5	16	60	100.2 126.2	40	40 60	M8×1.25×11	10	72 98	16 19	37.5	14	M6×0.75	9.5	11
LA35AN LA35BN	55	7.5	18	70	110.6 144.6	50	50 72	M8×1.25×12	10	80 114	15 21	47.5	15	M6×0.75	15	11
LA45AN LA45BN	70	10	20.5	86	141.4 173.4	60	60 80	M10×1.5×16	13	105 137	22.5	60	17	Rc1/8	20	13
LA55AN LA55BN	80	12	23.5	100	165.4 203.4	75	75 95	M12×1.75×18	12.5	126 164	25.5 34.5	68	18	Rc1/8	21	13
LA65AN LA65BN	90	14	31.5	126	196.2 256.2	76	70 120	M16×2×19	25	147 207		76	22	Rc1/8	19	13

Remarks: 1) LA Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

Unit: mm

			Rail					Basio		Ball dia.	\//c	ight		
Width	Height	Pitch	Mounting		G	Max.	Dynamic	Static		ic mom	ent	ball ula.	Ball	Rail
W_1	H ₁	F	bolt hole d×D×h	B ₃	(Reference)	length L_{0max}	C (N)	C ₀ (N)	M _{RO} (N⋅m)	M _{PO} (N·m)	M _{YO} (N⋅m)	D_{w}	slide (kg)	(kg/m)
23	22	60	7×11×9	11.5		3960	30000 40500	50000	290 445	410 935	410 935	3.968	0.6	3.7
28	28	80	9×14×12	14	20	4000	47000 58000	77500 105000	535 725	820 1470	820 1470	4.762	0.9	5.8
34	30.8	80	9×14×12	17	20	4000	61500 80500	98000 143000	845 1240	1130 2330	1130 2330	5.556	1.5	7.7
45	36	105	14×20×17	22.5	22.5	3990	91000 111000	148000 197000	1840 2460	2210 3850	2210 3850	6.350	3.0	12.0
53	43.2	120	16×23×20	26.5	30	3960	139000 172000	215000 292000	3150 4250	3800 6800	3800 6800	7.937	4.7 6.1	17.2
63	55	150	18×26×22	31.5	35	3900	260000 340000	420000 615000	7300 10700	9050 18700	9050 18700	10.318	7.7 10.8	25.9

²⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface.

When converting the basic dynamic load rating C to the dynamic load rating C_{too} for 100 km rating fatigue life, divide the C by 1.26.

LA-EL (High-load type) LA-GL (Super-high-load type)

Material/surface treatment (See Table 14)

Assembly

5.5 23.5

 $H \mid E \mid W_2$

36

Model No.

LA25EL

LA25GL

LA 35 0840 EL C 2 -** P6 3 Series name Size Rail length (mm) Ball slide shape code (See page A270) Accuracy code (See Table 15)

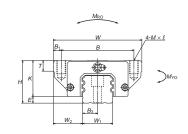
Width Length

79.8

107.8

256.2

W


70

В

57

45

Front view of EL and GL types

Grease fitting

6

Hole size

30.5 11 M6×0.75

Side view of EL type	Side view of GL type
	M _{PO}
	H_1 dd F $D \times F$ L_2 L_3 $D \times F$ L_4 L_5 L_5 L_5 L_5

Unit: mm

													Un	it: mm
			Rail					Basic	load rati	ng		Ball dia.	We	ight
Width	Height	Pitch	Mounting		G	Max.	Dynamic	Static	Stat	ic mome	ent		Ball	Rail
			bolt hole			length	С	C_0	M_{RO}	M_{PO}	$M_{\scriptscriptstyle{ ext{YO}}}$	$D_{\rm w}$	slide	
W_1	H_1	F	d×D×h	B_3	(Reference)	L_{0max}	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
23	22	60	7×11×9	11.5	20	3960	30000	50000	290	410	410	3.968	0.8	3.7
							40500	77000	445	935	935		1.1	
28	28	80	9×14×12	14	20	4000	47000	77500	535	820	820	4.762	1.3	5.8
28	28	80	9X14X12	14	20	4000	58000	105000	725	1470	1470	4.702	1.8	5.8
							61500	98000	845	1130	1130		1.9	
34	30.8	80	9×14×12	17	20	4000	80500	143000	1240	2330	2330	5.556	2.6	7.7
							91000	148000	1840	2210	2210		3.3	
45	36	105	14×20×17	22.5	22.5	3990	111000	197000	2460	3850	3850	6.350	4.3	12.0
							139000	215000	3150	3800	3800		5.5	
53	43.2	120	16×23×20	26.5	30	3960	172000	292000	4250	6800	6800	7.937	7.2	17.2
							260000	420000	7300	9050	9050		11.0	
63	55	150	18×26×22	31.5	35	3900	340000	615000	10700	18700		10.318	15.5	25.9

Mounting hole

Design serial number

Added to the reference number. Number of ball slides per rail

 $M \times pitch \times \ell$

M8×1.25×12

Ball slide

 B_1

58 6.5

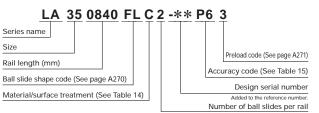
86 20.5

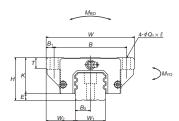
207 48.5

Remarks: 1) LA Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

When converting the basic dynamic load rating C to the dynamic load rating $C_{\rm im}$ for 100 km rating fatigue life, divide the C by 1.26.

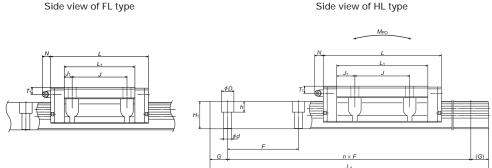
A283


LA65GL


LA30EL 100.2 72 10 7.5 31 90 52 34.5 11 M6×0.75 6.5 11 42 72 M10×1.5×16 98 23 LA30GL 126.2 LA35EL 110.6 80 40.5 12 M6×0.75 8 | 11 48 7.5 | 33 100 82 62 M10×1.5×15 LA35GL 114 26 144.6 LA45EL 141.4 105 12.5 10 | 13 60 10 37.5 120 100 80 M12×1.75×18 50 Rc1/8 LA45GL 137 28.5 173.4 LA55EL 165.4 126 15.5 12 43.5 140 95 M14×2×21 12 58 15 11 | 13 70 116 Rc1/8 164 34.5 LA55GL 203.4 LA65EL 196.2 147 18.5 14 170 110 M16×2×24 14 Rc1/8 19 | 13 90 53.5 142 76 22

²⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface.

LA-FL (High-load type) LA-HL (Super-high-load type)


Front view of FL and HL types

	A:	ssemb	ly						all slic	le						
Model No.	Height			Width	Length		Mour	iting hole						Grease	fittin	g
	Н	Ε	W ₂	W	L	В	J	$Q_1\!\! imes\!\ell$	B_1	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
LA25FL	24		22.5	70	79.8	-7	45	7. 10	, ,	58	6.5	20.5	4.4	M/ 0.75	,	11
LA25HL	36	5.5	23.5	70	107.8	57	45	7×10	6.5	86	20.5	30.5	11	M6×0.75	6	11
LA30FL	42	7.5	31	90	100.2	72	F.0	0.41	9	72	10	245	11	M40.75	/ -	11
LA30HL	42	7.5	31	90	126.2	12	52	9×12	9	98	23	34.5	11	M6×0.75	6.5	
LA35FL					110.6					80	9					
LA35HL	48	7.5	33	100	144.6	82	62	9×13	9	114	26	40.5	12	M6×0.75	8	11
LA45FL					141.4					105	12.5					
LA45HL	60	10	37.5	120	173.4	100	80	11×15	10	137	28.5	50	13	Rc1/8	10	13
LA55FL					165.4					126	15.5					
LA55HL	70	12	43.5	140	203.4	116	95	14×18	12	164	34.5	58	15	Rc1/8	11	13
LA65FL					196.2					147	18.5					
LA65HL	90	14	53.5	170	256.2	142	110	16×23	14	207	48.5	76	22	Rc1/8	19	13

Remarks: 1) LA Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

Unit: mm

			Rail					Basic	load rati	ng		Ball dia.	We	ight
Width	Height	Pitch	Mounting bolt hole		G	Max. length	Dynamic	Static		atic mor	nent		Ball	Rail
W_1	H ₁	F	d×D×h	B ₃	(Reference)	L _{Omax}	C (N)	C ₀ (N)	M _{RO} (N⋅m)	M _{PO} (N⋅m)	M _{YO} (N⋅m)	$D_{\rm w}$	slide (kg)	(kg/m)
23	22	60	7×11×9	11.5	20	3960	30000 40500	50000 77000	290 445	410 935	410 935	3.968	0.8	3.7
							47000	77500	535	820	820		1.3	
28	28	80	9×14×12	14	20	4000	58000	105000	725	1470	1470	4.762	1.8	5.8
							61500	98000	845	1130	1130		1.9	
34	30.8	80	9×14×12	17	20	4000	80500	143000	1240	2330	2330	5.556	2.6	7.7
45	2/	105	142017	22.5	22.5	2000	91000	148000	1840	2210	2210	/ 250	3.3	12.0
45	36	105	14×20×17	22.5	22.5	3990	111000	197000	2460	3850	3850	6.350	4.3	12.0
							139000	215000	3150	3800	3800		5.5	
53	43.2	120	16×23×20	26.5	30	3960	172000	292000	4250	6800	6800	7.937	7.2	17.2
		450	10.04.55	04 -	0.5	0000	260000	420000	7300	9050	9050	10.015	11.0	05.6
63	55	150	18×26×22	31.5	35	3900	340000	615000	10700	18700	18700	10.318	15.5	25.9

²⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface.

When converting the basic dynamic load rating C to the dynamic load rating C_{too} for 100 km rating fatigue life, divide the C by 1.26.



1. PU Series	A289
2. PE Series	A299
3. LU Series	A309
4. LE Series	A321
5. LL Series	A335

A-5-3 Liquid Crystal Display and Semiconductor

A287 A288

A-5-3.1 PU Series (Miniature type)

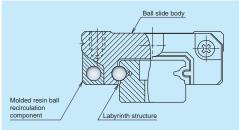


Fig. 1

(1) Features

1. Motion performance

Newly designed recirculation component facilitates smooth circulation of steel balls.

2. Lightweight

The ball slide is fabricated to be approximately 20% lighter than LU Series by the application of resin to a part of its body.

3. Reduced noise intensity

Resin components applied in ball circulating circuits reduce collision noise between steel balls and the inner wall of circulating circuits.

4. Low dust generation

The structure of the ball slide is designed to prevent dust generation.

5. Excellent dust-proofing

The labyrinth structure adopted for the side of the rails and the inner walls of the ball slide allows effects equivalent to a bottom seal.

6. High corrosion resistance

High corrosion-resistant martensite stainless steel incorporated as a standard feature provides excellent resistance to corrosion.

7. Easy to handle

Safety design includes a retainer that prevents steel balls from dropping out of the ball slide even when the slide is removed from the rail.

8. Long-term maintenance-free

Equipped with NSK K1 Lubrication unit realizes long-term, maintenance-free use.

9. Fast delivery

Lineup of random-matching rails and ball slides in the series supports random matching and facilitates fast delivery. (PU09 to PU15)

(2) Ball slide shape

Ball slide	Shape/installation method	Ty	pe
Model		Standard type	High-load type
AR TR AL UR BL		TR, AR, AL	UR, BL

(3) Accuracy and preload

1. Runing parallelism tolerance

Table 1

Unit: um

					Οπι. μπ						
	Preloaded assembly type (not random matching)										
Rail length (mm) over or less	(mm) Super precision		Precision grade P6	Normal grade PN	Normal grade PC						
- 50	2	2	4.5	6	6						
50 - 80	2	3	5	6	6						
80 – 125	2	3.5	5.5	6.5	6.5						
125 – 200	2	4	6	7	7						
200 – 250	2.5	5	7	8	8						
250 – 315	2.5	5	8	9	9						
315 – 400	3	6	9	11	11						
400 – 500	3	6	10	12	12						
500 – 630	3.5	7	12	14	14						
630 – 800	4.5	8	14	16	16						
800 – 1000	5	9	16	18	18						
1000 – 1250 6		10	17	20	20						

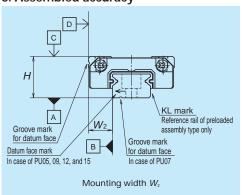
A289 A290

2. Accuracy standard

The preloaded assembly types products have four accuracy grades; Super precision P4, High precision P5, Precision grade P6, and normal grade PN, while the random-matching type has a normal grade PC.

Table 2 shows the accuracy standard for the preloaded assembly type while Table 3 shows the accuracy standard for the random-matching types.

· Tolerance of preloaded assembly


Table 2 Unit: µm Super precision Accuracy grade High precision Precision grade Normal grade Characteristics P5 PN P6 Mounting height H ±10 ±15 ±20 ±40 Variation of H 15 25 (All ball slides on a set of rails) Mounting width W_2 or W_3 ±15 ±20 ±30 ±50 Variation of W_2 or \hat{W}_3 10 20 30 (All ball slides on reference rail) Shown in Table 1 and Fig. 2 Running parallelism of face C to face A Running parallelism of face D to face B

· Tolerance of random-matching type: Normal grade PC

Tabl	e 3 Unit: µm
Accuracy grade Characteristics	Normal grade PC
Mounting height H	±20
Variation of mounting height H	15① 30②
Mounting width W_2 or W_3	±20
Variation of mounting width W_2 or W_3	20
Running parallelism of face C to face A Running parallelism of face D to face B	Shown in Table 1 and Fig. 2

Note: ① Variation on the same rail ② Variation on multiple rails

3. Assembled accuracy

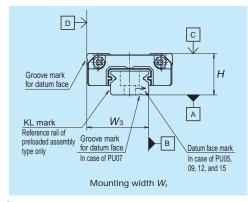


Fig. 2

Note: Please refer to page A67 for marks on the datum faces.

NSK

4. Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0, along with random-matching type of Fine clearance ZT. Values for preload and rigidity of the preloaded assembly type are shown in Tables 4. Rigidities are for the median of the preload range.

· Preload and rigidity of preloaded assembly

Table 4									
		Preload							
	Model No.	(N)	(N/µm)						
		Slight preload (Z1)	Slight preload (Z1)						
)e	PU05TR	0 – 3	17						
L ty	PU07AR	0 – 8	22						
lard	PU09TR	0 – 10	30						
Standard type	PU12TR	0 – 17	33						
St	PU15AL	0 – 33	45						
ad	PU09UR	0 – 14	46						
High-load type	PU12UR	0 – 25	52						
Hig	PU15BL	0 – 51	75						

Note: Clearance of fine clearance Z0 is 0 to 3 μm . Therefore, preload is zero. However, Z0 of PN grade is 3 to 10 μm .

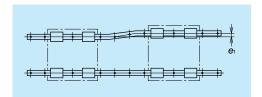
Clearance values of the random-matching type are shown in Tables 5.

Clearance of random-matching type

Tal	ble 5 Unit: μm
Model No.	Fine clearance ZT
PU09TR	
PU12TR	3 or less
PU15AL	

(4) Available length of rail

Table 6 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.


Table 6 Length limitations of rails

	3				Unit	: mm
Series	Size					
301103	Material	05	07	09		15
PU	Stainless steel	210	375	600	800	1000

Note: Rails can be butted if user requirement exceeds the rail length shown in the Table. Please consult NSK.

(5) Installation

1. Permissible values of mounting error

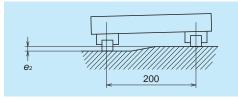
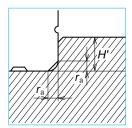



Fig. 3

Fig. 4

		Unit: µm										
Volue	Drolood	Model No.										
Value	Preload	PU05	PU07	PU09	PU12	PU15						
Permissible values of	Z0, ZT	10	12	20	25							
parallelism in two rails e_1	Z1	7	10	13	15	21						
Permissible values of	Z0, ZT	0, ZT 150 μm/200 mm										
parallelism (height) in two rails e	Z1	90 um/200 mm										

2. Shoulder height of the mounting face and corner radius r

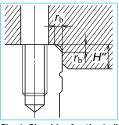


Fig. 5 Shoulder for the rail datum face slide datum face

Table 8 Unit: mm Corner radius (maximum) Shoulder height Model No. H"* ra r_b PU05 0.2 0.2 0.7 2.3 PU07 0.2 0.3 1.2 2.5 PU09 0.3 0.3 1.9 2.6 PU12 0.3 0.3 2.5 3.4 0.5 3.5 PU15 0.3 4.4

*) H" is the minimum recommended value based on the dimension T in dimension table.

(6) Lubrication accessory

PU15 can select drive-in type grease fitting as an option.

For PU05 to PU12, apply grease directly to the ball grooves of rail using a point nozzle.

Drive-in type

NSK

(7) Dust proof components

1. Standard specification

End seal: Provided to both ends of the ball slide as a standard feature.

Bottom seal function: A labyrinth structure of the ball slide bottom face functions as sealing effect.

Seal friction per standard ball slide is shown in Table 9.

Table 9 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	05	07	09	12	15
PU	0.3	0.3	0.5	0.5	0.5

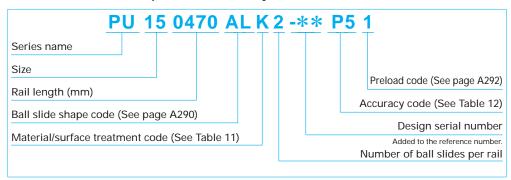
2. NSK K1[™]

Table 10 shows the dimension of linear guides equipped with the NSK K1.

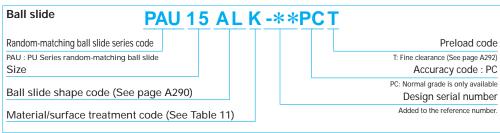
			Table 10			Unit: mm	
Model No. Ball slide length		Ball slide model		Ball slide length equipped with two NSK K1 <i>L</i>	Thickness of NSK K1, V ₁	Thickness of protective cover, V_2	
PU05	Standard	TR	19.4	24.4	2	0.5	
PU07	Standard	AR	23.4	29.4	2.5	0.5	
PU09	Standard TR		30	36.4	2.7	0.5	
P009	Long	UR	41	47.4	2.1	0.5	
PU12	Standard	Standard TR		42	3	0.5	
PU12	Long	UR	48.7	55.7	3	0.5	
DU1E	Standard	AL	43	51.2	2.5	0.4	
PU15	Long	BL	61	692	3.5	0.6	

Note: Ball slide length equipped with NSK K1 =

(Standard ball slide length) + (Thickness of NSK K1, $V_1 \times$ Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)


A 29

(8) Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

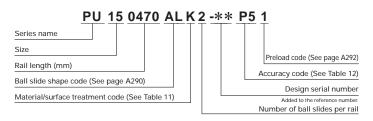
Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

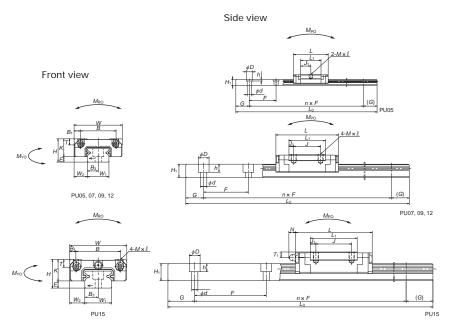
1. Reference number for preloaded assembly

2. Reference number for random-matching type

Reference number for assembly of random-matching ball slide and rail is the same as the coding of preloaded assembly. However, preload code is fine clearance "T" (Refer to page A292).

Table 11 Material/surface treatment code

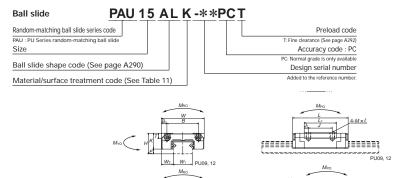

Code	Description
K	Stainless steel
Н	Stainless steel with surface treatment
Z	Other, special

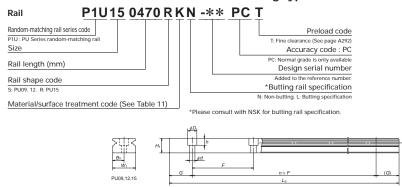

Table 12 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
Normal grade (random-matching type)	PC	KC	FC

Note: Refer to Page A38 and A61 for NSK K1 lubrication unit.

(9) Dimensions




	A	ssemb	ly		Ball slide											
Model No.	Height			Width	Length		Mour	ting hole						Greas	e fitti	ng
IVIOUEI NO.	Н	Ε	W ₂	W	L	В	J	<i>M</i> ×Pitch×ℓ	B ₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
PU05TR	6	1	3.5	12	19.4	8	_	M2×0.4×1.5	2	11.4	5.7	5	2.3	_	_	_
PU07AR	8	1.5	5	17	23.4	12	8	M2×0.4×2.4	2.5	13.3	2.65	6.5	2.45		_	_
PU09TR PU09UR	10	2.2	5.5	20	30 41	15	10 16	M3×0.5×3	2.5	19.6 30.6	4.8 7.3	7.8	2.6	-	_	_
PU12TR PU12UR	13	3	7.5	27	35 48.7	20	15 20	M3×0.5×3.5	3.5	20.4 34.1	2.7 7.05	10	3.4	_	_	_
PU15AL PU15BL	16	4	8.5	32	43 61	25	20 25	M3×0.5×5	3.5	26.2 44.2	3.1 9.6	12	4.4	ø 3	3.2	(3.6)

Remarks: 1) Ball slide of PU05TR has only two mounting tap holes in the center.

Reference number for ball slide of random-matching type

Reference number for rail of random-matching type

Unit: mm

	Rail							Basic load rating				Ball dia.	We	ight
Width	Height	Pitch	Mounting bolt		G	Maximum	Dynamic	Static	Stat	ic mome	ent		Ball	Rail
			hole			length	С	Co	M_{RO}	M _{PO}	$M_{\scriptscriptstyle YO}$	$D_{\rm w}$	slide	
W_1	H ₁	F	d×D×h	B_3	(Reference)	L_{0max}	(N)	(N)	(N·m)	(N·m)	(N·m)		(g)	(g/100mm)
5	3.2	15	2.3×3.3×0.8	2.5	5	210	520	775	2.06	1.28	1.28	1	4	11
7	4.7	15	2.4×4.2×2.3	3.5	5	375	1 090	1 370	5.20	2.70	2.70	1.5875	8	23
9	5.5	20	3.5×6×4.5	4.5	7.5	600	1 490	2 150	9.90	6.10	6.10	1.5875	16	35
7	5.5	20	3.58684.5	4.5	7.5	000	2100	3 500	16.2	15.6	15.6	1.5675	25	33
12	7.5	25	3.5×6×4.5	6	10	800	2 830	3 500	21.1	11.4	11.4	2.3812	32	65
12	7.5	25	3.3X0X4.3	0	10	800	4 000	5 700	34.5	28.3	28.3	2.3012	53	03
15	9.5	40	3.5×6×4.5	7.5	15	1 000	5 550	6 600	49.5	25.6	25.6	3.175	59	105
10	9.0	40	3.38084.3	7.5	15	1 000	8 100	11 300	84.5	69.5	69.5	3.173	100	103

²⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C_{100} for 100 km rating fatigue life, divide the C by 1.26.

(JCIS: Japanese Camera Industrial Standard.)

To fix rail of PU05TR, use M2 x 0.4 cross-recessed pan head machine screw for precision instrument. (JCIS 10-70 No. 0 pan head machine screw No.1.)

A-5-3.2 PE Series (Miniature type)

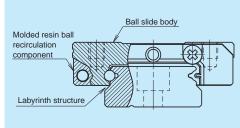


Fig. 1

(1) Features

1. Motion performance

Newly designed recirculation component facilitates smooth circulation of steel balls.

2. Lightweight

The ball slide is fabricated to be approximately 20% lighter than LE Series by the application of resin to a part of its body.

3. Reduced noise intensity

Resin components applied in ball circulating circuits reduce collision noise between steel balls and the inner wall of circulating circuits.

4. Low dust generation

The structure of the ball slide is designed to prevent dust generation.

5. Excellent dust-proofing

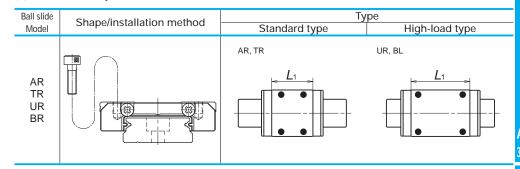
The labyrinth structure adopted for the side of the rails and the inner walls of the ball slide allows effects equivalent to a bottom seal.

6. High corrosion resistance

High corrosion-resistant martensite stainless steel incorporated as a standard feature provides excellent resistance to corrosion.

7. Easy to handle

Safety design includes a retainer that prevents steel balls from dropping out of the ball slide even when the slide is removed from the rail.


8. Long-term maintenance-free

Equipped with NSK K1 Lubrication unit realizes long-term, maintenance-free use.

9. Fast delivery

Lineup of random-matching rails and ball slides in the series supports random matching and facilitates fast delivery. (PE09 to PE15)

(2) Ball slide shape

(3) Accuracy and preload

1. Runing parallelism tolerance

lable

п	In	i÷٠	ı	11

					onic pin								
	Preload	Preloaded assembly type (not random matching)											
Rail length (mm) over or less	Super precision P4	High precision Precision grade Normal grade P6 PN		Normal grade PN	Normal grade PC								
- 50	2	2	4.5	6	6								
50 – 80	2	3	5	6	6								
80 – 125	2	3.5	5.5	6.5	6.5								
125 – 200	2	4	6	7	7								
200 – 250	2.5	5	7	8	8								
250 – 315	2.5	5	8	9	9								
315 – 400	3	6	9	11	11								
400 – 500	3	6	10	12	12								
500 – 630	3.5	7	12	14	14								
630 – 800	4.5	8	14	16	16								
800 – 1000	5	9	16	18	18								
1000 – 1250	6	10	17	20	20								

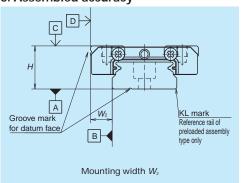
A299 A300

2. Accuracy standard

The preloaded assembly types products have four accuracy grades; Super precision P4, High precision P5, Precision P6, and Normal PN grades, while the random-matching type has Normal PC grade.

Table 2 shows the accuracy standard for the preloaded assembly type while Table 3 shows the accuracy standard for the random-matching types.

· Tolerance of preloaded assembly


Table 2 Unit: μr							
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN			
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 5	±15 7	±20 15	±40 25			
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 7	±20 10	±30 20	±50 30			
Running parallelism of face C to face A Running parallelism of face D to face B	Shown in Table 1 and Fig. 2						

Tolerance of random-matching type: Normal grade PC

Tabl	e 3 Unit: µm
Accuracy grade Characteristics	Normal grade PC
Mounting height H	±20
Variation of mounting height H	15① 30②
Mounting width W_2 or W_3	±20
Variation of mounting width W_2 or W_3	20
Running parallelism of face C to face A Running parallelism of face D to face B	Shown in Table 1 and Fig. 2

Note: 1 Variation on the same rail 2 Variation on multiple rails

3. Assembled accuracy

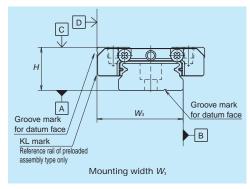


Fig. 2

NSK

4. Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0, along with random-matching type of Fine clearance ZT. Values for preload and rigidity of the preloaded assembly types are shown in Tables 4. Rigidities are for the median of the preload range.

Table 4 Preload and rigidity of preloaded assembly

Model No.		Preload	Rigidity
		(N)	(N/µm)
		Slight preload (Z1)	Slight preload (Z1)
ЭС	PE05AR	0 – 28	45
typ	PE07TR	0 – 29	46
PE05AR PE07TR PE09TR PE12AR PE15AR	PE09TR	0 – 37	61
	PE12AR	0 – 40	63
St	PE15AR	0 – 49	66
ad	PE09UR	0 – 54	86
h-lc ype	PE12BR	0 – 59	97
High-load type	PE15BR	0 – 75	114

Note: Clearance of fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

However, Z0 of PN grade is 3 to 10 µm.

Clearance values of the random-matching types are shown in Tables 5.

· Clearance of random matching type

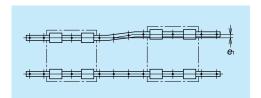
Tab	ole 5 Unit: µm
Model No	Fine clearance
Wiodel No.	ZT
PE09TR	
PE12AR	3 or less
PE15AR	

(4) Available length of rail

Table 6 shows the limitations of rail length (maximum length).

However, the limitations vary by accuracy grade.

Table 6 Length limitations of rails


						: mm
Series	Size					
Series	Material	05	07	09	12	15
PE	Stainless steel	150	600	800	1000	1200

Note: Rails can be butted if user requirement exceeds the rail length shown in the Table. Please consult NSK.

A301 A302

(5) Installation

1. Permissible values of mounting error

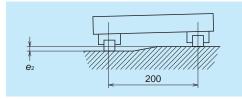
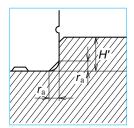



Fig. 3

Fig. 4

Table 7 Unit: μm							
Value	Drolood						
value	Preload	PE05	PE07	PE09	PE12	PE15	
Permissible values of	Z0, ZT	10	12	15	18	22	
parallelism in two rails e_1	Z1	5	7	10	13	17	
Permissible values of	Z0, ZT	50 μm/200 mm					
parallelism (height) in two rails e2	Z1	35 µm/200 mm					

2. Shoulder height of the mounting face and corner radius r

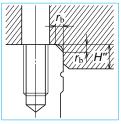


Fig. 5 Shoulder for the rail datum face

Fig. 6 Shoulder for the ball slide datum face

	Uı	nit: mm			
Model No.	Corner radiu:	s (maximum)	Shoulder height		
woder No.	ra	r _b	Η'	H″*	
PE05	0.2	0.2	1.1	2.5	
PE07	0.2	0.3	1.7	3	
PE09	0.3	0.3	3.5	2.8	
PE12	0.3	0.3	3.5	3.2	
PE15	0.3	0.5	3.5	4.1	

Table 8

(6) Lubrication accessory

PE15 can select drive-in type grease fitting as an option.

For PE05 to PE12, apply grease directly to the ball grooves of rail using a point nozzle.

Drive-in type

(7) Dust proof components

1. Standard specification

End seal: Provided to both ends of the ball slide as a standard feature.

Bottom seal function: A labyrinth structure of the ball slide bottom face functions as sealing effect.

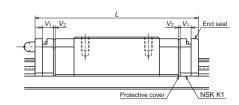

Seal friction per standard ball slide is shown in Table 9.

Table 9 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	05	07	09	12	15
PE	0.4	0.4	0.8	1	1.2

2. NSK K1[™]

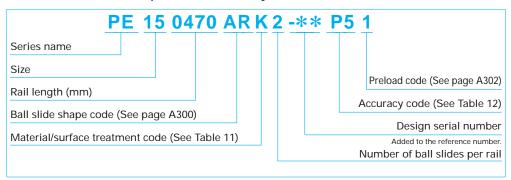
Table 10 shows the dimension of linear guides equipped with the NSK K1.

	Table 10 Unit: m							
Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length equipped with two NSK K1 <i>L</i>	Thickness of NSK K1, V ₁	Thickness of protective cover, V_2		
PE05	Standard	AR	24.1	28.9	2	0.4		
PE07	Standard	TR	31.1	37.1	2.5	0.5		
PE09	Standard	TR	39.8	46.8	3	0.5		
PEU9	Long	UR	51.2	58.2	3	0.5		
PE12	Standard	AR	45	53	3.5	05		
PEIZ	Long	BR	60	68	3.3	05		
PE15	Standard	AR	56.6	66.2	4	0.8		
PE 10	Long	BR	76	85.6	4	0.8		

Note: Ball slide length equipped with NSK K1 =

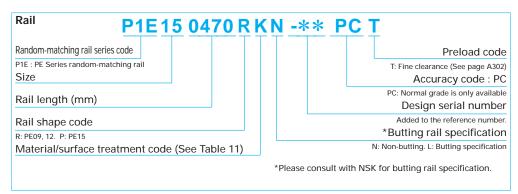
(Standard ball slide length) + (Thickness of NSK K1, $V_1 \times$ Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

^{*)} H" is the minimum recommended value based on the dimension T in dimension table.


A

(8) Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.


Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

1. Reference number for preloaded assembly

2. Reference number for random-matching type

Reference number for assembly of random-matching ball slide and rail is the same as the coding of preloaded assembly. However, preload code is fine clearance "T" (Refer to page A302).

Table 11 Material/surface treatment code

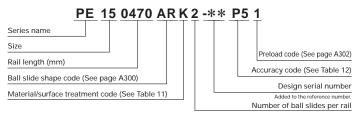
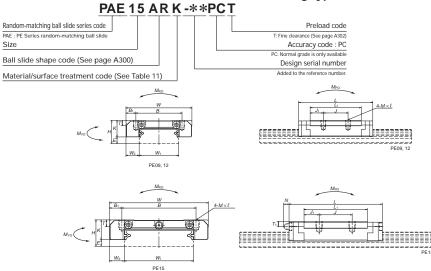

Code	Description		
K Stainless steel			
Н	Stainless steel with surface treatment		
Z	Other, special		

Table 12 Accuracy code

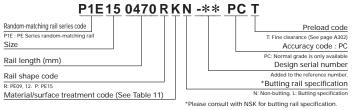
Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
Normal grade (random-matching type)	PC	KC	FC

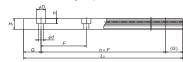
Note: Refer to Page A125 for NSK K1 lubrication unit.

(9) Dimensions



Front view Front


	A	ssemb	ly	Ball s					all sli	ide						
Model No.	Height Width Length Mounting hole		nting hole						Greas	e fitti	ng					
iviouei no.	Н	Ε	W ₂	W	L	В	J	<i>M</i> ×Pitch×ℓ	B_1	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
PE05AR	6.5	1.4	3.5	17	24.1	13	_	M2.5×0.45×1.5	2	16.4	8.2	5.1	2.5	_	_	_
PE07TR	9	2	5.5	25	31.1	19	10	M3×0.5×2.8	3	20.8	5.4	7	3	_	_	_
PE09TR PE09UR	12	4	6	30	39.8 51.2	21 23	12 24	M3×0.5×3	4.5 3.5	26.6 38	7.3 7	8	2.8	_	_	_
PE12AR PE12BR	14	4	8	40	45 60	28	15 28	M3×0.5×4	6	31 46	8 9	10	3.2	_	_	_
PE15AR PE15BR	16	4	9	60	56.6 76	45	20 35	M4×0.7×4.5	7.5	38.4 57.8	9.2 11.4	12	4.1	φ 3	3.2	(3.3)


Remarks: 1) Ball slide of PE05AR has only two mounting tap holes in the center.

Reference number for ball slide of random-matching type

Reference number for rail of random-matching type

Unit: mm

	Rail				Basic load rating				Ball dia.	We	ight					
,	Width	Height		Pitch	Mounting bolt		G	Maximum	Dynamic	Static	Stat	ic mome	nt		Ball	Rail
					hole			length	С	C_0	M_{RO}	M_{PO}	$M_{\scriptscriptstyle YO}$	$D_{\rm w}$	slide	
	W_1	H_1	B_2	F	d×D×h	B_3	(Reference)	L_{0max}	(N)	(N)	(N·m)	(N·m)	(N·m)		(g)	(g/100mm)
	10	4	_	20	3×5×1.6	5	7.5	150	690	1 160	6.00	2.75	2.75	1	7	34
	14	5.2	_	30	3.5×6×3.2	7	10	600	1 580	2 350	16.7	7.20	7.20	1.5875	19	55
	18	7.5		30	3.5×6×4.5	9	10	800	3 000	4 500	36.5	17.3	17.3	2.000	35	95
	10	7.5		30	3.37074.3	7	10	000	4 000	6 700	54.5	37.5	37.5	2.000	50	73
	24	8.5		40	4.5×8×4.5	12	15	1 000	4 350	6 350	70.5	29.3	29.3	2.3812	66	140
	24	0.0		40	4.0004.0	12	13	1 000	5 800	9 550	106	63.5	63.5	2.3012	98	140
	42	9.5	23	40	4.5×8×4.5	9.5	15	1 200	7 600	10 400	207	59.0	59.0	3.175	140	275
	42	9.5	23	40	4.5X8X4.5	9.5	15	5 1 200 .	10 300	16 000	320	135	135	3.175	211	275

²⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface.

(JCIS 10-70 No. 0 pan head machine screw No.3.) (JCIS: Japanese Camera Industrial Standard.)

Coto : Japanese Camera indus

When converting the basic dynamic load rating C to the dynamic load rating C_{100} for 100 km rating fatigue life, divide the C by 1.26. 3) To fix rail of PE05AR, use M2.5 x 0.45 cross-recessed pan head machine screw for precision instrument.

A-5-3.3 LU Series (Miniature type)

1. Super-small type

This compact guide owes its design to the single ball groove on both right and left sides (Gothic arch) .

2. Equal load carrying capacity in vertical and lateral directions

Contact angle is set at 45 degrees, equally load carrying capacity in vertical and lateral directions. This also provides equal rigidity in both directions.

3. Stainless steel is also standardized

Items made of the martensitic stainless steel are available as standard.

4. Some series have a ball retainer

Ball slide types AR and TR come with a ball retainer. Balls are retained in the retainer and do not fall out when the bearing is withdrawn from the rail. (Ball slides of random-matching parts as well as LU15 come with ball retainer.)

5. Fast delivery

The series enables random matching of rails and ball slides for prompt delivery. (LU09 to LU15)

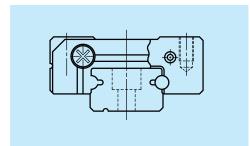


Fig. 1 LU Series

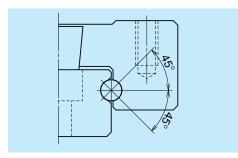


Fig. 2 Balls are in contact.

NSK

(2) Ball slide shape

Ball slide	Shape/installation method	Ty	rpe
Model		Standard type	High-load type
AL TL AR TR BL UL		AL, TL, AR, TR	BL, UL

(3) Accuracy and preload

1. Runing parallelism tolerance

Т	٠,	h	l۵	
- 1	а	u	ıe	

п	Init:	ı	ır

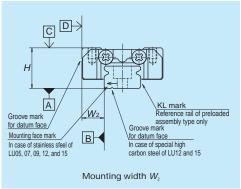
					Οπι. μπ		
	Preload	Preloaded assembly type (not random matching)					
Rail length (mm) over or less	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC		
- 50	2	2	4.5	6	6		
50 – 80	2	3	5	6	6		
80 – 125	2	3.5	5.5	6.5	6.5		
125 – 200	2	4	6	7	7		
200 – 250	2.5	5	7	8	8		
250 – 315	2.5	5	8	9	9		
315 – 400	3	6	9	11	11		
400 – 500	3	6	10	12	12		
500 - 630	3.5	7	12	14	14		
630 – 800	4.5	8	14	16	16		
800 – 1000	5	9	16	18	18		
1000 – 1250	6	10	17	20	20		

A309 A310

2. Accuracy standard

The preloaded assembly types products have four accuracy grades; Super precision P4, High precision P5, Precision P6, and Normal PN grades, while the random-matching type has Normal PC grade.

Table 2 shows the accuracy standard for the preloaded assembly type while Table 3 shows the accuracy standard for the random-matching types.


Tolerance of preloaded assembly

	Unit: µm			
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 5	±15 7	±20 15	±40 25
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 7	±20 10	±30 20	±50 30
Running parallelism of face C to face A Running parallelism of face D to face B		Refer to Table 1 ar	nd Fig. 3	

Tolerance of random-matching type: Normal grade PC

Table	e 3 Unit: µm
Accuracy grade Characteristics	Normal grade PC
Mounting height H	±20
Variation of mounting height H	40
Mounting width W_2 or W_3	±20
Variation of mounting width W_2 or W_3	40
Running parallelism of face C to face A Running parallelism of face D to face B	Refer to Table 1 and Fig. 3

3. Assembled accuracy

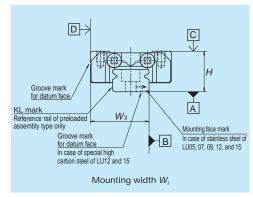


Fig. 3

Note: Please refer to page A67 for marks on the datum faces.

4. Preload and rigidity

We offer three levels of preload: Slight preload (Z1) and Fine clearance (Z0), along with random-matching type of Fine clearance (ZT). Values for preloaded and rigidity of the preloaded assembly type are shown in Table 4. Rigidities are for the median of the preload range.

· Preload and rigidity of preloaded assembly

Table 4							
		Preload	Rigidity				
	NA salad Na	(N)	(N/µm)				
	Model No.	Slight preload	Slight preload				
		(Z1)	(Z1)				
	LU05 TL	0 – 3	15				
)e	LU07 AL	0 – 8	22				
ξ	LU09 AL, TL	0 – 12	26				
larc	LU09 AR, TR	0 – 10	30				
Standard type	LU12 AL, TL	0 – 17	33				
St	LU12 AR, TR	0 – 17	33				
	LU15 AL	0 - 33	45				
ad	LU09 BL, UL	0 – 17	43				
High-load type	LU12 BL, UL	0 – 25	52				
₽°	LU15 BL	0 – 51	75				

Note: Clearance of fine clearance Z0 is 0 to 3 μm . Therefore, preload is zero.

However, Z0 of PN grade is 3 to 10 µm.

Clearance values of the random-matching type are shown in Table 5.

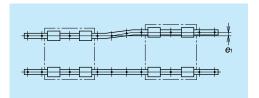
Clearance of random-matching type

Tab	ole 5 Unit: μm
Model No.	Fine clearance ZT
LU09	
LU12	0 – 15
LU15	

(4) Available length of rail

Table 6 shows the limitations of rail length (maximum length).

However, the limitations vary by accuracy grade.


Table 6 Length limitation of rails

	ū				Unit	: mm
Series	Size Material	05	07	09	12	15
LU	Special high carbon steel	-	-	1200	1800	2000
	Stainless steel	210	375	600	800	1000

Note: Rails can be butted if user requirement exceeds the rail length shown in the Table. Please consult NSK.

(5) Installation

1. Permissible values of mounting error

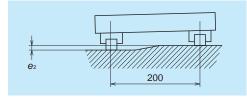


Fig. 4

Fig. 5

	Table 7 Unit: μm													
Value	Drolood		Model No.											
Value	Preload	LU05	LU07	LU09	LU12	LU15								
Permissible values of	Z0, ZT	10	12	15	20	25								
parallelism in two rails e_1	Z1	7	10	13	15	21								
Permissible values of	Z0, ZT	150 µm/200 mm												
narallelism (height) in two rails e.	71	90 um/200 mm												

2. Shoulder height of the mounting face and corner radius r

rail datum face

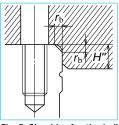


Fig. 6 Shoulder for the Fig. 7 Shoulder for the ball slide datum face

		Table 8		Unit: mm				
∕lodel No.	Corner radius	s (maximum)	Shoulder height					
nouel No.	$\Gamma_{\rm a}$	$I_{\rm b}$	H'	Н"				
LU05	0.2	0.2	0.7	2				
LU07	0.2	0.2 0.3		3				
LU09	0.3	0.3	1.9	3				
LU12	0.3	0.3	2.5	4				
LU15	0.3	0.5	3.5	5				

(6) Lubrication accessories

There is no standard grease fitting for LU05 to LU15.

For LU Series, apply grease directly to ball groove, etc. using a point nozzle.

(7) Dust proof components

1. Standard specification

End seal: Provided to both ends of the ball slide as a standard feature. LU05TL, LU07AL, LU09AL, and LU09TL can install as an option.

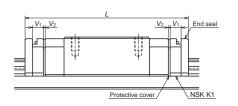

· Seal friction per standard ball slide is shown in Table 9.

Table 9 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	05	07	09	12	15
LU	0.3	0.3	0.5	0.5	0.5

2. NSK K1[™]

Dimension of installing NSK K1 shown in Table 10.

`	h	\sim	1	n	

Unit: mm

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V_2	
LU05	Standard	TL	18*	24.4	2.0	0.5	
LU07	Standard	AL	20.4*	29.4	2.5	0.5	
	Standard	AR, TR	30	36.4			
LU09	Standard	AL, TL	26.8*	34.2	2.7	0.5	
	Long	BL, UL	41	47.4			
	Standard	AR	35.2	42.2			
LU12	Standard	AL, TL	34	41	3.0	0.5	
	Long	BL, UL	47.5	54.5			
LU15	Standard	AL	43.6	51.8	2.5	0.4	
LUIS	Long	BL	61	69.2	3.5	0.6	

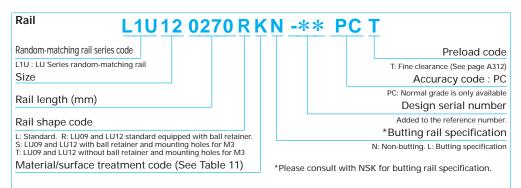
^{*)} Standard ball slide length of LU05TL, LU07AL, LU09AL and LU09TL does not include thickness of the end seal thickness (1.5 mm). However, it includes the height of the screw head for end cap installation (Included length - LU05, 0.8 mm; LU07, no projection; LU09, 1 mm)

Note: Ball slide length equipped with NSK K1 =


(Standard ball slide length) + (Thickness of NSK K1, V₁ × Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

(8) Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.


Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

1. Reference number for preloaded assembly

2. Reference number for random-matching type

Reference number for assembly of random-matching ball slide and rail is the same as the coding of preloaded assembly. However, preload code is fine clearance "T" (Refer to page A312).

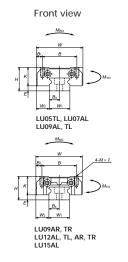
Table 11 Material/surface treatment code

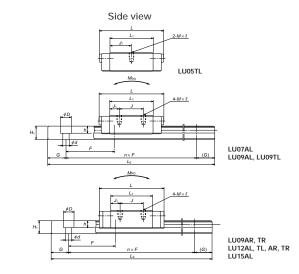
Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special

Table 12 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1				
Super precision grade	P4	K4				
High precision grade	P5	K5				
Precision grade	P6	K6				
Normal grade	PN	KN				
Normal grade (random-matching type)	PC	KC				

Note: Refer to Page A38 for NSK K1 lubrication unit.


A315 A316


(9) Dimensions LU-AL (LU15 is equipped with ball retainer) LU-TL (Large mounting hole)

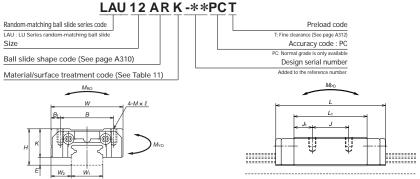
LU-AR (With ball retainer)

LU-TR (Large mounting hole, with ball retainer)

LU 12 0270 ARK2 -** P5 1 Series name Size Preload code (See page A312) Rail length (mm) Accuracy code (See Table 12) Ball slide shape code (See page A310) Design serial number Material/surface treatment code (See Table 11) Added to the reference number. Number of ball slides per rail

	А	ssemb	ly		Ball slide									
Model No.	Madal No Height			Width	Length		Mou	nting hole					Width	Height
Wiodel No.	Н	Ε	W_{2}	W	L	В	J	<i>M</i> ×pitch×ℓ	B_1	L ₁	J_1	K	W_1	H ₁
LU05TL	6	1	3.5	12	18	8	_	M2×0.4×1.5	2	12	6	5	5	3.2
LU07AL	8	1.5	5	17	20.4	12	8	M2×0.4×2.4	2.5	13.6	2.8	6.5	7	4.7
LU09AL LU09TL	10	2.2	5.5	20	26.8	15	13 10	M2×0.4×2.5 M3×0.5×3	2.5	18	2.5 4	7.8	9	5.5
LU09AR LU09TR	10	2.2	5.5	20	30	15	13 10	M2×0.4×2.5 M3×0.5×3	2.5	20	3.5 5	7.8	9	5.5
LU12AL LU12TL	13	3	7.5	27	34	20	15	M2.5×0.45×3 M3×0.5×3.5	3.5	21.8	3.4	10	12	7.5
LU12AR LU12TR	13	3	7.5	27	35.2	20	15	M2.5×0.45×3 M3×0.5×3.5	3.5	21.8	3.4	10	12	7.5
LU15AL	16	4	8.5	32	43.6	25	20	M3×0.5×4	3.5	27	3.5	12	15	9.5

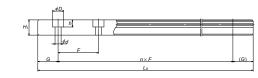
Remarks 1) LU05TL, LU07AL, LU09TL, LU09AR, LU09TR, LU12AR and LU12TR come in stainless steel only.


- 2) Ball slide of LU05TL has only two mounting tap holes in the center.
- 3) End seals of LU05TL, LU07AL, LU09AL and LU09TL are available on request

Random matching with retainer: LU09 - 12 are AR/TR, LU15 is AL. Reference number for ball slide of random-matching type

LAU-AR (With ball retainer)

LAU-TR (Large mounting hole, with ball retainer)


LAU-AL (LU15 is equipped with ball retainer)

Reference number for rail of random-matching type 1 11112 0270 D K N -** DC T

	<u> </u>
Random-matching rail series code	Preload code
L1U : LU Series random-matching rail	T: Fine clearance (See page A312)
Size	Accuracy code : PC
Rail length (mm)	PC: Normal grade is only available Design serial number
Rail shape code (See page A315)	Added to the reference number.
The state (and had a state)	*Butting rail specification
Material/surface treatment code (See Table 11)	N: Non-butting. L: Butting specification

*Please consult with NSK for butting rail specification

Unit: mm

	Ra	ail				Bas	ic load ra	nting		Ball dia. Weight		ight
Pitch	Mounting bolt		G	Max. length	Dynamic	Static	Sta	tic mom	ent		Ball	Rail
	hole			L _{omax} .	С	C_0	M_{RO}	M _{PO}	M _{YO}	$D_{\rm w}$	slide	
F	d×D×h	B_3	(Reference)	stainless	(N)	(N)	(N·m)	(N·m)	(N·m)		(g)	(g/100mm)
15	2.3×3.3×1.5	2.5	5	— (210)	545	740	1.93	1.22	1.22	1.2	4	11
15	2.4×4.2×2.3	3.5	5	— (375)	1090	1370	4.90	2.66	2.66	1.587	10	23
20	2.6×4.5×3 3.5×6×4.5	4.5	7.5	1200 (600)	1760	2220	10.2	6.10	6.10	2	17	35
20	2.6×4.5×3 3.5×6×4.5	4.5	7.5	— (600)	1490	2150	9.9	6.10	6.10	1.587	19	35
25	3×5.5×3.5 3.5×6×4.5	6	10	1800 (800)	2830	3500	21.1	11.4	11.4	2.381	38	65
25	3×5.5×3.5 3.5×6×4.5	6	10	— (800)	2830	3500	21.1	11.4	11.4	2.381	38	65
40	3.5×6×4.5	7.5	15	2000 (1000)	5550	6600	49.5	25.6	25.6	3.175	70	105

⁴⁾ To fix rail of LU05TL, use M2 x 0.4 cross-recessed pan head machine screw for precision instrument. (JCIS 10-70 No. 0 pan head machine screw No.1.)

⁽JCIS: Japanese Camera Industrial Standard.)

⁵⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C to

Unit: mm

LU-BL (High-load type) LU-UL (High-load type, large mounting hole)

LU 12 0270 BL K 2 -** P5 1

Series name

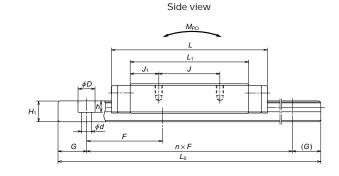
Size

Rail length (mm)

Ball slide shape code (See page A310)

Material/surface treatment code (See Table 11)

Preload code (See page A312)


Accuracy code (See Table 12)

Design serial number

Added to the reference number.

Number of ball slides per rail

	А	ssemb	ly					Ball slide						
Model No.	Height			Width	Length		Mounting hole						Width	Height
Model No.	Н	Ε	W_2	W	L	В	J	<i>M</i> ×pitch×ℓ	B_1	L_1	J_1	К	W_1	H_1
LU09BL								M2×0.4×2.5						
LU09UL	10	2.2	5.5	20	41	15	16	M3×0.5×3	2.5	31.2	7.6	7.8	9	5.5
LU12BL		_						M2.5×0.45×3						
LU12UL	13	3	7.5	27	47.5	20	20	M3×0.5×3.5	3.5	35.3	7.65	10	12	7.5
LU15BL	16	4	8.5	32	61	25	25	M3×0.5×4	3.5	44.4	9.7	12	15	9.5

Remarks 1) LU09UL is available only in stainless steel. 2) LU15BL is equipped with ball retainer.

	Offic. Hilli											
	Rail					Basic load rating				Ball dia.	We	ight
Pitch	Mounting bolt		G	Max. length	Dynamic	Static	Sta	tic mom	ent		Ball	Rail
	hole			L _{OMAX} .	С	C_{0}	M_{RO}	M_{PO}	M _{YO}	$D_{\rm w}$	slide	
F	d×D×h	B_3	(Reference)	() for stainless	(N)	(N)	(N·m)	(N·m)	(N·m)		(g)	(g/100mm)
20	2.6×4.5×3	4.5	7.5	1200	2600	3900	17.9	17.2	17.2	2	29	35
20	3.5×6×4.5	4.5	7.5	(600)	2000	3700	17.7	17.2	17.2	2	27	33
25	3×5.5×3.5	6	10	1800	4000	5700	34.5	28.3	28.3	2.381	59	65
	3.5×6×4.5		10	(800)	4000	3700	34.5	20.5	20.5	2.501	37	
40	3.5×6×4.5	7.5	15	2000 (1000)	8100	11300	84.5	69.5	69.5	3.175	107	105

³⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C to 100 km rating fatigue life, divide the C by 1.26.

A319 A320

A-5-3.4 LE Series (Miniature type)

1. Ideal for use of single rail

LE Series linear guides are miniature and wide rail type. Thanks to the wide rail, load carrying capacity is high against moment load from rolling direction.

2. Equal load carrying capacity in vertical and lateral directions

Contact angle is set at 45 degrees, equally dispersing the load from vertical and lateral directions. This also provides equal rigidity in the two directions.

3. Guides are super-thin.

Super-thin guides owe their design to the single ball groove on right and left sides (Gothic arch).

4. High accuracy

Fixing the master rollers is easy thanks to the Gothic arch groove. Groove measuring is accurate and easy.

5. Stainless steel is standard.

Rails and ball slides are made of martensitic stainless steel.

6. Ball retainer is available in some series.

Some series come with a ball retainer (ball slide model: AR and TR). Balls are retained in the retainer and do not fall out when a ball slide is withdrawn from the rail (random-maching ball slides come with a ball retainer).

7. Fast delivery

The series enables random matching of rails and ball slides (interchangeability) for prompt delivery. (LE09 to LE15)

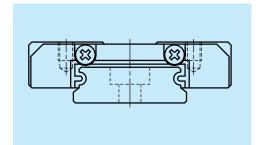


Fig. 1 LE Series

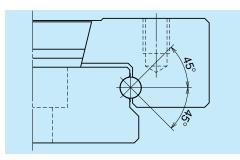


Fig. 2 Balls in contact

(2) Ball slide shape

Ball slide Model	Shape/installation method	Medium-load type	Type Standard type	High-load type
AL TL AR TR BL UL CL SL		CL, SL	AL, TL, AR, TR	BL, UL

Specification	Detail			
Mounting halo	Normal	CL*	AL, AR	BL*
Mounting hole	Large	SL*	TL, TR	UL*
Dall astaines	Without	CL, SL	AL, TL	BL, UL
Ball retainer	With	_	AR, TR	_

^{*} Only applicable to LE09

(3) Accuracy and preload

1. Runing parallelism tolerance Table 1

Unit:	μm
-------	----

	Preloaded asser	ndom matching)	Random-matching type	
Rail length (mm)	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC
- 50	2	4.5	6	6
50 – 80	3	5	6	6
80 – 125	3.5	5.5	6.5	6.5
125 – 200	4	6	7	7
200 – 250	5	7	8	8
250 – 315	5	8	9	9
315 – 400	6	9	11	11
400 – 500	6	10	12	12
500 – 630	7	12	14	14
630 – 800	8	14	16	16
800 – 1000	9	16	18	18
1000 – 1250	10	17	20	20

A321 A322

2. Accuracy standard

The preloaded assembly types products have three accuracy grades; High precision P5, Precision P6, and Normal PN grades, while the random-matching type has Normal PC grade.

Table 2 shows the accuracy standard for the preloaded assembly type while Table 3 shows the accuracy standard for the random-matching types.

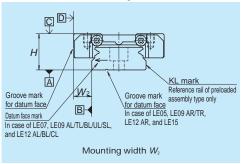

Tolerance of preloaded assembly

	Table 2		Unit: µm	
Accuracy grade Characteristics	High precision P5	Precision grade P6	Normal grade PN	
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±15 7	±20 15	±40 25	
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±20 10	±30 20	±50 30	
Running parallelism of face C to face A Running parallelism of face D to face B	Refer to Table 1 and Fig. 3			

· Tolerance of random-matching type: Normal grade, PC

e 3 Unit: µm
Normal grade PC
±20
40
±20
40
Refer to Table 1 and Fig. 3

3. Assembled accuracy

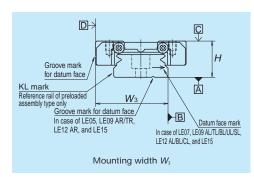


Fig. 3

NSK

4. Preload and rigidity

We offer three levels of preload: Slight preload (Z1) and Fine clearance (Z0), along with random-matching type of Fine clearance (ZT). Values for preloaded and rigidity of the preloaded assembly type are shown in Table 4. Rigidities are for the median of the preload range.

Preload and rigidity of preloaded assembly

Table 4

		Preload	Rigidity
	Model No.	(N)	(N/µm)
	Model No.	Slight preload	Slight preload
		(Z1)	(Z1)
/be	LE05 AL	0 – 23	36
Sutandard type	LE07 TL	0 – 29	46
dar	LE09 AL, TL, AR, TR	0 – 37	61
tan	LE12 AL, AR	0 – 40	63
Su	LE15 AL, AR	0 – 49	66
ad	LE05 CL	0 – 18	29
9-	LE07 SL	0 – 16	28
Medium-load type	LE09 CL, SL	0 – 21	33
edi	LE12 CL	0 – 23	36
Σ	LE15 CL	0 – 29	44
Þ	LE07 UL	0 – 43	71
-loa	LE09 BL, UL	0 – 54	86
High-load type	LE12 BL	0 – 59	97
I	LE15 BL	0 – 75	114

Note: Clearance of fine clearance Z0 is 0 to 3 $\mu m.$ Therefore, preload is zero.

However, Z0 of PN grade is 3 to 10 µm.

Clearance values of the random-matching type are shown in Table 5.

Clearance of random-matching type

Table 5 Unit: μm Model No. Fine clearance ZT LE09 T

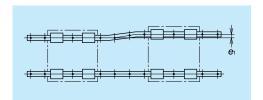
LE12 0 – 15 LE15

(4) Available length of rail

Table 6 shows the limitations of rail length (maximum length).

However, the limitations vary by accuracy grade.

Table 6 limitations of rail length (single rail)


					Ūnit	: mm
Series	Size					
301103	Material	05	07	09	12	15
LE	Stainless steel	150	600	800	1000	1200

Note: Rails can be butted if user requirement exceeds the rail length shown in the Table. Please consult NSK.

Drive-in type

(5) Installation

1. Permissible values of mounting error

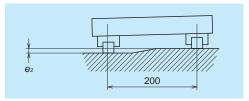


Fig. 4

Fig. 5

Table 8

0.2

0.3

0.3

0.3

0.5

Corner radius (maximum)

0.2

0.2

0.3

0.3

0.3

Unit: mm

4

Shoulder height

H'

1.1

1.7

3.5

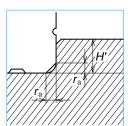
3.5

3.5

Table 7 Un								
Volue	Drolood							
Value	Preload	LE05	LE07	LE09	LE12	LE15		
Permissible values of	Z0, ZT	10	12	15	18	22		
parallelism in two rails e_1	Z1	5	7	10	13	17		
Permissible values of	Z0, ZT	50 μm/200 mm						
parallelism (height) in two rails e2	Z1	35 μm/200 mm						

Model No

LE05


LE07

LE09

LE12

LE15

2. Shoulder height of the mounting face and corner radius r

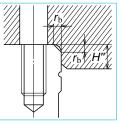


Fig. 6 Shoulder for the rail datum face

Fig. 7 Shoulder for the ball slide datum face

(6) Lubrication accessories

LE15 AR can select drive-in type grease fitting as option.

There is no standard grease fitting for LE05 to 12.

For LE05 to 15, apply grease directly to ball groove, etc. using a point nozzle.

(7) Dust proof components

1. Standard specification

End seal: Provided to both ends of the ball slide as a standard feature.

· Seal friction per standard ball slide is shown in Table 9.

Table 9 Seal friction per ball slide (maximum value)

					Únit: N
Series Size	05	07	09	12	15
LE	0.4	0.4	0.8	1.0	1.2

2. NSK K1[™]

The dimension of linear guides equipped with NSK K1 are shown in Table 10.

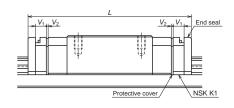
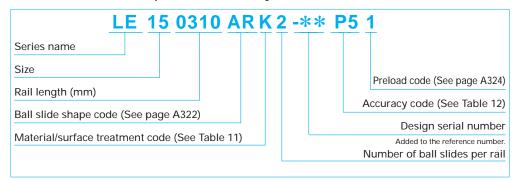


Table 10

Model No.	Ball slide length	Ball slide model	slide length installed with two NSK K1 L		Per NSK K1 thickness V ₁	Protective cover thickness V_2
	Standard	TL	31	37		
LE07	Long	UL	42	48	2.5	0.5
Model No. Ball slide model Slide length installed with two NSK K1 L the Standard TL 31 37						
	Standard	AL, TL	39	46		
1 F00	Standard	AR, TR	39.8	46.8	3.0	0.5
LEU9	Long	BL, UL	50.4	57.4	3.0	
LE09	Short	CL, SL	26.4	33.4		
	Standard	AL	44	52		
L E10	Standard	AR	45	53	3.5	0.5
LEIZ	Long	BL	59	67	3.3	
	Short	CL	CL 30.5			
	Standard	AL	55.0	64.6		
I E1E	Standard	AR	56.6	66.2	4.0	0.8
LE15	Long	BL	74.4	84	4.0	0.8
	Short	CL	41.4	51		

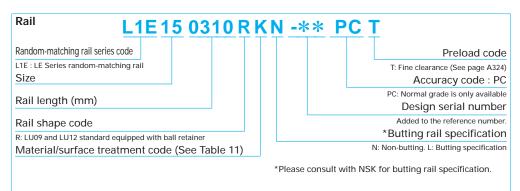
Note: Ball slide length equipped with NSK K1 =

(Standard ball slide length) + (Thickness of NSK K1, V₁ × Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)


Unit: mm

(8) Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.


Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

1. Reference number for preloaded assembly

2. Reference number for random-matching type

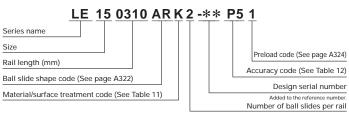
Reference number for assembly of random-matching ball slide and rail is the same as the coding of preloaded assembly. However, preload code is fine clearance "T" (Refer to page A324).

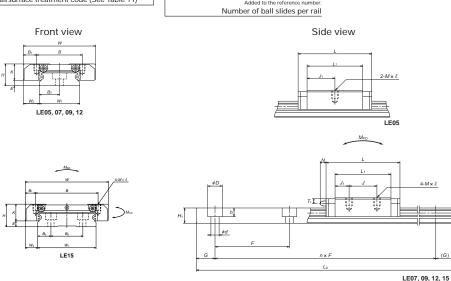
Table 11 Material/surface treatment code

Code	Description
K	Stainless steel
Н	Stainless steel with surface treatment
Z	Other, special

Table 12 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1
High precision grade	P5	K5
Precision grade	P6	K6
Normal grade	PN	KN
Normal grade (random-matching type)	PC	KC


Note: Refer to Page A38 for NSK K1 lubrication unit.

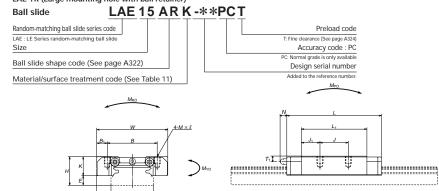

A327 A328

(9) Dimensions

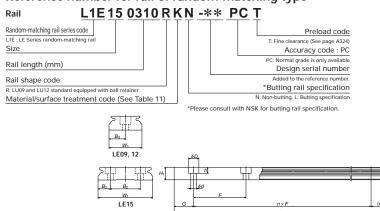
LE-TL (Large mounting hole) LE-AR (With ball retainer)

LE-TR (Large mounting hole, with ball retainer)

	А	ssemb	ly		Ball slide								Grease fitting				
Model No.	Height			Width	Length		Mou	nting hole								Width	Height
Model No.													Hole				
	Н	Ε	$W_{\scriptscriptstyle 2}$	W	L	В	J	$M \times \text{pitch} \times \ell$	B_1	L ₁	J_1	Κ	size	T_1	Ν	W_1	H_1
LE05AL	6.5	1.4	3.5	17	24	13	-	M2.5×0.45×2	2	17	8.5	5.1	_	_	_	10	4
LE07TL	9	2	5.5	25	31	19	10	M3×0.5×3	3	21.2	5.6	7	_	_	_	14	5.2
LE09AL LE09TL	12	4	6	30	39	21	12	M2.6×0.45×3 M3×0.5×3	4.5	27.6	7.8	8	_	_	_	18	7.5
LE09AR LE09TR	12	4	6	30	39.8	21	12	M2.6×0.45×3 M3×0.5×3	4.5	27.6	7.8	8	_	_	_	18	7.5
LE12AL LE12AR	14	4	8	40	44 45	28	15	M3×0.5×4	6	31	8	10	_	_	_	24	8.5
LE15AL LE15AR	16	4	9	60	55 56.6	45	20	M4×0.7×4.5	7.5	38.4	9.2	12	_ φ3	 3.2	— 3	42	9.5


Remarks: 1) Ball slide of LE05 has only two mounting tap holes.

Random matching with retainer: AR, TR.

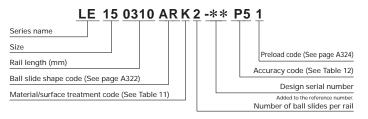

Reference number for ball slide of random-matching type

LAE-AR (With ball retainer)

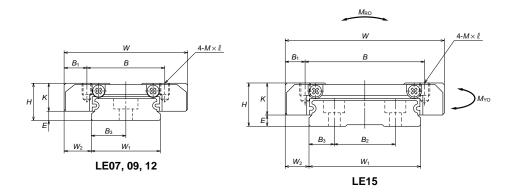
LAE-TR (Large mounting hole with ball retainer)

Reference number for rail of random-matching type

U	nit:	mm

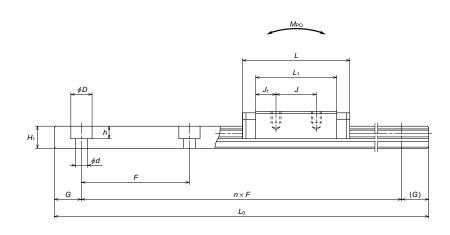

		Rail		Basi	ic load ra	Ball dia.	We	ight					
	Pitch	h Mounting bolt G Max.			Dynamic	amic Static Static moment		ent		Ball	Rail		
		hole			length	C	C_{0}	M_{RO}	M_{PO}	M _{YO}	D_{w}	slide	
B_2	F	$d \times D \times h$	B_3	(Reference)	$L_{\scriptscriptstyle Omax}$	(N)	(N)	(N·m)	(N·m)	(N·m)		(g)	(g/100mm)
_	20	3×5×1.6	5	7.5	150	725	1110	5.65	2.58	2.58	1.200	11	34
_	30	3.5×6×3.2	7	10	600	1580	2350	16.7	7.20	7.20	1.587	25	55
_	30	3.5×6×4.5	9	10	800	3000	4500	36.5	17.3	17.3	2.000	40	95
	30	3.5×6×4.5	9	10	800	3000	4500	36.5	17.3	17.3	2.000	40	95
_	40	4.5×8×4.5	12	15	1000	4350	6350	70.5	29.3	29.3	2.381	75	140
23	40	4.5×8×4.5	9.5	15	1200	7600	10400	207	59.0	59.0	3.175	150	275

²⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface.


3) When converting the basic dynamic load rating C to the dynamic load rating C₁₀₀ for 100 km rating fatigue life, divide the C by 1.26. For fixing a rail of LE05AL, use M2.5x0.45 cross-recessed pan head machine screw for precision instruments.

(CIS 10-70: No.0 pan head machine screw No.3) (JCIS: Japanese Camera Industrial Standard)

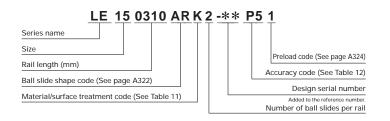
LE-BL (High-load type) LE-UL (High-load type, large mounting hole)

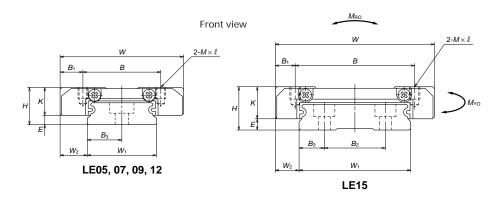


Front view

	А	ssemb	ly		Ball slide									
Model No.	Height			Width	Length		Mou	nting hole					Width	Height
	Н	Ε	$W_{\scriptscriptstyle 2}$	W	L	В	J	$M \times$ pitch $\times \ell$	B_1	L_1	J_1	K	W_1	H ₁
LE07UL	9	2	5.5	25	42	19	19	M3×0.5×3	3	32.2	6.6	7	14	5.2
LE09BL LE09UL	12	4	6	30	50.4	23	24	M2.6×0.45×3 M3×0.5×3	3.5	39	7.5	8	18	7.5
LE12BL	14	4	8	40	59	28	28	M3×0.5×4	6	46	9	10	24	8.5
LE15BL	16	4	9	60	74.4	45	35	M4×0.7×4.5	7.5	57.8	11.4	12	42	9.5

Unit: mm

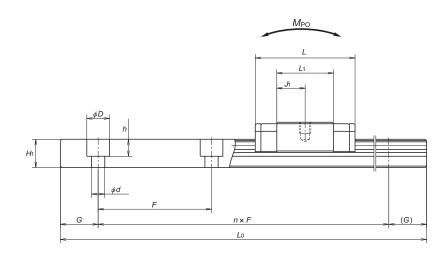

		Rail					Basi	ic load ra	Ball dia.	We	ight		
	Pitch	Mounting bolt		G Max.		Dynamic	Dynamic Static Static moment			ent		Ball	Rail
		hole			length	C	C_0	$M_{\scriptscriptstyle{RO}}$	M _{PO}	M _{YO}	D_{W}	slide	
B_2	F	$d \times D \times h$	B_3	(Reference)	L_{Omax}	(N)	(N)	(N·m)	(N·m)	(N·m)		(g)	(g/100mm)
_	30	3.5×6×3.2	7	10	600	2180	3700	26.4	17.3	17.3	1.587	39	55
_	30	3.5×6×4.5	9	10	800	4000	6700	54.5	37.5	37.5	2.000	58	95
_	40	4.5×8×4.5	12	15	1000	5800	9550	106	63.5	63.5	2.381	115	140
23	40	4.5×8×4.5	9.5	15	1200	10300	16000	320	135	135	3.175	235	275


Remark: The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting

When converting the basic dynamic load rating C to the dynamic load rating C_{100} for 100 km rating fatigue life, divide the C by 1.26.

LE-CL (Medium-load type)

LE-SL (Medium-load type, large mounting hole)



	А	ssemb	ly					Ball slide						
Model No	Height			Width	Length		Mounting hole						Width	Height
Widder Wo	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	B_1	L_1	J_1	K	W_1	H ₁
LE05CL	6.5	1.4	3.5	17	20	13	_	M2.5×0.45×2	2	13	6.5	5.1	10	4
LE07SL	9	2	5.5	25	22.4	19	_	M3×0.5×3	3	12.6	6.3	7	14	5.2
LE09CL LE09SL	12	4	6	30	26.4	21	_	M2.6×0.45×3 M3×0.5×3	4.5	15	7.5	8	18	7.5
LE12CL	14	4	8	40	30.5	28	_	M3×0.5×4	6	17.5	8.75	10	24	8.5
LE15CL	16	4	9	60	41.4	45	_	M4×0.7×4.5	7.5	24.8	12.4	12	42	9.5

Remarks: 1) Ball slide of CL and SL types have only two mounting tap holes in the center.

Side view

Unit: mm

Rail							Basic load rating					We	ight
	Pitch	Mounting bolt hole		G	Max. length	Dynamic	Static		tic mom		_	Ball slide	Rail
B_2	F	$d \times D \times h$	B_3	(Reference)	Ü	(N)	C ₀ (N)	M _{RO} (N·m)	M _{PO} (N·m)	M _{YO} (N⋅m)	$D_{\rm w}$	(g)	(g/100mm)
_	20	3×5×1.6	5	7.5	150	595	835	4.25	1.51	1.51	1.200	8	34
_	30	3.5×6×3.2	7	10	600	980	1170	8.35	2.01	2.01	1.587	17	55
_	30	3.5×6×4.5	9	10	800	1860	2240	18.2	4.85	4.85	2.000	25	95
_	40	4.5×8×4.5	12	15	1000	2700	3150	35.0	8.15	8.15	2.381	50	140
23	40	4.5×8×4.5	9.5	15	1200	5000	5650	113	19.4	19.4	3.175	110	275

²⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C_{100} for 100 km rating fatigue life, divide the C by 1.26

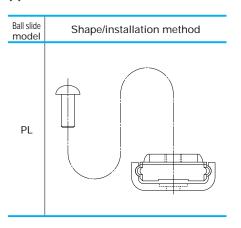
³⁾ For fixing a rail of LE05CL, use cross-recessed pan head machine screw for precision instruments M2.5x0.45 (JCIS 10-70 : Japan Camera Industry Association, No.0, class 3).

A-5-3.5 LL Series

(1) Features

1. Super light-weight

This compact guide has a single ball groove on both right and left sides (Gothic arch). Rails and ball slides are made of stainless steel plate, therefore they are lightweight.


2. Compact

The ball groove is made outside the ball slide to reduce overall size and to obtain high speed.

3. High corrosion resistance

High corrosion resistant martensitic stainless steel is used as standard material.

(2) Ball slide model

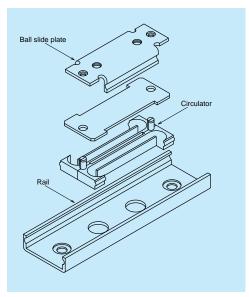


Fig. 1 LL Series structure

(3) Accuracy and preload

1. Accuracy standard

LL Series has a normal grade PN as accuracy. Table 1 shows tolerance.

Table 1 Tolerance of LL Series Normal grade (PN)

	Ornt. prii
Model No. Characteristic	LL15
Mounting height	±20
Running parallelism of face C to face A Running parallelism of face D to face B	20 (See Fig. 2)

H A G G

Fig. 2 Standard LL

2. Preload

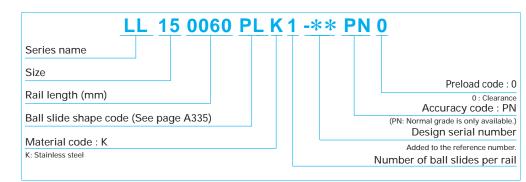
We offer clearance for LL Series.

Table 2 shows clearance.

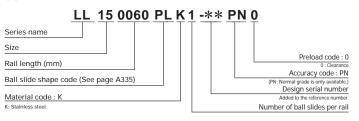
Table 2 Radial clearance

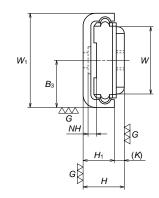
	Unit: µm
Model No.	Clearance
LL15	0 – 10

(4) Available length of rail


Table 3 Length limitation

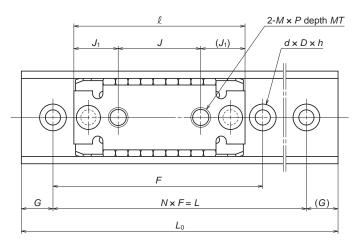
					UTIIL	
Series	Size Material			15		
LL	Stainless steel	40	60	75	90	120


(5) Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(6) Dimensions



	Assembly Ball slide											
Model No.	Height Width Length Mounting hole					Height	Pitch					
Model No.												
	Н	$W_{\scriptscriptstyle 1}$	W	l	J	$M \times pitch$	MT	J_1	K	H_1	F	N
											30	1
											40	1
LL15	6.5	15	10.6	27	13	M3×0.5	1.2	7	1.5	5	30	2
											40	2
											50	2

Remarks:

- 1) LL Series does not have a ball retainer. Be aware that the balls fall out when a bearing is withdrawn from the rail.
- 2) Seal Is not available. Please provide the dust-prevention measures on the equipment.
- 3) Do not use an installation screw on the ball slide which exceeds MT (maximum screw depth allowance) in the dimension table.
- 4) To fix of LL15PL, use M2 \times 0.4 cross recessed machine screw for precision instrument. (JCIS10-70 No.0 pan head machine screw No.1) (JCIS: Japanese Camera Industrial Standard)

Unit: mm

Rail					Basic load rating				Ball dia.	We	ight	
Mounting bolt				Length	Dynamic	Static	Sta	tic mom	ent		Ball	Rail
hole					C	C_{0}	M_{RO}	M_{PO}	M_{YO}	$D_{\rm w}$	slide	
$d \times D \times h$	NH	B ₃	G	L_{0}	(N)	(N)	(N·m)	(N·m)	(N·m)		(g)	(g)
			5	40								9
			10	60								11
2.4×5×0.4	1.2	7.5	7.5	75	880	785	7	3	3	2	6	13
			5	90								16
			10	120								21

5) The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C_{100} for 100 km rating fatigue life, divide the C by 1.26.

A337 A338

1. HA Series

A341

2. HS Series

A355

A-5-4 High-Precision Machine and High-Precision Measuring Equipment

A339 A340

A 34

0.12 µm

A-5-4.1 HA Series

(1) Features

1. High motion accuracy

High motion accuracy is achieved in both narrow and wide ranges by adopting ultralong ball slides and optimum design features for the ball recirculation component.

Ball passage vibration reduced to one-third of our conventional models

Tests show ball passage vibration has been reduced to one-third of our conventional models, dramatically improving straightness in table unit.

3. Installation of rail with greater accuracy

Increased counterbore depth of the rail mounting hole reduces rail deflection, which is caused by bolt tightening when fixing the rail to the base component, to 50% or less. This feature restrains the pitching motion of ball slide whose frequency matches to the mounting hole pitch.

In addition, the length of mounting hole pitch has been reduced by one-half of the conventional models, so the rail can be more accurately installed in position.

4. High rigidity and load capacity with lower friction

High rigidity, high load capacity and low friction are achieved by increasing the number of balls.

5. Compact design

Reduced body size enables more compact machinery.

6. Load distribution four directions

Contact angle is set at 45 degrees in all grooves, dispersing the load to four rows irrespective of load direction. This realizes equal rigidity and load carrying capacity in vertical and lateral directions and provides well-balanced design.

7. Strong against shock load

Load from any direction, vertical and lateral,

is received by four rows at all times. The number of the row which receives the load is larger than in other linear guides, making this series stronger against shock load.

8. High accuracy at manufacturing

Fixing the measuring rollers is easy thanks to the Gothic arch groove. Ball-groove measuring is accurate and simple. This benefits a highly precise and stable manufacturing.

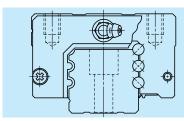


Fig. 1 HA Series

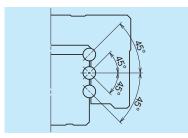


Fig. 2 Super rigidity design

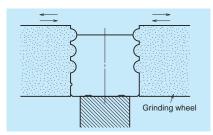


Fig. 3 Rail grinding

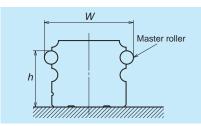


Fig. 4 Measuring groove accuracy

Measurement results of ball passage vibration

Ball passage vibration can translate into posture changes in the ball slide which result from ball passage (circulation). In the HA Series, this vibration has been substantially reduced to one-third of conventional models.

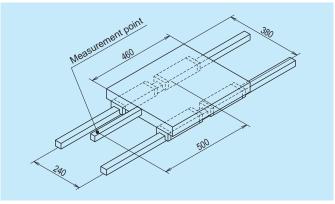


Fig. 5 Schematic view of measurement of ball passage vibration

HA Series

HA Series

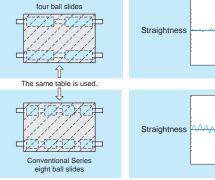
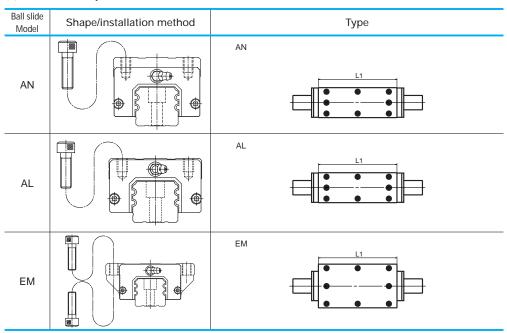

Model No.: HA30 Preload: Z3

Table dimensions: 460 mm imes 380 mm

Conventional Series

Model No.: LA30 Preload: Z3

Table dimensions: 460 mm × 380 mm



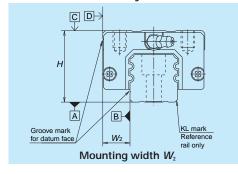
Strokes: 200 mm

Fig. 6 Measurement results of HA Series and conventional Series

(2) Ball slide shape

(3) Accuracy and preload

1. Running parallelism of ball slide


	Table 1 Unit: μm									
		Pre	loaded ass	em	bly					
Rail over all length (mm) over or less	Ultra precision	P3	Super precision	P4	High precision	P5				
- 200	2		2		4					
200 – 250	2		2.5		5					
250 – 315	2		2.5		5					
315 – 400	2		3		6					
400 – 500	2		3		6					
500 – 630	2		3.5		7					
630 – 800	2		4.5		8					
800 – 1 000	2.5		5		9					
1 000 – 1 250	3		6		10					
1 250 – 1 600	4		7		11					
1 600 – 2 000	4.5		8		13					
2 000 – 2 500	5		10		15					
2 500 – 3 150	6		11		17					
3 150 – 4 000	9		16		23					

2. Accuracy standard

Three accuracy grades are available: Ultra precision P3, Super precision P4 and High precision P5.

	Table 2		Unit: µm
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10
Running parallelism of face C to face A Running parallelism of face D to face B		Refer to Table 1 and Fig. 7	

3. Assembled accuracy

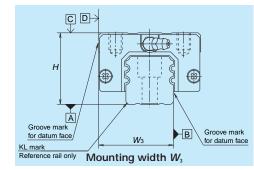


Fig. 7

4. Preload and rigidity

Slight preload Z1 and medium preload Z3 are available for preload, which can be selected for specific applications.

Table 3

•										
N.A. alal NI.	Prelo	ad (N)	Rigidity (N/µm)							
Model No	Slight preload (Z1)	Medium preload (Z3)	Slight preload (Z1)	Medium preload (Z3)						
HA25	735	2 990	635	1 030						
HA30	1 030	4 400	880	1 270						
HA35	1 470	6 100	1 030	1 620						
HA45	1 960	8 150	1 230	2 060						
HA55	3 150	13 100	1 520	2 450						

(4) Available length of rail

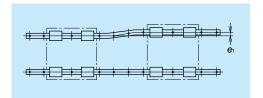

Table 4 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Table 4 Unit: n										
Series Size	25	30	35	45	55					
НА	3960	4000	4000	3990	3960					

Note: Rails can be butted if user requirement exceeds the rail length shown in the Table. Please consult NSK.

(5) Installation

1. Permissible values of mounting error

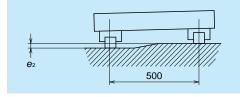
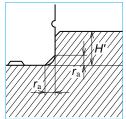


Fig. 8


Fig. 9

Ta	bl	е	5

Table 5		Unit: µr
	Model No.	

Value	Preload	Model No.									
value	Freibau	HA25	HA30	HA35	HA45	HA55					
Permissible values of	Z1	20	20	23	26	34					
parallelism in two rails e_1	Z3	15	14	17	19	25					
Permissible values of parallelism (height) in two rails e_2	71 72	250 μm/500 mm									

2. Shoulder height of the mounting face and corner radius r

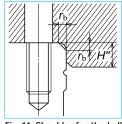


Fig. 10 Shoulder for the Fig. 11 Shoulder for the ball rail datum face

slide datum face

			Unit: mm			
Model No.	Corner radiu	s (maximum)	Shoulder height			
woder No.		$r_{\rm a}$	$r_{\rm b}$	H'	H"	
	HA25	0.5	0.5	5	5	
	HA30	0.5	0.5	6	6	
	HA35	5 0.5 0.5		6	6	
	HA45	0.7	0.7	8	8	
	HA55	0.7	0.7	10	10	

(6) Lubrication components

Refer to Page A38 and D13 for linear guide lubrication.

1. Types of lubrication accessories

Figure 12 and Table 7 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

Please ask NSK for stainless lubrication accessories.

2. Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 13)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of M6×1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

	7	Table 7	Unit: mm
Model No.	Dust-proof	Grease fitting	Tube fitting
	specification	Thread body length L	Thread body length L
	Standard	5	6*
HA25	With NSK K1	14	13*
HA25	Double seal	10	9*
	Protector	10	9*
	Standard	5	6
HA30	With NSK K1	14	13
HA30	Double seal	12	11
	Protector	12	11
	Standard	5	6
HA35	With NSK K1	14	13
пАзэ	Double seal	12	11
	Protector	12	11
	Standard	8	17
HA45	With NSK K1	18	21.5
пА45	Double seal	14	17
	Protector	14	17
	Standard	8	17
HA55	With NSK K1	18	21.5
пиээ	Double seal	14	17
	Protector	14	17

^{*)} The ball slide shape is only for AN.

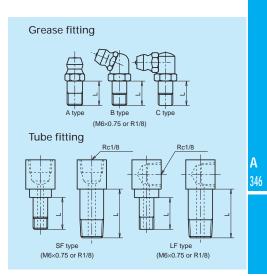


Fig. 12 Grease fitting and tube fitting

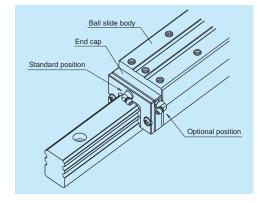


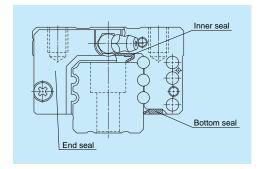
Fig. 13 Mounting position of lubrication accessories

A345 A346

(7) Dust proof components

1. Standard Specification

To keep foreign matters from entering inside the ball slide, HA Series has an end seal on both ends, bottom seals at the bottom, and an inner seal in inside.



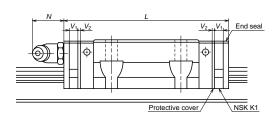

Fig. 14

Table 8 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	25	30	35	45	55
HA	17	17	19	21	22

2. NSK K1[™]

• Table 9 shows the dimensions of linear guides equipped with the NSK K1.

Table 9	Unit: mm
Table 9	Unit: mr

Model No.	Ball slide model Standard ba		Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V_2	Protruding area o the grease fitting <i>N</i>	
HA25	AN, EM	147.8	159.8	5.0	1.0	(14)	
HA30	AN, EM	177.2	190.2	5.5	1.0	(14)	
HA35	AN, AL, EM	203.6	216.6	5.5	1.0	(14)	
HA45	AN, AL, EM	233.4	248.4	6.5	1.0	(15)	
HA55	AN,AL, EM	284.4	299.4	6.5	1.0	(15)	

Note: Ball slide length equipped with NSK K1 =

(Standard ball slide length) + (Thickness of NSK K1, $V_1 \times$ Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

3. Double seal and protector

For HA series, double seal and protector can be installed only before shipping from the factory. Please consult with NSK.

Table 10 shows the increased thickness of V_1 , and V_2 when end seal and protector are installed.

Table 10	Unit: mm			
Thickness	Thickness			
of end seal: V ₁	of protector: V ₂			
3.2	3.6			
4.4	4.2			
4.4	4.2			
5.5	4.9			
5.5	4.9			
	Thickness of end seal: V ₁ 3.2 4.4 4.4 5.5			

4. Caps to cover the bolt hole for rail mounting

Table 12 shows size of the bolts for the each model number as well as reference number of the cap.

Table 12 Caps to cover rail bolt hole

Model No.	Bolt to	Сар	Quantity
Model No.	secure rail	reference No.	/case
HA25 M6		LG-CAP/M6	20
HA30, HA35	M8	LG-CAP/M8	20
HA45	M12	LG-CAP/M12	20
HA55	M14	LG-CAP/M14	20

Fig. 15 Double seal

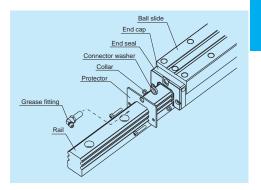


Fig. 16 Protector

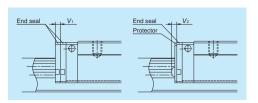


Fig. 17

A347 A348

(8) Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

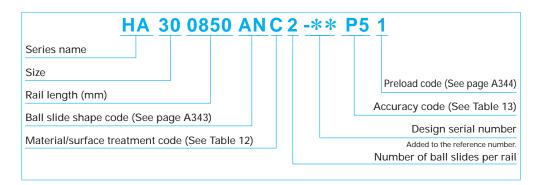


Table 12 Material/surface treatment code

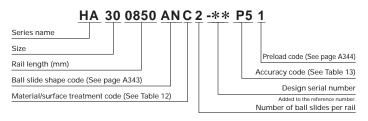

Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special

Table 13 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1		
Ultra precision grade	P3	K3		
Super precision grade	P4	K4		
High precision grade	P5	K5		

Note: Refer to Page A38 for NSK K1 lubrication unit.

(9) Dimensions

Front view of AL type

HA35AL

HA45AN

HA45AL

HA55AN

HA55AL

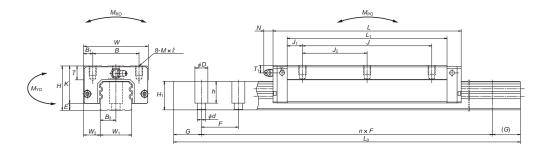
48

70

60

80

70


10

12

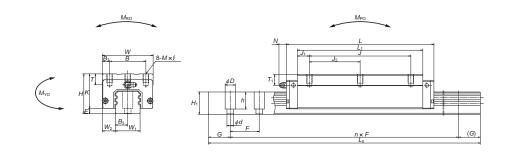
20.5

23.5

Side view of AL type

Assembly Ball slide																		
N 4	adal Na	Height			Width	Length										Grease	fittin	g
Model No.		Н	Ε	W_2	W	L	В	J	J_2	$M \times \text{pitch} \times \ell$	B ₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
H	IA25AN	40	5.5	12.5	48	147.8	35	100	50	M6×1.0×10	6.5	126	13	34.5	12	M6×0.75	10	11
Н	IA30AN	45	7.5	16	60	177.2	40	120	60	M8×1.25×11	10	149	14.5	37.5	14	M6×0.75	9.5	11
	IA35AN	55	7.5	18	70	203.6	50	140	70	M8×1.25×12	10	173	16.5	47.5	15	M6×0.75	15	11

M8×1.25×10


100 | 284.4 | 75 | 206 | 103 | M12×1.75×18 | 12.5 | 245 | 19.5

Remarks: 1) HA Series does not have a ball retainer. Be aware that the balls fall out when a bearing is withdrawn from the rail.

86 233.4 60 160 80 M10×1.5×16 13

Front view of AN type

Side view of AN type

Unit: mm

	Rail							Basic	load rat	ing		Ball dia.	We	ight
Width	Height	Pitch	Mounting		G Maximum		Dynamic	Static	Sta	Static moment			Ball	Rail
			bolt hole			length	С	C_{0}	M_{RO}	M_{PO}	$M_{\scriptscriptstyle YO}$	$D_{\rm w}$	slide	
W_1	H_1	F	$d \times D \times h$	B_3	(Reference)	L_{0max}	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
23	22	30	7×11×16.5	11.5	20	3 960	54 000	115 000	670	2 060	2 060	3.968	1.2	3.7
28	28	40	9×14×21	14	20	4 000	79 500	166 000	1 140	3 550	3 550	4.762	1.8	5.8
34	30.8	40	9×14×23.5	17	20	4 000	111 000	226 000	1 950	5 650	5 650	5.556	3.0	7.7
34	30.0	40	77.147.23.3	17	20	4 000	111 000	220 000	1 730	3 030	3 030	3.330	2.6	7.7
45	36	52.5	14×20×27	22.5	22.5	3 990	147.000	295 000	3 700	8 450	0 150	6.350	6.0	12.0
45	30	32.3	14/20/27	22.3	22.5	3 990	147 000	293 000	3 700	0 430	0 430	0.330	5.0	12.0
53	43.2	60	16×23×32.5	26.5	30	3 960	232 000	445 000	6 500	15 400	15 400	7 027	9.4	17.2
33	43.2	00	10/23/32.3	20.5	30	3 700	232 000	445 000	0 300	15 400	15 400	1.731	7.8	17.2

²⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C_{loo} for 100 km rating fatigue life, divide the C by 1.26.

A351 A352

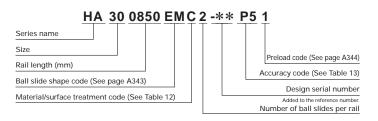
8

10

13

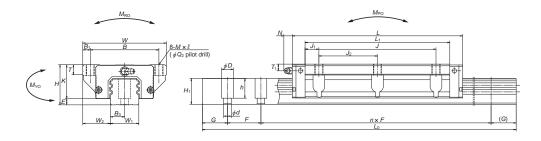
13

60


17

18

Rc1/8


Rc1/8

197 18.5

Front view of EM type

Side view of EM type

	Assembly			Ball slide														
Model No.	Height $H \ E \ W_2$		Width	Length	Mounting hole										Grease	fittin	g	
iviodei No.			W	$W \mid L \mid B \mid J \mid J_2 \mid N$		$M \times \text{pitch} \times \ell$	Q_2	B ₁	L ₁	J_1	K	Т	Hole size	<i>T</i> ₁	N			
HA25EM	36	5.5	23.5	70	147.8	57	100	50	M8×1.25×10	6.8	6.5	126	13	30.5	11	M6×0.75	6	11
HA30EM	42	7.5	31	90	177.2	72	120	60	M10×1.5×12	8.6	9	149	14.5	34.5	11	M6×0.75	6.5	11
HA35EM	48	7.5	33	100	203.6	82	140	70	M10×1.5×13	8.6	9	173	16.5	40.5	12	M6×0.75	8	11
HA45EM	60	10	37.5	120	233.4	100	160	80	M12×1.75×15	10.5	10	197	18.5	50	13	Rc1/8	10	13
HA55EM	70	12	43.5	140	284.4	116	206	103	M14×2×18	12.5	12	245	19.5	58	15	Rc1/8	11	13

Remarks: 1) HA Series does not have a ball retainer. Be aware that the balls fall out when a bearing is withdrawn from the rail.

Unit: mm

	Rail						Basic load rating					Ball dia.	We	ight
Width	Height	Pitch	Mounting		G	Maximum	Dynamic	Static	Sta	tic mom	ent		Ball	Rail
			bolt hole			length	С	C_{0}	M_{RO}	M_{PO}	M_{YO}	$D_{\rm w}$	slide	
W_1	H ₁	F	$d \times D \times h$	B_3	(Reference)	L_{omax}	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
23	22	30	7×11×16.5	11.5	20	3 960	54 000	115 000	670	2 060	2 060	3.968	1.6	3.7
28	28	40	9×14×21	14	20	4 000	79 500	166 000	1 140	3 550	3 550	4.762	2.6	5.8
34	30.8	40	9×14×23.5	17	20	4 000	111 000	226 000	1 950	5 650	5 650	5.556	3.8	7.7
45	36	52.5	14×20×27	22.5	22.5	3 990	147 000	295 000	3 700	8 450	8 450	6.350	6.6	12.0
53	43.2	60	16×23×32.5	26.5	30	3 960	232 000	445 000	6 500	15 400	15 400	7.937	11	17.2

²⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic

0.12 um

0.36 um

A-5-4.2 HS Series

(1) Features

1. High motion accuracy

High motion accuracy is achieved in both narrow and wide ranges by adopting ultralong ball slides and optimum design features for the ball recirculation component.

2. Ball passage vibration reduced to one-third of our conventional models

Tests show ball passage vibration has been reduced to one-third of our conventional models, dramatically improving straightness in table unit.

3. Installation of rail with greater accuracy

Increased counterbore depth of the rail mounting hole reduces rail deflection, which is caused by bolt tightening when fixing the rail to the base component, to 50% or less. This feature restrains the pitching motion of ball slide whose frequency matches to the mounting hole pitch.

In addition, the length of mounting hole pitch has been reduced by one-half of the conventional models, so the rail can be more accurately installed in position.

4. High rigidity and load capacity with lower friction

High rigidity, high load capacity and low friction are achieved by increasing the number of balls.

5. Compact design

Reduced body size enables more compact

6. High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, increasing load carrying capacity as well as rigidity against the load in vertical direction.

7. High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is usually carried by top 2 rows at where balls are contacting at two points. Because of this design, the bottom rows will carry the load when a large impact load is applied as shown in Fig. 3. This assures high

resistance to the impact load.

8. High accuracy at manufacturing

As showing in Fig. 4, fixing the measuring rollers is simple thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

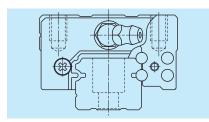


Fig. 1 HS Series

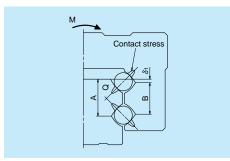


Fig. 2 Enlarged illustration: Offset Gothic arch

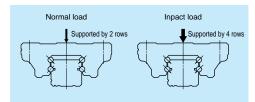


Fig. 3 When load is applied

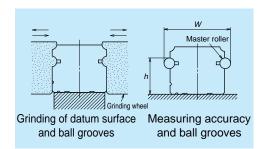


Fig. 4 Rail-grinding and measuring

Measurement results of ball passage vibration

Ball passage vibration can translate into posture changes in the ball slide which result from ball passage (circulation). In the HS Series, this vibration has been substantially reduced to one-third of conventional models.

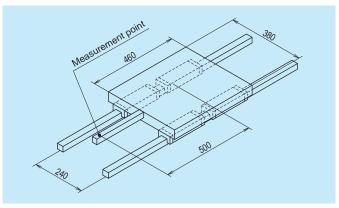


Fig. 5 Schematic view of measurement of ball passage vibration

HS Series

Model No.: HS30 Preload: Z1 Table dimensions: 460 mm × 380 mm

Conventional Series

Model No.: LS30 Preload: Z1

Table dimensions: 460 mm × 380 mm

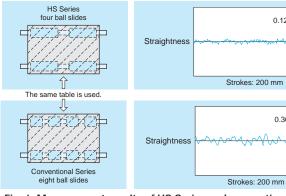
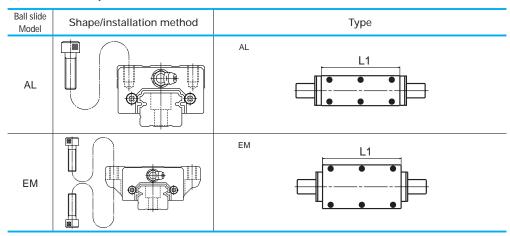



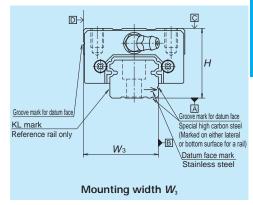
Fig. 6 Measurement results of HS Series and conventional Series

(2) Ball slide shape

(3) Accuracy and preload

1. Running parallelism of ball slide

	Ta	able	e 1		Unit:	μm	
	I	Pre	loaded ass	em	bly		
Rail over all length (mm) over or less	Ultra precision	P3	Super precision	P4	High precision	P5	
- 200	2		2		4		
200 – 250	2		2.5		5		
250 – 315	2		2.5		5		
315 – 400	2	3		6			
400 – 500	2		3		6		
500 - 630	2		3.5		7		
630 – 800	2		4.5		8		
800 – 1 000	2.5		5		9		
1 000 – 1 250	3		6		10		
1 250 – 1 600	4		7		11		
1 600 – 2 000	4.5		8		13		
2 000 – 2 500	5		10		15		
2 500 – 3 150	6		11		17		
3 150 – 4 000	9		16		23		


2. Accuracy Standard

Three accuracy grades are available: ultra precision P3, super precision P4 and high precision P5.

	Table 2		Unit: µm
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10
Running parallelism of face C to face A Running parallelism of face D to face B		Refer to Table 1 and Fig. 7	7

3. Assembled accuracy

4000 (3500)

Fig. 7

4. Preload and rigidity

Slight preload Z1 and medium preload Z3 are available for preload, which can be selected for specific applications.

Table 3

Model No.	Prelo	ad (N)	Rigidity (N/µm)			
	Slight preload (Z1)	Medium preload (Z3)	Slight preload (Z1)	Medium preload (Z3)		
HS15	98	785	260	530		
HS20	147	1 030	305	600		
HS25	245	1 620	385	735		
HS30	390	2 550	505	965		
HS35	590	3 550	610	1 140		

(4) Available length of rail

2000 (1700)

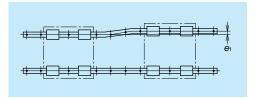
HS

Table 4 shows the limitation of rail length (maximum length). The dimension in parenthesis is for stainless. However, the limitations vary by accuracy grade.

		Tabl	e 4		Unit: mm
Series Size	15	20	25	30	35

3960 (3500)

Note: Rails can be butted if user requirement exceeds the rail length shown in the Table. Please consult NSK.


3960 (3500)

A357

4000 (3500)

(5) Installation

1. Permissible values of mounting error

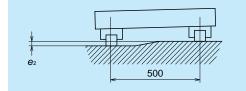
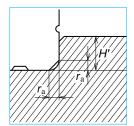


Fig. 8

Preload

Z1

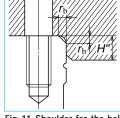

Z3

Z1, Z3

Fig. 9

	Table 5		Unit: µm						
		Model No.							
HS15	HS20	HS25	HS30	HS35					
18	20	26	31	37					
12	14	18	22	26					
330 μm/500 mm									

2. Shoulder height of the mounting face and corner radius r


Value

Permissible values of

parallelism in two rails e

Permissible values of

parallelism (height) in two rails e

slide datum face

Fig. 10 Shoulder for the Fig. 11 Shoulder for the ball rail datum face

Table F

Table 6 Height of the shoulder and corner radius of the mounting face Unit: mm

					011111111111111111111111111111111111111		
Model No.		Corner radius	s (maximum)	Shoulder height			
		$\Gamma_{\rm a}$	$r_{\rm b}$	H'	H"		
	HS15	0.5	0.5	4	4		
	HS20	0.5	0.5	4.5	5		
	HS25	0.5	0.5	5	5		
	HS30	0.5	0.5	6	6		
	HS35	0.5	0.5	6	6		

(6) Lubrication components

Refer to Page A38 and D13 for linear guide lubrication.

1. Types of lubrication accessories

Figure 12 and Table 7 show grease fittings and

We provide lubrication accessories with extended thread body length (L) for the addition of dust proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

Please ask NSK for stainless lubrication accessories.

2. Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 13)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of M6×1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

Table 7 Unit: mm									
Model No.	Dust-proof	Grease fitting Drive-in	Tube fitting						
	specification	Thread body length L	Thread body length L						
	Standard	5	-						
HS15	With NSK K1	10	-						
пэтэ	Double seal	*	-						
	Protector	*	_						
	Standard	5	-						
HS20	With NSK K1	10	-						
11320	Double seal	8	_						
	Protector	8	-						
	Standard	5	6						
HS25	With NSK K1	12	11						
ПЗ23	Double seal	10	9						
	Protector	10	9						
	Standard	5	6						
HS30	With NSK K1	14	13						
пээо	Double seal	12	11						
	Protector	12	11						
	Standard	5	6						
HS35	With NSK K1	14	13						
11333	Double seal	12	11						
	Protector	12	11						

^{*)} Please contact NSK as a connector is required.

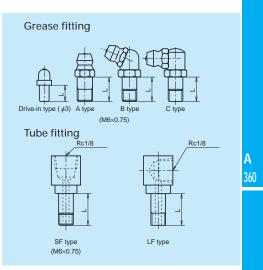


Fig. 12 Grease fitting and tube fitting

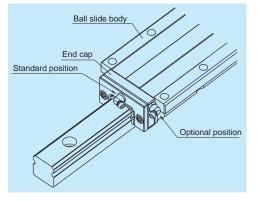


Fig. 13 Mounting position of lubrication accessories

A360

(7) Dust-proof components

1. Standard Specification

To keep foreign matters from entering inside the ball slide, HS Series has an end seal on both ends.

Bottom seal is equipped on bottom as an option.

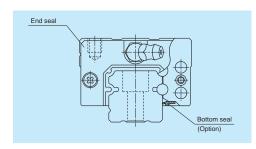


Fig. 14

Table 8 Seal friction per ball slide (maximum): end seal only

					Unit: N
Series Size	15	20	25	30	35
HS	3	3	3	3	4

2. NSK $K1^{TM}$

Refer to Table 9 for dimension of linear guides equipped with the NSK K1.

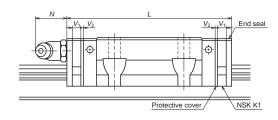


Table 9

	- 1	ni	+.	m	m
,	J	ш	ι.	11	ш

Model No.	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V_2	Protruding area of the grease fitting N
HS15	AL, EM	106	115.6	4.0	0.8	(5)
HS20	AL, EM	119.7	130.3	4.5	0.8	(14)
HS25	AL, EM	148	158.6	4.5	0.8	(14)
HS30	AL, EM	176.1	188.1	5.0	1.0	(14)
HS35	AL, EM	203.6	216.6	5.5	1.0	(14)

Note: Ball slide length equipped with NSK K1 =

(Standard ball slide length) + (Thickness of NSK K1, $V_1 \times$ Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

3. Double seal and protector

For HS series, double seal and protector can be installed only before shipping from the factory. Please consult with NSK.

Table 10 shows the increased thickness of V_1 , and V_2 when end seal and protector are installed.

Table 10	Unit: mm				
Thickness	Thickness				
of end seal: V_1	of protector: V ₂				
2.8	3				
2.5	2.7				
2.8	3.2				
3.6	4.2				
3.6	4.2				
	Thickness of end seal: V ₁ 2.8 2.5 2.8 3.6				

4. Caps to cover the bolt hole for rail mounting

Table 12 shows size of the bolts for the each model number as well as reference number of the cap.

Table 11 Caps to cover rail bolt hole

Model No.	Bolt to	Сар	Quantity
Model No.	secure rail	reference No.	/case
HS15	M3	LG-CAP/M3	20
HS15	M4	LG-CAP/M4	20
HS20	M5	LG-CAP/M5	20
HS25, HS30	M6	LG-CAP/M6	20
HS35	M8	LG-CAP/M8	20

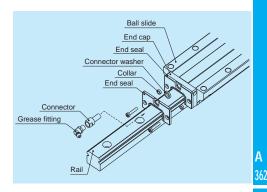


Fig. 15 Double seal

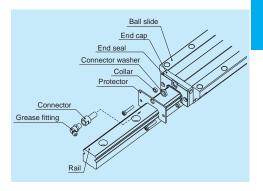


Fig. 16 Protector

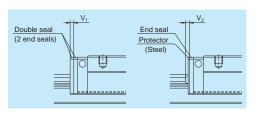


Fig. 17

A361 A362

(8) Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

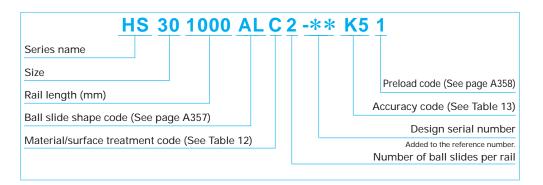


Table 12 Material/surface treatment code

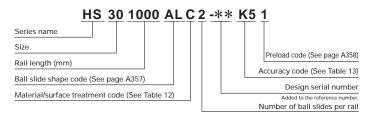
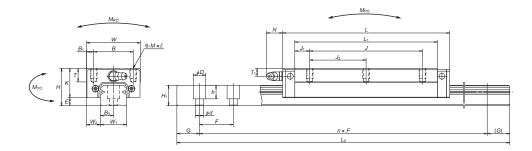

Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special

Table 13 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1
Ultra precision grade	P3	К3
Super precision grade	P4	K4
High precision grade	P5	K5


Note: Refer to Page A38 for NSK K1 lubrication unit.

(9) Dimensions

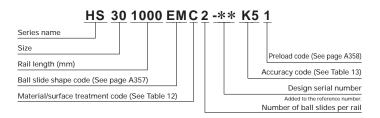
Front view of AL types

Side view of AL type

		As	ssemb	ly						В	Ball sli	de						
N	√odel No.	Height			Width	Length		Mo	ounti	ng hole						Grease	fittin	g
	viouei ivo.	Н	Ε	W ₂	W	L	В	J	$J_{\scriptscriptstyle 2}$	<i>M</i> ×pitch×ℓ	B_1	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
	HS15AL	24	4.6	9.5	34	106	26	60	30	M4×0.7×6	4	89.2	14.6	19.4	10	φ 3	6	3
	HS20AL	28	6	11	42	119.7	32	80	40	M5×0.8×7	5	102.5	11.25	22	12	M6×0.75	5.5	11
	HS25AL	33	7	12.5	48	148	35	100	50	M6×1×9	6.5	126.4	13.2	26	12	M6×0.75	7	11
	HS30AL	42	9	16	60	176.1	40	120	60	M8×1.25×12	10	150.7	15.35	33	13	M6×0.75	8	11
	HS35AL	48	10.5	18	70	203.6	50	140	70	M8×1.25×12	10	175.6	17.8	37.5	14	M6×0.75	8.5	11

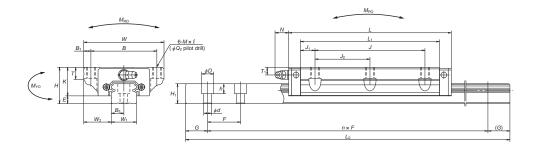
Remarks: 1) HS Series does not have a ball retainer. Be aware that balls fall out when the ball slider is withdrawn from the rail.

Unit: mm


			Rail					Basic	load rat	ing		Ball dia.	We	eight	
Width	Height	Pitch	Mounting		G	Maximum length	Dynamic	Static	Stat	tic mom	ent		Ball	Rail	
			Bolt hole			L _{Omax}	С	C_{0}	M_{RO}	M_{PO}	$M_{\scriptscriptstyle YO}$	$D_{\rm w}$	slide	9	
W_1	H_1	F	$d \times D \times h$	B_3	(Reference)	() for stainless	(N)	(N)	(N·m)	(N·m)	(N·m)		(g)	(kg/m)	
15	12.5	30	*3.5×6×8.5 4.5×7.5×8.5	7.5	20	2 000 (1 700)	15 300	40 000	199	395	335	2.778	0.34	1.4	
20	15.5	30	6×9.5×10.5	10	20	3 960 (3 500)	20 400	52 000	350	590	495	3.175	0.52	2.3	
23	18	30	7×11×12	11.5	20	3 960 (3 500)	32 000	78 000	605	1 090	910	3.968	0.85	3.1	
28	23	40	7×11×16	14	20	4 000 (3 500)	51 500	127 000	1 190	2 120	1 780	4.762	1.7	4.8	
34	27.5	40	9×14×20	17	20	4 000 (3 500)	71 500	172 000	1 980	3 350	2 820	5.556	2.5	7.0	

³⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C to the dynamic load rating to the dynamic load rating C to the dynami

²⁾ The external appearance of stainless steel ball slides differ from those of standard material ball slide.


^{*)} The standard rail mounting bolt hole for HS15 is specified as the hole for M3 (3.5x6x8.5). Please contact us to request a different hole for M4 (4.5x7.5x8.5)

Parenthesized dimensions are applicable to stainless steel products.

Front view of EM type

Side view of EM type

	Д	ssem	ıbly							Ball s	lide							
Model No.	Height			Width	idth Length Mounting hole											Grease	fittir	ıg
Model No.	Н	Ε	$W_{\scriptscriptstyle 2}$	W	L	В	J	J_2	$M \times \text{pitch} \times \ell$	$Q_{\scriptscriptstyle 2}$	B ₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
HS15EM	24	4.6	18.5	52	106	41	60	30	M5×0.8×7	4.4	5.5	89.2	14.6	19.4	8	φ 3	6	3
HS20EM	28	6	19.5	59	119.7	49	80	40	M6×1×9 (M6×1×9.5)	5.3	5	102.5	11.25	22	10	M6×0.75	5.5	11
HS25EM	33	7	25	73	148	60	100	50	M8×1.25×10 (M8×1.25×11.5)	6.8	6.5	126.4	13.2	26	11 (12)	M6×0.75	7	11
HS30EM	42	9	31	90	176.1	72	120	60	M10×1.5×12 (M10×1.5×14.5)	8.6	9	150.7	15.35	33	11 (15)	M6×0.75	8	11
HS35EM	48	10.5	33	100	203.6	82	140	70	M10×1.5×13 (M10×1.5×14.5)	8.6	9	175.6	17.8	37.5	12 (15)	M6×0.75	8.5	11

Remarks: 1) HS Series does not have a ball retainer. Be aware that balls fall out when the ball slider is withdrawn from the rail.

			Bolt hole			length	С	C_{\circ}	M_{RO}	M_{PO}	$M_{\scriptscriptstyle YO}$	D_{w}	slide	
W_1	H ₁	F	d×D×h	B_3	(Reference)	() for stainless	(N)	(N)	(N·m)	(N·m)	(N·m)		(kg)	(kg/m)
15	12.5	30	*3.5×6×8.5 4.5×7.5×8.5	7.5	20	2 000 (1 700)	15 300	40 000	199	395	335	2.778	0.45	1.4
20	15.5	30	6×9.5×10.5	10	20	3 960 (3 500)	20 400	52 000	350	590	495	3.175	0.67	2.3
23	18	30	7×11×12	11.5	20	3 960 (3 500)	32 000	78 000	605	1 090	910	3.968	1.3	3.1

51 500

71 500

Maximum Dynamic

G

20

Basic load rating

| 127 000 | 1 190 | 2 120 |

172 000 1 980

Static moment

Static

7×11×16

9×14×20

Rail

Width | Height | Pitch | Mounting

Unit: mm Weight

7.0

Ball Rail

Ball dia.

1 780

3 350 | 2 820 | 5.556 | 3.4

A367 A368

28

34

23

27.5

40

²⁾ The external appearance of stainless steel ball slides differ from those of standard material ball slide.

³⁾ Parenthesized dimensions are applicable to stainless steel products.

⁴⁾ The basic dynamic load rating is a load that furnishes 50 km rating fatigue life; it is a vertical and constant load to the ball slide mounting surface. When converting the basic dynamic load rating C to the dynamic load rating C_{1∞} for 100 km rating fatigue life, divide the C by 1.26.

^{*)} The standard rail mounting bolt hole for HS15 is specified as the hole for M3 (3.5x6x8.5). Please contact us to request a different hole for M4 (4 5x7 5x8 5)

Parenthesized dimensions are applicable to stainless steel products.

A-6 Other Linear Rolling Guide Products

A-6-1 Linear Rolling Bushing

(1) Features

1. Low friction

Low friction owes to its design: Balls come into point contacts with raceway surface: the balls smoothly re-circulate. There is very little stick slip.

2. Low noise

Noise level is low due to the ball retainer which is made of a synthetic resin.

3. High precision

Due to NSK's superb quality control, precision is guaranteed.

4. Dust prevention

Series with seal is available. The seal has small friction, and is highly durable. Highly dust-preventive double-lip system has been adopted.

5. Superb durability

The material of outer sleeve is vacuum degassed, highly pure, and is heat-treated with good expertise.

(2) Models

There are three models

1. Standard type LB (Fig. 1)

This model is the most commonly used, and is the only model that comes with a seal and in super precision grade.

Fig. 1 Standard type LB

2. Adjustable clearance type LB-T (Fig. 2)

A part of the outer sleeve is cut open toward the axial direction. Used with a housing which can adjust inside diameter, it makes minute adjustment of the clearance between the linear shaft and the inscribed circle (an imaginary circle that connects the summit of the ball) of linear rolling bushing.

Fig. 2 Adjustable Clearance type LB-T

3. Open type LB-K (Fig. 3)

A cut is made in the outer sleeve and retainer, to a width equivalent to one row of the retainer, to the axial direction. The opening is used to hold this linear rolling bushing by a support or base to prevent a long linear shaft from bending.

Fig. 3 Open type LB-K

NSK

(3) Accuracy

1. Accuracy grades

- Standard type LB·······High precision grade S, and super precision grade SP are available.
- Space adjustment type LB-T······
 Open type LB-K······

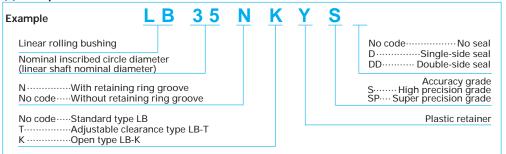
 High precision grade S is available.

2. Tolerance of rolling linear bushing, linear shaft and housing

Table 1 Tolerance for inscribed circle of the linear rolling bushing and shaft diameter

.CI		
	Unit:	μm

		limension/		ce/inscribe	ed circle di	ameter(1)	Toleranc	e/width <i>B</i>	Tolerance/slot distance of retaining rings Bn		Red	commend shaft d	ed tolerai iameter	nce/	Α
ı		cle diameter neter (mm)	High pr grad	ecision de S	Super high grad	h precision le SP		sion grade S ecision grade SP		sion grade S ecision grade SP	High pr			h precision de SP	37
	over	or less	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	
į	2.5	6									-6	-14	-4	-9	
	6	10	0	-8	0	-5					-6	-15	-4	-10	
Ī	10	18					0	-120	+240	-240	-6	-17	-4	-12	
	18	30	0	-10	0	-6					-6	-19	-4	-13	
	30	50	0	-12	0	-8					-7	-23	-5	-16	
	30	50	0	-12	0	-8					-7	-23	-5	-16	_


Table 2 Tolerance of linear rolling bush outside diameter, and housing inside diameter

Unit: µm

Nominal o	Nominal dimension/		rance/outsi	de diametei	r D ⁽¹⁾	ccentricity ⁽²⁾	Tolerance/housing inside diameter					
	neter/housing meter (mm)	High precision grade S		Super high grade		Super high precision grade SP	High pr grad		Super high precision grade SP			
over	or less	upper	lower	upper	lower	Maximum	upper	lower	upper	lower		
2.5	6						+12	0	+8	0		
6	10	0	-10	0	-7	8	+15	0	+9	0		
10	18						+18	0	+11	0		
18	30	0	-12	0	-8	9	+21	0	+13	0		
30	50	0	-14	0	-9	10	+25	0	+16	0		

Note: 1) For adjustable clearance type and open type, figures indicate tolerances before the cut is made.

(4) Composition of Reference Number

A369 A370

Eccentricity means the run-out of offset between the centers of outer sleeve diameter and inscribed circle diameter.

(5) Lubrication and Friction

1. Grease lubrication

① Supply at initial stage

At time of delivery, the linear rolling bushing has a coat of rust preventive agent. Wipe it off with clean kerosene or organic solvent. Dry with an air blower, etc., then apply grease.

Lithium soap based greases with consistency level of 2 are generally used (e.g. NSK Grease LR3, PS2, and AS2).

2 Replenishment

- Sealed linear rolling bushing is designed to be a disposal item. Therefore, a replenishing grease is considered to be not required. However, if replenishment becomes necessary due to dirty environment or wear of the seal, remove the linear bushing from the shaft and replenish lubricant in the same manner as the initial lubricating.
- For items without seal, wipe off old grease from the linear shaft, and apply new grease.
- Intervals of replenishments are every 100 km in a dirty environment, 500 km in a slightly dirty environment, 1000 km or no replenishing for a normal environment.

2. Oil lubrication

It is not necessary to wash off the rust preventive agent applied before delivery.

Use an oil of ISO viscosity grade VG15-100. Drip the oil on the linear shaft by an oil supply system.

Temperature to use

-30°C to 50°C Viscosity VG15 – 46 50°C to 80°C Viscosity VG46 – 100

Lubricant is removed by the seal if the linear ball bearing has a seal. Therefore, the drip method cannot be used except for single-seal types.

3. Friction coefficient

The linear rolling bushing has a small dynamic friction coefficient. This contributes to low power loss and temperature rise.

Fig. 4 indicates dynamic friction coefficient is merely 0.001-0.004. Also, at the speed of under 60 m/min, there is no danger of the temperature rising.

Friction force can be obtained by the following formula.

$$F = \mu \cdot P \cdots (1)$$

In this formula:

F: Friction force (N)

P: Load (vertical load to the shaft center line) (N)

 μ : Friction coefficient (dynamic or static)

For a seal type, a seal resistance of 0.3 to 2.40 N is added to the above.

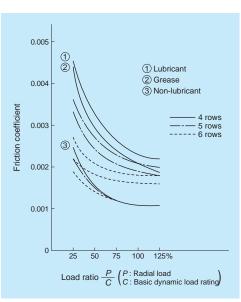


Fig. 4 Dynamic friction coefficient of linear rolling bushing

(6) Range of Conditions to Use

Generally, use under the following conditions.

Please consult NSK when values exceed the ranges given below

TemperatureMinus 30°C to plus 80°C SpeedUp to 120 m/min (excluding oscillation and short strokes)

(7) Preload and Rigidity

The linear rolling bushing is normally used without applying preload. If high positioning accuracy is required, set the clearance between the linear rolling bush and the shaft at the range of 0 to 5 μ m. Slight preload is a general rule (1% of basic dynamic load rating C -- see the dimension table).

The dimension table shows theoretical rigidity *K* when clearance with the shaft is zero, and a load of 0.1 C is applied to the summit of the ball.

Rigidity K_{N} , when load is not 0.1 C, is obtained by the following formula.

$$K_N = K (P/0.1C)^{1/3} \cdots (2)$$

In this formula:

 $\it K$: Rigidity value in the dimension table (N/ μ m)

P: Radial load (N)

When the load is applied between the ball raws, the load becomes 1.122 times for 4 ball rows; 0.959 times for 5 ball rows; 0.98 times for 6 ball rows.

(8) Basic Load Rating and Rated Life

1. Basic dynamic load rating

Basic dynamic load rating C is: A radial load which allows 90% of a group of linear rolling bush to run a distance of 50 km without suffering damage when they are moved individually.

There is a relationship as below between C and the life

$$L = 50 f_{L^3}$$
 (3)
 $f_{L} = C/P$ (4)

In this formula:

L: Rated life (km)

P: Radial load (N)

 f_L : Life factor (Refer to Fig. 5)

This formula is used provided that the shaft hardness is HRC58 or higher. Rated life is shorter if the shaft is softer. In this case, find the hardness factor $f_{\rm H}$ from Fig. 6, and multiply the value.

$$f_L = C \cdot f_H/P \cdot \dots (5)$$
Or

Life in time can be obtained by the following formula, substituting for given stroke length, cycle numbers, and running distance:

$$L_h = (L/1.2 \cdot S \cdot n) \times 10^4 \cdot \dots (7)$$

In this formula:

L_h: Life hours (h)

L: Rated life (km)

S: Stroke (mm)

n : Cycles per minute (cpm)

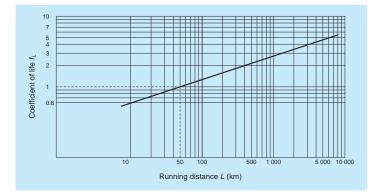


Fig. 5 Relationship between life factor and running distance

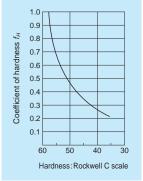


Fig. 6 Hardness factor

2. Basic static load rating

It is a load that the total permanent deformation of outer sleeve, ball and shaft, at the contact point, becomes 0.01% of the ball diameter when this load is applied to the rolling bushing. It is understood in general that this is the applicable load limit which causes this much permanent deformation, without hampering operation.

3. Calculation example

What is the appropriate rolling bushing size if required life is 5000 hours?

Conditions are:

- Three linear rolling bushings are installed in two parallel shafts, and support a reciprocating table.
- Load 450 N is equally distributed to the three bushings.
- The table is required to reciprocate on the shafts at 200 times per minute, at a stroke of 70 mm.
- · Hardness of the shaft: HRC 55

$$450/3 = 150 (N)$$

· Load per linear rolling bushing is:

From Formula (7), the required life, when indicated in distance, is:

$$L = 5 \times 10^3 \times 1.2 \times 70 \times 200/10^4 = 8.4 \times 10^3$$
 (km)

From Fig. 5 and Fig. 6, Life factor $f_L = 5.6$ Hardness factor $f_H = 0.65$ Therefore, from Formula (6).

$$C = P \times f_L / f_H$$

$$=150 \times 5.6/0.65 = 1292$$
 (N)

Based on the above, select linear rolling bushing LB30NY with shaft diameter of 30 mm, basic dynamic load rating of 1400 N.

4. Compensating load rating by ball row position

Load rating of the linear rolling bushing changes by the position of the ball circuit rows.

Permissible load is larger when it is applied to the middle of the ball circuit rows than when it is applied directly above the ball row (Fig. 7).

(Radial clearance set at zero in this case.)

Load ratings in the dimension table are in case "A" when it is applied directly above the ball circuit row. If used as in case "B," the load rating becomes larger (Refer to Fig. 7).

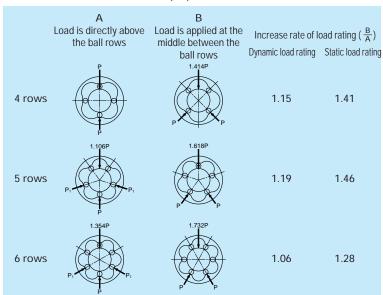


Fig. 7 Increasing rate of load rating by position of ball row (B/A)

(9) Shaft Specification

Harden the shaft surface, where the balls run, with heat treatment to provide the following values.

- Surface hardness·······HRC58 or over
- Depth of core hardness at HRC50 or higher Depth for LB3; 0.3 mm or deeper Depth for LB50; 1.2 mm or deeper

Roughness of the surface should be:

• For SP grade, and "the clearance for fit" with the ball bushing less than 5 µm -

Less than 0.8 S

 \bullet For SP grade with "the clearance" of more than 5 $\mu m,$ and for S grade -

Less than 1.2 S

Bending should be:

- LB3 -- 15 µm/100 mm
- LB50 -- 100 µm/1000 mm

An appropriate clearance for normal use conditions can be obtained when the tolerance in shaft diameter remains within the recommended range (refer to Table 1 in Page A366). For operations which require particular accuracy, select the shaft diameter which creates a clearance in the range of 0 to 0.005 (mm) for example, when assembled with the rolling bushing.

(10) Dust Proof

Select a linear rolling bushing with seals to prevent moisture or foreign matters, which are floating in the air, from entering.

(11) Installation

Combination of shaft and linear rolling bushing

When the linear rolling bushing is installed in a linear motion table for its reciprocating movement, it is necessary to prevent the table from rotating. In general, for this reason, two shafts, installed with two linear rolling bushings on each, are used. Fig. 8 is an installation example.

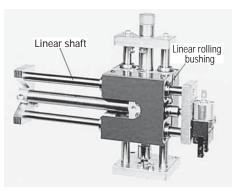


Fig. 8 Installation example

2. Installation of linear rolling bushing

① Standard type installation

Fig. 9 shows a method using a retainer ring. Linear rolling bushing can also be secured to the housing using a stop plate and/or screw.

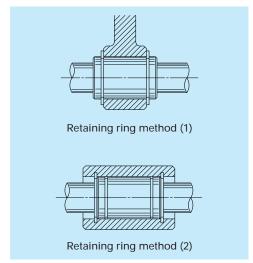


Fig. 9 Installation using retaining rings

- a Housing inside diameter should be of a recommended value (Table 2, Page A366). The entire rolling bushing contracts and gives excessive preload if: the inside diameter is small; the roundness or cylindricity is excessive. This may result in an unexpected failure.
- To install linear rolling bushing, use a tool (Fig. 10) and squeeze it in, or use a holder and lightly pound it.

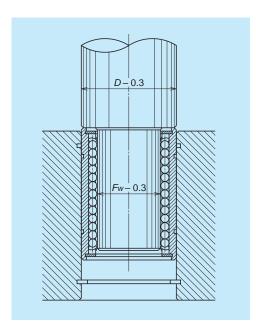


Fig. 10 Tool to install a linear rolling bushing

2 Installation of adjustable clearance type

Use a housing which can adjust the inside diameter of the rolling bushing. This way, the clearance between the rolling bushing and the linear shaft can be easily adjusted. Arrange the cut-open section of the rolling bushing at a 90-degree angle to the housing's cut-open section. This is the most effective way to evenly distribute deformation toward circumferential direction.

The tolerance of shaft diameter of the adjustable clearance type should be within the recommended range (Refer to Table 1 in Page A366). As a general rule, set the preload at slight or light volume. (Do not provide excessive preload.) Use a dial gauge to measure and adjust clearance. However, here is an easy method to adjust .

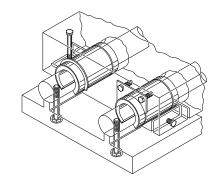
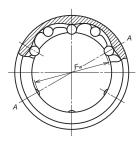
First, loosen the housing until shaft turns freely. Then narrow the clearance gradually. Stop at the point when the shaft rotation becomes heavy. This creates a clearance zero or light preload.

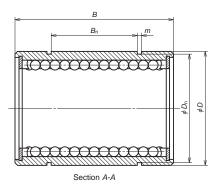
3 Installation of open type

Use with clearance or with light preload.

Keep the tolerance in shaft diameter within the recommended range (Refer to Table 1 in Page A366), so the preload shall not become excessive.

(Unlike the adjustable clearance type, clearance cannot be narrowed by rotating the shaft because the state of shaft rotation does not indicate how narrow the space has become. Narrowing clearance requires caution for open type.)

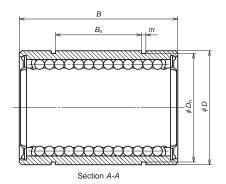

Fig. 11 Installation example of an open type

3. Precaution for installing a shaft in the linear rolling bushing

- (a) To install two shafts parallel to each other, first install one shaft accurately. Use this as a reference, and install the other parallel to the first shaft. This makes installation easy.
- Do not incline the shaft when inserting it into the linear rolling bushing. Do not force it to enter by twisting. This deforms the retainer, and causes the balls to fall out.
- © Do not use the shaft for rotating movement after the shaft is in the linear rolling bushing. The balls slip and damage the shaft.
- ② Do not twist the shaft after it is in the linear rolling bushing. The pressure scars the shaft.

(12) Dimension tables Model LB (standard type), no seal

Unit: mm

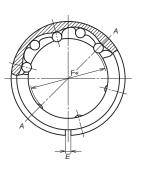

	Inscribed	Outside	Length	Dotai	ning ring g	roovo	Stiffness(1)	Number	Weight	Basic dynamic	Basic static
Model No.	circle	diameter	Lengin	Distance	Width	Bottom	201111622	of ball		load rating	load rating
Model No.		ularrietei		Distance	vviatri		(11/1100)		(kg)		0
	diameter					diameter	(N/µm)	circuit	(Reference only)		C ₀
	F _w	D	В	B₁	m	D_n				(N)	(N)
LB3Y	3	7	10	_	_	_	3	4	0.0016	20	39
LB4Y	4	8	12	_	_	_	4.5	4	0.0022	29	59
LB6NY	6	12	19	11	1.15	11.5	7	4	0.0074	74	147
(2)LB8ANY	8	15	17	9	1.15	14.3	5.5	4	0.0094	78	118
LB8NY	8	15	24	15	1.15	14.3	9.5	4	0.014	118	226
LB10NY	10	19	29	19	1.35	18	12	4	0.025	206	355
LB12NY	12	21	30	20	1.35	20	13	4	0.028	265	500
LB13NY	13	23	32	20	1.35	22	13	4	0.040	294	510
LB16NY	16	28	37	23	1.65	26.6	14	4	0.063	440	635
LB20NY	20	32	42	27	1.65	30.3	19	5	0.088	610	1010
LB25NY	25	40	59	37	1.9	38	35	6	0.267	1000	1960
LB30NY	30	45	64	40	1.9	42.5	41	6	0.305	1400	2500
LB35NY	35	52	70	45	2.2	49	48	6	0.440	1510	2800
LB40NY	40	60	80	56	2.2	57	54	6	0.520	2230	4000
LB50NY	50	80	100	68	2.7	76.5	69	6	1.770	4100	7100

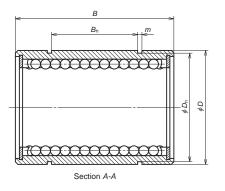
Note (1): Refer to Section (7).

(2): Semi-standard item of which length B is shorter than standard.

Model LB (standard type), with seal

A A

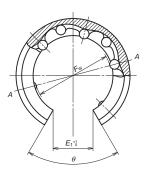


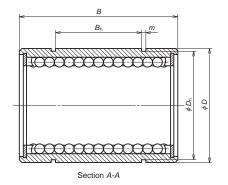

	mr

	Inscribed	Outside	Length	Reta	Retaining ring groove			Weight	Basic dynamic	Basic static
⁽¹⁾ Model No.	circle	diameter		Distance	Width	Bottom	of ball	(kg)	load rating	load rating
	diameter					diameter	circuit	(Reference only)	С	C_0
	$F_{\rm w}$	D	В	Bn	m	D_n			(N)	(N)
LB6NYDD	6	12	19	11	1.15	11.5	4	0.0074	74	147
LB8ANYDD	8	15	17	9	1.15	14.3	4	0.0094	78	118
LB8NYDD	8	15	24	15	1.15	14.3	4	0.014	118	226
LB10NYDD	10	19	29	19	1.35	18	4	0.025	206	355
LB12NYDD	12	21	30	20	1.35	20	4	0.028	265	500
LB13NYDD	13	23	32	20	1.35	22	4	0.040	294	510
LB16NYDD	16	28	37	23	1.65	26.6	4	0.063	440	635
LB20NYDD	20	32	42	27	1.65	30.3	5	0.088	610	1010
LB25NYDD	25	40	59	37	1.9	38	6	0.267	1000	1960
LB30NYDD	30	45	64	40	1.9	42.5	6	0.305	1400	2500
LB35NYDD	35	52	70	45	2.2	49	6	0.440	1510	2800
LB40NYDD	40	60	80	56	2.2	57	6	0.520	2230	4000
LB50NYDD	50	80	100	68	2.7	76.5	6	1.770	4100	7100

Note (1) Single-seal type is indicated as LB-D.

Model LB-T (Adjustable clearance type)




Unit: mm

	Inscribed	Outside	Length	Opening	Retai	ning ring g	roove	Number	Weight	Basic dynamic	Basic static
Model No.	circle	diameter		width	Distance	Width	Bottom	of ball	(kg)	load rating	load rating
	diameter						diameter	circuit	(Reference only)		C_0
	$F_{\rm w}$	D	В	Ε	B₁	m	D _n			(N)	(N)
LB6NTY	6	12	19	0.8	11	1.15	11.5	4	0.0073	74	147
LB8ANTY	8	15	17	1	9	1.15	14.3	4	0.0093	78	118
LB8NTY	8	15	24	1	15	1.15	14.3	4	0.014	118	226
LB10NTY	10	19	29	1.5	19	1.35	18	4	0.025	206	355
LB12NTY	12	21	30	1.5	20	1.35	20	4	0.028	265	500
LB13NTY	13	23	32	1.5	20	1.35	22	4	0.040	294	510
LB16NTY	16	28	37	1.5	23	1.65	26.6	4	0.062	440	635
LB20NTY	20	32	42	2	27	1.65	30.3	5	0.087	610	1010
LB25NTY	25	40	59	2	37	1.9	38	6	0.265	1000	1960
LB30NTY	30	45	64	2	40	1.9	42.5	6	0.302	1400	2500
LB35NTY	35	52	70	3	45	2.2	49	6	0.44	1510	2800
LB40NTY	40	60	80	3	56	2.2	57	6	0.52	2230	4000
LB50NTY	50	80	100	3	68	2.7	76.5	6	1.75	4100	7100

A377 A378

Model LB-K (Open type)

Unit: mm

	Inscribed	Outside	Length	Opening	Opening	Reta	ining ring	groove	Number	Weight	Basic dynamic	Basic static
Model No.	circle	diameter		width	angle	Distance	Width	Bottom	of ball	(kg)	load rating	load rating
	diameter F _w	D	В	F ₁	θ	Bn	m	diameter	circuit	(Reference only)	C (N)	<i>C</i> ₀ (N)
LB20NKY	20	32	42	11	60°	27	1.65	30.3	4	0.072	610	1010
LDZUINKT	20	32	42	1.1	00	21	1.00	30.3	4	0.072	010	1010
LB25NKY	25	40	59	13	50°	37	1.9	38	5	0.220	1000	1960
LB30NKY	30	45	64	15	50°	40	1.9	42.5	5	0.260	1400	2500
LB35NKY	35	52	70	17	50°	45	2.2	49	5	0.370	1510	2800
LB40NKY	40	60	80	20	50°	56	2.2	57	5	0.440	2230	4000
LB50NKY	50	80	100	25	50°	68	2.7	76.5	5	1.480	4100	7100

A-6-2 Crossed Roller Guide

(1) Structure

Rollers with a retainer (hereinafter referred to as "retainer") are assembled in a pair of rails which have a V-shape groove. (the grooves form a 90degree angle. Refer to Fig. 1, 2). Rollers are placed crisscrossed, and are able to support load in all directions, including moment loads.

Fig. 1 Structure of crossed roller guide

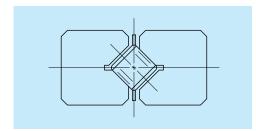


Fig. 2 Cross section of a crossed roller guide

(2) Features

1. High rigidity

This is attributable to the long contact area between the rollers and their accurately ground rolling surface.

2. Superbly smooth movement, low noise

The window which directly embraces the roller is made of plastic for smooth and quiet operation, lowering clatter when the retainer and the rollers come into contact.

3. Less micro-slip

Occasionally, a minute continuous slippage of the retainer to one direction, called "micro-slip," is caused due to installation error of the rail. After years of testing and research, NSK has developed technology to minimize this.

4. Easy installation

Installation is easy because the rail bending is

minimal, and the bolt hole pitch for installation is precise.

5. Long durability

The material is vacuum-degassed and highly pure, and is hardened by carburized heat treatment for superb resistance to wear and fatigue.

(3) Accuracy

Accuracy grade P5 super precision and high precision grade P6 are available.

Fig. 3 shows parallelism of the roller's rolling surface to the mounting datum face.

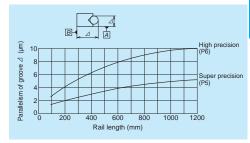
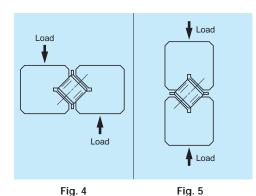


Fig. 3 Parallelism of the roller rolling surface

(4) Rigidity

The number of the load rollers changes by the direction of the load. This is because the rollers are positioned crisscross.

That is, in case of Fig. 4:


The number of load rollers =1/2 x total roller number(1)

In case of Fig. 5:

The number of load rollers = Total roller number

.....(2)

Fig. 6 shows changes in elastic deformation when there are 20 load rollers. If the total number of rollers is other than 20, use the graph in Fig. 7. Obtain the compensation factor which converts the elastic deformation value at time of 20 load rollers into the value when a specific number of rollers are loaded. That is, obtain a compensation factor on the ordinate that correspond to the number of load rollers on the abscissa. Then, multiply this factor by the elastic deformation value (on ordinates) which corresponds to the load (on abscissa) shown in Fig. 6.

[Calculation example: Elastic deformation]

A retainer which contains 30 rollers (roller diameter 6 mm) is installed on both right and left side (Fig. 8). How large is the elastic deformation of the crossed roller guide when a load of 4 kN is applied to the table center?

[Answer]

A load of 2 kN is applied to each side of the crossed roller guide. The elastic deformation value on the ordinate which corresponds to the load 2 kN on the abscissa (in Fig. 6) is:

4.5 µm

This application of load is the same as in Fig. 4. Therefore, the number of load rollers is one-half of 30, or 15. From Fig. 7, the compensation factor on the ordinate which corresponds to 15 rollers on abscissa is:

1.3

Multiply 1.3 by 4.5 μm obtained above. The answer is:

$4.5 \times 1.3 \stackrel{.}{=} 6 \mu m$

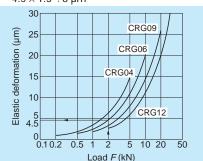


Fig. 6 Elastic deformation with 20 rollers

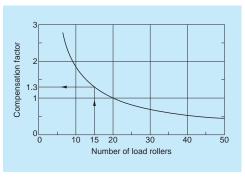


Fig. 7 Compensation factor to obtain elastic deformation

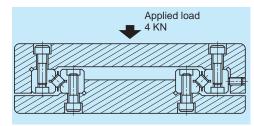


Fig. 8 Example calculation of elastic deformation (illustration)

(5) Friction Force

If installation and lubrication are appropriate, the starting friction coefficient is markedly small as shown below:

$$\mu = 0.005$$

(6) Lengths of Rail and Retainer

The relationship of rail length L with stroke S is as follows:

When
$$S \le 400$$
 mm, $L \ge 1.5 S$ (3)
When $S > 400$ mm, $L \ge S$ (4)

Since the retainer travels a distance of half of the stroke, the retainer length K is:

$$K < L - \frac{S}{2}$$
 (5)

The retainer does not detach from the rail when condition in Formula (5) is satisfied (Refer to Fig. 9).

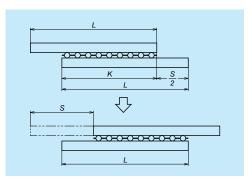


Fig. 9 Relationship of rail and retainer

(7) Lubrication and Dust Proof

For grease lubrication, lithium soap based greases of consistency 1 or 2 are used.

For example; NSK Grease LR 3,

NSK Grease PS 2,

NSK Grease AS 2

For oil lubrication, JIS viscosity 32 to 150 is recommended.

When necessary, install a bellows on the rail, or install a seal on the side of the rail to arrest foreign matters and dust as shown in Fig. 10.

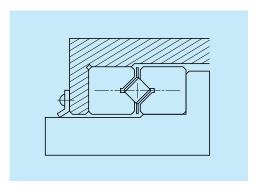


Fig. 10 Dust prevention (example)

(8) Installation

Fig. 11 shows the standard installation procedures.

- Secure Rail 1 and 2 to the bed using the fixing bolts. . Secure Rail 3 to the table with the bolts. Temporarily secure Rail 4 and loosen the side bolt.
- Match the Machine base and the table. Insert the retainer in the roller space. At this time, measure the distance from the rail end to the retainer end with a depth gauge to determine its position. If the roller space is too narrow and the retainer does not go inside, slide Rail 4 toward the side bolt, then insert the retainer.
- © Follow the reading of dial gauge which is A previously set, and squeeze in all side bolts until they stop rattling. Do not apply excessive force. When the side bolts are tightened, the rollers should be in the vicinity of the bolt position. Then, secure Rail 4 with the fixing bolts. Finally, install a stopper to the rail end.

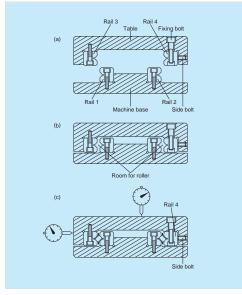


Fig. 11 Standard installation procedures

A381 A382

[Regarding preload]

As crossed roller guide has higher rigidity than other linear rolling guides, it does not need preload. It is also difficult to apply preload accurately. Crossed roller guide is usually used without clearance. For highly accurate applications, it is desirable to press the crossed roller guide by means of a bolt over the gib as shown in Fig. 12.

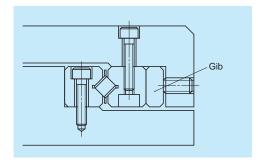


Fig. 12 Tightening using a gib

(9) Basic Static Load Rating

Basic static load rating becomes larger in proportion to the number of the load rollers "n." Obtain basic static load rating per roller C_{01} . Then the basic static load rating C_{0n} when the numbers of rollers is n can be obtained as follows.

$$C_{0n} = \mathbf{n} \times C_{01} \cdot \dots \cdot (6)$$

$$C_{0n} = \mathbf{n} \times C_{0n} \cdot \dots \cdot (6)$$

Values of C_{01} are shown in the dimension table.

(10) Basic Dynamic Load Rating and Rated Life

Basic static load rating is based on a rated traveled distance of 50 km. The dimension table shows the value with 20 load rollers. When the number of load rollers is other than 20, a basic dynamic load rating C_n can be obtained by multiplying a compensation factor (obtained from Fig. 13.) by C in the dimension

(Suffix 'n' is to refer the number of load rollers.) As an example; Number of load rollers: n = 15. The compensation factor from Fig. 13 is 0.8.

$$C_{15} = 0.8 \times C$$

Therefore, C_{15} is obtained from the following formula. Rated life (km) is shown in the formula below. In this formula:

$$L = 50 \left(\frac{C_n}{f_w \cdot F_c} \right)^{\frac{10}{3}} \cdots (7)$$

fw: Load factor. 1.0 to 1.2 under smooth operation F_c: Computed load which applies to the guide (kN) Please refer to NSK Linear Guide Technical Description for details.

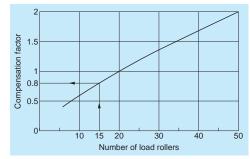
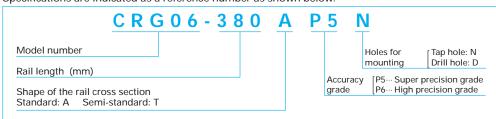
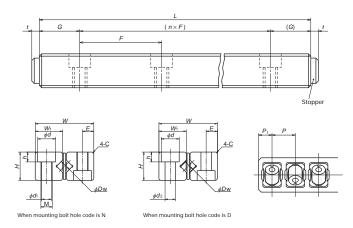



Fig. 13 Compensation factor for basic dynamic load rating

(11) Reference Number and Standard Set for "One-Axis"

Specifications are indicated as a reference number as shown below



Note (1) : Semi-standard T, a shape of rail cross section, is available only for CRG04. It is lower in H dimension, and wider in W dimension compared with A.

Remarks: Standard set for "one axis" of the guide refers to 4 rails and 2 retainers which usually comprise the guide way for a one axis.

(12) Dimension Table

Crossed roller guide: Model CRG

																			Jnit:	1111111
Model No.	D _w	W	Н	w	С	Ε	d	h	d ₁	d₂	М	G	F	t	Ρ	P ₁	Dynamic load rating <i>C</i> when rollers are 20 (N)	Static load rating Con when roller is one (N)		ength Saper high pre cision P6
CRG04A	4	24	12	11.3	0.5	5	8	4.2	4.3	5	M 5×0.8	20	40	2.3	6.5	3.8	9800	665	200	300
CRG04T	4	26	10	12.3	0.5	5	8	4.2	4.3	5	M 5×0.8	12/15	38/40	2.3	6.5	3.8	9800	665	200	300
CRG06A	6	31	15	14.5	0.8	6	9.5	5.2	5.2	5.5	M 6×1	25	50	3.2	9.5	5.8	26700	1510	400	600
CRG09A	9	44	22	20.7	1	9	11	6.2	6.8	7	M 8×1.25	50	100	4	14	8	72500	3400	600	900
CRG12A	12	58	28	27.6	1.5	12	14	8.2	8.5	9	M10×1.5	50	100	5	20	12	130000	6050	900	1200

Remarks: The area which embraces the roller is plastic for the standard retainer. A solid type made of steel plate is available for high temperature resistance.

A-6-3 Roller Pack

(1) Structure

Hait, nana

A roller pack comprises a main body which supports load from the guide way block via two rows of rollers; an end cap which changes the direction of the recirculation of rollers at the end of the main body; a side plate which guides the rollers. (Fig. 1). Roller pack is one of the linear rolling guides, where rollers are allowed to re-circulate infinitely.

There is a plate spring attached to a side of roller pack to prevent roller pack from falling out when it is turned upside down after assembly.

Other component of the roller pack is spring pin. Spring pin is on the top surface of the roller pack, and makes installation of wedge block and fitting plate easier.

Wedge block is a unit to provide preload (Fig. 3) to roller pack; a fitting plate (Fig. 2), functioning like a pivot, adjusts misalignment of roller pack automatically. Wedge of wedge block moves up and down, to apply preload, by turning the adjust screw.

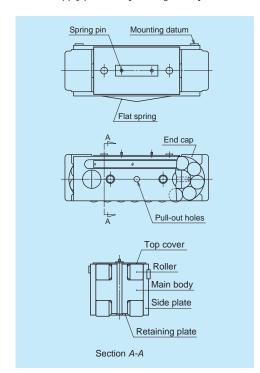


Fig. 1 Roller pack

Photo 1 Roller pack

Photo 2 Wedge block

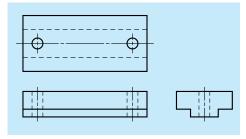


Fig. 2 Fitting plate

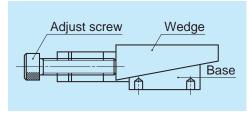


Fig. 3 Wedge block

(2) Features

Roller pack has two remarkable characteristics other linear roller guide bearings do not have.

1 No roller skewing

If the roller is long relative to its diameter, the roller inclines during operation. This phenomenon is called skewing. Skewing causes problems such as sudden rise in friction force. However, a short roller lacks large load carrying capacity. The roller introduced here solved the skewing problem, yet has a large load carrying capacity:

short rollers are combined into double rows.

2 Load is applied equally.

This is due to a "fitting plate," a result of "changed way of conceiving." Installation is quite easy: Merely place the fitting plate through the two holes to spring pins. The stop pins are inserted to holes on the top surface of the roller pack. The contact area between the fitting plate and the main body is made small. This way, the self-alignment is automatically accomplished by elastic contact of both parts.

This distributes an equal load to the rollers, far extending the life, compared to conventional roller linear guides.

Other characteristics include: Easy to provide preload by the wedge block; can be installed to vertical shaft; and reduction in noise level.

(3) Accuracy

The height tolerance of roller pack is 10 µm. Roller packs are grouped into a size difference of every 2 µm (corded by A to E) before delivery (Table 1).

Table 1 Height Classification

	Unit:	μm
9		

Category	Code
over or less +3 - +5	А
+1 - +3	В
-1 - +1	С
-3 – -1	D
-5 – -3	E

(4) Rigidity

Fig. 4 shows the relationship between load and deformation. This includes deformation caused by contact between: the rollers and main body; the rollers and guide way surface; the main body and fitting plate.

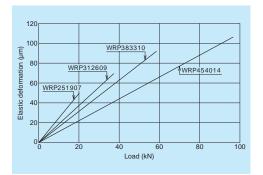


Fig. 4 Elastic deformation of the roller pack

(5) Preload

Fig. 5 shows conversions of tightening torque of the wedge block adjust screw into preload volume. Use a dial gauge for accurate measurement.

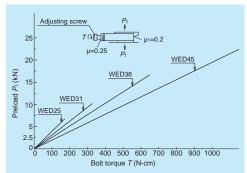


Fig. 5 Tightening torque of the adjust screw, and preload volume

(6) Friction and Lubrication

1. Lubricants and volume

Mineral oils are commonly used. Since roller pack is used under a relatively heavy load, the oil should, ideally, have high viscosity and provide a strong film. Select from JIS viscosity 32-150.

Criteria of oil supply per roller pack Q (cc/h) can be calculated by the following formula.

 $Q \ge S \times 1/4 \cdots (1)$

In this formula, S (stroke) is shown in meters. The oil volume, when the stroke is 1 m, per roller pack is more than 0.25 (cc/h). It is more desirable to supply a small amount of oil at short intervals than supplying a large amount at one time. In case of grease lubrication, use a grease of consistency 2. Albania EP2 is widely used.

2. Friction coefficient

Starting friction coefficient is significantly small at under 0.005.

3. Seal

It is necessary to install a wiper seal to the guide way surface to prevent foreign matters (swarf from cutting, and other dust) from entering the roller pack to enjoy the full benefit of the designed life of it. The material of the seal should have strong resistance to oil and wear. Felt and synthetic rubber (acrylonitril butadiene rubber) are some of the suitable materials. A Fig. 6 shows a general method to install the seals.

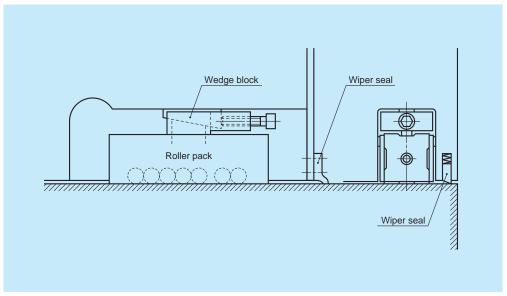


Fig. 6 Installation of seal

A387 A388

(7) Installation

1. Installation and applying preload

As shown in Fig. 7, it is basic that a fitting plate is installed on the roller pack which receives load, and a wedge block is installed on the roller pack which receives no load, but is only used for preload. All components should be secured with a stop pin, facing toward the direction of movement. To cut costs for processing, it is recommended to divide the pocket (which contains roller pack) into some blocks and secure them with bolts (Fig. 7). Preload is provided by the wedge block. Estimate the actual load beforehand, so the preload shall not be lost when a load is applied. A load variation equivalent to up to two times of the preload volume can be absorbed in this case.

(Take into consideration the life in (8) in determining preload volume.)

2. Accuracy of way block

The following is the ideal accuracy specification and installation accuracy of way block as a guide face.

Hardness by heat treatment

: More than HRC58 hardened depth 2 mm or more

Surface roughness

: Less than 1.6 S

Parallelism as a single unit: Less than 0.010 mm per meter

Parallelism after installation

: Less than 0.020 mm per meter

Please consult NSK when using cast iron or cast steel quide face.

3. Pocket accuracy

Accuracy of the pocket in which the roller pack is mounted should satisfy the following conditions.

Pocket width

: Roller pack width + 0.10 mm to 0.20 mm

Parallelism of the pocket side faces to the guide way face

: Less than 0.010 mm per 100 mm. Parallelism of the fitting plate (pocket bottom) mounting face to the guide way face and parallelism of the wedge block mounting face to the guide way face:

: Less than 0.040 mm per 100 mm.

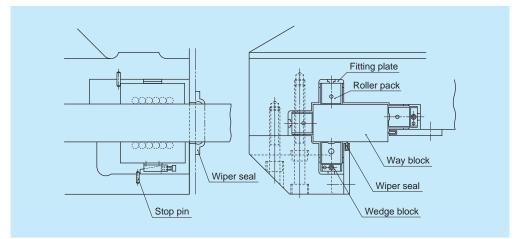


Fig. 7 Design of the roller pack pocket (example)

(8) Rated life

Rated life L (km) is shown in the following formula. In this formula:

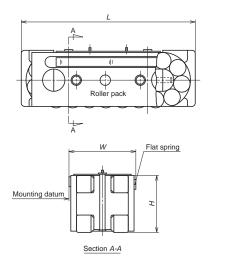
$$L = 50 \left(\frac{C}{f_{w} \cdot F_{c}} \right)^{\frac{10}{3}}$$
 (2)

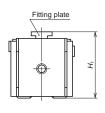
C: Basic dynamic load rating (kN)

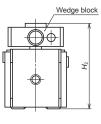
 $f_{\rm w}$: Load factors. 1.0 to 1.2 at time of smooth operation

 F_c : Calculated load (kN) applied to the roller

(9) Disassembly

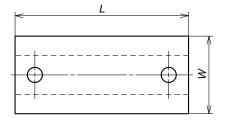

Remove the roller pack preloaded by the wedge block in the following manner.

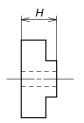

- · Loosen the adjust screw of the wedge block. Lightly tap the wedge. In case of light preload, the wedge loosens, and the roller pack can be pulled out.
- · When pulling, put the bolt in the tap hole at the end of the end cap, and tug the bolt.
- · In case of heavy load, the roller pack could not be pulled out by the above method. Hook a tool to the pull-out hole (Fig. 1) on the side plate of the roller pack, and pull out the roller pack.


A389 A390

(10) Dimension Table

Roller pack: Model WRP

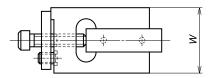


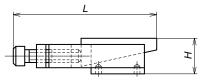

		m	

Model No.	Width W	Height ±0.005	Length	Applicable fitting plate reference No.	Assembled height H ₁	Applicable wedge reference No.	Assembled height H_2	Basic dynamic load rating C (N)	Basic static load rating Co (N)
WRP 251907	25	19	65.5	WFT 25	24	WED 25	31 (30.4 – 31.6)	31000	40500
WRP 312609	31	26	85	WFT 31	31	WED 31	40 (39.4 – 40.6)	57000	73000
WRP 383310	38.1	33.31	104	WFT 38	38.91	WED 38	50.8 (50 – 51.5)	91000	113000
WRP 454014	45	40	138	WFT 45	45	WED 45	60 (59.2 – 60.8)	151000	191000

Remarks: Numbers in the parentheses in column H_2 show the adjustable height range of the wedge block.

Fitting plate: Model WFT





Unit: mm

Model No.	Width <i>W</i>	Height (±0.01) <i>H</i>	Length <i>L</i>	Applicable Roller pack		
WFT 25	10	5	20	WRP 251907		
WFT 31	12	5	26	WRP 312609		
WFT 38	12.8	5.6	29	WRP 383310		
WFT 45	16	5	40	WRP 454014		

Wedge block: Model WED

Unit: mm

Model No.	Width <i>W</i>	Height <i>H</i>	Length <i>L</i>	Applicable Roller pack
WED 25	23	12(11.5 – 12.5)	47	WRP 251907
WED 31	28	14(13.5 – 14.5)	63	WRP 312609
WED 38	35	17.47(16.9 – 18.1)	76	WRP 383310
WED 45	40	20(19.2 – 20.8)	95	WRP 454014

Remarks: Numbers in the parentheses in column H_2 show adjustable height range of the wedge block.

A-6-4 Linear Roller Bearings

(1) Structure

Linear roller bearing comprises: A single row of rollers; the main body which supports load via rollers; the end cap which turns the roller recirculating direction at the end of the main body from the loaded zone to the unloaded zone; a retaining wire which prevents rollers from falling out (Fig. 1). The main body, as the cylindrical roller bearing, has a rib at both sides. The rib guides the rollers to travel correctly, and assists the rollers to circulate infinitely in the bearing in a stable manner. This contributes to the bearing's linear movement without the restriction of travel range.

NSK also developed a highly functional preload pad

(Photo 2) to provide a slight preload to the bearing. The preload pad basically comprises parallel plates and sandwiched bellevile springs, having adjusted its spring rate.

Preloaded pad can be used in a machine tool in the following manner.

When two bearings are installed with one on the top and the other under the way block (the bearings comprise a set), a preloaded pad is used at the bottom bearing. This provides an equal preload to the top and bottom bearings. This way, to a certain extent, the variation in the load and the uneven thickness of the way block can be absorbed.

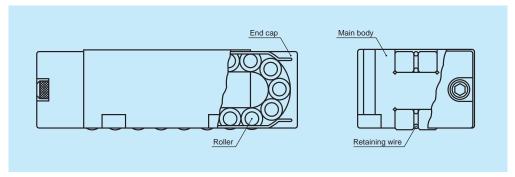


Fig. 1 Linear roller bearing

Photo 1 Linear roller bearing

Photo 2 Preload pad

(2) Features

In addition to the general features of a roller bearing guide such as no-stick slip, small friction resistance, and easy maintenance, the linear roller bearing has several more advantages.

1. No trouble by roller skewing

Skewing is the inclination of the rollers during operation. It causes friction force to suddenly soar. Skewing is apt to occur when the roller is long relative to its diameter. The proportion of the length and diameter is 1:2 for the products in this series. This is superior to the commonly used 1:3 ratio.

2. Highly reliable

Retaining the rollers without allowing them to fall out of the bearing is a crucial function of the linear guide bearing. The simple and highly effective retaining wire has solved the problem for this product series.

3. Compact design

Despite the load carrying capacity, this series is smaller in size than any other models. This contributes to the application which requires compact design.

4. High rigidity

The contact area between the bearing and the mounting surface is large to increase rigidity.

(3) Accuracy

The nominal height difference between bearings is 10 μ m. The bearings are grouped into every 2 μ m, and are coded before delivery (Table 1).

Table 1 Classification of height

 Unit: μm

 Category
 Code

 over
 or less

 0
 -2
 A

 -2
 -4
 B

 -4
 -6
 C

 -6
 -8
 D

 -8
 -10
 E

(4) Rigidity

Fig. 2 shows elastic deformation.

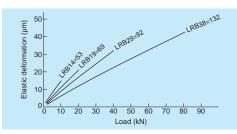


Fig. 2 Elastic deformation

(5) Friction and Lubrication

1. Lubricants and volume

Mineral oils are used in general. The linear roller bearing is used under relatively heavy load. An oil which has high viscosity and creates a strong oil film is ideal for linear roller guides. Select from JIS viscosity 32 to 150.

General oil supply for a linear roller bearing *Q* (cc/h) can be calculated by the following formula.

$$Q \ge S \times 1/4$$
 (1)

In this formula, S (stroke) is shown in meters. Therefore, when the stroke is 1m, the volume of lubricant per roller bearing is more than 0.25 (cc/h). It is recommended to supply a small amount of oil at short intervals rather than supplying a large amount at one time. In case of grease lubrication, a grease of consistency degree 2, such as Albania EP2, is generally used.

2. Friction coefficient

Starting friction coefficient is significantly small at under 0.005.

3. Seal

Install a wiper seal on the way block surface to prevent foreign matters (cutting chip and other contaminant from entering) to realize a full life of the linear roller bearing. The material of the seal should have strong resistance against oil and wear. Felt and synthetic rubber (acrylonitril-butadien rubber) are some of the suitable materials.

(6) Installation

Secure the linear roller bearing using four bolts. The bearing main body has four holes for mounting.

Accuracy of way block

The ideal accuracy specification and mounting accuracy of a way block as a guide way surface are as follows.

Hardness by heat treatment

: More than HRC58 hardened depth

2 mm or more

Surface roughness

: Less than 1.6S

Parallelism as a single unit

: Less than 0.010 mm per 1 m

Parallelism after installation

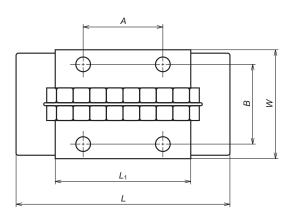
: Less than 0.020 mm per 1 m

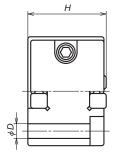
Please consult NSK when using cast iron or cast steel guide way.

(7) Rated life

Rated life L (km) is shown in the following formula. In this formula:

$$L = 50 \left(\frac{C}{f_w \cdot F_c} \right)^{\frac{10}{3}} \dots \tag{2}$$

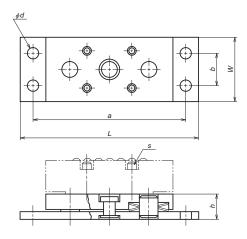

C: Basic dynamic load rating (N)


 $f_{\rm w}$: Load factor. 1.0 to 1.2 at time of smooth operation

 F_c : Calculated load applied on the bearing (N)

(8) Dimension Table

Linear roller bearing Model: LRB



										Unit: mm
	Width	Height	Helani I Lenath I I I		Mounting	Mounting Bolt hole distance		Basic dynamic load rating	Basic static load rating	
Model No.	W	H ^{-0.010}	L	L ₁	Diameter × length	Diameter × bolt hole length D	Α	В	C (N)	C₀ (N)
LRB 14×53	26.5	14.29	52.8	32.8	ø 4×8	3.4	19	19.3	15400	21900
LRB 19×69	30.5	19.05	68.6	44.6	φ 5×10	3.4	25.4	23.3	27000	39000
LRB 29×92	41.5	28.58	92.0	59	φ 7.5×15	4.5	38.1	32.7	57500	76500
LRB 38×132	51.4	38.10	132.0	88	φ 10×20	5.5	50.8	41.5	119000	159000

Remarks: Bearings are grouped into heights of every 2 µm before delivery.

Preload pad Model: PRP

										Unit: mm
Model No.	Applicable linear roller bearing	Height (no-load) <i>h</i> max	Compressed height h min	h min Load when fully compressed (N)	W	L	d	а	b	S Hex. Socket cap screw
PRP 14×53	LRB 14×53	10.23	9.53	1570	26	72	4.5	62	14	M3×16
PRP 19×69	LRB 19×69	11.53	11.10	2650	30	96	4.5	86	18	M3×19
PRP 29×92	LRB 29×92	13.13	12.70	6450	41	120	4.5	110	27	M3×25
PRP 38×132	LRB 38×132	16.28	15.88	12000	51	157	4.5	147	35	M5×38

3.1 Ball Screw Classification ··· B1
3.2 Product Externals B9
B-1-4 Procedures to Select Ball
Screw B17
4.1 Flow Chart Selection ····· B17
4.2 Accuracy Grades B19
4.3 Axial Play B20
4.4 Screw Shaft Diameter, Lead,
and Stroke····· B21
4.5 Manufacturing Capability for
Screw Shaft····· B25
4.6 Outside Shapes of Ball Nut
B26
4.7 Shaft End Configuration ···· B27
B-1-5 When Placing Orders
5.1 When Ordering Made-to-
Order Ball Screws B31
5.2 When Ordering Standard
Ball Screw ····· B33
C

B-1. Selection Guide to NSK Ball Screw

B-1-1 Features of NSK Ball Screws
B1
B-1-2 Structure of a Ball Screw B3
2.1 Ball Recirculation System B4
2.2 Preload System B5

B-1-3 Ball Screw Series

3-2 Technical Descript of Ball Screw	ion
B-2-1 Accuracy	B41 B41
1.3 Mounting Accuracy and Tolerance of Ball Screws	S
1.4 Automatic Lead Accurace Measuring System of N	cy SK
B-2-2 Static Load Limitation 2.1 Bucking Load 2.2 Yield by Tensional/	
Compressive Stress 2.3 Permanent Deformation the Ball Contact point	of
B-2-3 Permissible Rotational	
Speed3.1 Critical Speed of the Scr	B51
Shaft	B51 B54 for Load
Shaft	B51 For Load B55 B57 B57 B57 B60
Shaft	B51 For Load B55 B57 B57 B57 B60
Shaft	B51 B54 for Load B55 B57 B57 B57 B60 he B60 ve
Shaft	B51 B54 for Load B55 B57 B57 B60 he B60 Ve B66 B66 B66

B-2-9 Lubrication of Ball Screw

B-2-10 Dust Prevention for Ball

..... B71

Screw **B72**

B-2-11 Rust Prevention and
Surface Treatment of Ball
Screws B73
B-2-12 Ball Screw Specification
for Special Environment
B74
B-2-13 Noise and Vibration ··· B75
13.1 Consideration to Lowering
Noise B75
13.2 Consideration to Operatical
Characteristics
13.3 Consideration to Ball Screw
Support System ····· B76
B-2-14 Installation of Ball Screw
B77
14.1 Installation B77
14.2 Inserting R Series Nut into
Rolled Screw Shaft ····· B80
14.3 Installation of Ball Screw
and Support Unit B81
14.4 Shaft End Machining ··· B83
B-2-15 Precautions for Designing
Ball Screw B84
15.1 Safety System····· B84
15.2 Design Cautions to
Assembling Ball Screw
B84
15.3 Effective Stroke of Ball
Screw B86
15.4 Matching after Delivery B86 15.5 NSK K1 [™] Lubrication
15.5 NSK K1 Lubrication
Unit B86
B-2-16 Ball Screw Selection
Exercise····· B87
B-2-17 Reference B101
B-2-18 Guide to Technical Services
B102
B-2-19 Precautions When
Handling Ball Screws
B103

B-3 Ball	Screw	Dimension
Tabl	e	

3-3-1 Dimension Table and Reference
Number of Application-Oriented
Ball Screws······B105
1.1 HMD Type for High-Speed
Machine Toole B109
1.2 HMC Type for High-Speed
Machine Toole B113
1.3 BSL Type for Miniature LatheB119
1.4 For High-Lode Drive
1 / 1 HTF-SDC Type
1.4.1 HTF-SRC Type B123 1.4.2 HTF-SRD Type B127
1.4.3 HTF TypeB131
1.5 VSS Type for Contaminated
EnvironmentsB139
1.6 TW Series for Twin-Drive
Systems
1.7 Hollow Shaft Ball Screw for High
Accuracy Machine ToolsB149
1.8 ND Series for Nut-Rotatable
DriveB149
1.9 Σ Series for Robbot······ B157
1.10 Ball Screws for Transfer Equipment
1.11 Equipped with "NSK K1™"
1.11 Equipped with "NSK K1™"
Lubrication Unit ······B209
1.12 Special Ball Screws ······ B215
3-3-2 Dimension Table and Reference
Number of Standard Ball Screw ···· B217
2.1 Compact FA PSS TypeB219
2.2 Finished Shaft End MA Type,
FA Type, SA TypeB241
2.3 Finished Shaft End Ball Screw
Made of Stainless Steel
KA TypeB357
2.4 Blank Shaft End MS Type, FS Type,
SS TypeB385
2.5 AccessoriesB433
3-3-3 Dimension Table and Reference
Number of Standard Nut
Ball ScrewsB465
2 1 End Deflector Type Pell Cores. P4/7
3.1 End Deflector Type Ball Screw B467
3.2 Return Tube Type Ball Screw B473
3.3 Deflector Type Ball Screw B521
3.4 End Cap Type Ball Screw B521

B1-B40

341 -B104

B105 -B526

B-1 Selection Guide to NSK Ball Screw

B-1-1 Features of NSK Ball Screws

1 Quick delivery

Standard ball screws are in stock for short lead time.

 Precision ball screws with finished shaft end PSS Type, MA Type, FA Type, SA Type, KA Type

· Precision ball screws with blank shaft end

- MS Type, FS Type, SS Type
 Ball screws for transfer equipment are also available
 in stock
- Finished shaft end VFA Type, RMA Type
- Blank shaft end RMS Type, R Series

2 Competitive prices

NSK reduces cost by well-planned mass production of standardized items. We rank the best in the world production of ordered items. We are able to offer our products at competitive prices by producing similar items in the same production group.

3 Unparalleled accuracy

NSK utilizes its unique grinding technique and measuring equipment for topnotch precision.

4 Superb durability

NSK uses thoroughly purified alloy steel for superb durability.

5 No backlash, and unparalleled rigidity

NSK ball screws use Gothic arch grooves as shown in Fig. 1.1. The Gothic arch has no clearance between the balls and grooves with applying preload, and no backlash can be obtained. As providing controlled rigidity is easy, appropriate rigidity is obtained.

As the Gothic arch also minimizes the clearance between the balls and the grooves, the backlash is minimized without applying preload.

Fig. 1.1 Ball groove profile of NSK ball screw

6 Smooth movement assures high efficiency

NSK uses the Gothic arc design for the ball grooves. This design prevents the balls from slightly wedding into the groove of the ball nut and screw shaft and causing minute vibration. This phenomenon is common with the circular-arc design used by other manufacturers. The Gothic arc, along with the low friction inherent in a ball screw, results in a smooth and highly efficient conversion of motion as shown in Fig. 1.2.

7 Optimal units available

Utilizing bearing technology, NSK produces high quality support units (for light load type to be used for small equipment and heavy load type to be used for machine tools) which are exclusive for ball screws. These units are standardized and always in stock.

NSK also offers quality-assured accessories such as lock nuts to tighten bearings, travel stoppers to prevent overrun, and sealing units to cool hollow shaft ball screws.

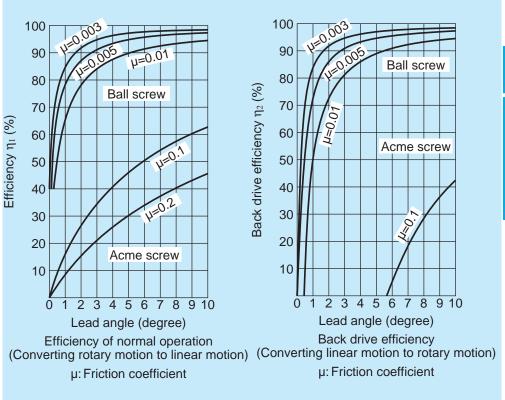
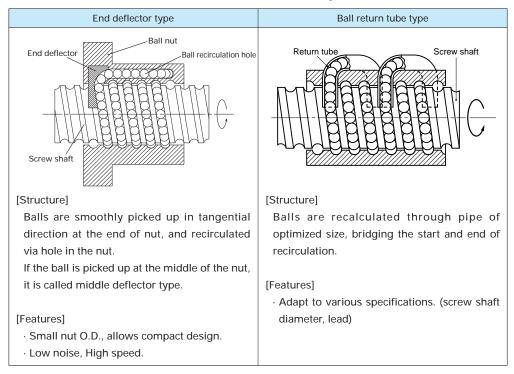


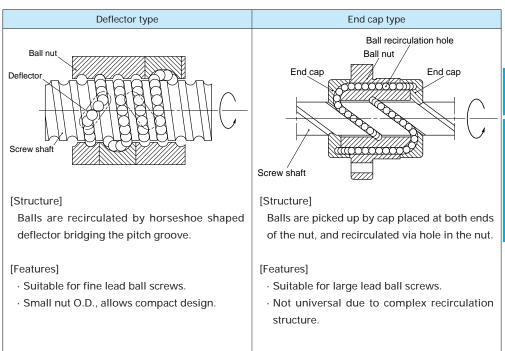
Fig. 1.2 Mechanical efficiency of ball screws


11 B

B-1-2 Structure of a Ball Screw

Balls are placed between the screw shaft and nut, and roll. This system is called a "ball screw." To keep the balls recirculating continually, this system requires a screw shaft, a nut, balls, and recirculation components as basic items. A ball screw has the following functions.

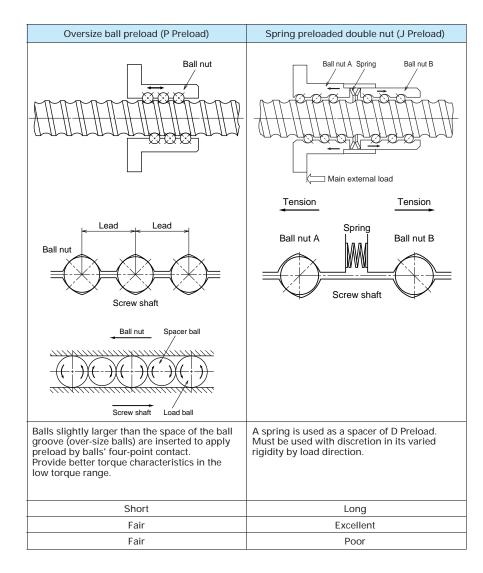
- ① Converting motion: Changing rotary motion to linear motion (normal operation); Changing linear motion to rotary motion efficiently (back-drive operation).
- ② Increasing power: A small torque is converted to a large thrust force.
- ③ Positioning: Sets accurate position in linear motion.


Table 2.1 Ball screw recirculation system

B-1-2.1 Ball Recirculation System

A ball recirculation system is categorically most important, as well as the preload system, to classify the structure of ball screw.

As shown in Table 2.1, four types of ball recirculation system are used for NSK ball screw.

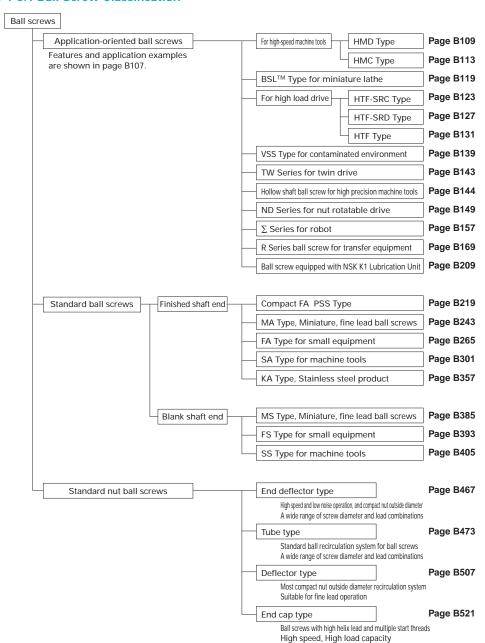

NSK

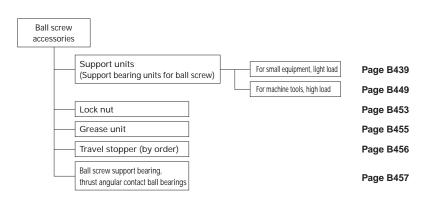
B-1-2.2 Preload system

There are four systems to apply preload to NSK ball screws depending on the application.

Table 2.2 Preload system for ball screw

Preload system	Double nut preload (D Preload)	Offset preload (Z Preload)
Structure	Tension Spacer Ball nut B Ball nut A Spacer Ball nut B Tension Ball nut B Ball nut B	Ball nut Lead Lead+α Lead Ball nut
	Uses two nuts, and inserts a spacer between them to apply preload	To apply preload, the lead near the center of the nut is enlarged by the volume equivalent
Description	them to apply preload. In general, a spacer is thicker (by the deformation equivalent to the preload) than the actual space between two nuts. On the contrary, a thin spacer is inserted in some cases.	the nut is enlarged by the volume equivalent to preload (a). Uses a single nut to create a preload similar to D preload. Not using spacer enables compact nut design.
Nut length	Long	Medium
Torque characteristics	Fair	Fair
Rigidity	Excellent	Excellent




B5 B6

NSK

B-1-3 Ball Screw Series

B-1-3.1 Ball Screw Classification

Lead classification

Lead ratio K = lead <i>I</i> / shaft diameterd
<i>K</i> < 0.5
0.5 ≤ <i>K</i> < 1
1 ≤ <i>K</i> < 2
2 ≤ <i>K</i>

B-1-3.2 Product externals

(1) Ball screws

Application-oriented ball screws

Fig. 3.1 HMD type for high-speed machine tools Page B109

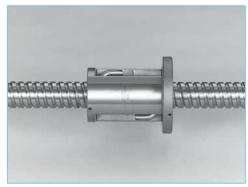


Fig. 3.2 HMC type for high-speed machine tools Page B113

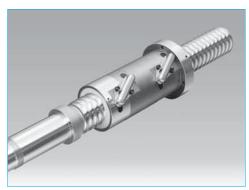


Fig. 3.4 HTF-SRC type for high-load drive Page B123

Fig. 3.3 BSL type for miniature lathe Page B119

Fig. 3.5 HTF-SRD type for high-load drive Page B127

Page B131

Fig. 3.6 HTF type for high-load drive $\,$

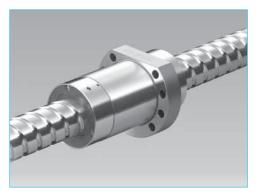


Fig. 3.7 VSS type for contaminated environment




Fig. 3.8 TW series for twin-drive system
Page B143

Page B139

Fig. 3.9 Hollow shaft ball screw for high-precision machine tools

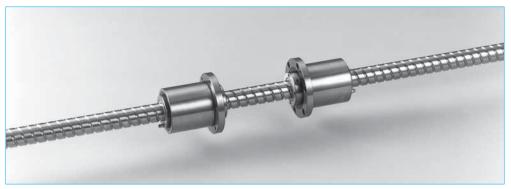


Fig. 3.10 ND series for nut-rotatable drive

Page B149

B11

Fig. 3.12 Finished shaft end VFA type for transfer equipment

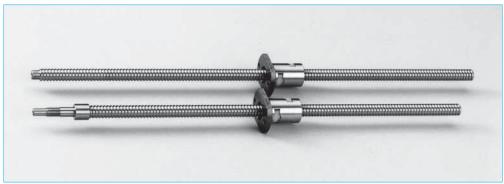


Fig. 3.13 Finished shaft end RMA type and blank shaft end RMS type for transfer equipment

Page B169

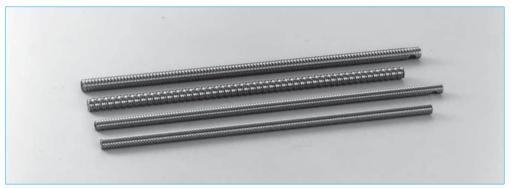


Fig. 3.14 Blank shaft end R series for transfer equipment

Page B169

Fig. 3.15 R series nut assembly for transfer equipment

Standard ball screws

Fig. 3.16 Finished shaft end compact FA PSS type

Page B219

Fig. 3.17 Finished shaft end MA type, FA type, SA type

Page B241

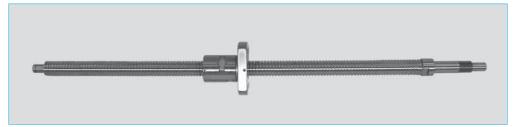


Fig. 3.18 Finished shaft end KA type

Page B357

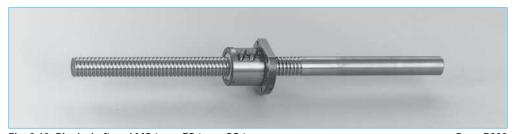


Fig. 3.19 Blank shaft end MS type, FS type, SS type

Page B383

Standard nut ball screws

Fig. 3.20 End deflector type

Page B467

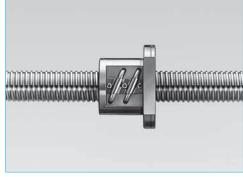


Fig. 3.21 Tube type

Page B473

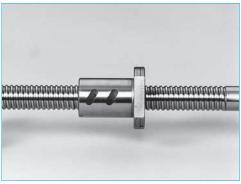


Fig. 3.22 Deflector type

Page B507

Fig. 3.23 End cap type

Page B521

(2) Standard accessories

Fig. 3.24 Support unit Page B439 (For small equipment, light load)

Fig. 3.25 Low-profile support unit Page B439 (For small equipment, light load)

Fig. 3.29 Lock nuts A type

Fig. 3.30 Lock nuts S type

Page B454

Page B449 Fig. 3.26 Support unit (For machine tools, heavy load)

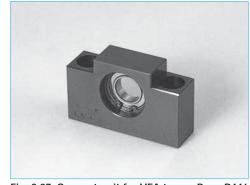


Fig. 3.27 Support unit for VFA type Page B446 (simple support side)

Fig. 3.31 NSK hand grease pump unit Page D20

Fig. 3.32 NSK grease

Page B455, D20

Fig. 3.28 Support kit for RMA and RMS types Page B445

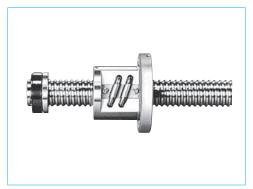


Fig. 3.33 Travel stopper (by order)

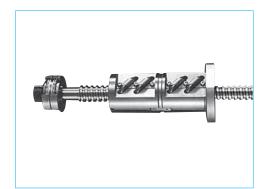


Fig. 3.34 Ball screw support bearing, thrust angular contact ball bearings Page B457

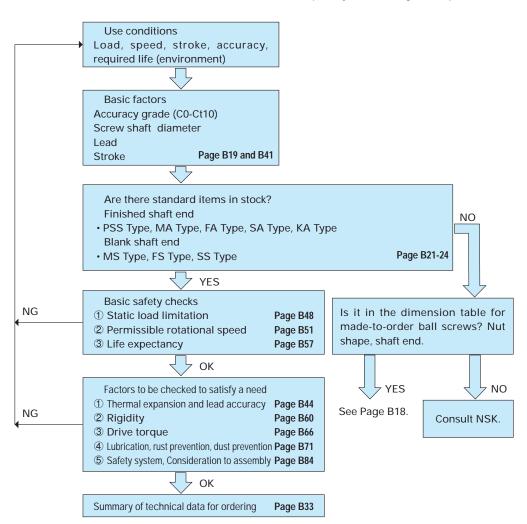
B-1-4 Procedures to Select Ball Screw

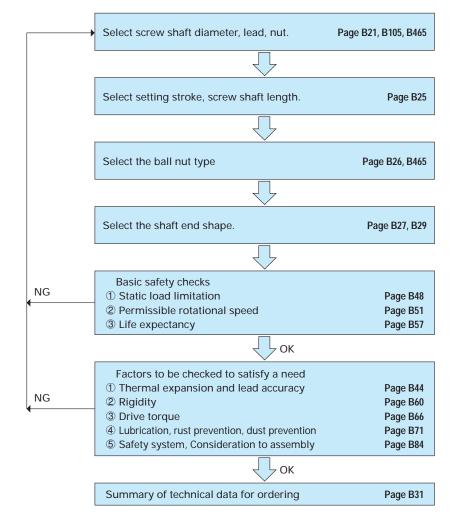
B-1-4.1 Flow Chart for Selection

When selecting a ball screw, you have to review a variety of use conditions and requirements such as applied loads, speeds, motion strokes, positioning accuracy, required life and operating environment. You require a multiple inspection because some of these conditions force a ball screw to have conflicting characteristics.

(1) Standard ball screw

The chart below is one of the selection methods. To take advantage of prompt delivery and reasonable prices, this method focuses on the standardized ball screws that are available in stock.


NSK offers a ball screw selection program, and also has a service to select appropriate items using data file compiled by our knowledge and experience.


(2) Made-to-order ball screws

Dimensions and specifications can be decided individually for the application-oriented ball screws and standard nut ball screws. Procedures are as follows. Refer to the selection exercises on Page B87.

Table 4.4 is "Combinations of screw shaft diameter and leads for basic type ball screw." Please consult

NSK if you require the types that are not listed in the Table.

B17 B18

NSK

B-1-4.2 Accuracy Grades

Table 4.1 shows examples of how to select accuracy grade for a specific use. These practical cases are based on NSK's experience. Circle indicates the range of the accuracy grade in actual use. A double circle indicates accuracy grades most frequently used among cases marked with a single circle. These

symbols help to select the accuracy grade of ball screws temporarily. To confirm whether a specific ball screw accuracy grade satisfies requirements in positioning accuracy in actual use, refer to "Technical Description" and "Mean travel deviation and travel variation." (Page B42)

Table 4.1 Accuracy grades of ball screw and their application

										NC	mach	nine to	ools								
	Application	-	Lame	Milling machine	Boring machine	4	Macilling center	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D'IIIIng machine	2 in C d	Jig boling machine	100	Grinder	Electric discharge	machine	Wire cutting	Electric discharge machine	Punch press	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Lasel cutiling machine	Woodworking machine
Name	of axis	Χ	Z	XY	Z	XY	Z	XY	Z	XY	Z	XY	Z	XY	Z	XY	Z	XY	XY	Z	
	CO	0								0	0	0									
Ф	C1	0		0		0				0	0	0	0	0		0	0				
grade	C2	0		0	0	0	0					0	0	0	0	0	0				
acy	С3	0	0	0	0	0	0	0					0	0	0	0	0	0	0	0	
Accuracy	C5	0	0	0	0	0	0	0	0						0		0	0	0	0	0
Ă	Ct7								0												0
	Ct10																				0

		(0 -	Sem	nicondu	ctor/as	ssociat	ed indu	ustry		Indus	trial r	obots				te		nt	Nuclea	power	
; ; ; ;	Application	General industrial machines Machines for specific use	Lithographic machine	nical processing equipment	Wire bonder	Prober	ectric component mounted device	Printed circuit board drilling machine		cartesian type	-	Articulate type	SCARA type	Steel mills equipment	ic injection molding machine	Three-dimensional coordinate measuring machine	Office machine	processing equipment	Fuel rod control	Mechanical snubber	Aircraft
		Genera Mach	Litho	Chemical equi	>		Electric moun	Printed (Assembly	other purposes	Assembly	other purposes	0)	Stee	Plastic	Three-d me	Ü	Image p	Fu	Med	
	CO		0			0										0		0			
Φ	C1		0		0	0		0								0		0			
grad	C2				0	0	0	0	0							0					
acy	СЗ	0		0			0	0	0		0		0						0		0
Accuracy grade	C5	0		0			0	0	0	0	0	0	0		0		0		0		0
Ā	Ct7	0		0					0	0	0	0	0	0	0		0		0	0	
	Ct10	0		0						0				0	0		0			0	

B-1-4.3 Axial Play

Table 4.2 indicates combinations of NSK ball screw accuracy grades and axial play. Select an axial play which satisfies the required accuracy in backlash, positioning and repeatability. Ranges of available ball thread effective length in relation to accuracy grade and axial play are shown in Table 4.3. Please note that if the effective length exceeds the range, the

axial play may become partially negative (preloaded condition).

For axial play of Ct10 grade (ball screws for transfer equipment), refer to the R series dimension tables.

Table 4.2 Combinations of accuracy grades and axial play

Ax	ial	Z	T	S	N	L
pla	ау	0 mm	0.005 mm	0.020 mm	0.050 mm	0.3 mm
Accuracy grade		(Preload)	or less	or less	or less	or less
C0		COZ	C0T	_	_	_
C1		C1Z	C1T	_	_	_
C2		C2Z	C2T	_	_	_
C3		C3Z	C3T	C3S	_	_
C5		C5Z	C5T	C5S	C5N	_
Ct7		_	_	C7S	C7N	_

Table 4.3 Maximum effective thread length in combination of accuracy grade and axial play

Unit: mm

Screw shaft		Effective length	of the screw th	read (maximum))
diameter	Axial play T (0.00	05 mm or under)	Axial pla	y <i>S</i> (0.020 mm (or under)
ularrietei	C0 - C3	C5	С3	C5	Ct7
4 – 6	80	100	80	100	_
8 – 10	250	200	250	300	_
12 – 16	500	400	500	600	700
20 – 25	800	700	1000	1000	1000
32 – 40	1000	800	2000	1500	1500
50 – 63	1200	1000	2500	2000	2000
80 – 125	_	_	4000	3000	3000

Remarks: Refer to Table 4.8 (Page B25) for the available length of screw shaft (maximum length). Also, axial play of code N does not become partial negative play if it is within the available range of effective ball thread length.

B-1-4.4 Screw Shaft Diameter, Lead, and Stroke

Choose a screw shaft diameter and stroke based on the allowable space for ball screw installation. Lead should be set based on the required running speed, and should give some allowance to the maximum rotational speed of the motor.

(1) Made-to-order ball screws

Table 4.4 shows the combinations of screw shaft diameter and leads for made-to-order ball screws. For details, refer to the dimension tables from Page B105 and B465.

 Table 4.4 Combinations of screw shaft diameter and leads for typical ball screw
 Unit: mm

 1
 1.5
 2
 2.5
 3
 4
 5
 6
 8
 10
 12
 14
 16
 20
 25
 30
 32
 36
 40
 50
 60
 64
 80
 100

 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D</td

diameter																									
4	D	D																							
6	D	D		D																					
8	D	D	D	D																					
10		D		D	D		Т	S			S														
12		D		D	D	D	Т	S,T			S,T				S,C		S								
14				D		D		Т		Т															
15								S			S,T				S,C		S			С					
16				D	D		Т	Т	Т					T,C				С			С				
20				D			Т	S,T D,B	T,D B	Т	S,T			Т	S,T C		S			S,C		S,C			
25				D			Т	S,T D,B	T,D B	T,B	S,T D,B			Т	S,T	S,T C	S				S,C			С	
28								Т	Τ		Т														
32				D			Т	S,T D	T,D	T,D	S,T D,B V,F	S,T B		S,V	S,T V,N	T,N		S,T C,V N					S,C		
36								S,T	Т		S,T F	S,F		S,H	S,H										
40				D				T,D	T,D	T,D	S,T D,F	S,T F		S,T H	S,H	S,T H,N	S,H	T,H N	Н	S,T C,V N				S	
45											S,T F	S,T F		S,H	S,H	S,H	S,H	Ι	Н						
50								T,D	T,D	T,D		S,T F S,T D,F	F			S,H S,T H,N			Н	T,N F	S,T C,V N				S
								T,D	T,D	T,D		F	F						Н	T,N	S,T C,V N				S
50								T,D	T,D D	T,D D	S,T D,F	S,T D,F		S,T F	S,T D,H	S,T H,N	S,H	T,H N	Н	T,N	S,T C,V N				S
50								T,D			S,T D,F T,F T,D	S,T D,F	F	S,T F	S,T D,H H T,D	S,T H,N H	S,H	T,H N	Н	T,N F	N				S
50 55 63								T,D			S,T D,F T,F T,D	S,T D,F F D,F	F F	S,T F F	S,T D,H H T,D F	S,T H,N H	S,H	T,H N	H	T,N F	T				S
50 55 63 80								T,D			S,T D,F T,F T,D	S,T D,F F D,F	F F	S,T F F T,F	S,T D,H H T,D F T,D F	S,T H,N H F	S,H	T,H N	H	T,N F	T				S
50 55 63 80								T,D			S,T D,F T,F T,D	S,T D,F F D,F	F F	S,T F F T,F	S,T D,H H T,D F T,D F	S,T H,N H F	S,H	T,H N	H	T,N F	T				S
50 55 63 80 100 120								T,D			S,T D,F T,F T,D	S,T D,F F D,F	F F	S,T F F T,F	S,T D,H H T,D F T,D F T,D F	S,T H,N H F	S,H	T,H N	Н	T,N F	T				S
50 55 63 80 100 120 125								T,D			S,T D,F T,F T,D	S,T D,F F D,F	F F	S,T F F T,F	S,T D,H H T,D F T,D F T,D F	S,T H,N H F F	S,H H	T,H N H	H	T,N F	T				S

T: Tube type D: Deflector type C: End cap type S: End deflector type H: HMC type, HMD type F: HTF-SRC, HTF-SRD, HTF type N: ND Series B: BSL type V: VSS type

Table 4.5 Screw shaft diameter, lead and standard screw shaft length of R Series Unit: mm

Screw shaft	Lead				Stand	dard screv	v shaft ler	ıgth			
diameter	Leau	400	500	800	1000	1500	2000	2500	3000	4000	5000
10	3										
10	6										
12	8										
12	12										
14	4										
	5										
15	20										
	10										
16	16										
	32										
18	8										
	5										
20	10										
20	20										
	40										
	5										
25	10										
20	25										
	50										
28	6										
	10										
32	32										
	64										
36	10										
	10										
40	40										
	80										•
45	12										
	10										
50	16										
	50									•	

B21 B22

(2) Standard ball screw

B23

Table 4.6 and 4.7 show combinations of ball screw shaft diameter and leads, and range of stroke. From these tables, select closest values to the shaft diameter, lead, and stroke which had been selected previously. Also, confirm detailed specifications and sizes in "Dimensional table of standard ball screw" (Page B217).

Table 4.6 Screw shaft diameter, lead and stroke of standard ball screw

Shaft dia.	Lead							Stroke						
		- 50	- 100	- 150	- 200	- 250	- 300	- 350	- 400	- 450	- 500	- 550	- 600	- 650
4	1	0	04	0.4										
6	1	0	0	04										
	1		04	0	04									
8	1.5		<u>ΟΔ</u>	0	<u>ΟΔ</u>									
	2			OA		04								
-	2.5		0	04	0	04								
10	4		8	04	8	04	0	04						
10	5													
-	10		_											
	2		0		ΟΔ		ΟΔ							
-	2.5		ŏ	ŏ	ÖĀ	ŏ	$\tilde{O}\Delta$							
	5		00	004	Õ	004	Õ		0	○ △	0			
12	10			00	ÓΔ	ŏ	ŏ		OΔ		ŏ			
	20						Ŏ				Ŏ			
	30													
1.4	5			Ö	0		0	Δ	0		0		Δ	0
14	8			ŏ	ŏ	0	ŏ	0	ŏ	0	OΔ	0	0	ŏ
	5													
15	10			•0	0	•0	0	● ○△	0	0	0	● ○△	0	•0
15	20			•0	0	•0	0	00	$\bigcirc \triangle$	00	0	•0	$\bigcirc \triangle$	00
	30													
	2		0	0	0	$\bigcirc \triangle$		0	Δ					
	2.5		0	8	0	$\bigcirc \triangle$		0	Δ					
16	5					0				0	Δ	Δ		
	16			0	0	0	0	0	0	0	0	$\bigcirc \triangle$	0	0
	32							0				0		
	4				0	0	Δ	Ó		0	Δ	Ó		0
	5				•0	● ○△		0		<u></u> 0∆		0		
	10									0				<u></u>
20	20					0		0		0		0		0
	30													
-	40													
	60						Δ			0			Δ	
-	5				0 00 00 00	0 0 0 0 0		О •ОД		<u> </u>		0 0 0 0		
-	6				004	004		0	Δ	004		0		-
-	10						0	Δ			•0			Δ
25	20													
	25											_		
F	30													\vdash
 	50													-
00	5				0	0	0	04	0	0	0	04		
28	6						ŏ	ÖΔ			ŏ	$\bigcirc \triangle$		
	5				0	0	ŏ	ŎΔ	0	0	ŏ	ÓΔ	0	0
ŀ	6						0	0			0	$\bigcirc \triangle$		
32	8						Ŏ				0	\triangle		
32	10				0		Ó	Δ	04		0	Δ	$\bigcirc \triangle$	
	25													
	32													
36	10						0		0		0	Δ	$\bigcirc \triangle$	
	5						0				0	Δ		
40	8					0				0			Δ	0
70	10						0		0		0	Δ	QΔ	
4.5	12										0		0	
45	10												Ó	
50	10									0	0		Δ	0

			ctainlace	

Table 4.7	Screw s	shaft dian	neter, lea	d and str	oke of K	A type in	stainless	steel pro	duct	Unit: mm
Ch of all	1					Stroke				
Shaft dia.	Lead	- 150	- 200	- 250	- 300	- 350	- 450	- 500	- 650	- 1050
6	1									
8	1									
	2									
10	2									
10	4									
	2									
12	5									
	10									
4.5	10									
15	20									
16	2									

			ЛА type, F				oke - 1200						
700	- 750	- 800	- 850	- 900	- 950	- 1100	- 1200	- 1300	- 1400	- 1500	- 1700	- 2100	- 300
	0	Δ											
	•0		● ○△			<u></u>							
	ŏ		00	Δ		<u> </u>							
						100							
						_							
												-	_
			0										_
			8			04							_
	0			_		04							_
		Δ	0	Δ				04					
												-	
	0				Δ								
			<u>0</u> 0∆		О ОД	0	00	○ ○△					
	0		0		$\bigcirc \triangle$	0	0			04			
						-							
0				00		● ○△					● ○△		
	<u>О</u>					Δ							
	● ○△				0		0A 0A						
	<u>О</u> Д					Δ	$\bigcirc \triangle$			Δ			
	Δ			0	Δ	•0				Δ			
Õ				0		00		● ○△		0	•0	● ○△	
0						00		● ○△		Ŏ	00	● ○△	
		•0				•0				Δ	•0	● ○△	
\sim	$\bigcirc \triangle$			0	0		$\bigcirc \triangle$						
	\triangle			0		0	Δ						
Š	\triangle	0	Δ	0	0	Ō	$\bigcirc \triangle$		0	0A 0A A	Δ		
	0			Õ	0Δ	Ö	0			ÔΔ			
5				Ŏ	Δ	<u> </u>			Ŏ	Δ			
<u> </u>		0	Δ	Ŏ OA				$\bigcirc \triangle$	Ŏ		04		
						Ιŏ			\vdash		ĎΔ		
						0					<u>О</u> Д	0	04
		0		0			0	0			<u>O</u>		
				Ö	Δ					0			
			0			О ОД				8	Δ	\vdash	
0										\sim			-
		$\cap \wedge$		$\cap \wedge$									
		04	Δ	04		0	0	04	$ \times$ $ +$	$\overline{}$	04	\vdash	<u>Q</u> 4
0		0A 0A	Δ	ΟΔ Ο ΟΔ		0	8	0	О Д	Ŏ Δ	0		04 04

B-1-4.5 Manufacturing Capability for Screw Shaft

Table 4.8 shows the manufacturing capability for the screw shaft overall length for each accuracy grade. The capability of large ball screw whose shaft diameter exceeds 100 mm is limited due to the

weight. Please consult NSK in such a case. (*) Also consult NSK if the screw shaft size you desire exceeds the size listed in Table 4.8.

Table 4.8 Manufacturing capability of screw shaft

	Į.	able 4.6 IVI	anuracturing (саравіні у О	i screw sna	it	Unit: mm
Accuracy Screw grade shaft diameter	C0	C1	C2	C3	C5	Ct7	Ct10
4	90	110	120	140	140	140	_
6	150	180	200	250	250	250	_
8	240	280	340	340	340	340	_
10	350	400	500	500	500	550	800
12	450	500	650	700	750	800	800
14	600	650	750	800	1000	1000	1000
15	600	700	800	900	1250	1250	1500
16	600	750	900	1000	1500	1500	1500
18		_	_	_	_	_	1500
20	850	1000	1200	1400	1900	1900	2000
25	1100	1400	1600	1900	2500	2500	2500
28	1100	1400	1600	1900	2500	2500	2500
32	1500	1750	2250	2500	3200	3200	3000(4000)
36	1500	1750	2250	2500	3200	3500	3000
40	2000	2400	3000	3400	3800	4300	4000(5000)
45	2000	2400	3000	3400	4000	4500	4000
50	2000	3200	4000	4500	5000	5750	4000
63	2000	4000	5000	6000	6800	7700	_
80	_	4000	6300	8200	9200	10000	_
*100	_	4000	6300	10000	12500	13500	_
* 120	_	_	_	_	_	13500	_
* 125	_	_	_	10000	13500	13500	_
* 140	_	_	_	_	_	10000	_
*160	_	_	_	_	_	8000	_
*200	_	_	_	_	_	5000	_

Remarks: 1. Values in parentheses of Ct10 are applicable to the ultra high helix lead (I/d≥2). Refer to dimension tables in B203 and following pages for details.

2. Please note that the range for small leads (3 mm or under) are also limited by the screw length.

B-1-4.6 Outside Shapes of Ball Nut

(1) Flange shape

Fig. 4.1 shows the available flange shape. Select the appropriate shape according to the nut installation condition. (Fig. 4.2)

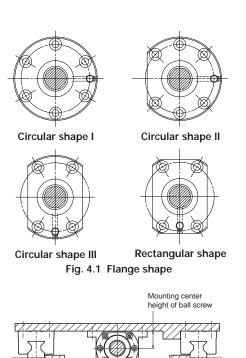


Fig. 4.2 Installation example

(2) Shapes of nut cross section

Cross-section of nuts are shown in Fig. 4.3. For detailed dimensions, refer to "Dimension table of nut."

① Circular (round)

The ball recirculation components are contained inside the circumference of the nut. It can be inserted in a round hole.

2 Tube-projecting type

This shape is unique to the tube recirculation type. The nut outside diameter is small. However some recess must be given for housing because the ball recirculation tube protrudes from the circumference of the nut.

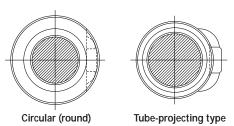


Fig. 4.3 Shape of the cross section of nut

B-1-4.7 Shaft End Configuration

(1) Standard shaft end dimensions

Table 4.9 and 4.10 show shaft end types for NSK standard support units. Refer to the dimension tables below when designing shaft ends of standard ball screw.

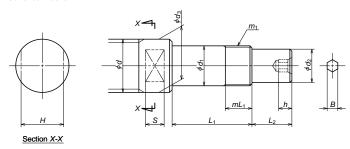


Fig. 4.4 Configuration of standard shaft end (drive side)

Table 4.9 Dimensions of shaft ends (drive side)

												Unit: mm
Screw	Bearing	journal	Thread		Drive s	section	Seal section	Hexag	on hole	Wrenc	h flats	Support
shaft diameter	Outside diameter	Length	Nominal spec.	Length	Outside diameter	Length	Outside diameter	Width across flats	Depth	Width across flats	Lengui	unit
d	d_1	L_1	m_1	mL ₁	d_2	L ₂	$d_{\scriptscriptstyle 3}$	В	h	Н	S	Reference No.
4	6	22.5	M6×0.75	7	4.5	7.5	9.5	_	_	8	4.5	WBK06-01A WBK06-11
6	6	22.5	M6×0.75	7	4.5	7.5	9.5	_	_	8	4.5	WBK06-01A WBK06-11
8	8	27	M8×1	9	6	10	11.5	_	_	10	5.5	WBK08-01A WBK08-11
10	8	27	M8×1	9	6	10	11.5	_	_	10	5.5	WBK08-01A WBK08-11
12	10	30	M10×1	10	8	15	14	_	_	12	6.5	WBK10-01A WBK10-11
14	12	30	M12×1	10	10	15	15	4	6	12	6.5	WBK12-01A WBK12-11
15	12	30	M12×1	10	10	15	15	4	6	12	6.5	WBK12-01A WBK12-11
16	12	30	M12×1	10	10	15	15	4	6	12	6.5	WBK12-01A WBK12-11
20	15	40	M15×1	15	12	20	19.5	5	7	17	8.5	WBK15-01A WBK15-11
20	17	81	M17×1	23	12	29	20	5	7	22	10	WBK17DF-31
25	20	53	M20×1	16	15	27	25	6	8	22	10	WBK20-01 WBK20-11
	20	81	M20×1	23	15	39	25	6	8	22	10	WBK20DF-31
28	20	53	M20×1	16	15	27	25	6	8	22	10	WBK20-01 WBK20-11
20	20	81	M20×1	23	15	39	28	6	8	24	12	WBK20DF-31
	25	62	M25×1.5	20	20	33	32	8	10	27	12	WBK25-01 WBK25-11
32	25	89	M25×1.5	26	20	51	32	8	10	27	12	WBK25DF-31
	25	104	M25×1.5	26	20	51	32	8	10	27	12	WBK25DFD-31
36	30	89	M30×1.5	26	25	61	36	10	12	30	13	WBK30DF-31
30	30	104	M30×1.5	26	25	61	36	10	12	30	13	WBK30DFD-31
40	30	89	M30×1.5	26	25	61	40	10	12	_	_	WBK30DF-31
	30	104	M30×1.5	26	25	61	40	10	12	_	_	WBK30DFD-31
45	35	92	M35×1.5	30	30	63	45	12	14	_	_	WBK35DF-31
45	35	107	M35×1.5	30	30	63	45	12	14	_	_	WBK35DFD-31
50	40	92	M40×1.5	30	35	78	50	14	18	_	_	WBK40DF-31
30	40	107	M40×1.5	30	35	78	50	14	18	_	_	WBK40DFD-31

Low-profile support unit is available for compact FA PSS type.

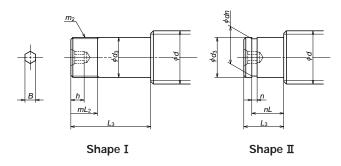


Fig. 4.5 Standard shaft end configuration (opposite to the drive side)

Table 4.10 Dimensions of shaft ends (opposite to the drive side)

Unit: mm

												Unit: mm
Screw shaft		Bearin	g journal	Thread for	lock nut	Retair	ner ring	groove	Hexagor			ort unit
diameter	Shape	Outside diameter	Length	Nominal spec.	Length	Width	Groove diameter	Groove position	Width across flats		Referen	CE INO. arentheses are
d		d_3	L ₃	m ₂	mL ₂	n	dn	nL	В	h	bearing refer	
8	П	6	9	_	_	0.8	5.7	6.8	_	_	WBKC)8S-01
10	Ι	6	9	_	_	0.8	5.7	6.8	_	_	WBKC)8S-01
12	П	8	10	_	_	0.9	7.6	7.9	_	_	WBK1	0S-01
14	П	10	22(12)	_	_	1.15	9.6	9.15	4	6	WBK1	2S-01
15	П	10	22(12)	_	_	1.15	9.6	9.15	4	6	WBK1	2S-01
16	П	10	22(12)	_	_	1.15	9.6	9.15	4	6	WBK1	2S-01
20	П	15	25(13)	_	_	1.15	14.3	10.15	5	7	WBK1	5S-01
	П	20	19	_	_	1.35	19	15.35	6	8	WBK2	20S-01
25	I	20	53	M20×1	16	_	_	_	6	8	WBK20-01	WBK20-11
	I	20	81	M20×1	23	_	_	_	6	8	WBK20	DDF-31
	П	20	19	_	_	1.35	19	15.35	6	8	WBK2	20S-01
28	I	20	53	M20×1	16	_	_	_	6	8	WBK20-01	WBK20-11
	I	20	81	M20×1	23	_	_	_	6	8	WBK20	DDF-31
	I	25	20	_	_	1.35	23.9	16.35	8	10	WBK2	25S-01
32	I	25	62	M25×1.5	20	_	_	_	8	10	WBK25-01	WBK25-11
	I	25	89	M25×1.5	26	_	_	_	8	10	WBK2	5DF-31
36	П	25	20	_	_	1.35	23.9	16.35	10	12	(62	05)
30	I	25	89	M25×1.5	26	_	_	_	10	12	WBK30	ODF-31
40	I	30	22		_	1.75	28.6	17.75	10	12	(62	06)
40	I	30	89	M30×1.5	26	_	_	_	10	12	WBK30	ODF-31
45	Π	35	25	_	_	1.75	33	18.75	12	14	(62	07)
45	I	35	92	M35×1.5	30	_	_	_	12	14	WBK3	5DF-31
50	Π	40	25		_	1.95	38	19.95	14	18	(62	08)
50	I	40	92	M40×1.5	30	_	_	_	14	18	WBK40	DDF-31

B27 B28

(2) Shaft end configuration of R series ball screws for transfer equipment

Table 4.11 and 4.12 show shaft end types for R Series.

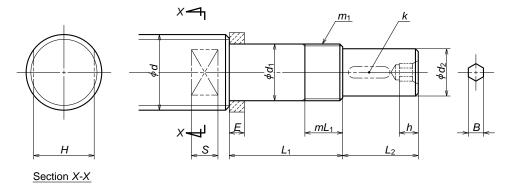


Fig. 4.6 R Series shaft end (drive side)

Table 4.11 Dimensions of R Series shaft ends (drive side)

Unit: mm

Screw	Bearing	journal	Thread for lo	ock nut	Spacer	Dri	ve sect	ion	Hexagor	nal hole	Wrenc	h flat	Supp	oort
shaft diameter	Outside diameter		Nominal spec	Length	Width	Outside diameter	Length	Key width	Width across flats	Depth	Width across flats	Length	un	it
d	$d_{\scriptscriptstyle 1}$	L ₁	m₁	mL ₁	Ε	$d_{\scriptscriptstyle 2}$	L_2	k	В	h	Н	S	Referer	ice No.
10	6	27	M6×0.75	7	5.0	4.5	7.5	_	_	_	8	4.5	WBK06-01A	WBK06-11
12	8	32	M8×1	9	5.5	6	10	_	_	-	10	5.5	WBK08-01A	WBK08-11
14	10	35	M10×1	10	5.5	8	15	_	_	_	12	6.5	WBK10-01A	WBK10-11
15	10	35	M10×1	10	5.5	8	15	_	_	_	12	6.5	WBK10-01A	WBK10-11
16	12	35	M12×1	10	5.6	10	15	3	4	6	12	6.5	WBK12-01A	WBK12-11
18	12	35	M12×1	10	5.6	10	15	3	4	6	12	6.5	WBK12-01A	WBK12-11
20	15	50	M15×1	15	10	12	20	4	5	7	17	8.5	WBK15-01A	WBK15-11
25	17	53	M17×1	17	7	15	27	5	6	8	22	10	WBK17-01A	_
	20	64	M20×1	16	11	15	27	5	6	8	22	10	WBK20-01	WBK20-11
28	20	64	M20×1	16	11	15	27	5	6	8	22	10	WBK20-01	WBK20-11
32	25	76	M25×1.5	20	14	20	33	6	8	10	27	12	WBK25-01	WBK25-11
36	25	76	M25×1.5	20	14	20	33	6	8	10	27	12	WBK25-01	WBK25-11
40	30	89	M30×1.5	26	_	25	61	8	10	12		1	WBK30	DF-31
45	35	92	M35×1.5	30	_	30	63	8	12	14			WBK35	DF-31
50	35	92	M35×1.5	30	_	30	63	8	12	14	_	_	WBK35	DF-31

Note: The dimension d_1 shall be smaller enough than the minor diameter of the ball screw thread to provide sufficient shoulder surface for the spacer.

Refer to "B-II-14 Precautions for Designing Ball Screw (B84 page)".

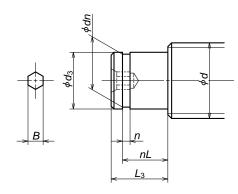


Fig. 4.7 Shaft end configuration of R Series (opposite to the drive side)

Table 4.12 Dimensions of R Series shaft ends (opposite to the drive side)

								Unit: mm
Screw shaft	Bearing	journal	Reta	ining ring g	roove	Hexagon	al hole	Support unit
diameter	Outside diameter	Length	Width	Groove diameter	Groove position	Width across flats	Depth	Numbers in parentheses are bearing reference numbers.
d	d ₃	L ₃	n	dn	nL	В	h	bearing reference numbers.
10	6	9	0.8	5.7	6.8	_	_	WBK08S-01(606)
12	8	10	0.9	7.6	7.9	_	_	WBK10S-01(608)
14	10	12	1.15	9.6	9.15	4	6	WBK12S-01(6000)
15	10	12	1.15	9.6	9.15	4	6	WBK12S-01(6000)
16	10	12	1.15	9.6	9.15	4	6	WBK12S-01(6000)
18	10	12	1.15	9.6	9.15	4	6	WBK12S-01(6000)
20	15	13	1.15	14.3	10.15	5	7	WBK15S-01(6002)
25	17	16	1.15	16.2	13.15	6	8	WBK17S-01(6203)
23	20	19	1.35	19	15.35	6	8	WBK20S-01(6204)
28	20	19	1.35	19	15.35	6	8	WBK20S-01(6204)
32	25	20	1.35	23.9	16.35	8	10	WBK25S-01(6205)
36	25	20	1.35	23.9	16.35	8	10	WBK25S-01(6205)
40	30	22	1.75	28.6	17.75	10	12	(6206)
45	35	23	1.75	33	18.75	12	14	(6207)
50	35	23	1.75	33	18.75	12	14	(6207)

B29 B30

NSK

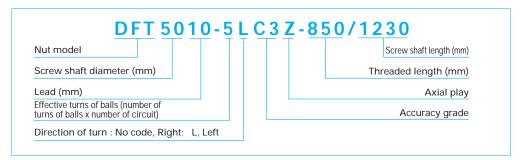
B-1-5 When Placing Orders

To avoid confusion, please use "reference number" or "specification number" when inquiring about desired ball screw specifications.

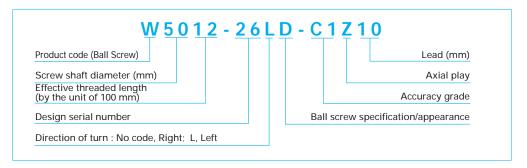
♦ Reference number:

Alpha-numeric codes are assigned to each ball screw. When placing order, please use this reference number.

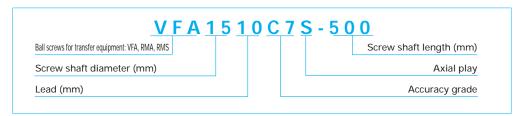
Specification number:

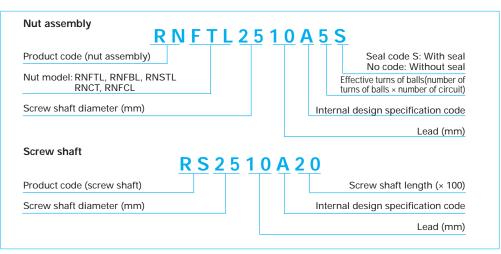

Specification factors are identified by alpha-numeric codes. Codes are for easy explanation of your requirements. (If you do not use these numbers, please itemize your requirements.)

B-1-5.1 When Ordering Made-to-Order Ball Screws


If you would like to discuss technical points regarding specifications, use the NSK ball screw technical data sheet as an aid (Page B36). For

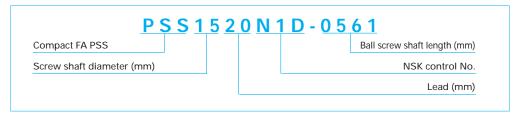
high-load drive ball screws, use the technical sheet for NSK high-load drive ball screw.


(1) Specification number of made-to-order ball screw

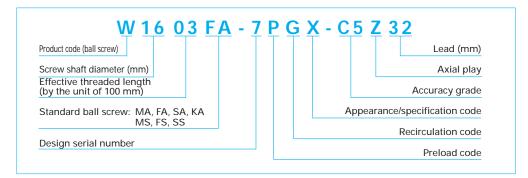

(2) Reference number of made-to-order ball screw

(3) Reference number of ball screws for transfer equipment with finished shaft end and blank shaft end

(4) Reference number of R series ball screws for transfer equipment


N3

B-1-5.2 When Ordering Standard Ball Screw


Find the reference number from the dimension table. Enter the reference number in the "Order Form by Fax" (Page B34). Send the fax to a NSK

agency (branch office, sales office, or your local representative.).

(1) Example of reference number of Compact FA PSS Type

(2) Example of reference number of Standard ball screw

(1) Standard ball screw

R Series ball screw Nut

R Series ball screw Screw shaft

Support unit

Grease unit

Drive side

Lock nut

(Make copies for future orders)

Company name :	Date: Day Month Year				
Address:	Telephone :				
Name of person in char	ge: Section:				
Product name	Specification number		Quantity	Desired deliver date	
Precision ball screw					

Describe the shaft end configuration if processing is required (blank shaft end ball screw). In this case, specify which ball screw in the above list the shaft end shall be processed.

Refer to Page B27 to 30 for shaft end configuration. These pages also show the reference number for support units.

Opposite of drive side		

NSK

NSK Ball Screw Technical Data Sheet (example)

(2) Made-to-order ball screw

Company name	Date: Day Month Year
Address	Telephone
Person in charge	Section
Machine which uses the ball screw <u>Machining center Model MC-</u>	Application Table left/right movement (X axis)
Drawing/rough sketch attached? Yes No	

Use conditions

			5								
	Axial loa	ıd	Rotatio	nal speed	Operatin	ig nours					
Maximum load	9000	N	20	min ⁻¹	15	%		Shaft rotation - Moving nut Normal operation			
								Shaft rotation - Moving shaft Back drive operation			
Load in normal use	4000	N	360	min ⁻¹	60	%	Operating conditions	Nut rotation - Moving nut			
								Nut rotation - Moving shaft			
Minimum load	2000	N	1000	min ⁻¹	2 5	%					
							Degree of vibration shock	Normal			
Maximum rotational speed		1000)	min ⁻¹			Required life	20000h			
Lubricant	Grease/oil	(Brand Make	d name: NSK GRS AS2				Motor in use	Company A, Model 1			
Seal		Ye	S	s No			Control system	Company B, Model 2 (resolution: 1 µm)			
Support bearing	Drive side	3 5 T A	C 6 2 D F	,			Opposite to drive	side 35TAC62DF			
Guide way	Guide way Rolling Sliding (RA 451500 GM 2 - P 4 Z 3 - II)										
Environment	Temperature (No	ormal temp	perature in de	egrees Celsius)	Dust	Humi	idity Gas L	iquid (where?) Clean room In vacuum			
Schedule for prototype	Г	Day		Month	Year (approx.)	Quantity used	Piece			
Date, going in production/Quantity	/M	onth		/Year		Lot	per machine				

Specification factors of the ball screw

Screw shaft diameter	50 mm	Direction of turn	right	Accuracy grade	C2	Screw shaft length	880 mm	Preload	3000 N
Lead	10 mm	Effective turns of balls		Axial play	0 mm	Overall shaft length	1335 mm	Required torque	
Nut model	Nut model ZFT5010-10		Flange type	Circular I	Nut orientation	Same as shown in the dimension table		Opposite	

Supplemental explanation/requests	

NSK Ball Screw Technical Data Sheet (example)

(2) Made-to-order ball screw

Company name	Date: Day Month Year
Address	Telephone
Person in charge	Section
Machine which uses the ball screw	Application
Drawing/rough sketch attached? Yes No	

Use conditions

	Axial load	Rotational speed	Operating hours			
Maximum load	N	min ⁻¹	%		Shaft rotation - Moving nut	Normal operation
					Shaft rotation - Moving shaft	Back drive operation
Load in normal use	N	min ⁻¹	%	Operating conditions	Nut rotation - Moving nut	
					Nut rotation - Moving shaft	Oscillation
Minimum load	N	min ⁻¹	%	-		
				Degree of vibration shock		
Maximum rotational speed		min ⁻¹		Required life		
Lubricant	Grease/oil (Brane	d name: er:)	Motor in use		
Seal	Ye	s	No	Control system	(resolution:)
Support bearing	Drive side			Opposite to drive	side	
Guide way	Rolling Slidin	g ()			
Environment	Temperature (Normal tem	perature in degrees Celsius)	Dust Hum	idity Gas L	iquid (where?) Clean ro	om In vacuum
Schedule for prototype	Day	Month	Year (approx.)	Quantity used	Piece	e
Date, going in production/Quantity	/Month	/Year	/Lot	per machine		

Specification factors of the ball screw

Screw shaft diameter	Direction of turn		Accuracy grade		Screw shaft length		Preload	
Lead	Effective turns of balls		Axial play		Overall shaft length		Required torque	
Nut model		Flange type		Nut orientation	Same as shown in	n the dimension ta	ble	Opposite

Supplemental explanation/requests			

B35 B36

NSK Technical Data Sheet for NSK High-Load Drive Ball Screw

Made-to-order ball screw NSK sales office Company name: Date: Section: Person in charge: Address: Name of machine*1: Electric injection molding machine; 30-ton capacity Application*2: Clamping axis Drawing/rough sketch attached?: ☐ Yes ☑ No *1 Please specify capacity of the machine in case of injection molding machine or press.
*2 If the application is injection molding machine, please indicate the axis. (Examples: injection axis and clamping axis) 1. Use conditions

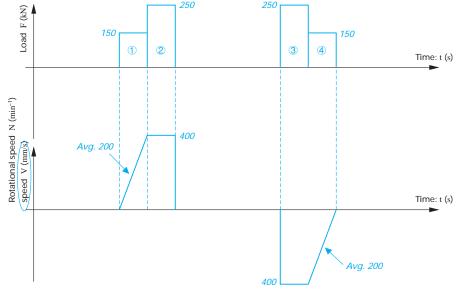
Operating conditions	✓ Shaft rotation — □ Shaft rotation — □ Nut rotation — M □ Nut rotation — M	Moving shaft oving nut	✓ Normal operation ☐ Back drive operation ☐ Oscillation	Degree of vibration/impact	☐ Smooth operation without impact ☑ Normal operation ☐ Operation associated with impact or vibration		
Direction of load*3	☐ C-C ☑T-T (Refer to figures b		C-T Other	Mounting orientation	✓ Horizontal ✓ Vertical (Indicate the direction of gravity.)		
Lubricant	Grease (Bran □ Oil (Make		ise with an extreme pressure additive	How to replenish	✓ Grease gun		
Request for oil hole	✓NSK recommer	nded 🗌 You	r request	lubricant	(cm³/ cycles)		
Necessity of seals	☑ Yes □ No] No	NSK S1 necessary?	✓ NSK recommended☐ Not necessary		
Environment	Temperature (40 deg)	Particles /	/ ☐ Yes (Size of par ☑No particle.	ticle : a) -0.1, b) over 0.1-0	.3, c) over 0.3- , d) Ingredient:		
Surface treatment	✓Not required [Low-tempera	ature chrome platir	ng 🗌 Fluoride low-t	emperature chrome plating		
Quantity in mass-production	/Month	/Year	/Lot	Quantity used per machine	1 pcs./machine		
*3 Please spec	cify loading direction co	ode on the figures	s below. (Shaft fixed	d: Main load:			

2. Specifications

(NSK recommended)

Shaft diameter	φ140 mm	Lead	<i>32</i> mm	Accuracy grade	Ct7	Axial play	0.050 or less mm max.
Nut model No.	HTF 14032-7.5-S1	Effective turns of balls	2.5 × 2	Direction of turn	right	Thread length /Overall shaft length	1000 1500

Special note / Requests


Please calculate the life as a continuous operation based on "3. Load chart".

T-T

(NSK recommended)

NSK Technical Data Sheet for NSK High-Load Drive Ball Screw

3. Load chart

	Axial load*	Rotational speed	or Average speed	Time	Stroke	Remarks
	F (kN)	N (min ⁻¹)	V (mm/s)	t (s)	St (mm)	
1	150		200	0. 5	100	
2	250		400	0. 5	200	
3	250		400	0. 5	200	
4	150		200	0. 5	100	
5				Total: 2.0	Total: 600	
6			1			
7						
8			i i i			
9						
10						
Dynamic	axial load (MA)	X.)*: 250	(kN) S	tatic axial load	(MAX.)*(at 0 mi	n/s): (kN)

Stroke in normal use: Cycle time:

300 (mm) 2. 0 (s)

Maximum stroke:

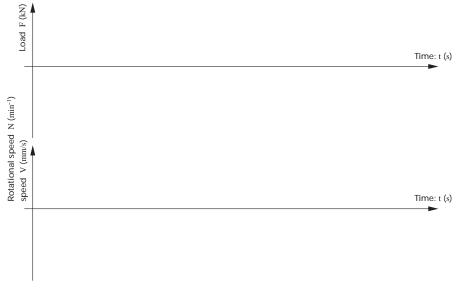
Required life: (

✓ h or

☐ cycles) 2500 *If you use multiple ball screws in an axis, fill out the axial load per ball screw.

4. Plan to conduct the endurance test of the ball screw?

Endurance of the ball screw


- (1) Mounting accuracy, load conditions, and lubricating conditions are the main factors affecting the ball screw fatigue life. Therefore, we recommend evaluating the influence of those factors on actual use of your machines.
- (2) A temperature rise caused by operational and environmental conditions may reduce the effectiveness of lubricant.

NSK Technical Data Sheet for NSK High-Load Drive Ball Screw

Made-to-order ball screw NSK sales office Date: Company name: Section: Person in charge: Address: Name of machine*1: Application*2: Drawing/rough sketch attached?: ☐ Yes ☐ No *1 Please specify capacity of the machine in case of injection molding machine or press.
*2 If the application is injection molding machine, please indicate the axis. (Examples: injection axis and clamping axis) 1. Use conditions Shaft rotation — Moving nut Normal operation ☐ Smooth operation without impact Operating ☐ Shaft rotation — Moving shaft Degree of Back drive operation ☐ Normal operation conditions vibration/impact ☐ Nut rotation — Moving nut Oscillation Operation associated with impact or vibration ☐ Nut rotation — Moving shaft Direction □ C-C □ T-T □ T-C ☐ Horizontal Mounting orientation of load*3 (Refer to figures below.) Vertical (Indicate the direction of gravity.) Grease / Brand name: Lubricant Maker. How to replenish ☐ Grease gun Automatic lubricant Request ☐ NSK recommended Your request for oil hole cm³/ cycles) NSK S1 ☐ NSK recommended Necessity ☐ No ☐ Yes of seals necessary? ☐ Not necessary Particles /
Yes (Size of particle: a) -0.1, b) over 0.1-0.3, c) over 0.3-, d) Ingredient: Temperature Environment deg) ■ No particle. Surface ■ Not required ■ Low-temperature chrome plating ☐ Fluoride low-temperature chrome plating treatment Quantity in Quantity used /Month /Year pcs./machine mass-production per machine *3 Please specify loading direction code on the figures below. (Shaft fixed: C-C T-T T-C (NSK recommended) (NSK recommended) 2. Specifications Accuracy Shaft diameter Axial play Lead mm max grade Effective Direction Thread length Nut model No. turns of balls of turn /Overall shaft length Special note / Requests

NSK Technical Data Sheet for NSK High-Load Drive Ball Screw

3. Load chart

	Axial load*	Rotational speed	or Average speed	Time	Stroke	Remarks
	F (kN)	N (min ⁻¹)	V (mm/s)	t (s)	St (mm)	
1			 			
2			1			
3						
4			1			
5						
6			! !			
7						
8						
9			1			
10						
Dynamic	axial load (MA	X.)*:	(kN) 5	Static axial load	(MAX.)*(at 0 m	nm/s): (kl
Stroke in	normal use:		(mm) I	Maximum stroke	e:	(mm)

Stroke in normal use: Cycle time:

Required life: (☐ h or ☐ cycles)

*If you use multiple ball screws in an axis, fill out the axial load per ball screw.

4. Plan to conduct the endurance test of the ball screw?

→ □ Yes		
□ N/A →	Planning to check endurance (Date:	
└	No (Reason:	
		☐ Yes ☐ N/A ☐ Planning to check endurance (Date: No (Reason:

Endurance of the ball screw

- (1) Mounting accuracy, load conditions, and lubricating conditions are the main factors affecting the ball screw fatigue life. Therefore, we recommend evaluating the influence of those factors on actual use of your machines.
- (2) A temperature rise caused by operational and environmental conditions may reduce the effectiveness of lubricant.

B-2 Technical Description of Ball Screws

B-2-1 Accuracy

B-2-1.1 Lead Accuracy

The lead accuracy of NSK precision ball screws (C0-C5 grades) conforms to the four characteristics specified in JIS Standards. These characteristics are expressed by codes ep, v_{uv} , v_{300v} , and v_{zs} .

Fig. 1.1 explains the definition of each characteristic, and shows allowable value of each. Leads are classified into two categories: C system for

positioning; Ct system for transportation. Table 1.2, 1.3 and 1.4 show tolerance of each characteristic.

JIS B1192 sets C type and Cp type standards for positioning ball screws. NSK uses the specification of C type only. JIS B1192 specifies Ct1, 3, and 5 grade. NSK standards are integrated by C type only. Refer to Table 1.2 for C type standard tolerance.

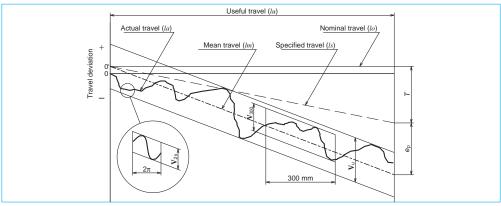


Fig. 1.1 Definition of lead accuracy

Table 1.1 Terminology in lead accuracy

Term	Code	Description	Tolerance
Specified travel	ls	The travel compensates the nominal travel for an elongation caused by an increase of temperature or load.	
Travel compensation	T	Value obtained by subtracting the specified travel from the nominal travel based on the useful travel. The value is to compensate for the errors caused by thermal deformation or deformation by load. This value is determined by tests and experience (See Page B43).	
Actual travel	la	Actually measured travel	
Actual mean travel	lm	A straight line that demonstrates the direction of actual travel. This straight line is obtained from the curve that shows actual travel volume by least-squares method or by resembling approximation.	
Tolerance on specified travel	ер	Obtained by subtracting the specified travel from the actual mean travel.	Table 1.2
Travel variation	υ _и υ ₃₀₀ υ _{2π}	Maximum range of the actual travel which is between the two straight lines drawn parallel to the actual mean travel. There are three categories as shown below. • Maximum range relative to the effective length of thread. • Maximum range relative to the length of 300 mm anywhere within the effective length of thread. • Maximum range which corresponds to any single rotation (2πrad.) within the effective length of thread.	Table 1.2 Table 1.3, 1.4 Table 1.3

Table 1.2 Tolerance on specified travel ($\pm ep$) and travel variation (υ_u) of the positioning (C type)

	Accuracy	grade	С	0	С	1	С	2	С	3	С	C5	
	over	or less	± <i>ep</i>	$\upsilon_{\scriptscriptstyle u}$	±ep	\mathbf{v}_{u}	±ep	v_{u}	±ep	$\upsilon_{\scriptscriptstyle u}$	±ep	$\upsilon_{\scriptscriptstyle u}$	
	_	100	3	3	3.5	5	5	7	8	8	18	18	
	100	200	3.5	3	4.5	5	7	7	10	8	20	18	
	200	315	4	3.5	6	5	8	7	12	8	23	18	
	315	400	5	3.5	7	5	9	7	13	10	25	20	
	400	500	6	4	8	5	10	7	15	10	27	20	
_	500	630	6	4	9	6	11	8	16	12	30	23	
ШШ	630	800	7	5	10	7	13	9	18	13	35	25	
gth	800	1000	8	6	11	8	15	10	21	15	40	27	
Effective thread length	1000	1250	9	6	13	9	18	11	24	16	46	30	
ead	1250	1600	11	7	15	10	21	13	29	18	54	35	
thre	1600	2000			18	11	25	15	35	21	65	40	
tive	2000	2500			22	13	30	18	41	24	77	46	
řec	2500	3150			26	15	36	21	50	29	93	54	
Ш	3150	4000			30	18	44	25	60	35	115	65	
	4000	5000					52	30	72	41	140	77	
	5000	6300					65	36	90	50	170	93	
	6300	8000							110	60	210	115	
	8000	10000									260	140	
	10000	12500									320	170	

Table 1.3 Tolerance of travel variation relative to 300 mm (υ_{aso}) and one revolution (υ_{as}) of the positioning (C type) ball screws Unit: um

					'
Accuracy grade	C0	C1	C2	C3	C5
$v_{\scriptscriptstyle 300}$	3.5	5	7	8	18
$v_{2\pi}$	2.5	4	5	6	8

Remark to JIS B1192 standards. Values in other areas are NSK standards.

Table 1.4 Travel variation ($\upsilon_{\tiny{300}}$) relative to 300 mm of the transportation (Ct type) ball screws

		σιπ. μιπ
Accuracy grade	Ct7	Ct10
$\upsilon_{\scriptscriptstyle 300}$	52	210

Remark Tolerance on specified travel (ep) of the transportation (Ct type) ball screws is calculated as follows.

$$ep = \frac{2 \cdot lu}{300} \cdot v_{300}$$

B41 B42

Example of specifying lead accuracy

<Use Conditions>

Nut model: DFT4010-5 Stroke: 1000 mm

Positioning accuracy: ±0.035 mm/1000 mm

<Calculation>

Obtain required lead accuracy of a ball screw under these conditions.

①Calculate the length of the thread

Stroke + nut length + margin =1000 + 193 + 100

=1293 (mm)···→1300 mm

②Calculate lead accuracy

From Table 1.2, obtain the tolerance on specified travel relative to the length of thread (1300 mm).

C5 ··· ±0.054/1250 - 1600

C3 ··· +0.029/1250 - 1600

3 Determine lead accuracy

Positioning accuracy is: ±ep <±0.035/1000 mm

Accuracy grade: C3 grade $\pm ep = 0.029/\text{length of thread (1300 mm)}$

 $v_u = 0.018$

B-2-1.2 Thermal Expansion and Target Value of Specified Travel

(1) Thermal expansion

Thermal expansion of screw shaft induces the degradation of positioning accuracy of the ball screws. Thermal expansion of a screw shaft is calculated as follows.

 $\Delta L_{\theta} = \rho \cdot \theta \cdot L(mm) - (II-1)$

In this formula:

 $\Delta L_{\rm B}$: Thermal expansion (mm)

 ρ : Thermal expansion coefficient (12.0 x 10 $^{\circ}$ °C)

 θ : Average temperature rise of screw shaft (Celsius)

L: Length of screw shaft (mm)

The above formula indicates that when the temperature rises one degree Celsius, the screw shaft stretches 12 µm per meter. Ball screw generates more heat when it is used at high speed. This causes elongation of the screw shaft. Although the ball screw lead is ground into high precision, an elongated screw shaft due to high temperature rise may not satisfy required highly accurate positioning.

(2) Countermeasures against temperature rise

Countermeasures against temperature rise of the ball screw are:

Hollow shaft cooling is recommended to operate high-speed and high-precision conditions.

- ① Suppress heat generation
- Do not apply excessive preload to the ball screw and support bearing.
- Select correct lubricant and use it appropriately.
- Use higher helix ball screw lead to lower rotational speed.
- 2 Use forced cooling.
- Use hollow screw shaft, and flow liquid coolant through it. - Refer to hollow ball screws in the section for applicationoriented ball screws (Page B144).
- Cool screw shaft surface with lubricant oil or air.
- ③ Avoid effects of temperature rise on positioning
 - Warm up the machine by high speed until temperature rise saturate, then maintain a

stable temperature of ball screw shaft.

- Set pre-tension. (Fig. 1.2)
- Set the negative (minus) target value of specified travel.
- Employ the closed loop control system.

(3) How to determine specified travel

In general, the specified travel of ball screw is the same as the nominal travel. However, the specified lead of ball screw is sometimes set to negative (minus) or positive (plus) to adjust expansion by temperature rise during operation, or the elongation/contraction of the screw shaft by external load. For such occasion, specify travel compensation (T) when ordering the ball screw.

As an example, Table 1.5 shows the travel compensation (T) for typical NC machine tools.

Table 1.5 Travel compensation (T) of specified travel for typical NC machine tools

(4) How to determine pre-tension force

In order to absorb thermal expansion, pretension can be provided to the screw shaft at the time of installation. In this case, the pretension is usually equivalent to the expansion brought about by the temperature rise of 2 to 3°C.

Fig. 1.2 shows the bearing support structure in such occasion.

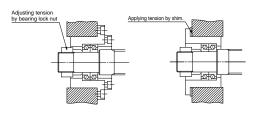


Fig. 1.2 Bearing structure to provide pre-tension

B-2-1.3 Mounting Accuracy and Tolerance of Ball Screws

The accuracy related to mount the ball screws is specified in the following seven characteristics (Fig. 1.3).

The tolerance is indicated in the specification drawing.

Detailed tolerances are specified by JIS B1192. For reference, Table 1.6 shows standard values of "(7) Total run-out of the screw shaft axis (straightness of the screw shaft)". NSK sets stricter tolerance standards than JIS standards. For accuracy of the ball screw installation, refer to "Installation of Ball Screw (1) Centering of the units" (Page B77).

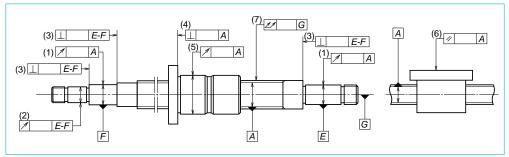


Fig. 1.3 Mounting accuracy of ball screw

- (1) Radial run-out of the support bearing seat relative to the axis of the ball thread of screw shaft.
- (2) Radial run-out of the other shaft ends section relative to the axis of the support bearing seat.
- (3) Perpendicularity of the shoulder of support bearing seat relative to the axis of support bearing seat.
- (4) Perpendicularity of the nut flange face, or of the nut end datum face, relative to the axis of screw shaft.
- (5) Eccentricity of the nut outside surface (cylindrical shape) to the axis of screw shaft.
- (6) Parallelism of the nut mounting surface to the screw shaft axis. (in case of flat mounting surface)
- (7) Total run-out of the screw shaft axis.

Table 1.6 Total run-out of the screw shaft axis

Unit: µm

															'
Accuracy grade					С	0						C1			
Nomi	nal diameter	over	-	8	12	20	32	50	-	8	12	20	32	50	80
	(mm)	or less	8	12	20	32	50	80	8	12	20	32	50	80	125
	over	or less													
	-	125	15	15	15				20	20	15				
~	125	200	25	20	20	15			30	25	20				
(mm)	200	315	35	25	20	20			40	30	25	20			
	315	400		35	25	20	15		45	40	30	25	20		
Sh	400	500		45	35	25	20			50	40	30	25		
ē	500	630		50	40	30	20	15		60	45	35	25	20	
Overall length of screw shaft	630	800			50	35	25	20			60	40	30	25	
ho	800	1000			65	45	30	25			75	55	40	30	25
engt	1000	1250			85	55	40	30			95	65	45	35	30
all 16	1250	1600			110	70	50	40			130	85	60	45	35
verä	1600	2000				95	65	45				120	80	55	40
0	2000	2500											100	70	50
	2500	3150												130	90
	3150	4000													120

Unit: µm 14

Accuracy grade						C3							C5			
Nomi	nal diameter	over	-	8	12	20	32	50	80	-	8	12	20	32	50	80
	(mm)	or less	8	12	20	32	50	80	125	8	12	20	32	50	80	125
	over	or less														
	-	125	25	25	20					35	35	35				
	125	200	35	35	25	20				50	40	40	35			
	200	315	50	40	30	30				65	55	45	40			
<u></u>	315	400	60	50	40	35	25			75	65	55	45	35		
(mm)	400	500		65	50	40	30				80	60	50	45		
	500	630		70	55	45	35	30			90	75	60	50	40	
Overall length of screw shaft	630	800			70	55	40	35				90	70	55	45	
rew	800	1000			95	65	50	40	30			120	85	65	50	45
f SCI	1000	1250			120	85	60	45	35			150	100	75	60	50
ih of	1250	1600			160	110	75	55	40			190	130	95	70	55
engt	1600	2000				140	95	70	50				170	120	85	65
all le	2000	2500					120	85	60					150	110	80
verä	2500	3150					160	110	75					200	140	95
0	3150	4000					220	150	100					260	180	120
	4000	5000						200	130						240	160
	5000	6300													310	210
	6300	8000														280
	8000	10000														370

B-2-1.4 Automatic lead accuracy measuring system of NSK

In response to the demand for high precision in production technology, NSK is the first in the world that developed and uses "Lead Accuracy Measuring System (LAMS)." Lead accuracy is measured by the system that employs a laser interferometer measuring instrument and a personal computer.

Fig. 1.4 shows the lead accuracy measuring system. The inspection date of the ball screw is shown in Fig. 1.5. The laser interferometer measures either ball nut travel accuracy or lead accuracy of the ball thread. The data which are input into a computer are processed into four characteristics readings regarding lead accuracy. (See Page B41.)

B47

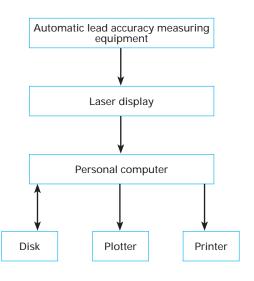


Fig. 1.4 Lead accuracy measuring system

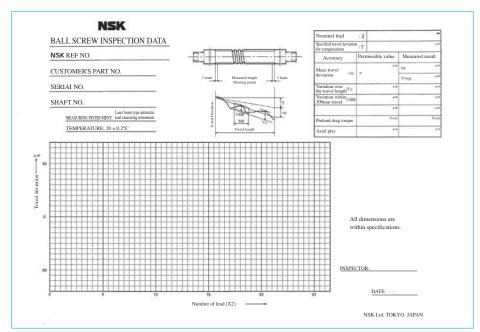


Fig. 1.5 Ball screw Inspection data

B-2-2 Static Load Limitation

Ball screw, based on its function, will generally receive axial load only. Ball screw shaft in general is long, so it is necessary to consider 3 items below:

- · Buckling load of the screw shaft
- Yielding of the screw shaft by tensional or compressive stress
- Permanent deformation at the ball contact points

B-2-2.1 Buckling Load

It is necessary to calculate whether the ball screw shaft is safe against buckling.

Buckling load, i.e. permissible compressive load "P" to axial direction, is calculated as follows.

$$P = \alpha = \frac{N \cdot \pi^2 \cdot E \cdot I}{L^2} = m \frac{d_r^4}{L^2} \times 10^4 \text{ (N)} \cdots (\mathbb{I}-2)$$

In this formula:

 α : Safety factor (α = 0.5)

E: Elastic modulus ($E = 2.06 \times 10^5 \text{ MPa}$)

I: Moment of inertia

$I = \frac{\pi}{64} d_r^4$	(mm⁴)	····(I -3

- d_r: Screw shaft root diameter (mm) [See the dimension table.]
- L: Unsupported length (mm) [See Fig. 4.1 and 4.2 'Supporting conditions of screw shaft and nut' in Page B55.)
- m, N : Factors determined by the supporting condition of the ball screw shaft

Table 2.1 Factors of bucking load

Supporting condition	m	N
Fixed - Fixed support	19.9	4
Fixed - Simple support	10.0	2
Fixed support - Free	1.2	0.25
Simple - Simple support	5.0	1

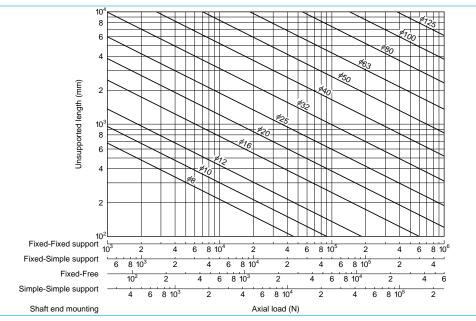


Fig. 2.1 Buckling load

.

4

Calculate buckling load under the conditions in Fig. 2.2.

<Use conditions>

Nut model: DFT4010-5

Supporting condition is Fixed - Fixed support (From the supporting condition (ii)

in Fig. 4.1 'Supporting conditions of screw shaft and nut' in Page B55.)

Unsupported length L = 2000 mm

Screw shaft root diameter $d_r = 34.4 \text{ mm}$ (From the dimension table)

<Calculation>

Support condition is Fixed - Fixed support, From Table 2.1 in Page B48

N = 4

m = 19.9

By Formula (II-2) in Page B48

$$P = m \frac{d_{\rm r}^4}{L^2} \cdot 10^4 = 19.9 \times \frac{34.4^4}{2000^2} \times 10^4 = 69667 \text{ (N)}$$

Therefore,

Permissible buckling load P = 69600 N

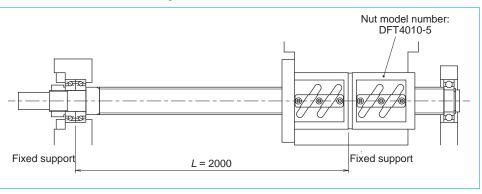


Fig. 2.2 Calculation example of buckling load

B-2-2.2 Yield by Tensional/Compressive stress

It is necessary to consider permissible load in regards to the yield stress.

Permissible load "P" by tensional or compressive stress to screw shaft is

$$P = \sigma \cdot A = 1.15 d_r^2 \times 10^2 \text{ (N)}$$
 (II-4)

In this formula:

σ: Allowable stress (= 147 MPa)

A: Cross section area of a screw shaft using root diameter (mm²)

$$A = \frac{\pi}{4} \cdot d_r^2 \,(\text{mm}^2) \tag{II-5}$$

d_r: Screw shaft root diameter (mm)

<<Calculation example of yield load>>

Obtain load in respect to the allowable stress under the conditions in Fig. 2.2.

<Use conditions>

Nut model: DFT4010-5

Screw shaft root diameter $d_r = 34.4$ (mm)

(From the dimension table)

<Calculation>

By Formula II-4

 $P = 1.15 d_r^2 \times 10^2 = 1.15 \times 34.4^2 \times 10^2$

= 136086 (N)

Therefore,

Permissible load P = 136000 N

B-2-2.3 Permanent Deformation of the Ball Contact Point

Exposed to an excessively heavy load in axial direction, the balls are squashed, and the ball rolling surface is dented. The deformations on these points do not perfectly restore to original shape after the load is removed. They are permanently disfigured. It is necessary to determine the limitation of this disfigurement to containing it within a certain range.

(1) Basic static load rating C_{0a}

Basic static load rating $C_{\rm oa}$ is a load to axial direction that results in the combined permanent deformation equal to 0.01% of the ball diameter at the contact points of ball and ball grooves of the screw shaft and nut.

(2) Calculation of permissible load by C_{0a}

 P_{\circ} (allowable axial direction load to limit the permanent deformation) is calculated using $C_{\circ a}$.

$$P_{0} = \frac{C_{0a}}{f} (N)$$
 (II-6)

In this formula, f_s: Static permissible load factor

Table 2.2 Static permissible load factor

At time of normal operation	1 – 2
With vibration impact	1.5 – 3

<<Calculation example of maximum allowable load>>

Obtain maximum allowable load to the ball groove section under conditions in Fig. 2.2

<Use conditions>

Nut model: DFT4010-5

Basic static load rating $C_{na} = 137000$ (N)

(From the dimension table)

Static permissible load factor $f_s = 2$

(normal operation, no vibration impact)

<Calculation>

By Formula II-6, maximum allowable load of the ball groove section

$$P_0 = \frac{C_{0a}}{f_s} = \frac{137000}{2} = 68500 \text{ (N)}$$

50

B-2-3 Permissible Rotational Speed

Permissible rotational speed is determined by the feeding speed and ball screw lead. When selecting ball screw, it is important to know the permissible rotational speed.

It is necessary to calculate two items below, and whichever smaller is the permissible rotational speed.

The lower of the following two factors, d·n and Critical Speed, will determine the overall Permissible Rotational Speed of the ball screw.

- Critical speed which is the resonance vibration of the shaft.
- d·n value which is involved in damaging the ball recirculation components.
- * Please consult NSK if the maximum rotational speed exceeds the criteria of maximum rotational speed on page B54, even both the critical speed of screw shaft rotation and the d·n value are in range of the allowable limit.

B-2-3.1 Critical Speed of the Screw Shaft

Calculate the critical speed which is the matching value of the ball screw rotational speed and the natural frequency of the screw shaft. The permissible rotational speed is up to the 80% range of the critical speed.

Calculate the critical speed of the screw shaft whether you use shaft rotation or nut rotation. Critical speed varies by the nut traveling position. Please consult NSK for detailed calculation.

If using a ball screw exceeding the critical speed, it is necessary to increase the natural frequency by using an intermediate support, etc. If using with nut rotation, it is possible to operate exceeding critical speed by installing a vibration energy absorbing system (optional, vibration control damper: patented by NSK) to the screw shaft. (Refer to "Nut rotatable drive ND Series" in Page B149.)

Calculate the permissible rotational speed based on critical speed n_c as follows, taking in account "supporting conditions for calculation of buckling load and critical speed" on Page B55.

Fig. 3.1 shows the permissible rotational speeds against critical speed for each shaft diameter.

$$n_{c} = \alpha \times \frac{60\lambda^{2}}{2\pi L^{2}} \sqrt{\frac{E \cdot I \cdot g}{\gamma \cdot A}}$$

$$= f \frac{d_{r}}{I^{2}} \times 10^{7} \text{ (min}^{-1)}$$
(II-7)

In this formula:

 α : Safety factor (α = 0.8)

E : Elastic modulus (E = 2.06×10^5 MPa)

I: Moment of inertia of area of screw shaft

$$I = \frac{\pi}{64} d_r^4 \text{ (mm}^4\text{)} \tag{II-3}$$

d_r: Screw shaft root diameter (mm) [See the dimension table.]

g: Acceleration of gravity (= 9.8 × 10³ mm/s²)

 γ : Specific weight ($\gamma = 7.65 \times 10^{-5} \text{ N/mm}^3$)

A : Cross section area of the screw shaft root diameter (mm²)

$$A = \frac{\pi}{4} d_r^2 \text{ (mm}^2\text{)} \tag{II-5}$$

L: Unsupported length (mm) [See Fig. 4.1, 4.2 'Supporting conditions of screw shaft and ball nut' on Page B55]

 f_{i} λ : Factors determined by the supporting condition

Table 3.1 Coefficients of critical speed

Supporting condition	f	λ
Fixed - Simple support	15.1	3.927
Fixed - Fixed support	21.9	4.730
Fixed support - Free	3.4	1.875
Simple - Simple support	9.7	π

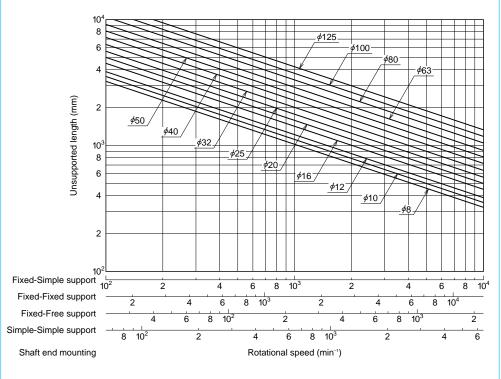


Fig. 3.1 Permissible rotational speeds vs. critical speeds

<<Calculation example of permissible rotational speed to the critical speed>> Calculate the permissible rotational speed to the critical speed under conditions in Fig. 3.2.

<Use conditions>

Nut model: DFT4010-5

Supporting condition is Fixed - Simple support (From the supporting condition (ii) in Fig. 4.1 'Supporting conditions of screw shaft and ball

nut.')

Unsupported length L = 2000 mm

Screw shaft root diameter $d_r = 34.4 \text{ mm}$ (From the dimension table)

<Calculation>

Supporting condition is Fixed-Simple support, from Table 3.1 in Page B51

 $\lambda = 3.927$

f = 15.1

By Formula II-7 in Page B51, permissible rotational speed to critical

$$n_c = f \frac{d_r}{L^2} \times 10^7 = 15.1 \times \frac{34.4}{2000^2} \times 10^7 = 1298.6 \text{ (min}^{-1}\text{)}$$

 $n_c = 1290 \text{ min}^{-1} \text{ or under}$

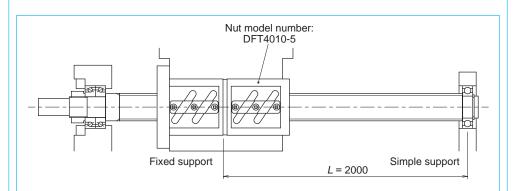


Fig. 3.2 Calculation example of permissible rotational speed to the critical speed

B-2-3.2 d·n value

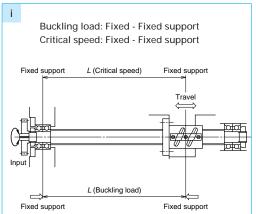
An increase of ball orbital speed will increase the collision impact of balls to ball recirculation parts, and thus resulting in damage to them. For this reason, Permissible rotational speed is also limited by the d·n value (d: shaft diameter in millimeters; n: rotational speed per minutes). Table 3.2 shows the allowable d·n value and maximum rotational speed of ball screws.

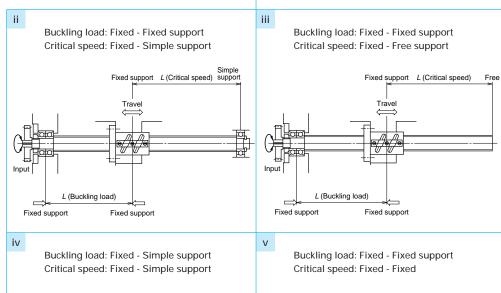
- *Special measure must be taken for high-speed specification products. Please consult NSK.
- *Please consult NSK if the maximum rotational speed or the d·n value exceed the values on the table below, even both the critical speed of screw shaft and the d·n value are in ranges of the allowable limit.

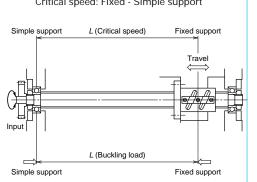
Table 3.2 Criteria of allowable d·n value and maximum rotational speed

		Allowable d·n	value	0.111	r.
Ball screw recircu	Ball screw recirculation system, Series/Type			Criterion of permissible	
bull screw reduction system, series, type		Standard	High-speed	rotational speed [min ⁻¹]	i
	HMD type for high-speed machine tools	160000 or less	_	4000	
	HMC type for high-speed machine tools	100000 or less, 135000 or less*1	_	3750	
	BSL type for miniature lathe	(180000 or less)	-	4000	١
	HTF-SRC type for high-load drive	140000 or less, 160000 or less ^{*1}	-	3225	E
Application-	HTF-SRD type for high-load drive	120000 or less	-	2400	
oriented ball screws	HTF type for high-load drive	50000 or less, 70000 or less*1	100000 or less	3125	5
	VSS type for contaminated environment	150000 or less	-	3000	
	ND series nut-rotatable ball screws	70000 or less	100000 or less	3000	
	∑ series for robot	70000 or less	-	3000	
	R series for transfer equipment	50000 or less	_	3000	
	End-deflector type	180000 or less	-	5000	
Standard nut ball	Return tube type	70000 or less	100000 or less	3000	
screws	Deflector type	84000 or less	100000 or less	3000	
	End cap type	80000 or less	100000 or less	3000	

- *1 Please refer to the explanation of each ball screw for which two allowable d-n values are listed
- · HMC type for high-speed machine tools: page B113
- · HTF-SRC type for high-load drive: page B123
- · HTF type for high-load drive: page B131


Supporting Conditions for Calculation of Buckling Load and Critical Speed


Fig. 4.1 and 4.2 are typical conditions in supporting ball screw. Use them as reference to calculate buckling load and critical speed.


Please consult NSK if it is necessary to scrutinize calculation due to use conditions, or if boundary conditions are not clear due to special installation.

[How to read the tables]

Example ii: Buckling load generates between the nut and the left bearings, indicating that the critical speed appears between the nut and the right bearing. Therefore, set L at maximum stroke for each side. Calculate by applying support bearing conditions.

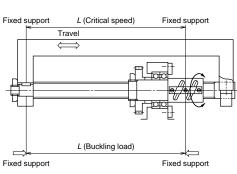


Fig. 4.1 Supporting conditions for screw shaft and ball nut

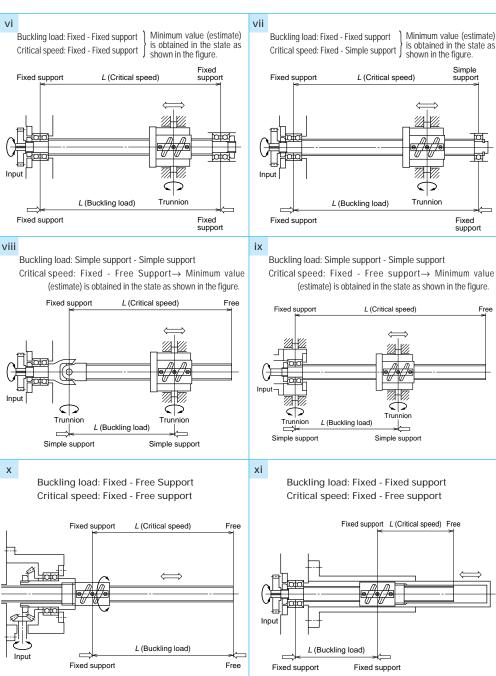


Fig. 4.2 Supporting conditions of screw shaft and ball nut w

B-2-5 Life (dynamic load limitation)

B-2-5.1 Life of Ball Screw

Although used in appropriate conditions and is ideally designed, the ball screw deteriorates after a certain operation period, and eventually becomes unusable. The period in this situation is the life of the ball screw. There are two life categories, "fatigue life" caused by flaking, and "life of accuracy" caused by deterioration in precision because of wear.

B-2-5.2 Fatigue Life

Fatigue life of the ball screw can be estimated by basic dynamic load rating (C_a) as is for the rolling bearing.

(1) Basic dynamic load rating C_a

Basic dynamic load rating is the axial load which allows a 90% of the group of the same ball screws to rotate 1 million times (10°rev) under the same condition without causing flaking by rolling contact fatigue.

(2) Fatigue life calculation

Fatigue life is defined as a total rotation number in general. It is sometimes indicated by total rolling hours or total running distance. Fatigue life is obtained by the following formula.

$$L = \left(\frac{C_a}{F \cdot f}\right)^3 \cdot 10^6 \qquad \cdots \text{ (II-8)}$$

$$L_{t} = \frac{L}{60n} \qquad \cdots \text{ (II-9)}$$

$$L_{\rm s} = \frac{L \cdot I}{10^6} \qquad \cdots \text{ (II-10)}$$

In this formula:

L: Rating fatigue life (rev)

 L_{t} : Life in hours (h)

 $L_{\rm s}$: Life by running distance (km)

 $C_{\rm a}$: Basic dynamic load rating (N)

 F_a : Axial load (N)

n: Rotational speed (min⁻¹)

1 : Lead (mm)

f_w: Load factor (Coefficient by operating condition)

Load coefficients f_w in operation condition are shown in Table 5.1.

Table 5.1 Load coefficient f_w

Smooth operation without impact	1.0 – 1.2
Normal operation	1.2 – 1.5
Operation associated with impact or vibration	1.5 – 3.0

Setting too long fatigue life requires larger ball screw, and is not economical. Below are the general target values of operating life for machines. (reference)

Table 5.2 General target values of fatigue life

Machine tools	20000 hours
Industrial machines	10000 hours
Automatic control system	15000 hours
Measuring equipment	15000 hours

(3) Mean load

If the axial load varies often, to calculate a life, obtain a mean load which gives equivalent fatigue life under this varying load conditions.

①When load and rotational speed shift stepwise Obtain the mean load F_m by the formula below. Obtain mean rotational speed N_m by the formula below as Table 5.3, Fig. 5.1.

$$F_{m} = \left(\frac{F_{1}^{3} \cdot n_{1} \cdot t_{1} + F_{2}^{3} \cdot n_{2} \cdot t_{2} + \cdots + F_{n}^{3} \cdot n_{n} \cdot t_{n}}{n_{1} \cdot t_{1} + n_{2} \cdot t_{2} + \cdots + n_{n} \cdot t_{n}}\right)^{\frac{1}{3}} \cdots (\mathbb{I}-11)$$

$$N_{m} = \frac{n_{1} \cdot t_{1} + n_{2} \cdot t_{2} + \dots + n_{n} \cdot t_{n}}{t_{n} + t_{n} + \dots + t_{n}} \cdots \text{ (II-12)}$$

Table 5.3 Stepwise operation condition

Axial load	Rotational speed	Hours of use, or
(N)	(min ⁻¹)	ratio of hours of use
F ₁	n₁	<i>t</i> ₁
F_2	n_2	t_2
:	:	:
F_{n}	$n_{\scriptscriptstyle m n}$	t _n

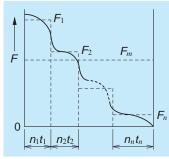


Fig. 5.1 Stepwise load variation

②When the rotational speed is constant, and the load changes linearly, obtain approximate value of the mean load $F_{\rm m}$ by the formula below.

$$F_{\rm m} = \frac{1}{3} \left(F_{\rm min} + 2F_{\rm max} \right) \qquad \cdots \quad (\mathbb{I}-13)$$

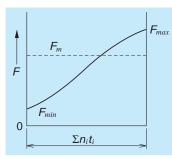


Fig. 5.2 Linear load change

③When rotational speed is constant, and the load changes in sinusoidal pattern, obtain approximate value of the mean load F_m by the formula below.

When the sine curve is Fig. (a) $F_{\rm m} \doteq 0.65 \; F_{\rm max} \qquad \cdots \; (\text{II-14})$ When the sine curve is Fig. (b)

 $F_{\rm m} \doteq 0.75 F_{\rm max} \cdots (II-15)$

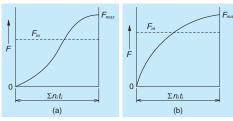


Fig. 5.3 Load changes in sinusoidal pattern

(4) Affect of mounting misalignment

If moment load or radial load is applied to the ball screw, it adversely affects ball screw function, and shortens life. Watch for eccentric load that induces moment or radial load.

Fig. 5.4 shows a calculation example of fatigue life when moment load is applied to the ball screw. In this figure, the value of the rigidity of mounting ball screw sections (screw shaft, support bearing, guide, etc.) is set at infinity. In actual use, deformation is absorbing the moment load in various areas, and the moment load that generates between the screw shaft and nut is abated.

In general, the following values are recommended as control values for precision grade.

Misalignment in inclination ··1/2000 or less Eccentricity·······20 µm or less

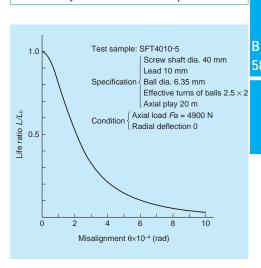


Fig. 5.4 Affects of misalignment

(5) Effects of heavy load and short stroke

If the ball screw is used under heavy load and short strokes, such as for drive of plastic injection molding machine and of press machines, the fatigue life may become significantly shorter than the rated fatigue life which is calculated in B-2-5.2.

This decreased life occurs because the heavy load generates large stress (surface pressure) in the contact point of balls and ball grooves of the screw shaft and the nut, adversely affecting the life. In such case, the life calculation should take into account the size of the surface pressure as well as the size of the stroke.

The axial load F_{amax}^{-1} during operation and the size of strokes, which affect fatigue life, can be obtained by the following formula.

In such case, the life calculation should take into account the size of the surface pressure as well as the size of the stroke. Please consult with NSK.

$$F_{\text{amax}} \ge 0.10C_{0a}$$
 ... (II-16)
S ≤ 4

In this formula:

 F_{amax} : Maximum load to axial direction during drive (N)

 C_{0a} : Basic static load rating (N)

S : Stroke (rev)

$$S = \frac{L_s}{I}$$

L_s: Stroke distance (mm)

1 : Lead (mm)

* Axial load: The load is applied to the axial direction when screw shaft and the nut of ball screw are rotating relatively each other. The rotational speed is irrelevant.

B-2-5.3 Ball screw and Hardness

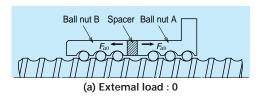
Table 5.4 indicates NSK standard ball screw and their hardness.

Table 5.4 Ball screw materials and their hardness

Component	Heat treatment method	Hardness (HRC)
Screw shaft	Carburizing	58 or over
Screw Shart	Induction hardening	58 or over
Nut	Carburizing	58 or over

* NSK manufactures special material ball screws for special environments (stainless steel: SUS440C, SUS630). NSK also furnishes surface treatment (Refer to Page D5). Please consult NSK for such request.

B-2-5.4 Wear Life


Wear of materials, as is the case for other mechanical components, is significantly affected by use conditions, lubrication conditions and other factors. It is difficult to estimate its volume, and measuring requires various tests and field data.

NSK has data of wear accumulated through abundant experience. Please contact NSK for inquiry pertaining to the wear.

B-2-6 Preload and Rigidity

B-2-6.1 Elastic Deformation of the Preloaded Ball Screw

(1) Position preload (D, Z, P preloads)
Double nut preload ball screw shown in Fig. 6.1.

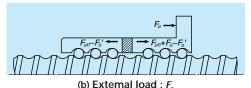


Fig. 6.1 Position preload (double-nut)

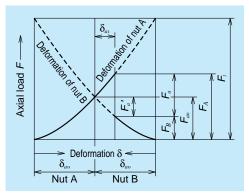


Fig. 6.2 Deformation of A and B nut (position preload)

Elastic deformation of Nut A and B is already given at time of assembly by the amount of δa 0 by preload F_{a0} . When the external load F_a is added to Nut A, the elastic deformation δ_a and δ_b of each Nut A and B change as shown in Fig. 6.2.

$$\delta_a = \delta_{ao} + \delta_{a1}$$
 $\delta_b = \delta_{ao} - \delta_{a1}$
At this time, the load to each Nut A and B are:

 $F_{A} = F_{a0} + F_{a} - F_{a}$

$$F_{\rm B} = F_{\rm ap} - F_{\rm a}$$

It shows that the load applied to Nut A is

affected by Nut B and reduced by the amount of F_a '. Thereby, the elastic deformation of Nut A becomes smaller. This effect continues until the elastic deformation by the external load becomes δ_{ao} , and the preload by Nut B disappears.

Assuming that the load when the preload is absorbed is F_{I_i} the relationship between the axial load and the elastic deformation is as follows. (Fig. 6.2)

$$\delta_{ao} = K \cdot F_{ao}^{2/3} \qquad 2\delta_{ao} = K \cdot F_{I}^{2/3}$$
(K: Invariable number)
$$\left[\frac{F_{I}}{F_{ao}}\right]^{2/3} = \frac{2\delta_{ao}}{\delta_{ao}} = 2$$

$$F_{I} = 2^{3/2} \times F_{ao} = 3F_{ao}$$

For this reason, the preload should be about 1/3 of the maximum axial load. Please note that the preload of about 1/3 of the maximum axial load increases heat, and shortens life if it exceeds 10% of C_a . The criterion for the maximum preload is 0.1 C_a .

Fig. 6.3 shows two types of elastic deformation curves: one is by the ball screw with preload, the other without preload. When an axial load which is about three times as large as the preload is applied, the deformation of the preloaded ball screw is 1/2 of the deformation of the ball screw without preload.

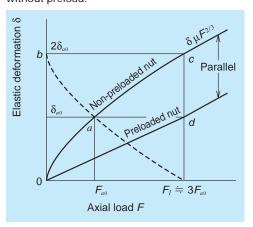


Fig. 6.3 Deformation of preloaded ball nut (position preload)

B-2-6.2 Rigidity of the Feed Screw System

preloaded by spring) Fig. 6.5 shows an elastic deformation of the ball screw which is preloaded with "constant pressure." The rigidity of the preload spring is sufficiently smaller than the nut rigidity. screw system. Therefore, the deformation of the spring becomes nearly parallel to the axis of abscissafeed screw system. For this reason, the elastic deformation by the preload with constant pressure changes along

In order to take advantage of the characteristics of the preload with constant pressure, the major external load should be applied in the directions shown by arrows (Fig. 6.4.).

the deformation curve by Nut A.

(2) Constant pressure preload (J preload:

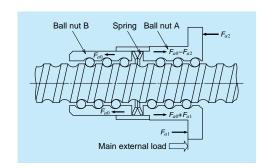


Fig. 6.4 Constant pressure preload (double nut)

Axial load F Deformation of spring Deformation δ

Fig. 6.5 Deformation curve of constant pressure preloaded nut

A low rigidity around the feed screw mounting area causes lost motion. To improve the positioning accuracy of precision machines such as NC machine tools, it requires a good balance in axial rigidities of composing parts of the feed

Also should examine torsional rigidities of the

(1) Axial rigidity of the feed screw system K_{τ}

Elastic deformation and rigidity of the feed screw system can be obtained by the following formula.

$$\delta = \frac{F_a}{K_T} \dots (II-17)$$

$$\frac{1}{K_{T}} = \frac{1}{K_{S}} + \frac{1}{K_{N}} + \frac{1}{K_{B}} + \frac{1}{K_{H}} \dots (II-18)$$

In this formula:

 δ : Volume of axial elastic deformation of the feed screw system (um)

 F_a : Axial load to the feed screw system (N)

 K_{T} : Axial rigidity of the feed system (N/µm)

 K_s : Axial rigidity of the screw shaft (N/ μ m)

 K_N : Axial rigidity of the nut (N/µm)

 $K_{\rm B}$: Axial rigidity of the support bearing (N/ μ m)

 K_{H} : Axial rigidity of the nut and bearing mounting section (N/µm)

(2) Axial rigidity of the screw shaft: K_s

(a) In case of: Fixed support - Free (axial direction)

$$K_{\rm S} = \frac{A \cdot E}{x} \times 10^{-3} \dots$$
 (II-19)

In this formula:

 K_s : Axial rigidity of the screw shaft (N/µm)

A: Cross section area of the screw shaft (mm²)

$$A = \frac{\pi}{4} dr^2$$

dr: Screw shaft root diameter (mm)

E: Elastic modulus ($E = 2.06 \times 10^5$ MPa)

x: Distance between points of load application (mm)

(b) In case of: Fixed - Fixed support (axial direction)

$$K_{\rm S} = \frac{A \cdot E \cdot L}{x (L - x)} \times 10^{-3} \dots (II-20)$$

In this formula:

 K_s : Axial rigidity of the screw shaft (N/ μ m)

L: Unsupported length (mm)

x: Axial deformation is maximum at position x = L/2.

Axial rigidity of the screw shaft can be obtained by the following formula.

$$K_{\rm S} = \frac{4A \cdot E}{L} \times 10^{-3} \dots$$
 (II-21)

<< Axial rigidity example of calculation (1)>>

Obtain axial rigidity of the screw shaft under the condition in Fig. 6.6.

<Use conditions>

Nut model: DFT 4010-5

From Fig. 6.6: Supporting condition;

Fixed support -- Free (axial direction)

Distance between points of load application

x = 1200 mm

Screw shaft root diameter (From the dimension table)

$$d_c = 34.4 \text{ mm}$$

<Calculation>

By Formula II-19, axial rigidity K_s is:

$$A = \frac{\pi}{4} d_r^2 = \frac{3.14}{4} \times 34.4^2 = 929.4 \text{ (mm}^2\text{)}$$

$$K_s = \frac{A \cdot E}{x} \times 10^{-3} = \frac{929.4 \times 2.06 \times 10^5}{1200} \times 10^{-3} = 159 \text{ (N/µm)}$$

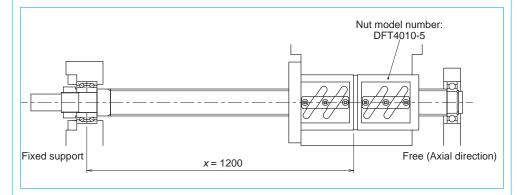


Fig. 6.6 Axial rigidity of the screw shaft calculation example (1)

Obtain axial rigidity of the screw shaft under the conditions in Fig. 6.7.

<Use conditions>

Nut model: DFT 4010-5

From Fig. 6.7: Supporting condition:

Fixed - Fixed support (axial direction)

L = 1200 mm

Distance between points of load application:

Screw shaft root diameter (From the dimension table)

$$dr = 34.4 \text{ mm}$$

<Calculation>

By Formula \mathbb{I} -21, axial rigidity K_s is :

$$A = \frac{\pi}{4} dr^2 = \frac{3.14}{4} \times 34.4^2 = 929.4 \text{ (mm}^2\text{)}$$

$$K_s = \frac{4A \cdot E}{L} \times 10^{-3} = \frac{-4 \times 929.4 \times 2.06 \times 10^5}{1200} - \times 10^{-3} = 638 \text{ (N/µm)}$$

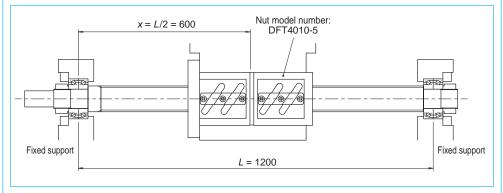


Fig. 6.7 Axial rigidity of the screw shaft calculation example (2)

(3) Axial rigidity of the ball nut : K_N

(a) Rigidity of the nut with axial play

Theoretical rigidity value K is shown in the dimension table. K is obtained from the elastic deformation between screw grooves and balls when an axial load which is equivalent to 30% of the basic dynamic load rating C_a is applied. The criterion for calculation of ball nut rigidity is 80% of the value listed in the table taking into consideration of deformation of the ball nut, etc. Rigidity value K_N is obtained by the following formula when the axial load " F_a " is not 30% of " C_a ."

$$K_{\rm N} = 0.8 \times K \left(\frac{F_{\rm a}}{0.3 C_{\rm a}} \right)^{1/3}$$
 (N/µm) (II-22)

In this formula:

K: Rigidity value in dimension tables (N/μm)

F_a: Axial load (N)

 C_a : Basic dynamic load rating (N)

<<Axial rigidity example of calculation (3)>> Obtain axial rigidity of the nut under the following conditions.

<Use conditions>

Nut model: SFT 4010-5

Axial load: $F_a = 6000 \text{ N}$

 F_a = Rigidity at 0.3 C_a K = 706 N/ μ m

(From the dimension table)

<Calculation>

By Formula II-22, axial rigidity K_N is :

$$K_{\rm N} = 0.8 \times K \left[\frac{F_{\rm a}}{0.3 \cdot C_{\rm a}} \right]^{1/3}$$

$$= 0.8 \times 706 \times \left(\frac{6000}{0.3 \times 52000}\right)^{1/3}$$

 $= 410 (N/\mu m)$

(b) Rigidity of preloaded ball nut

Theoretical rigidity K is shown in each dimension table. K is obtained from the elastic deformation of the ball rolling surface and the balls when: a preload which is equivalent to 10% of the basic dynamic load rating C_a (P Preload. 5% for single-nut oversize ball pre-load system) is applied, followed by an axial load. The criterion for calculation of nut rigidity is 80% of the value listed in the table taking into consideration of deformation of the ball nut, etc. Rigidity K_N is obtained by the following formula when preload " F_{a0} " is not 10% (or 5%) of " C_a ".

$$K_{\rm N} = 0.8 \times K \left(\frac{F_{\rm a0}}{\varepsilon \cdot C_{\rm a}} \right)^{1/3} (N/\mu m)$$
 (II-23)

In this formula:

K: Rigidity in the dimension tables (N/μm)

 F_{a0} : Preload (N)

 ϵ : Basic factor to calculate rigidity (ϵ = 0.1. Use 0.05 for *P* Preload)

<<Axial rigidity of the screw shaft calculation example (4)>> Obtain axial rigidity of the nut under the following conditions.

<Use conditions>

Nut model: DFT 4010-5

Preload : $F_{a0} = 4000 \text{ N}$

 F_{a0} = Rigidity when εC_a : K = 1388 N/ μ m

(From the dimension table)

Basic factor to calculate rigidity

when D Preload: $\varepsilon = 0.1$

<Calculation>

By Formula II-23

$$K_{\rm N} = 0.8 \times K \left(\frac{F_{\rm a0}}{\epsilon \cdot C_{\rm a}} \right)^{1/3}$$

= $0.8 \times 1388 \times \left(\frac{4000}{0.1 \times 52000} \right)^{1/3}$

 $= 1017 (N/\mu m)$

NSK

The criterion of the preload to ball screw

Nut rigidity increases by a larger preload volume. But excessive preload shortens life, and generates heat. Set the maximum preload about at 0.1 C_a (0.05 for P Preload). Table 6.1 shows the criteria for preload for different application.

Table 6.1 Criteria of preload

Ball screw application	Preload (relative to dynamic load rating $C_{\scriptscriptstyle a}$)
Robots,material handling systems, etc.	Axial play or under 0.01 $C_{\rm a}$
Semiconductor manufacturing systems, etc. That require highly accurate positioning	0.01 C _a - 0.04 C _a
Medium- high-speed machine tools for cutting	0.03 C _a - 0.07 C _a
Low to medium-speed systems that require especially high rigidity	0.07 C _a - 0.1 C _a

(4) Axial rigidity of support bearing: $K_{\rm B}$

Rigidity of the combined thrust angular contact ball bearings which is widely used as a support bearing of the ball screw for high-precision equipment can be obtained by the following formula.

$$K_{\scriptscriptstyle B} \doteq \frac{3F_{\scriptscriptstyle a0}}{\delta_{\scriptscriptstyle a0}} \, (N/\mu m)$$
 (II-24)

In this formula:

 $K_{\rm B}$: Rigidity of the combined thrust angular contact ball bearings (N/µm)

 F_{ao} : Preload of the bearings (N)

 δ_{ao} : Axial elastic deformation by preload (µm)

$$\delta_{a0} = \frac{0.44}{\sin \alpha} \left(\frac{Q^2}{D_W} \right)^{1/3} \text{ (µm)}$$
 (II-25)

$$Q = \frac{F_{a0}}{7} \cdot \sin \alpha$$

 α : Contact angle

Dw: Ball diameter (mm)

Z: Number of balls

Refer to Page B457 for data regarding thrust angular contact ball bearings which support high-precision ball screws (TAC Series).

(5) Axial rigidity of the ball nut and bearing mounting section: K_{H}

The effect of rigidity of mounting section on positioning accuracy is big, we recommend incorporating high rigidity of the mounting sections of ball nut and support bearings into the design at the early stage of designing the machine.

- (a) Torsional rigidity of the feed screw system Major torsion factors in the rotating system that bring about error in positioning accuracy are given three points below.
 - · Torsional deformation of the screw shaft
 - · Torsional deformation of the joint section
 - · Torsional deformation of the motor

The value of the effect of torsional strain to positioning accuracy is smaller than axial deformation. However, check the effect when designing equipment that requires high positioning accuracy.

(b) Suppress thermal error

It is necessary to minimize the thermal error for ever increasing demand for positioning accuracy give three points below.

- · Suppress heat
- · Forced cooling
- · Avoid effect of temperature rise

Refer to "Measures against thermal expansion" on Page B44.

B-2-7 Friction Torque and Drive Torque

Operations that use ball screw drives require a motor torque which is equivalent to the total of

- · Friction torque, i.e. the friction of the ball screw itself
- · Drive torque which is required for operation

B-2-7.1 Friction Torque

(1) Starting friction torque (Break away torque)

A large torque is necessary to start ball screw. This is called "starting friction torque" or

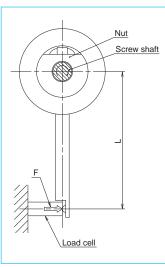


Fig. 7.2 Preload dynamic torque measuring method

"brakeaway torque." This torque is 2 to 2.5 times larger than preloaded dynamic (friction) torque which is described below. Starting friction torque quickly diminishes once the ball screw begins to move.

(2) Dynamic preloaded drag torque (preloaded dynamic friction torque)

When the ball screw is moving, two types of torque generate: 1. Dynamic friction torque by preload; 2. Friction torque associated with ball recirculation. JIS B1192 sets standard of dynamic preloaded torque, which is the total of these two torque types. They are defined in Fig. 7.1.

The preload dynamic friction torque is calculated by following formula. When screw shaft is rotated as Fig. 7.2 in following measure condition, measuring the nut stop power F and the distance from action line and right angle direction to the measured screw shaft multiple by it's power value F.

$$T_{p} = F \cdot L \tag{II-26}$$

- Measuring rotational speed 100 min⁻¹
- Viscosity of lubrication is prescribed in JIS K 2001 ISO VG 68
- · Without measurement Seal

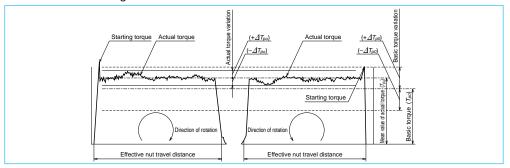


Fig. 7.1 Definitions of dynamic preloaded drag torque

(3) Calculation of basic torque

Basic torque of preloaded ball screw T_{p0} can be obtained by the following formula.

$$T_{p0} = K - \frac{F_{a0} \cdot I}{2\pi} = 0.014 F_{a0} \sqrt{dm \cdot I} \quad (N \cdot cm)$$
(II-27)

In this formula:

 F_{a0} : Preload (N)

1 : Lead (cm)

K: Torque coefficient of ball screw

$$K = \frac{0.05}{\sqrt{tan\beta}}$$

 $\beta \;$: Lead angle (deg.)

d_m: Ball pitch circle diameter (cm)

Allowable values of torque variation rate relative to basic torque are regulated as shown in Table 7.1.

B-2-7.2 Drive Torque

(1) Operating torque of the ball screw

1 Normal drive

The torque when converting rotational motion to linear motion (normal operation) is obtained by the following formula.

$$T_{\rm a} = \frac{F_{\rm a} \cdot I}{2\pi \cdot \eta_1} \quad (N \cdot cm) \tag{II-28}$$

In this formula:

 T_a : Normal operation torque (N · cm)

F_a: Axial load (N)

1 : Lead (cm)

 η_1 : Normal efficiency ($\eta_1 = 0.9 - 0.95$)

2 Back-drive operation

The torque when converting linear motion to rotational motion (back-drive operation) is obtained by the following formula.

$$T_{\rm b} = \frac{F_{\rm a} \cdot I \cdot \eta_2}{2\pi} \quad (N \cdot cm) \tag{II-29}$$

In this formula:

 $T_{\rm b}$: Reverse operation torque (N · cm)

 η_2 : Reverse efficiency ($\eta_2 = 0.9 - 0.95$)

③ Dynamic drag torque of the preloaded ball screw Operation torque of preloaded ball screw can be obtained by Formula II-27.

Table 7.1 Range of allowable values of torque variation rates (Source: JIS B 1192)

		Effective length of the screw thread (mm)										
Basic	torque	4000 or under					Over 4000 and 10000 or under					
(N ·	(N · cm) Slenderness ratio ⁽¹⁾ : 40 or less Sle				Slendernes	Slenderness ratio ⁽¹⁾ : More than 40 and 60 or less			_			
	Accuracy grade			Accuracy grade			Accuracy grade					
Over	Incl.	C0	C1	C2, 3	C5	C0	C1	C2, 3	C5	C1	C2, 3	C5
20	40	±30%	±35%	±40%	±50%	±40%	±40%	±50%	±60%	_	_	_
40	60	±25%	±30%	±35%	±40%	±35%	±35%	±40%	±45%	_	_	_
60	100	±20%	±25%	±30%	±35%	±30%	±30%	±35%	±40%	_	±40%	±45%
100	250	±15%	±20%	±25%	±30%	±25%	±25%	±30%	±35%	_	±35%	±40%
250	630	±10%	±15%	±20%	±25%	±20%	±20%	±25%	±30%	_	±30%	±35%
630	1000	_	±15%	±15%	±20%	_	_	±20%	±25%	_	±25%	±30%

Remarks 1. Slenderness ratio: The value obtained by dividing the length of the screw thread section of screw shaft (mm) by diameter of the screw shaft (mm)

2. NSK independently sets torque standards which are under 20 N · cm.

(2) Drive torque of the motor

① Drive torque at constant speed

Torque which is necessary to drive a ball screw at constant speed resisting to external loads can be obtained by the following formula.

$$T_1 = (T_a + T_{pmax} + T_u) \times \frac{N_1}{N_2}$$
 (II-30)

In this formula:

 T_a : Drive torque at constant speed

$$T_{a} = \frac{F_{a} \cdot I}{2\pi \cdot \eta_{1}} \tag{II-28}$$

F_a: Axial load (N)

The value of F_a in Fig. 7.3 is:

 $F_a = F + \mu \cdot m \cdot g$

F: Such as cutting force to axial direction (N)

 μ : Friction coefficient of the guide way

m : Volume of the traveling section (table mass plus work mass kg)

g: Gravitational acceleration (9.80665 m/s²)

 T_{pmax} : Upper limit of the dynamic friction torque of ball screw (N · cm)

 T_u : Friction torque of the support bearing (N · cm)

 N_1 : Number of teeth in Gear 1

N₂: Number of teeth in Gear 2

Generally, though it depends on the type of motor, T_1 shall be kept under 30% of the motor rating torque.

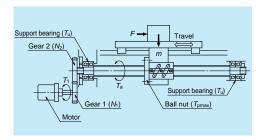


Fig. 7.3 Driving mechanism of ball screw

2 Drive torque at acceleration

Accelerating the ball screw resisting axial load requires maximum torque. Drive torque necessary for this occasion can be obtained by the following formula.

$$T_2 = T_1 + J \cdot \dot{\omega} \tag{II-31}$$

$$J = J_M + J_{G1} \left(\frac{N_1}{N_2} \right)^2 \left[J_{G2} + J_S + m \left(\frac{I}{2\pi} \right)^2 \right] \text{ (kg} \cdot \text{m}^2\text{)}$$

(II - 32)

In this formula:

 T_2 : Maximum drive torque at time of acceleration (N·m)

 $\dot{\omega}$: Motor's angular acceleration (rad/s²)

J: Moment of inertia applied to the motor $(kg \cdot m^2)$

 $J_{\rm M}$: Moment of inertia of the motor (kg · m²)

 J_{G1} : Moment of inertia of Gear 1 (kg · m²)

 J_{G2} : Moment of inertia of Gear 2 (kg · m²)

 J_s : Moment of inertia of the screw shaft (kg · m²)

When selecting a motor, it is necessary to examine the maximum torque of the motor relative to maximum drive torque T_2 at time of acceleration of ball screw.

Calculation of the moment of inertia of a cylindrical object (ball screw, gear, etc.), please refer to below.

Formula for the moment of inertia of a cylindrical object

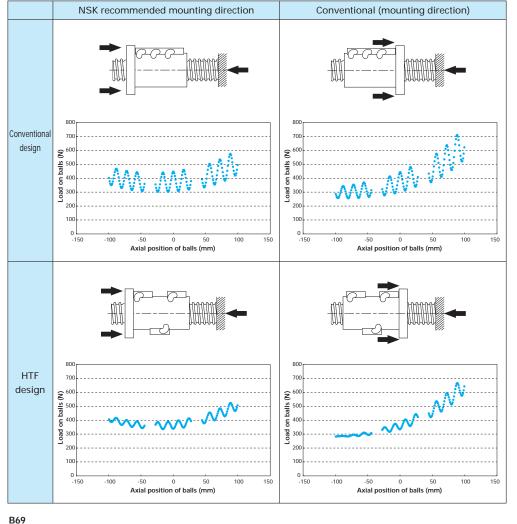
$$J = \frac{\pi \cdot \gamma}{32} D^4 \cdot L \text{ (kg} \cdot \text{cm}^2\text{)}$$
 (II-33)

In this formula:

γ: Material density (kg/cm³)

D: Diameter of the cylindrical object (cm)

L: Length of the cylindrical object (cm)


B-2-8 Even Load Distribution in Ball Nut

Generally, the distribution of loaded balls in a ball nut is three-dimensionally asymmetric, thus resulting in uneven load distribution to the balls and ball nut. NSK has taken the measures for even load distribution to the balls by an optimal arrangement of the position of ball recirculation circuits.

Additionally, a heavier load results in a measurable axial deformation of the screw

shaft and the ball nut, thus further increasing the unevenness of load distribution. We have lessened the unevenness of load distribution to the balls by arranging the load acting point of the ball nut and the screw shaft opposite to each other. The relation between loading points and load distribution is shown in Fig. A, while Table B shows the result of load distribution analysis.

Fig. 8.1 The result of equalization of load distribution

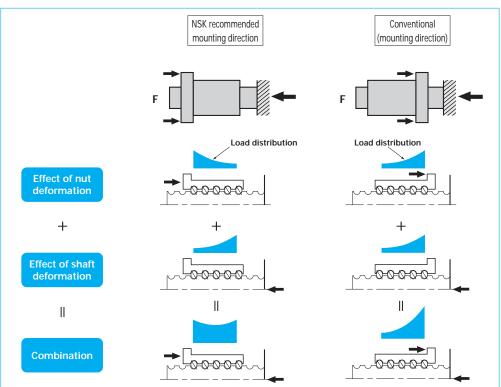


Fig. 8.1 The relationship between acting point of load and load distribution

B-2-9 Lubrication of Ball Screw

Lithium soap-based grease at viscosity 30 to 140 mm²/s (40°C) is used for grease lubrication. Oil with ISO VG 32 to 100 is used for oil lubrication.

In general, lubricants with low base oil viscosity are recommended when the ball screw is used for high speed, and it is important to reduce thermal elongation of the screw shaft. On the other hand, lubricants with high base oil viscosity are recommended when the ball screw is used for low speed, high temperature, with vibration, or under high load.

Please consult NSK about greases for high-load drive and high-temperature applications.

NSK Grease Unit for ball screw lubrication includes:

- 1) Various types of grease in the bellows-tube which can be instantly attached to the grease pump:
- 2) Hand grease pump which is compact and easy to use;
- 3) Nozzles.

Table 9.1 shows NSK greases, and names of other ball screw greases.

Table 9.2 explains checking points in lubrication and standard intervals between replenishments. It is important to wipe off old grease from the screw shaft prior to applying new grease. Page D16 also explains in detail concerning the replenishing methods.

Table 9.1 Grease for ball screw

Product name	Thickener	Base oil	Base oil viscosity mm²/s (40°C)	Range of temperature for use (°C)	Application
NSK Grease AS2	Lithium base	Mineral oil	130	-10 - 110	General heavy load
NSK Grease PS2	Lithium base	Synthetic oil combined with mineral oil	15	-50 - 110	Light load
NSK Grease LR3	Lithium base	Synthetic oil	30	-30 - 130	High-speed medium load
NSK Grease NF2	Urea composite type	Synthetic oil combined with mineral oil	27	-40 - 130	Fretting resistant

^{*}Refer to Page D13 for the nature of NSK greases.

Table 9.2 Checking lubricant and intervals of replenishment

Lubricating method	Checking intervals	Check points	Replenish/replacing interval
Intermittent automatic oil supply	Once a week	Remaining volume, contamination	Supply oil when checking (depending on the tank volume)
Grease	2 – 3 months after start of use	Clean, foreign matters	Generally once a year (replenish when necessary)
Oil bath	Every day, when start to work	Oil level	Specify according to oil consumption

NSK

B-2-10 Dust Prevention for Ball Screw

If foreign matters enter inside the ball nut, all screw may wear rapidly, or it may malfunction due to damage of groove or ball recirculation system. Use bellows and telescopic pipe (Fig. 10.1) to keep foreign matters from entering into the feed screw system. Install these items so as

to shut foreign matters completely from the ball screw

Also it is even more effective to add seal on the ball nut as shown in Fig. 10.2 to 10.6. We provide seals in Table 10.2.

Table 10.1 Seal

	Sealing capability	Torque	Heat	Application
Thin plastic seal	0	0	0	End deflector type, HMD type, BSL type
Plastic seal	×	0	0	Tube type, Defiector type (Seal is not put on the lead of 1mm or
Wiper seal	Δ	×	×	smaller.)
High performance seal	0	0	0	VSS type
Brush-seal	Δ	0	0	For R Series (Seal for those with the shaft diameter of 14 mm or less is plastic seal.)

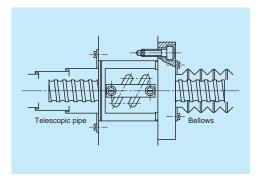


Fig. 10.1 Dust prevention by telescopic pipe and bellows

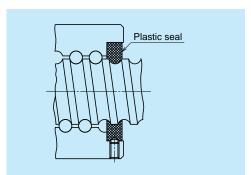


Fig. 10.3 Plastic seal

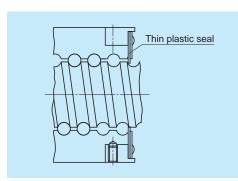


Fig. 10.2 Thin plastic seal

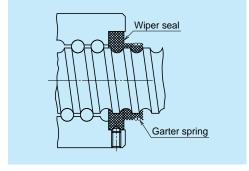


Fig. 10.4 Wiper seal

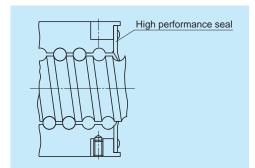


Fig. 10.5 High performance seal

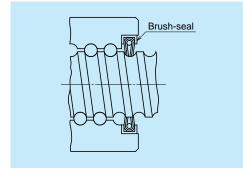


Fig. 10.6 Brush-seal for R Series

B-2-11 Rust Prevention and Surface Treatment of Ball Screws

(1) Stainless steel ball screw

Stainless products KA is standard ball screw and available in stock. Please consult NSK if you require custom made stainless steel ball screw.

(2) Types of surface treatment

The following are common types of treatment.

- OLow temperature chrome plating
- · Used to prevent corrosion and light reflection, and for cosmetic purpose.
- OFluoride low temperature chrome plating
- · Fluoroplastic coating is provided following the low temperature chrome plating.
- · Resistance to corrosion is higher than low temperature chrome plating.
- OHard chrome plating
- Has high hardness. Increases resistance to both wear and corrosion.
- OElectroless nickel plating
- · Creates a film of consistent thickness on complex shaped items.
- For corrosion prevention.

(3) Recommended surface treatment

Among the surface treatments mentioned above, we recommend "Low temperature chrome plating" and "fluoride low temperature chrome plating" for rust prevention because of the result of humidity chamber test for antirust characteristics.

However, never apply any organic solvent for degreasing because it has adverse effect on antirust characteristics.

Table 11.1 Surface treatment length

	Applicable length
Low temperature chrome plating	5 m or less
Fluoride low temperature chrome plating	4 m or less

Refer to 1.3 "Rust Prevention and Surface Treatment" (Page D5) for the results of humidity chamber test.

B-2-12 Ball Screw Specifications for Special Environment

B-2-12.1 Clean Environment

NSK manufactures NSK Clean Grease "LG2 and LGU" for NSK linear guides, ball screws, and Monocarriers which are used under normal temperature and pressure in a clean room.

LG2 and LGU grease are far more superior in stable torque characteristics than the vacuum grease which has been used as a countermeasure against dust generation. LG2 and LGU also have a sufficient durability and dust prevention capability.

Features of "LG2 and LGU"

- 1) Generates less dust than vacuum grease and other general greases. Cleanliness is enhanced by simply switching the grease to LG2 or LGU.
- 2 Has extremely low and stable torque characteristics. It is ideal for high speeds.
- 3 Unlike vacuum grease, LG2 and LGU have a nature similar to general grease. Its effect is long-lasting, and sufficiently durable. They greatly contribute to minimize the frequency of maintenance.
- 4 They have an equal capability in rust prevention as general grease, and also is reliable.

When using NSK linear guides, ball screws, or Monocarriers in a clean environment, request LG2 or LGU as a packed lubricant prior to delivery. NSK also makes bellows-tubes which contain 80 grams of LG2 or LGU. The tube is easy to use, and is ideal for maintenance. (Refer to Pages B455 and D20). Wash to remove adipose substances prior to use.

Refer to Page D8 for detailed nature, functions and characteristics of LG2 and LGU.

B-2-12.2 Measures for Use under Vacuum

NSK

NSK developed MoS₂ / WS₂ spattering and dryfilmed ball screws for equipment to be used in space. NSK also makes soft-metal film (gold and silver) ball screws to be used in a vacuum environment for semiconductor and liquid crystal display processing equipment.

Lubricants widely used for ball screws in a high vacuum are:

- · Vacuum grease which uses base oil of low vapor pressure.
- Solid lubricants such as MoS₂, WS₂ used mainly for equipment in space.
- · Solid lubricants by soft-metal such as gold, silver, or lead film.

When used for semiconductor and liquid crystal display making equipment, the oil of the vacuum grease evaporates and causes environmental contamination. Also, it hinders creation of a super high vacuum. MoS₂ in the state of solid p lubricant generates a large volume of dust and Mo is unsuitable for semiconductors and reformed surface. Therefore, it is not suitable for the processing machines for semiconductor and liquid crystal display.

NSK recommends solid lubricant ball screws with a long life. These ball screws are treated with special silver film by NSK's unique processing technology, and can be used in a super-high vacuum. However, because of a solid lubricant, the film may peal off and stick to surface of ball grooves repeatedly, causing the torque to rise momentarily on some occasions. The drive motor should be of large capacity to handle this drastic variation of torque.

Refer to Page D7 for test data of ball screws for

For ball screw specifications for special environment, refer to Page D2.

B73 B74

B-2-13 Noise and Vibration

B-2-13.1 Consideration to Lowering Noise

As the machine operates at higher speeds, noise levels tend to increase. Covering the nut section is insufficient to lower noise. NSK has abundant data (NSK Motion & Control Technical Journal No.4, etc.), and offers advice to users regarding selecting ball screw.

To lower noise level in general, the following points should be taken into consideration.

- ① Use as a large lead as possible to reduce rotational speed.
- 2 Use a ball screw with smaller outer diameter as possible.
 - (It often requires designing for critical dimensions, mandating special specification. Please consult NSK.)

For reference, noise levels by ball screws alone are plotted below. Formula for calculation is also shown below.

①Average value at measuring distance of 400 mm dB (A) = 25.2 { $\log_{10} (D_w \cdot d_m \cdot n \times 10^{-5})$ } + 63.9 (II - 34)

2 Upper limit at measuring distance of 400 mm Average value + 6 dB (A)

D.: Ball diameter (mm)

 d_m : Ball pitch circle dia. (mm)

n: Rotational speed (min⁻¹)

If measuring distance is 1 m, the average noise level is: Various noise levels minus 8 dB (A).

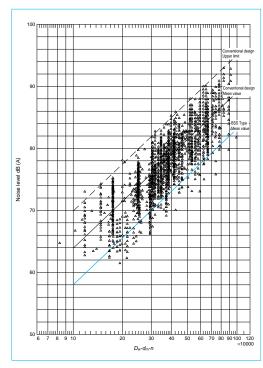


Fig. 13.1 Noise levels of ball screws

<< Example of calculation of noise levels>> <Use conditions>

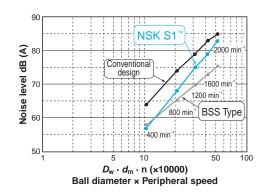
Nut model: DFT4010-5

From the dimension table: $D_{w} = 6.350$

 $d_{\rm m} = 41$

Maximum rotational speed: 2000 min⁻¹

<Calculation>


By Formula I-34:

dB (A) = 25.2 {log₁₀ (
$$D_w \cdot d_m \cdot n \times 10^{-5}$$
) } + 63.9
= 25.2 {log₁₀ (6.350 × 41 × 2000 × 10⁻⁵) } + 63.9
= 82 dB (A)

The average value of noise level by ball screws alone at maximum rotational speed (measuring distance 400 mm) is 82 dB (A). Upper limit is: $82 \, dB \, (A) + 6 \, dB \, (A) = 88 \, dB \, (A)$ If the measuring distance is 1 m, the average value of noise level is 74 dB (A), and upper limit is 80 dB (A).

When installed, the noise of ball screw becomes higher by the noise of the machine and characteristics of machine vibration.

By using NSK S1, the noise is reduced and softened compared to conventional ball screws. The BSS type will furthermore reduce and soften the noise.

B-2-13.2 Consideration to operatical characteristics

Smooth motion is achieved by using spacer balls on conventional ball return tube type ball screws. By using NSK S1 the smoothness is further improved. BSS type will achieve the smoothness equivalent to Ball screws with NSK S1.

B-2-13.3 Consideration to Ball Screw Support System

Ball screw has low radial rigidity because its support span is longer compare to its shaft diameter. It has only small damping capacity, requiring as much support rigidity as possible through design.

Simplify support bearing system to cut costs invites noise and vibration problems. Therefore, the necessity to consideration to ball screw support system of both shaft ends is increasingly becoming important as the machine is operated at higher speeds.

If one shaft end must be left unfixed without support bearing due to structural reasons, noise and vibration problems may occur. These problems are related to the natural vibration frequency of the screw shaft on the unsecured end. This problem can be averted by installing an impact damper to the shaft end (Fig. 13.2). Please consult NSK.

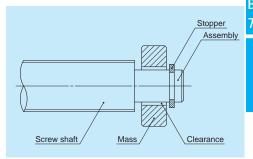
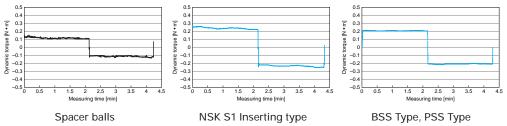



Fig. 13.2 Impact damper (NSK patent)

B-2-14 Installation of Ball Screw

B-2-14.1 Installation

Follow the flowchart in Figure 14.1 for installation procedures.

(1) Centering of the units

Align the centers of housings for the ball nut and the support bearing to which a ball screw is fixed. The centering is critical for life, smooth operation, and positioning accuracy of a ball screw.

We generally recommend the centering accuracy as follows for a precision grade ball screw.

• Inclination of center line: 1/2 000 or less (Target: 1/5 000 or less)

• Eccentricity: 0.020 mm or less

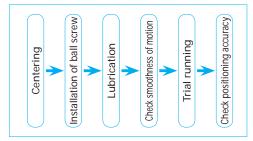


Fig. 14.1 Flowchart of ball screw installation

(2) Centering of ball nut housing

Photo 14.1 shows a centering procedure of the ball nut housing. Insert a jig (test bar) that has close fit clearance to a bore of the ball nut housing. Check vertical and horizontal parallelism of the test bar against the guide way (such as linear guides) with the dial indicator, that is fixed on the guide way bearing, and adjust the position of the housing so that the inclination of the center sets in 1/2 000 or less, and then, fix the housing to the table base.



Photo 14.1 Centering of ball nut housing

(3) Centering of the housing of support bearing Photo 14.2 shows a centering procedure of the

housing of support bearing. As the same way of the ball nut housing, set the jig (test bar) that has close fit clearance to bore of the housing and adjust the position of the housing so that the aligning inclination sets in 1/2 000 or less, then fix the housing to the table temporarily.

Photo 14.2 Centering of the housing of support bearing

(4) Eccentricity of the housings

Measuring way of eccentricity between the two housings is shown in Figure 14.3. Set the table on the guide way (such as linear guides, etc), and fix a dial indicator on it. Check eccentricity of the test bar of support bearing housing against the test bar of ball nut housing. Adjust position of support unit housing so that the eccentricity gets in 0.020 mm or less, then fix the housing of support bearing.

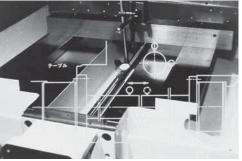


Photo 14.3 Eccentricity of the housings

(5) Installation of ball nut

Photo 14.4 shows a procedure for installation of the ball nut to the housing. Wipe off outside of the ball nut and bore of the housing with thin rags. (Applying a small amount of machine oil with low viscosity to both parts is effective in rust prevention.) Insert the ball nut to the housing while holding the ball screw in horizontal position and fix it. Do not handle the ball screw roughly, like hammering ends of the ball screw, because it may induce failure of the ball screw.

Photo 14.4 Installation of ball nut

(6) Installation of support bearings in ball screw Photo 14.5 shows a procedure for installation of support bearings. Select bearings that have appropriate fitting tolerance to the screw shaft,

then install them. We recommend using a special sleeve as shown in the photo not to apply impact to the bearings.

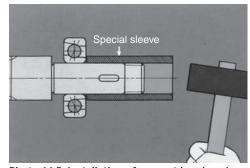


Photo 14.5 Installation of support bearings in ball screw

(7) Installation of bearings in the housing

Photo 14.6 shows the procedure for installing the support bearings to the bearing housing. When fixing the bearing with a lock nut, tighten the lock nut with specified tightening torque while checking run-out of screw shaft end. Take measures against loose lock nut. (Refer to assembly procedure of support bearing unit. Page B81)

For easy installation work of ball screws, NSK provides Support Unit (Page B433 to B452) that consists of bearings and Bearing Lock Nuts (Page B453) of which surface run-out is made to a specification.

(8) Replenish lubrication grease Photo 14.7 shows the replenish

Photo 14.7 shows the replenishing procedure of lubrication grease. Applying grease prior to its operation is not necessary when the grease is packed into the ball nut. Please confirm it.

If grease is not used, we apply antirust oil to ball screws when shipping. Wipe off the oil and pack grease fully into the ball nut as shown in the photo.

housina

_ock nut

Photo 14.6 Installation of bearings

Retaining cover

Machine

Machine

base

housing

Photo 14.7 Replenish lubrication grease

(9) Check motion smoothness

Photo 14.8 shows a checking procedure for motion smoothness. This is to confirm if the table is assembled accurately. Use a torque wrench to measure starting torque of the ball screw for full stroke of the table. Check for abnormality in starting torque as well as unevenness of rotation by feeling.

Photo 14.8 Check motion smoothness

(10) Trial operation

Photo 14.9 shows a seen of trail operation. Firstly operate the machine slowly and check noise and vibration, then do the same at medium and high speed. Operate the machine continuously for approximately 2 hours as a running in, and check for abnormality meanwhile. Remove over flown grease from the ball nut after a running in.

Photo 14.9 Trial operation

B-2-14.2 Inserting R Series Nut into Rolled Screw Shaft

When delivered, the nut of R series is separated from the screw shaft, and inserted into an arbor shaft. The nut must be inserted to the screw shaft when mounting ball screw.

(1) Consideration to end configuration of screw shaft

The balls may fall out during moving the assembled nut from the arbor to the screw shaft if the sizes and shapes of the arbor and the screw shaft are not appropriate.

If the end of the ball groove can touch the end of the arbor, connect both ends and move the assembled nut from the arbor to the screw shaft (Fig. 14.2).

If the end face of the arbor cannot connect to the end face of the screw because of configuration of both ends of screw shaft, wrap a tape outside of ball screw shaft so that the layers of tape is

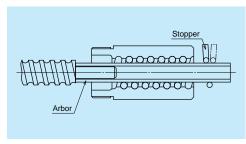


Fig. 14.2 Inserting nut into screwshaft

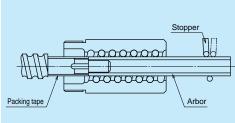


Fig. 14.3 Arbor and shaft end configuration

equal with the outside diameter of the arbor (Fig. 14.3).

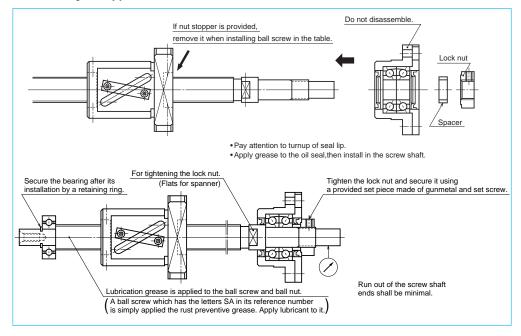
If there is a key way or a nick along the way, fill such gaps prior to moving the ball nut.

(2) Installation of arbor

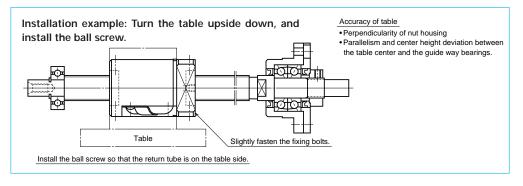
Confirm the correct nut orientation for installation. Remove the stop ring on the side from where the assembled nut is to be removed. Align the centers of the screw shaft and the arbor while pressing firmly the screw shaft end against the arbor.

(3) Moving the nut

Slide the nut until it lightly touches the shoulder of the ball groove section, and stop it. Turn the ball nut to the direction so that it moves to the ball grooves, while pressing the arbor to the screw shaft. Do not separate the arbor from the screw shaft until the ball groove end appears completely in the ball nut.

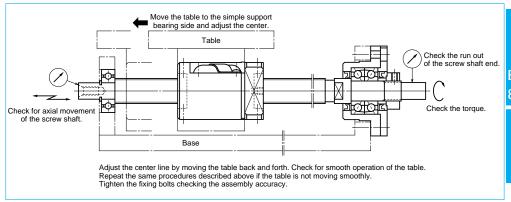

80

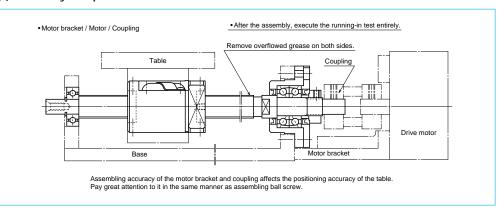
NSK


B-2-14.3 Installation of Ball Screw and Support Unit

The illustrations below show typical installation procedures of a standard ball screw and a support unit.

(1) Assembly of support unit


(2) Installation of ball nut to the table


(3) Base and the support unit installation on the fixed support side

(4) Base and bearing installation on simple support side, and confirming assembling accuracy.

(5) Assembly completed.

B-2-14.4 Shaft End Machining

Shaft end is machined in the following three occasions.

- * Precision ball screws with blank shaft end.
- * Ball screws in R Series with blank shaft end.
- * Additional machining of a completed ball screw

The following are summaries of machining of these shaft ends. For details, please contact NSK.

(1) Additional machining of precision ball screw with blank shaft

1 Cutting screw shaft

Use a cutting whetstone, etc. to cut the shaft, leaving stock for turning. Keep the nut in the assembled state to the screw shaft, and open only one side of the plastic wrapping bag, expose only the shaft end section to be machined, then cut the screw shaft. This prevents foreign matters from entering to the ball screw section. Do the same for other machining.

2 Precautions in cutting shaft end

Outside of the screw shaft is ground with precision. There is a center hole in the ends. Use them for centering. Do not rotate the shaft quickly or stop it suddenly, or the nut might move along the shaft. We recommend securing the nut with tape. To machine a very long shaft, apply work rests to the screw shaft surface to suppress vibration (especially caused by critical speed).

3 Turning by lathe

Cut to the length, turn shaft end steps, turn thread screw, and provide the center hole. Refer to JIS B1192 which sets standards for shaft end accuracy.

Processing by grinding

Apply the same precautions as for cutting for centering, securing nut, and work rest. Grind sections where the bearings and a "Spann ring" are installed.

⑤ Milling processing Process key way and lockwasher tooth seat.

© Deburring, washing, rust prevention Wash with clean white kerosene after processing. Apply lubricant for immediate use. For later use, apply rust preventive agent. [Note]

Contact NSK if nut is accidentally removed.

(2) Additional machining of R Series ball screw shaft end

① Cutting screw shaft Carry out the same process as for Precision ball screw with blank shaft above.

- ② Annealing the shaft end (Heat the section of the shaft end to be machined with an acetylene torch. Then gradually cool it in ambient atmosphere.)
- * The area not machined loses hardness if exposed to heat. This shortens ball screw life. Cool with water the areas where should not be heated to avoid heat conduction.
- The following process is the same as Precision ball screw with blank shaft above.

B-2-15 Precautions for Designing Ball Screw

B-2-15.1 Safety System

As shown in the illustration on Page B80, a stopper is installed in some cases to prevent the nut from overrunning due to malfunction of the safety system of the machine itself, or human error during operation.

The travel stopper should be installed at a place where it will not come into contact with the nut when the nut reaches the designed stroke end. An impact absorbing travel stopper (NSK patent, refer to Page B456) is available at NSK.

B-2-15.2 Design Cautious to Assembling Ball Screw

(1) Cutting through the thread screw to the end For the deflector, end cap and a part of end deflector ball recirculation system ball screws, one end of the thread screw should be cut through. This is for convenience of assembly for ball nut to the screw shaft (Fig. 15.1).

In this case, the shaft end diameter, where this thread cut through is made, should be 0.2 mm or smaller than the ball groove root diameter "dr" (See the dimension table). A similar precaution is required when it is absolutely necessary to remove the nut from the screw shaft in order to install the ball screw to the machine. Also, in case using the cut-through end as the shoulder of the support bearing, make certain that a sufficient amount of the effective flat surface is left from the root diameter. If it is insufficient, the bearing cannot be installed in perpendicular to the bearing seat. (Fig. 15.2)

(2) Designing screw shaft end and the nut area

When installing a ball screw to the machine, avoid a design which makes it necessary to separate the nut from the screw shaft as shown in Fig. 15.3. If separated, the balls may fall out. Separation may also deteriorate the ball screw accuracy, or may damage the ball screw. If separating them is unavoidable, please furnish NSK with the component which is to be installed between the nut and screw shaft. NSK will install the component prior to delivery.

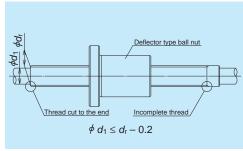


Fig. 15.1 Shaft end of a deflector recirculation system ball screw

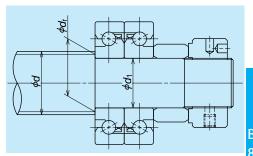


Fig. 15.2 Support bearing and end face (shoulder) for installation

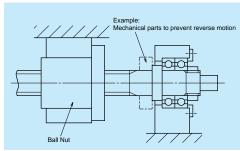


Fig. 15.3 Nut and ball screw are required to be separated when installing in this structure.

B83 B84

NSK

(3) Removing nut from the shaft at time of assembly

If it is unavoidable, use an arbor (Fig. 15.4), keeping the balls in the nut. In this case, the outside diameter of the arbor should be approximately 0.2 to 0.4 mm smaller than the ball groove root diameter "d,"

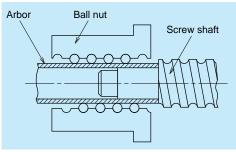
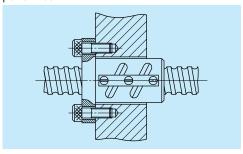



Fig. 15.4 Arbor to install and remove nut

(4) Centering of the ball nut when installing When installing the nut as shown in Fig. 15.5, provide a space between the housing and the nut body diameter, allowing the centering to be

performed.

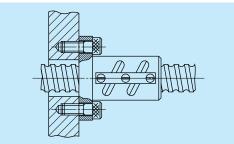


Fig. 15.5 Fixing a ball nut by flange

(5) Preventing the thread screw of nut from loosening

When installing and securing the nut to the housing at the thread screw section, as in the case for RNCT Series of R Series ball screw, apply an agent which prevents the nut from loosening.

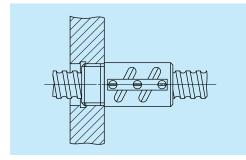


Fig. 15.6 Fixing a ball nut with thread screw

(6) Installation of brush-seal to the nut

If the brush-seal is installed at the thread screw side of the nut which comes with a thread screw, the brush-seal should be designed to be secured as shown in Fig. 15.7.

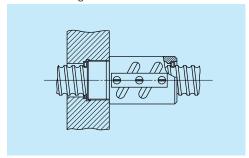


Fig. 15.7 Installation of brush-seal to a ball nut with thread screw

B-2-15.3 Effective Stroke of Ball Screw

Rigidity of a ball screw which is hardened by the induction hardening may be slightly low at both ends of the screw section. Consider this low hardness prior to determining the length of effective stroke. Please consult NSK for details.

B-2-15.4 Matching after Delivery

Please inform NSK on the position and size if it is necessary to machine the screw shaft end, or if a knock pin at the nut installation section is needed after delivery.

NSK takes a measure and protects designated spots from heat treatment prior to delivery to make subsequent machining easy.

B-2-15.5 NSK K1[™] Lubrication Unit

When using NSK K1 lubrication unit, be aware of the operating temperature and chemicals that come to contact for keeping the best performance of K1.

Temperature range for use:

Maximum temperature for use; 50°C Momentary maximum temperature in use; 80°C

Chemicals that should not come to contact:

Do not leave K1 Seal in organic solvent, white kerosene such as hexane, thinner which removes oil, and rust preventive oil which contains white kerosene.

Water-type cutting oil, oil-type cutting oil, grease such as mineral-type AS2 and ester-type PS2 do not damage K1 Seal.

B85 B86

NSK

B-2-16 Ball Screw Selection Exercise

[Drill 1] High-speed transporting system

1. Design conditions

Table mass: $m_1 = 40 \text{ kg}$

Mass of the

transporting item : $m_2 = 20 \text{ kg}$

Maximum stroke : $S_{\text{max}} = 700 \text{ mm}$

Rapid traverse speed: $V_{\text{max}} = 1000 \text{ mm/sec (60 m/min)}$ Positioning accuracy: ±0.05/700 mm (0.005 mm/pulse)

Repeatability: ±0.005 mm

Required life : $L_t = 25000 \text{ h (5 years)}$

Guide way (rolling) : μ = 0.01 (friction coefficient)

Drive motor : AC servo motor

 $(N_{\text{max}} = 3000 \text{ min}^{-1})$

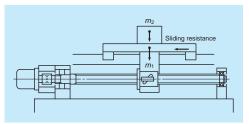


Fig. 16.1 System appearance

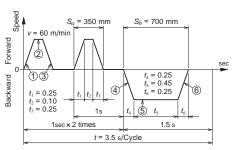


Fig. 16.2 Operating condition

2. Selection of basic factors

(1) Selection of accuracy grade and axial play According to Table 4.1 Accuracy grades of ball screw and their application (B19), accuracy grade of industrial robots cartesian type and

other purposes are C5 to Ct10.

From the following conditions in design, the axial play should be 0.005 mm or less.

Repeatability: ±0.005 (mm)
Resolution: 0.005 mm/pulse

According to Table 4.2 Combinations of accuracy grades and axial play (B20), you will require accuracy grade C5 if the axial play is below 0.005 mm. Therefore select accuracy grade C5, and axial play 0 mm (Z preload)

(2) Selection of lead

Calculate lead I based on AC servo motor maximum speed and rapid traverse speed V_{max} .

$$I \ge \frac{V_{\text{max}}}{N_{\text{max}}} = \frac{1000 \times 60}{3000} = 20 \text{ (mm)}$$

Select a lead I of 20 mm or larger.

(3) Selection of screw shaft diameter

According to "Table 4.6 Shaft diameter, lead and stroke of standard ball screw" on Page B23, the screw shaft diameter *d* which has a lead *I* larger than 20 mm should be in the range of 15 mm to 32 mm. Select the smallest 15 mm.

(4) Selection of stroke

From "Table 4.6 Screw shaft diameter, lead, and stroke of standard ball screw" on page B23, ball screw with shaft diameter d = 15 mm and lead I = 20 mm meets maximum stroke 700 mm, therefore it is possible to select from standard ball screw. Primary selection is as follows:

Primary selection:

Shaft diameter: 15 (mm) Lead: 20 (mm)

Stroke: 700 (mm)

Accuracy grade: C5
Axial play: Z

3. Confirmation of standard ball screw

In consideration of delivery time and price, select from the standard ball screw finished shaft end.

Primary candidate: W1507FA-3PG-C5Z20

4. Checking basic safety

Calculate for the primary candidate.

(1) Allowable axial load

1) Calculation of allowable axial load

From Fig. 16.2: Acceleration α_1 at accelerating / decelerating is:

$$\alpha_1 = \frac{V_{\text{max}}}{f} = \frac{1000}{0.25} = 4000 \text{ (mm/s}^2) = 4 \text{ (m/s}^2)$$

Axial load F_i is:

(At time of acceleration ①④)

$$F_1 = \mu (m_1 + m_2) \times g + (m_1 + m_2) \times \alpha_1$$

= 0.01 \times (40 + 20) \times 9.80665 + (40 + 20) \times 4
= 246 (N)

(At time of constant speed 25)

$$F_2 = \mu (m_1 + m_2) \times g = 0.01 \times (40 + 20) \times 9.80665$$

= 6 (N)

(At time of deceleration 36)

$$F_3 = -\mu (m_1 + m_2) \times g + (m_1 + m_2) \times \alpha_1$$

= -0.01 \times (40 + 20) \times 9.80665 + (40 + 20) \times 4
= 234 (N)

Thus, the maximum axial load P is 246 N. ② Buckling load

W1507FA-3PG-C5Z20 has distance La = 804 mm (per specifications on Page B277), table maximum axial load P = 246 (N). Supporting condition of screw shaft is Fixed - Simple support, and supporting condition of ball nut is Fixed. Due to the direction of the load, supporting condition is Fixed - Fixed support (Factor m = 19.9).

From Fomula (II-2) on Page B48:

$$d_r \ge \left(\frac{P \cdot L_a^2}{m} \times 10^4\right)^{1/4} = \left(\frac{246 \times 804^2}{19.9} \times 10^4\right)^{1/4}$$

= 5.3 (mm)

W1507FA-3PG-C5Z20 has dimension dr = 12.2 mm per dimension chart (Page B277) and therefore meets the condition.

Result: Acceptable

(2) Checking allowable value of rotational speed The permissible rotational speed listed in the dimension table is 3000 min⁻¹. Since the motor maximum rotational speed is 3000 min⁻¹, the operation is in the range of permissible rotational

Result: Acceptable

speed.

(3) Checking life expectation

① Mean load F_{m_i} mean rotational speed N_m From calculation of axial load. Rotational speed N_i and operating time t_i is:

(At time of acceleration 14)

$$F_1 = 246 \text{ (N)}$$

$$N_1 = \frac{n}{2} = \frac{3000}{2} = 1500 \text{ (min}^{-1}\text{)}$$

$$t_a = 2 \times t_1 + t_4 = 0.75$$
 (s)

(At time of constant speed 25)

$$F_2 = 6 (N)$$

$$N_2 = 3000 \text{ (min}^{-1})$$

$$t_b = 2 \times t_2 + t_5 = 0.65$$
 (s)

(At time of deceleration 36)

$$F_2 = 234 \text{ (N)}$$

$$N_3 = 1500 \text{ (min}^{-1}\text{)}$$

$$t_c = 2 \times t_3 + t_6 = 0.75$$
 (s)

Calculation result is shown in Table 16.1

Table 16.1 Axial load and rotational speed

Operating condition	Axial load (N)	Rotational speed (mean) (min ⁻¹)	Operating time (s)
1 4	$F_1 = 246$	$N_1 = 1500$	$t_a = 0.75$
2 5	$F_2 = 6$	$N_2 = 3000$	$t_{\rm b} = 0.65$
3 6	$F_3 = 234$	$N_3 = 1500$	$t_c = 0.75$

From Formulas (II-11) and (II-12) on Page B57:

$$F_{m} = \left(\frac{F_{1}^{3} \cdot N_{1} \cdot t_{a} + F_{2}^{3} \cdot N_{2} \cdot t_{b} + F_{3}^{3} \cdot N_{3} \cdot t_{c}}{N_{1} \cdot t_{a} + N_{2} \cdot t_{b} + N_{3} \cdot t_{c}}\right)^{1/3}$$

= 195 (N)

$$N_{\rm m} = \frac{N_1 \cdot t_{\rm a} + N_2 \cdot t_{\rm b} + N_3 \cdot t_{\rm c}}{t}$$

 $= 1200 (min^{-1})$

2 Calculation of life expectation

W1507FA-3PG-C5Z20 (Clearance Z) is C_a =3870N (From dimension table on Page B277), from Formulas (II-8) and (II-9) on Page B57:

$$L_{1} = \left(\frac{C_{a}}{F_{m} \cdot f_{w}}\right)^{3} \times \frac{1}{60N_{m}} \times 10^{6}$$
$$= \left(\frac{3870}{195 \times 1.2}\right)^{3} \times \frac{1}{60 \times 1200} \times 10^{6}$$
$$= 62800$$

This grade satisfies the required life.

Result: Acceptable

5. Check whether the following figures meet requirements

(1) Accuracy and axial play

From the dimension table and the permissible value of lead accuracy on Page B42:

According to Table 1.2:

Accuracy grade: C5
$$e_{\rm p} = \pm 0.035/800 \text{ (mm)}$$

$$v_{...} = 0.025 \text{ (mm)}$$

This grade satisfies the required positioning accuracy $\pm 0.05/700$ mm.

Checking axial play is omitted here since it is explained in "2. Selection of basic factors."

(2) Drive torque

Required specifications are as follows.

Motor rotational speed: 3000 min⁻¹

Time to reach maximum speed : Under 0.25 sec

① Load (converted to motor axis)

Using Formula (II-32) and (II-33) on Page B68, calculate the moment of inertia whereas γ is density.

(Screw shaft)

$$J_{\rm B} = \frac{\pi \cdot \gamma}{32} D^4 \cdot L = \frac{\pi \times 7.8 \times 10^3}{32} \times 1.5^4 \times 80$$
$$= 0.31 \, (\text{kg} \cdot \text{cm}^2)$$

(Moving part)

B89

$$J_{w} = m \times \left(\frac{I}{2\pi}\right)^{2} = 60 \times \left(\frac{2}{2\pi}\right)^{2}$$
$$= 6.1 \text{ (kg} \cdot \text{cm}^{2}\text{)}$$

(Coupling)

$$J_c = 0.25 \text{ (kg} \cdot \text{cm}^2) \cdots \text{Temporary}$$

(As a whole)

Moment of inertia of the ball screw J_i is:

$$J_{L} = J_{B} + J_{W} + J_{C}$$
$$= 0.31 + 6.1 + 0.25$$
$$= 6.7 \times 10^{-4} (kg \cdot m^{2})$$

2 Driving torque

Assuming that WBK12-01 compact light load type will be used, as recommended for W1507FA-3PG-C5Z20, and moment of inertia of motor $J_M = 3.1$ (kg · cm²) = 3.1×10^{-4} (kg · m²).

(At time of constant speed)

Torque which is necessary to drive a ball screw at constant speed resisting to external loads is per Formula (II-30) on Page B68

$$T_1 = T_a + T_{pmax} + T_u$$

in this Formula, T_a is drive torque at constant speed, T_{pmax} is upper limit of the dynamic friction torque of ball screw, T_u is friction torque of the support bearing.

From dimension chart on Page B227 $T_{pmax} = 7.8$ (N·cm) and from Page B444 $T_{p} = 2.1$ (N·cm)

$$T_{\rm a} = \frac{F_{\rm a} \cdot I}{2\pi \eta_1}$$

Using Formula (II-28) on Page B67, Drive torque at constant speed T, is:

$$T_{1} = \frac{F_{a} \cdot I}{2\pi \cdot \eta_{1}} + T_{pmax} + T_{u}$$

$$= \frac{6 \times 2}{2\pi \times 0.9} + 7.8 + 2.1$$

$$= 12 (N \cdot cm) = 0.12 (N \cdot m)$$

(At time of acceleration)

Drive torque necessary for accelerating the ball screw resisting axial load can be calculated by Formula (II-31) on Page 68

$$T_2 = T_1 + J \cdot \frac{2\pi \cdot n}{60t_1}$$

$$= T_1 + (J_L + J_M) \cdot \frac{2\pi \cdot n}{60t_1}$$

$$= 0.12 + (6.7 \times 10^4 + 3.1 \times 10^4) \frac{2\pi \times 3000}{60 \times 0.25}$$

$$= 1.35 \text{ (N} \cdot \text{m)}$$

(At time of deceleration)

Similarly at time of acceleration.

$$T_3 = T_1 - J \cdot \frac{2\pi \cdot n}{60t_3}$$

$$= T_1 - (J_L + J_M) \cdot \frac{2\pi \cdot n}{60t_3}$$

$$= 0.12 - (6.7 \times 10^{-4} + 3.1 \times 10^{-4}) \cdot \frac{2\pi \times 3000}{60 \times 0.25}$$

$$= -1.11 \text{ (N \cdot m)}$$

3 Selection of motor

Selection conditions are as follows.

Maximum rotational speed: $N_{\text{M}} \ge 3000 \text{ (min}^{-1})$ Motor rating torque: $T_{\text{M}} \ge T_{\text{rms}} \text{ (N} \cdot \text{m)}$

 $(T_{rms}: Effective torque)$

Motor's rotor inertia -- $J_{\rm M} > J_{\rm L}/3$ or more Form above: select an AC servo motor with the following specifications.

Motor specifications:

Rating power output: $W_{\rm M}$ = 300 (W)

Maximum rotational speed

 $N_{\rm M} = 3000 \, (\rm min^{-1})$

Rating torque: $T_{\text{M}} = 1 \text{ (N} \cdot \text{m)} = 1 \times 10^2 \text{ (N} \cdot \text{cm)}$

Rotor inertia: $J_{\text{M}} = 3.1 \times 10^{-4} \text{ (kg} \cdot \text{m}^2\text{)}$ = 3.1 (kg · cm²)

Checking effective torque

Effective torque T_{rms} can be calculated as follows:

$$T_{\text{rms}} = \sqrt{\frac{T_2^2 \times t_a + T_1^2 \times t_b + T_3^2 \times t_c}{t}}$$

$$= \sqrt{\frac{1.35^2 \times 0.75 + 0.12^2 \times 0.55 + 1.11^2 \times 0.75}{3.5}}$$

$$= 0.81$$

and meets T_M ≥ _{rms}.

⑤ Checking time to reach maximum speed Time required to reach rapid traverse speed can be calculated as follows whereas $T_{M}' = 2 \times T_{M}$

$$t_{a} = \frac{(J_{L} + J_{M}) \times 2\pi \times n}{(T_{M} - T_{1})} \times 1.4$$

$$= \frac{(6.7 \times 10^{-4} + 3.1 \times 10^{-4}) \times 2\pi \times 3000}{(2 \times 1 - 0.12) \times 60} \times 1.4$$

$$= 0.23$$

and meets requirement 0.25 sec or less.

From above: Use W1507FA-3PG-C5Z20

[Drill 2] Processing table for special machines

1. Design conditions

Table mass: $m_1 = 1000 \text{ kg}$ Mass of the moving item: $m_2 = 600 \text{ kg}$ Maximum stroke: $S_{max} = 1000 \text{ mm}$ Maximum speed: $V_{\rm max} = 15000 \, {\rm mm/min}$ Positioning accuracy: ±0.035/1000 mm (no load)

* Attitude accuracy of the table and thermal displacement are not included in the accuracy requirement of the ball screw.

Repeatability: ±0.005 mm (no load) 0.020 mm (no load) Lost motion:

Required life expectancy: $L_t = 20000 \text{ h}$

 $(16^{h} \times 250^{days} \times 10^{years} \times 0.5^{rate of operation})$

Guide way (sliding): $\mu = 0.15$

(friction coefficient)

Processina: Milling and drilling Drive motor: AC servo motor

 $(N_{\text{max}} = 2000 \text{ min}^{-1})$

Operation	Axial load (N)		Feed speed	Use time	
Operation	Cutting resistance	Sliding resistance	(mm/min)	ratio (%)	
Rapid traverse	0	2354	15000	30	
Light/medium cutting	4000	2354	500	50	
Heavy cutting	8000	2354	100	20	

* Sliding resistance: $F_r = \mu (m_1 + m_2) g = 0.15 \times (1000 + 600) \times 9.80665 = 2354 (N)$

2. Selection of basic factors

(1) Selection of accuracy grade and axial play

Accuracy grade should be in the range from C1 to C5 according to "Table 4.1 Precision grades of ball screw and their applications" on Page B19. Assuming nut length 200 mm and extra stroke 100 mm, shaft length L_0 is assumed as follows:

 L_0 = Maximum stroke + nut length + margin = 1000 = (200) + (100) = 1300

From "Table 1.2 Tolerance on specified travel and travel variation of the positioning ball screws" on Page B42, the accuracy that satisfies required function is possibly:

Cutting resistance

Fig. 16.3 System appearance

Sliding resistance

Accuracy C3 grade

 $e_{\rm p} = \pm 0.029/1600 \, (\text{mm})$

 $v_{...} = 0.018 \text{ (mm)}$

Considering importance on the volume of lost motion, select Z code (axial play 0 mm and less) for axial play.

(2) Selection of lead

From the maximum rotational speed of AC servo motor N_{max} and rapid traverse speed of table V_{max} , lead I is:

$$I \ge \frac{V_{\text{max}}}{N_{\text{max}}} = \frac{15000}{2000} = 7.5 \text{ (mm)}$$

Larger lead I would be beneficial for feed speed. But from the view of the control system (resolution), limit the lead I to 8 mm or 10 mm.

(3) Selection of screw shaft diameter

According to "Table 4.6 shaft diameter, lead and stroke of standard ball screw" on Page B23, shafts whose lead I is 8 mm or 10 mm are in the range of 10 mm to 50 mm. Placing more importance on rigidity than to the volume of lost motion, select a relatively large size in the range of 32 mm to 50 mm.

(4) Selection of stroke

Select 1000 mm, the maximum stroke in request.

Primary selection:

Standard ball screw

Shaft diameter: 32, 36, 40, 45, 50 mm

Lead: 8, 10 mm Stroke: 1000 mm C3 arade:

Axial play code: Z

3. Confirmation of standard ball screw

Giving consideration to delivery time and price, select from the standard series.

C3 grade chosen in the Primary selection was not found in the standard ball screw. Let us check whether there is a C3 grade among ball screw.

Confirmation of made-to-order ball screw

Because standard ball screw does not meet accuracy grade requirement, we will consider made-to-order ball screw which is based on standard ball screw but with accuracy grade C3.

Second selection:

Made-to-order ball screw

Shaft diameter: 32, 36, 40, 45, 50 mm

7

8. 10 mm Lead: 1000 mm Stroke: Accuracy grade: C3

Selection of screw shaft diameter. lead, and nut

(1) Dynamic load rating

Axial play:

Obtain required load carrying capacity of each lead through load conditions. From table 16.2 operating conditions on Page B91, calculate the rotation speed N_i as shown in Table 16.3.

$$N_i \geq \frac{V_i}{I}$$

Table 16.3 Load conditions

Operating		Rotations per minute (min ⁻¹)		
condition	(N)	<i>I</i> = 8	<i>I</i> = 10	ratio (%)
Rapid traverse	$F_1 = 2354$	$N_1 = 1875$	$N_1 = 1500$	$t_1 = 30$
Light/medium cutting	$F_2 = 6354$	$N_2 = 62.5$	$N_2 = 50$	$t_2 = 50$
Heavy cutting	$F_3 = 10354$	$N_3 = 12.5$	$N_3 = 10$	$t_3 = 20$

By using Formula (II-11) and (II-12) on Page B57, calculate mean load F_m and mean rotational speed N_m as shown below.

$$F_{m} = \left(\frac{F_{1}^{3} \cdot N_{1} \cdot t_{1} + F_{2}^{3} \cdot N_{2} \cdot t_{2} + F_{3}^{3} \cdot N_{3} \cdot t_{3}}{N_{1} \cdot t_{1} + N_{2} \cdot t_{2} + N_{3} \cdot t_{3}}\right)^{1/3}$$

$$N_{\rm m} = \frac{N_1 \cdot t_{\rm a} + N_2 \cdot t_{\rm b} + N_3 \cdot t_{\rm c}}{t}$$

Table 16.4 Mean load and mean rotational speed

Tubic 10.4 Miculi loud dild li	icuii i otutic	mai specu
Lead (mm)	8	10
Mean load F_m (N)	3122	3122
Mean rotational speed N _m (min ⁻¹)	596	477

^{*} Ignore inertia at time of acceleration/deceleration because their time ratios are small.

Required dynamic load rating C_a is:

From Formulas (II-8) and (II-9) on Page B57:

$$C_a \ge (60 N_m \cdot L_1)^{1/3} \cdot F_m \cdot f_w \times 10^{-2} (N)$$

Whereas required life expectancy $L_1 = 20000$ (h), load coefficient $f_w = 1.2$ (refer to Page B57),

$$I = 8 \text{ (mm)} \cdots C_a \ge 33500 \text{ (N)}$$

$$I = 10 \text{ (mm)} \cdots C_a \ge 31100 \text{ (N)}$$

(2) Selection of the nut

Due to lost motion requirements rigidity will be important, so the nut will be selected as follows. Table 16.5 shows the dynamic load rating of each specification.

- · Standard nut ball screw, tube type
- Model: ZFT, DFT (Pages B475 to B504)
- Number of turns of balls: Select from 2.5 turns 2 circuits or 2.5 turns 3 circuits

From Table 16.5 select item that meets required dynamic load rating C_a as follows:

Third selection: In the range surrounded by the dotted lines in Table 16.5

Table 16.5 Dynamic load rating of each specification

Screw shaft	Dyı	rating Ca: (N)	
diameter	Lead	Lead 8 mm Lead 1	
(mm)	2.5 turns 2 circuits	2.5 turns 3 circuits	2.5 turns 2 circuits 2.5 turns 3 circuits
32	31700	-	46300 -
36	-	_	49300 -
40	34900	_	52000
45	-	_	54200 76800
50	38700	54900	57700 81800

(3) Permissible rotational speed

1 Critical speed

Calculate based on rapid traverse speed V_{max} = 15000 mm/min. Ball screw rotational speed at each lead N is:

$$I = 8 \text{ (mm)} \cdot \cdot \cdot \cdot \cdot N = 1875 \text{ (min}^{-1})$$

$$I = 10 \text{ (mm)} \cdot \cdot \cdot \cdot N = 1500 \text{ (min}^{-1})$$

Based on Formula (II-7) on Page B51, screw shaft root diameter to meet critical speed requirement is:

$$d_{\rm r} \geq \frac{n \cdot L_2}{f} \times 10^{-7} \, (\rm mm)$$

In this formula, unsupported length La is:

$$= 1000 + 100 + 200 = 1300 (mm)$$

Supporting condition of screw shaft is Fixed - Fixed support, and supporting condition of ball nut is Fixed. Therefore, supporting condition is Fixed - Fixed support (Factor f = 21.9)

$$I = 8 \text{ (mm)} \cdots d_r \ge 14.5 \text{ (mm)}$$

$$I = 10 \text{ (mm)} \cdots d_r \ge 11.6 \text{ (mm)}$$

② d · n value

From Table 3.2 on Page B54, as the d·n is 70000 or less, screw shaft diameter to meet the d·n value is:

$$d \le \frac{70000}{N}$$
 (mm)

$$I = 8 \text{ (mm)} \cdots d \leq 37.3 \text{ (mm)}$$

$$I = 10 \text{ (mm)} \cdots d \le 46.7 \text{ (mm)}$$

Based on nut specifications (Page B475-504) select item that meets screw shaft root diameter and screw shaft diameter.

* Please consult NSK if it is necessary to use at d • n > 70000.

Fourth selection: In the range surrounded by the solid-lines in Table 16.5

(4) Rigidity of the ball screw system

Set the lost motion of the ball screw system (screw shaft, nut and support bearing) at 80% of the specified value. Then calculate the system rigidity. The lost motion is:

$$20 (\mu m) \times 0.8 = 16 (\mu m)$$

At this time, the single-direction elastic deformation ΔL of the major factors of ball screw system becomes half.

$$\Delta L \leq 8 \; (\mu m)$$

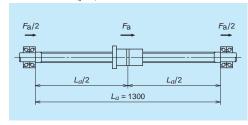


Fig. 16.3 Unsupported length

① Rigidity of the screw shaft K_s

Calculate at the screw shaft center where axial deformation becomes the largest. Because supporting condition of screw shaft is Fixed - Fixed support, from Formula (II-21) on Page B62:

$$K_{\rm s} = \frac{\pi \cdot d_{\rm r}^2 \cdot E}{L_{\rm a}} \times 10^{-3} \, (\text{N/mm})$$

Whereas E is Elastic Modules. From Formula (II-17) on page B61, elastic deformation of the screw shaft ΔL_s is

$$\Delta L_{s} = \frac{F_{a}}{K_{s}} = \frac{F_{a} \cdot L_{a}}{\pi \cdot d_{r}^{2} \cdot E} \times 10^{3} \text{ (µm)}$$

 F_a : Sliding resistance

$$F_{\rm a} = \mu \ (m_1 + m_2) = 0.15 \times (1000 + 600)$$

= 2354 (N)

Table 16.7 shows the rigidity of screw shaft K_s and the elastic deformation ΛL_s .

② Rigidity of the nut K_N

Set about 1/3 of the maximum axial load as the preload value.

$$F_{a0} = \frac{F_{max}}{3} = \frac{10354}{3} = 3452 \rightarrow 3500 \text{ (N)}$$

From Formula (II-23) on Page B64: Rigidity:

$$K_{\text{N}} = 0.8 \times K \left(\frac{F_{\text{a0}}}{\epsilon \cdot C_{\text{a}}} \right)^{1/3} = 0.8 \times K \left(\frac{3500}{0.1 \cdot C_{\text{a}}} \right)^{1/3} \text{(N/µm)}$$

K: Theoretical rigidity

From Formula (II-17) on page B62, elastic deformation of the ball nut ΔL_v is

$$\Delta L_{\rm N} = \frac{F_{\rm a}}{K_{\rm N}} = \frac{2354}{K_{\rm N}}$$

Table 16.7 shows the rigidity of nut K_N and the elastic deformation ΔL_N .

3 Rigidity of the support bearing $K_{\rm B}$

The bearing is thrust angular contact ball bearing for ball screw support (TAC Series). Assume each shaft diameter is as shown in Table 16.6 (Refer to Page B457).

Table 16.6 Bearing code

Screw shaft diameter (mm)	Bearing code
32	25TAC62BDF
36	25TAC62BDF
40	30TAC62BDF
45	35TAC72BDF

Refer to Page B461 for rigidity $K_{\rm B}$ of each bearing (axial spring modulus). Elastic deformation of bearing $\Delta L_{\rm B}$ is:

$$\Delta L_{\rm B} = \frac{F_{\rm a}}{2K_{\rm B}}$$

Table 16.7 shows the rigidity of support bearing $K_{\rm B}$ and the elastic deformation $\Delta L_{\rm B}$.

Table 16.7 Rigidity and elestic deformation

		_					
Nut model	Screw shaft		Ni	Nut		Support bearing	
number	Ks	$\Delta L_{\rm s}$	K _N	ΔL_{N}	K _B	$\Delta L_{\scriptscriptstyle \rm B}$	ΔL
DFT3210-5	347	6.8	839	2.8	1000	1.2	10.8
DFT3610-5	460	5.1	907	2.6	1000	1.2	8.9
DFT4010-5	589	4.0	973	2.4	1030	1.1	7.5
DFT4510-5	772	3.0	1050	2.2	1180	1.0	6.2
DFT4510-7.5	112	3.0	1375	1.7	1100	1.0	5.7

Choose the most economical ball screw which meets single direction deformation requirement ΔL is 8 μm or less.

The selected ball screw:

Nut model code: DFT4010-5
Shaft diameter: 40 (mm)
Lead: 10 (mm)
Dynamic load rating: 52000 (N)

6. Decision of screw shaft length

Nut reference number DFT4010 has nut length 193 mm and unsupported length L_a is:

$$L_a$$
 = Maximum stroke + nut length + margin
= 1000 + 193 + 100 = 1293 \rightarrow 1300 mm

B93

7. Checking basic safety

(1) Permissible axial load

Calculate buckling load for conditions shown in Fig. 16.4 with P = 10354 (N) and L_1 = 1210 (mm)

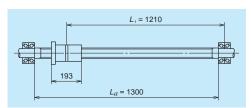


Fig. 16.4 Examination of bucking load

Supporting condition is Fixed - Fixed support, from buckling load calculation Formula (II-2) on Page B48, screw shaft diameter d, to prevent buckling

$$d_{\rm r} \ge \left(\frac{P \cdot L_1^2}{m} \times 10^4\right)^{1/4}$$
$$= \left(\frac{10354 \times 1210^2}{19.9} \times 10^4\right)^{1/4} = 16.6 \text{ (mm)}$$

From DFT4010-5 specifications (page B493) shaft root diameter is $d_r = 34.4$ and meets requirement.

Result: Acceptable

(2) Permissible rotational speed

① Critical speed *n*

From critical speed calculation Formula (${\rm II}$ -7) on Page B51,

$$n = f \cdot \frac{d_r}{L_1^2} \times 10^7 = 21.9 \times \frac{34.4}{1210^2} \times 10^7$$

$$= 5140$$

Maximum rotational speed $N_{max} = 1500 \text{ min}^{-1}$ is smaller than critical speed and meets requirement.

Result: Acceptable

② d · n value

d · n value is:

$$d \cdot n = 40 \times 1500 = 60000$$

From Table 3.2 on Page B54, d·n of tube type is 70000 or less and meets requirement.

Result: Acceptable

(3) Life L_t

Dynamic load rating $C_a = 52000 \text{ N}$ (See dimension table on page B491), and from Formulas (II-8) and (II-9) on Page B57,

$$L_t = \left(\frac{C_a}{f_w \cdot F_m}\right)^3 \times 10^6 \times \frac{1}{60 \cdot N_m}$$

$$= 05000$$

and meets required life 20000 (h).

Result: Acceptable

8. Check whether the following factors satisfy requirements (1) Checking accuracy

1 Positioning accuracy

Positioning accuracy ±0.035/1000 mm, and therefore from "Table 1.2 Tolerance of specified travel and travel variation" on Page B42:

Accuracy grade : C3
$$e_p = \pm 0.029/1600 \text{ (mm)}$$
 $v_{11} = 0.018 \text{ (mm)}$

and meets required positioning accuracy.

2 Measures against thermal expansion

Provide pre-tension force equivalent to the elongation of 3°C temperature rise, taking in consideration of the load carrying capacity of bearing. Also, adjust the travel compensation for the specified travel by a volume equivalent to 3°C temperature rise. (Refer to Page B44)

(a) Thermal elongation : $\Delta L_{\scriptscriptstyle 0}$

From Formula (${\rm I\hspace{-.1em}I}$ -1) on Page B44:

$$\Delta L_{\theta} = \rho \cdot \theta \cdot L_{a} = 12.0 \times 10^{-6} \times 3 \times 1300$$

= 0.047 (mm)

(b) Pre-tension force : F_{θ}

$$F_{\theta} = \Delta L_{\theta} \cdot KS = \frac{\Delta L_{\theta} \cdot E \cdot \pi \cdot d_{r}^{2}}{4L_{\theta}}$$

$$= \frac{0.047 \times 2.06 \times 10^{5} \times \pi \times 34.4^{2}}{4L \times 1300}$$

$$= 6922 \rightarrow 6900 \text{ (N)}$$

Travel compensation : -0.047/1300 (mm)

Pre-tension force : 6900 (N)
Tension (elongation) volume : 0.047 (mm)

3 Selection of support bearing

Assuming that the ratio of basic dynamic load rating of support bearing (C_0) and pre-tension force (F_0) is ε , select a bearing which generally satisfies:

$$\varepsilon = F_{\rm e}/C_{\rm B} < 0.20$$

Design the bearing supporting configuration to which pre-tension force is applied in such way that the axial load is received by the duplex combination or more. Please consult to NSK when one bearing must sustain the pre-tension load.

Table 16.8 Comparison of dynamic load rating and pre-tension force

Bearing reference number	$C_{\scriptscriptstyle \mathrm{B}}$ (N)	ε
30TAC62BDF	29200	0.23
30TAC62BDFD	47500	0.14

Selected support bearing: 30TAC62BDFD

(2) Checking drive torque of motor

Selection of driving motor

(Required specifications)

Motor rotational speed : 1500 min⁻¹

Time to reach maximum speed : Under 0.16 sec (At time of rapid traverse)

1) Load (converted to the motor load)

Calculate the moment of inertia of ball screw. From Formulas (II-32) and (II-33) of Page B68, moment of inertia of ball screw parts J are calculated as follows, whereas γ is material density and ball screw shaft length $L_{\rm o}$ = 1550 mm (Screw shaft)

$$J_{\rm B} = \frac{\pi \cdot \gamma}{32} D^4 \cdot L_{\rm o} = \frac{\pi \times 7.8 \times 10^3}{32} \times 4^4 \times 155$$
$$= 30 \text{ (kg} \cdot \text{cm}^2\text{)}$$

(Moving part)

$$J_{w} = m \times \left(\frac{I}{2\pi}\right)^{2} = 1600 \times \left(\frac{1}{2\pi}\right)^{2}$$
$$= 40 \text{ (kg} \cdot \text{cm}^{2}\text{)}$$

(Coupling)

$$J_c = 10 (kg \cdot cm^2) \cdots assumed$$

(Total)

$$J_{L} = J_{B} + J_{W} + J_{c} = 30 + 40 + 10$$

= 80 (kg · cm²) \rightarrow 80 × 10⁻⁴ (kg · m²)

2 Driving torque

Necessary torque to drive a ball screw resisting to external loads T_1 can be obtained by Formula (II-29) on Page 66:

$$T_1 = T_A + T_P + T_U$$

In this formula, T_A is drive torque at constant speed, T_P is dynamic friction torque, and, T_U is friction torque of the support bearing. From Formula (II-26) on page B66 and Formula (II-27) on B67, T_A and T_P are:

$$T_{A} = \frac{Fa \cdot I}{2\pi \eta_{1}}$$

$$T_{P} = 0.014 F_{a0} \sqrt{d_{m} \cdot I}$$

$$\eta_{1} = 0.9$$

Refer to the starting torque value in Table 2.7 on Page B461:

 $T_{\rm II}$ is:

$$T_{11} = 33 + 33 = 66 \text{ (N} \cdot \text{cm)}$$

So, the required drive torque during rapid traverse and heavy cutting T_{11} and T_{13} are: (At time of rapid traverse)

$$\begin{split} T_{11} &= T_{A1} + T_{P1} + T_{U1} \\ &= \frac{2354 \times 1}{2\pi \times 0.9} + 0.014 \times 3500 \sqrt{4.1 \times 1} + 66 \\ &= 580 \; (\text{N} \cdot \text{cm}) \rightarrow 580 \times 10^{-2} \; (\text{N} \cdot \text{m}) \end{split}$$

(At time of heavy cutting)

$$T_{12} = T_{A2} + T_{P2} + T_{U2}$$

$$= \frac{10354 \times 1}{2\pi \times 0.9} + 0.014 \times 3500 \sqrt{4.1 \times 1} + 66$$

$$= 1995 (N \cdot cm) \rightarrow 1995 \times 10^{-2} (N \cdot m)$$

3 Selection of the motor

⟨Selection conditions⟩

Maximum rotational speed: $N_{\rm M} \ge 1500~({\rm min}^{-1})$ Motor rating torque: $T_{\rm M} > T_{\rm 1}~({\rm N}\cdot{\rm m})$ Motor's rotor inertia: $J_{\rm M} > J_{\rm L}/3~({\rm kg}\cdot{\rm m}^2)$ Based on this, select AC servo motor as below.

Motor specifications

Rating power output: $W_{M} = 1.8 \text{ (kW)}$

Maximum rotational speed:

 $N_{\rm M} = 1500 \, (\rm min^{-1})$

Rating torque: $T_{\rm M} = 22.5 \, (\rm N \cdot m)$

 $= 22.5 \times 10^{2} (N \cdot cm)$

Rotor inertia: $J_{\rm M} = 190 \times 10^{-4} \, (\text{kg} \cdot \text{m}^2)$

= 190 (kg \cdot cm²)

4 Checking time to reach maximum speed: Required time to reach rapid traverse speed can be calculated as follows, whereas $T_{\text{M}}' = 2 \times T_{\text{M}}$

$$t_{a} = \frac{(J_{L} + J_{N}) \times 2\pi \times N}{(T_{M}' - T_{1}) \times 60} \times 1.4$$

$$= \frac{(80 \times 10^{-4} + 190 \times 10^{-4}) \times 2\pi \times 1500}{(2 \times 22.5 - 580 \times 10^{-2}) \times 60} \times 1.4$$

$$= 0.15 \text{ (sec)}$$

and meets requirement 0.16 sec or less.

[Drill 3] Cartesian type robot Z axis (vertical axis)

1. Design conditions

Mass of the traveling item : m = 300 kgMaximum travel : $S_{\text{max}} = 1500 \text{ mm}$ Rapid traverse speed : $V_{\text{max}} = 10000 \text{ mm/min}$

Repeatability : 0.3 mm Required life : $L_t = 24000 \text{ h}$

 $(16^{\text{hours}} \times 300^{\text{days}} \times 5^{\text{years}})$

Screw shaft supporting condition:

Fixed -- Simple support

Nut: Flanged single nut

Guide way (rolling) : $\mu = 0.01$ (friction coefficient)

Drive motor: AC servo motor ($N_{\text{max}} = 1000 \text{ min}^{-1}$)

Environment: Slightly dusty

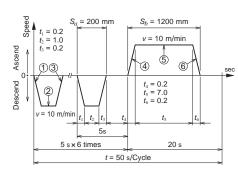


Fig. 16.6 Operating condition

2. Selection of basic factors

(1) Selection of accuracy grade

Although this application is not listed in Table 4.1 Accuracy grades of ball screw and their application on page B19, possibility is to use ball screw for transfer equipment R series, because the required repeatability is 0.3 mm that is not very high.

(2) Selection of lead

From the maximum rotational speed of AC motor:

$$I \ge \frac{V_{\text{max}}}{N_{\text{max}}} = \frac{10000}{1000} = 10 \text{ (mm)}$$

Select a lead 10 mm or over.

(3) Selection of screw shaft diameter

According to "Table 4.5 Shaft diameter, lead and standard screw length of R Series" on Page B22, the shaft diameters whose lead is 10 mm or over are in the range of 12 mm to 50 mm.

(4) Selection of stroke

From Table 4.5 Screw shaft diameter, lead and standard screw shaft length of R series on page B22, it is possible to select from R series because diameter d = 15 to 50 mm and lead l = 10 mm will meet the required maximum stroke 1500 mm.

Lead: 10(mm) Stroke: 1500(mm)

3. Confirmation of standard ball screw

Select from Flanged single nuts of R Series ball screw for transfer equipment.

Second selection: R Series ball screw for transfer equipment

Screw shaft diameter: 16, 20, 25, 32, 36

40, 45, 50 (mm)

Lead: 10 (mm) Stroke: 1500 (mm)

4. Decision of screw length

Screw length Lo is:

$$= 1500 + 100 + 100 + 200 = 1900 (mm)$$

Normally, $L_{\circ}/d \le 70$ is recommended.

Therefore, screw shaft diameter d is:

$$d \ge \frac{L_s}{70} = \frac{1900}{70} = 27.1 \text{ (mm)}$$

Third selection: R Series ball screw for transfer equipment

Shaft diameter: 32, 36, 40, 45, 50 (mm)

Lead: 10 (mm)

Stroke: 1500 (mm)

5. Checking basic safety

(1) Allowable axial load

1) Calculation of allowable axial load Accelerating/decelerating time is:

$$\alpha = \frac{V}{60 \ t} = \frac{10 \times 10^3}{60 \times 0.2} = 833 \ \text{(mm/s}^2\text{)}$$

 $= 0.833 (m/s^2)$

$$t = t_1 = t_3 = t_4 = t_6$$

①, ⑥
$$\cdots F_1 = mg - m\alpha$$

= $300 \times 9.80665 - 300 \times 0.833$
= $2690 (N)$

2, 5 $\cdots F_2 = mq = 2940 (N)$

3, 4 $\cdots F_2 = ma + m\alpha = 3190 (N)$

2 Buckling load

For condition in Fig. 16.7, use values below. P = 3190 N, $L_1 = 1600 \text{ mm}$

Bearing supporting condition is common Fixed -- Simple support.

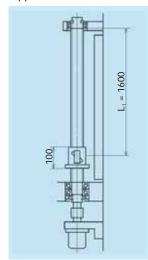


Fig. 16.7 Checking the buckling load

From Formula (II-2) on Page B48:

$$d_{r} \ge \left(\frac{P \cdot L_{1}^{2}}{m} \times 10^{-4}\right)^{1/4}$$
$$= \left(\frac{3190 \times 1600^{2}}{10.0} \times 10^{-4}\right)^{1/4} = 16.8 \text{ (mm)}$$

(2) Checking permissible rotational speed

1 Critical speed

Use values below.

 $n = 1000 \text{ (min}^{-1}), L_1 = 1600 \text{ (mm)}$

From Formula (II-7) on Page B51:

$$d_r \ge \frac{n \cdot L_1^2}{f} \times 10^{-7} = \frac{1000 \times 1600^2}{15.1} \times 10^{-7}$$

= 17 (mm)

②d • n value

From Table 3.2 on Page B54:

$$d \le \frac{50000}{n} = \frac{50000}{1000}$$

= 50 (mm)

* Please consult NSK if d • n > 50000 is required.

(4) Checking life (dynamic load rating)

Determine required load carrying capacity from load conditions of Table 16.9.

Table 16.9 Load conditions

Operating condition	Axial load (N)	Rotational speed (mean) (min ⁻¹)	Use time (s)
1)×6	$F_1 = 2690$	$N_1 = 500$	$t_{\rm a} = 1.4$
2,5	$F_2 = 2940$	$N_2 = 1000$	$t_{\rm b} = 13.0$
3 _{×6} 4	$F_3 = 3190$	$N_3 = 500$	t _c = 1.4

Calculate mean load F_m and mean rotational speed N_m from Formulas (I-11) and (I-12) on Page B57:

Required load carrying capacity is:

$$F_{m} = \left(\frac{F_{1}^{3} \cdot N_{1} \cdot t_{a} + F_{2}^{3} \cdot N_{2} \cdot t_{b} + F_{3}^{3} \cdot N_{3} \cdot t_{c}}{N_{1} \cdot t_{a} + N_{2} \cdot t_{b} + N_{3} \cdot t_{c}}\right)^{1/3}$$

$$= 2940 \text{ (N)}$$

$$N_{m} = \frac{N_{1} \cdot t_{a} + N_{2} \cdot t_{b} + N_{3} \cdot t_{c}}{t}$$

 $= 288 (min^{-1})$

From Formulas (II-8) and (II-9) on Page B57:

$$C_a \ge (60 N_m \cdot L_0^{1/3} \cdot F_m \cdot f_w \times 10^{-2} \text{ (N)}$$

= $(60 \times 288 \times 24000)^{1/3} \times 2940 \times 1.2 \times 10^{-2}$
= 26300 (N)

(5) Checking static load rating

$$C_{0a} = F_{\text{max}} \times f_{\text{s}} = 3190 \times 2$$

= 6380 (N)

In consideration of expense:

Fourth selection: R Series ball screw for transfer equipment

Shaft diameter: 32 (mm) Lead: 10 (mm)

Stroke:

Turns of balls and circuit number: 2.5 × 2 Screw length: 2000 (mm) Basic dynamic load rating: 35700 (N)

6. Selection of nut

Select a "standard nut with a flange and a seal (Brush-seals contained inside)" based on the necessity as well as on the environmental conditions.

Selected ball screw:

RNFTL3210A5S Nut assembly Screw shaft RS3210A20

B-2-17 Reference

"NSK Motion & Control (technical journal)" was compiled to introduce NSK products and its technologies. You will find data summaries which are imperative in selecting ball screws in this catalog. If you need detailed technical data, other than described in this catalog, please refer to "NSK Motion & Control" technical journal. For inquiries and orders, please contact NSK branch offices, sales offices, and representatives assigned at various locations.

Table 17.1 NSK Motion & Control (technical journal): Issues relating to ball screws (1980-)

No.	Issued Date	Title
No.4	Jun. 1998	Recent Technical Trends in Ball Screws
No.8	May. 2000	Ball Screw with Rotating Nut and Vibration Damper
No.9	Oct. 2000	WFA Standard-Stock Ball Screws
No.10	Apr. 2001	High Performance Seals for Ball Screws
No.11	Oct. 2001	Development of NSK S1 Series Ball Screws and Linear Guides
No.11	Oct. 2001	Low Inertia Series of Nut Rotatable Ball Screws
No.13	Oct. 2002	Development of HTF Series Ball Screws for High Load Drive Application
No.13	Oct. 2002	High Lead Precision Rolled Ball Screws
No.14	May. 2003	High Speed and Low Noise Ball Screws HMC-B02 Series
No.15	Dec. 2003	Clean Support Units for Ball Screws
No.16	Aug. 2004	Development of High Speed and Low Noise Ball Screws
No.18	Aug. 2005	S3 Ball Screws: Super Low Noise Ball Screws for Automation Equipment
No.19	Sep. 2006	High-Speed and Low-Noise Ball Screw for Standard Stock - Compact FA Series

B-2-18 Guide to Technical Services

(1) CAD data

■Web page

http://www.jp.nsk.com/app01/en/catalog/

CD-ROM

Catalog No.7110 (CD-ROM) contains precision machine components and rolling bearings.

(2) Telephone consultation with NSK engineers

This catalog contains technical explanation for each section. However, some descriptions and explanations may be insufficient due to page limitation, etc. To amend this shortcoming, NSK offers telephone assistance. NSK engineers are pleased to help you. Our local offices are listed in the last part of this catalog. Call local NSK office or representative in your area.

(3) Additional machining (processing) some part of standard ball screws in stock

NSK processes standard ball screw blank shaft end. NSK also cuts linear guide rails to required length for you. Service is available at NSK processing factories throughout the world. Requests are taken by branch offices and agencies.

B101 B102

B-2-19 Precautions When Handling Ball Screws

Ball screws are precision products. They require careful handling as described below.

Lubrication

- (1) Confirm the state of lubrication before use. Insufficient lubrication causes loss of ball screw functions in a short period.
- (2) Use without lubrication if grease is already applied to the ball screws. Remove dust or swarf if they stuck to the greased surface during handling. Wipe with clean white kerosene, then apply the same type of new lubricant before use. Avoid using different types of grease at the same time. Consult NSK for special oil lubricant if it is required to your application.
- (3) Check lubricant after two to three months of operation. Wipe off grease if it is excessively contaminated, and apply sufficient volume of a fresh coat of grease. After the initial check, check and replenish lubricant approximately every year. Check more often if environment requires.
- * Refer to Pages B71 and D13 for lubrication.

Watch out for falling objects

Handle with care

Do not apply shock

Handling

- (1) Never disassemble ball screw. It invites dust to enter, and lowers precision, or may cause an
- (2) User should never reassemble ball screw by himself. Loss of ball screw function is apt to occur if a mistake is made. Please send ball screw to NSK for repair or re-assembly. It will be reworked at the minimum service charge.
- (3) Ball screw shaft or nut may fall due to its own weight. Watch out for such falling object. If it falls, the ball groove or ball recirculation component may be damaged and the function might have been lost. Make certain to return such item to NSK for check. There will be the minimum charge for this service.
- (4) If recirculation component, shaft outside, or ball groove is scratched or damaged by impact, recirculation operation becomes deficient, and may cause loss of function.
- * Refer to Page B77 for assembling components.

Rotational speed limitation

Do not overrun

Temperature limitation

Precautions in use

- (1) Ball screws should be used in a clean environment. Use a dust cover to keep dust and swarf from entering into the system. Insufficient dust protection causes not only the ball screw function to deteriorate but also brings about damage to the recirculation components if dust plugs the system. This may result in more serious accident such as a fall of the table.
- (2) For rotational speed in operation, refer to the applicable section in this catalogue which describes permissible rotational speeds, or to specification drawing furnished by NSK. Exceeding permissible rotational speed damages recirculation components, and may cause the table to fall. A precaution system such as a safety nut is recommended in vertical use of ball screw. Please consult NSK for safety system.
- (3) Overrunning ball nut (removed from the ball thread) causes the balls to fall out, damages recirculation components, and dent ball groove, resulting in insufficient operation. Continued use under such conditions may cause premature wear, and damages recirculation components. For these reasons, avoid overrun by all means. If overrun occurs, please request NSK to check. There will be a minimum charge for this service.
- (4) Ball screws are designed to be used at a temperature of less than 80°C. Do not operate at 114 temperatures higher than this limit. Use at a higher temperature may damage recirculation and seal components. Please consult NSK if it is necessary to use at a temperature higher than the limit. When using NSK K1 lubrication unit, the operating temperature should be 50°C or less. (Momentary maximum temperature in use: 80°C)
- * Please read Page B84 before designing.

Store in the correct position

Storage

- (1) Store in the original NSK package. Do not unwrap or tear the inner wrapping if it is not necessary. This allows dust to enter and rust to set in, and may deteriorate functions.
- (2) The following position is recommended when storing ball screws.
- ① Keep in the NSK original package, and place it flat.
- 2 Place flatly on supports; store in a clean area.
- 3 Hang vertically in a clean place.

B-3 Ball Screw Dimension Table

HMD Type for High-Speed Machine Tools	B109
HMC Type for High-Speed Machine Tools	B113
BSL [™] Type for Miniature Lathe	B119
For High-Load Drive	
HTF-SRC Type	B123
HTF-SRD Type	B127
HTF Type	B131
VSS Type for Contaminated Environments	B139
TW Series for Twin-Drive Systems	B143
Hollow Shaft Ball Screws	B144
for High-Speed Machine Tools	
ND Series Nut-Rotatable Ball Screws	B149
Σ Series for Robot	B157
Ball Screws for Transfer Equipment	B169
Equipped with "NSK K1 [™] " Lubrication Unit	B209
Special Ball Screws	B215

B-3-1 Dimension Table and Reference Number of Application-Oriented Ball Screws

♦ Features and application examples of application-oriented ball screws

App	lication	Shape	Feature	Application	Page
High-Speed Machine	НМО Туре		High-speed operation: 64 to 120 m/min Rigidity: 5% greater than the HMC series. High-load carrying capacity: 7% greater than the HMC type New recirculation system reduces the noise level by 5 dB or more compared with the HMC type	High-speed machining center High-speed combined machine tools Die mold processing machine	B109
Tools	НМС Туре	Marine Harring	High-speed: 40 to 120 m/min Rigidity: 30% greater than existing tube type ball screws High-Load carrying capacity: 14% greater than existing tube type ball screws Noise reduced by small-diameter balls	High-speed machining center High-speed combined machine tools Die mold processing machine	B113
Small Lathe BSL Type			Compact nut: 50% less ball nut volume than NSK existing products. High-dust protection by thin plastic seal Special high-load capacity ball screw support bearings are available.	Small lathe Multi-axis lathe Small machining center	B119
	HTF-SRC Type		High-load capacity High-speed operation by high-speed rotation: 930 mm/sec Even load distribution to balls in the ball nut for high-load drive Improved durability by NSK S1™	Injection axis of injection molding machine Servo press machine Press brake Bending machine	B123
High-Load Drive	HTF-SRD Type		High-load capacity High-speed operation by large screw lead: 1600 mm/sec Improved durability by NSK S1™	Clamping axis of injection molding machine Die cast machine Punch press Lifting and lowering device	B127
	НТҒ Туре	Haddedddd dd barronn ar a channa a chan	High-load capacity Even load distribution to the balls in a ball nut for high-load drive Improved durability by NSK S1™ Provide a wide range of screw diameter and lead combinations.	Injection molding machine Press machine Press fitting machine Lifting and lowering device	B131
For Contaminated Environment	VSS Type		High dust-resistant performance: Reduces particle penetration rate to less than 1/15 (compared with existing plastic seal). More than four times longer service life than existing plastic seal under contaminated environments.	Woodworking machine Laser cutting machine Graphite milling machine Tire molding machine Transfer equipment	B139
Twin-Drive System	TW Series		Controlled screw lead accuracy and variation of preload torque for twin drive. Improved axial rigidity, expected life and controllability by the paired up two ball-screw driving systems	Machining center Combined machine tools Large-size machine tools	B143

App	lication	Shape	Feature	Application	Page
For High- Precision Machine tools	Hollow Shaft Ball Screws		Suppress thermal deformation by cooling the shaft center Prevent the machine base from deforming due to thermal expansion. NSK special support units and seal units are available.	High-precision die processing machine High-precision combined machine tools High-precision machining center High-precision lathe	B144
Nut- Rotatable Ball Screws	NDT and NDD Type		Angular contact support bearings are integrated into the ball nut. Two or more ball nuts can be installed in a single ball screw shaft. The NDD type ball screws can surpass the critical speed. A special vibration damper enables longstroke-high-speed operation.	Woodworking machine Laser cutting machine Electronic component mounting device Liquid crystal display transfer equipment Transfer equipment	B149
Robot	Σ Series		A ball screw and a ball spline are made in one shaft, combining a drive and guide system. A ball screw nut, a ball spline nut and support bearings are combined to the unit. Hollow shaft has an effect for weight saving. The hollow can be used for wiring and piping.	SCALA type robot Electronic- component mounting system	B157
	VFA Type		A finished shaft end can be combined with the support unit for immediate use. Flexible stroke as screw shaft outside is used for the simple support bearing seat. The high-helix leads for high-speed operation. The lead accuracy is made to JIS Ct7 grade.	Transfer equipment Actuators Packing/Packaging equipment	B169
Transfer Equipment	RMA and RMS Type		The RMA type has a finished shaft end. Shaft ends of the RMS type are unprocessed blank. These types can be combined with the NSK support kits for immediate use. JIS Ct7 grade miniature ball screws.	Semiconductor transfer equipment Test/Measuring equipment	B169
	R Series		A wide variety of screw diameters and screw leads combinations (128 combinations) Ball screw shafts and ball nut assemblies are in stock separately. Accuracy grade of JIS Ct10	Transfer equipment Actuators Robot Platform door system Injection molding machine	B169
Equipped wi Lubrication (ith "NSK K1" Unit	NSK K1	Long-term, maintenance-free operation Maintains lubrication efficiency for a prolonged time in contaminated environments Does not pollute the environment Made of compatible material with the FDA regulations is also available.	Automotive manufacturing machine Woodworking machine Laser cutting machine Semiconductor/Liquid crystal display manufacturing equipment Food processing/Medical equipment	B209

B107 B108

B-3-1.1 HMD Type for High-Speed Machine Tools

This product is patented by NSK.

1. Features

High speed

The permissible rotational speed (d·n value) has greatly increased to 160 000 compared with 135 000 of the HMC type.

Low noise

Noise reduced by 5 dB or more compared with the HMC type ball screws for high-speed machine tools because of the end-deflector and middle-deflector systems.

Nut mounting dimensions

The ball nut diameters are the same as those of the HMC type.

2. Specifications

(1) Recirculation system

Fig.1 shows the structure of the middle-deflector recirculation system of the HMC type.

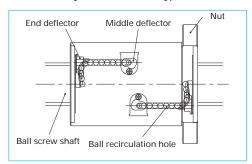


Fig. 1 Structure of middle-deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	C3, C5
Axial play	0 mm (Preloaded product)

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d·n value: 160 000 or less Criterion of maximum rotational speed

Note: Please also review the critical speed. See "Technical Description: Permissible rotational speed" (Page B51) for details.

(4) Options

- For twin-drive systems (Refer to page B143) Upon request, the variations in lead accuracy and preload torque between two ball screws of a pair of the TW series are controlled for the further improvement of the reliability.
- Hollow shaft ball screw (Refer to page B144) The temperature rise and measures against thermal expansion of ball screw driving mechanism are the most challenging for highspeed machine tools. For the HMD type ball screws, we recommend to utilize the hollow for forced cooling system.

(5) Seal

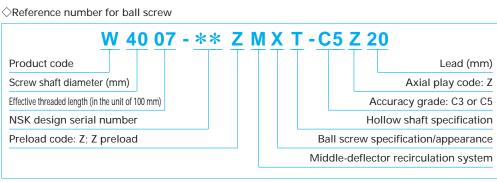
Compact, thin plastic seal is available. Nut outside diameter is compact compare with the return tube recirculation system.

3. Design precautions

For general precautions regarding ball screws, refer to "Design Precautions" (Page B84) and "Handling Precautions" (Page B103).

4. Product categories

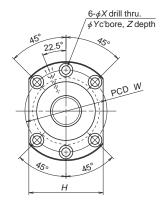
The HMD type has a model as follows.

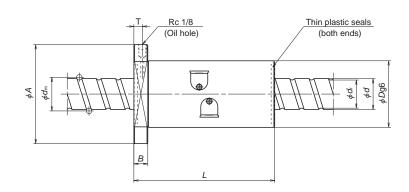

Table 2 HMD type product categories

Nut models	Shape	Flange shape	Nut shape	Preload system
EM		Flanged Circular I	Circular	Z Preload (medium preload)

5. Example of model number in dimension tables

A structure of "Model number" and "Reference number for ball screw" are as follows.





6. Handling Precautions

Maximum operating temperature: 80°C If using NSK K1, operating temperature should not exceed 50°C. Refer to "Designing Precautions" (Page B84).

B109 B110

								1
	Shaft			Ball circle		Basic load	rating(N)	Axial rigidity
Model No.	dia.	Lead	Ball dia.	dia.	Root dia.	Dynamic	Static	
	d	1	D_{w}	d_{m}	d,	Ca	C_{0a}	<i>K</i> (N/μm)
EM4016-4E	-	16	7.144	41.5	34.1	57100	130000	1020
EM4020-6E		20	6.350	41	34.4	66900	165000	1340
EM4025-6E	40	25	7.144	41.5	34.1	79100	191000	1370
EM4030-6E		30	7.144	41.5	34.1	79100	191000	1350
EM4516-4E		16	7.144	46.5	39.1	59600	145000	1060
EM4520-6E	45	20	6.350	46	39.4	69100	186000	1470
EM4525-6E		25	7.144	46.5	39.1	82500	213000	1510
EM5016-4E		16	7.144	51.5	44.1	61800	160000	1150
EM5020-6E	F0	20	6.350	51	44.4	73200	206000	1600
EM5025-6E	50	25	7.144	51.5	44.1	85600	235000	1620
EM5030-6E		30	7.144	51.5	44.1	85600	235000	1630
EM6316-4E	63	16	9.525	65	55.2	11100	339000	1600

Remarks 1. The right turn screw is standard. Please consult NSK for left turn screw.

2. Rigidity listed under the K column is when a 5% dynamic load rating is applied as preload.

			Ball nut di	mensions						Max. feeding
Nut length	Nut dia.	Flange dia.	Flange width			speed				
L	D	Α	В	Н	X	Y	Ζ	W	T	(m/min)
160										64
150	86	128	18	96	11	17.5	11	106	11	80
182	120		10	70	11	17.5		100	''	100
213										120
160										56
150	92	134	18	102	11	17.5	11	112	11	70
182										88
160										51
150	98	140	18	107	11	17.5	11	118	11	64
182	98	98 140		107	11	17.5	11	118	11	80
213										96
170	122	180	28	138	18	26	17.5	150	14	40

Unit: mm

B111 B112

B-3-1.2 HMC Type for High-Speed Machine Tools

This product is patented by NSK.

1. Features

High-speed traveling

High helix leads of 16 mm to 36 mm are used. Furthermore, the ball recirculation return tube is reinforced to make a high-speed traveling of 40 to 120 m/min. possible.

 High rigidity, high load carrying capacity Double start thread increases the number of effective turns of balls, and a smaller ball size increases the number of the balls. Together they contribute to have high rigidity and high load carrying capacity, despite the high helix lead.

Compact nut

The size of nut diameter and length were reduced.

Comparison with current products -- about 50% reduction in volume.

2. Specifications

(1) Recirculation System

The ball recirculation circuits and grooves are suited for high-speed operation. Structure of recirculation system is shown in Fig. 1.

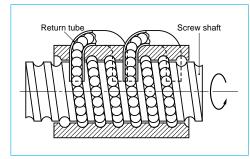


Fig. 1 Structure of return tube recirculation system

(2) Accuracy grades and axial play

Standard accuracy grades and axial play are shown in Table 1. Please consult NSK for other grade.

Table 1 Accuracy grades and axial play

Accuracy grade	C3, C5
Axial play	0 mm (Preloaded)

(3) Options

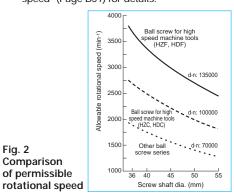
- Equipped with "NSK K1™" lubrication unit Optional NSK K1 lubrication unit, molded from resin and impregnated with lubrication oil, is available. Please consult NSK when using NSK K1.
- For twin-drive systems (Refer to page B143) Upon request, the variations in lead accuracy and preload torque between two ball screws of a pair of the TW series are controlled for the further improvement of the reliability.
- Hollow shaft ball screw specifications

The temperature rise and measures against thermal expansion of ball screw driving mechanism are the most challenging for high-speed machine tools. For the HMD type ball screws, we recommend to utilize the hollow for forced cooling system.

Vertical axis type

Fig. 2 Comparison

of permissible


For the vertical axis ball screw, which head load is constantly applied, a high load capacity ball screw is required. A high load capacity type with compact design is available for the nut model I and II in the dimension table. For details, please consult NSK.

(4) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d•n value: HZC, HDC: 100000 or less HZF, HDF: 135000 or less

Criterion of maximum rotational speed: 3750 min⁻¹ Note: Please also review the critical speed. See "Technical Description: Permissible rotational speed" (Page B51) for details.

(5) Other specifications

For other specifications not listed in the dimension tables such as high-speed, high-load capacity, and NSK K1 installed type, please consult NSK.

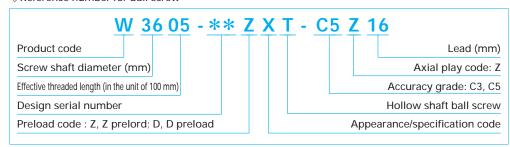
3. Design precautions

For general precautions regarding ball screws. refer to "Design Precautions" (Page B84) and "Handling Precautions" (Page B103).

4. Product categories

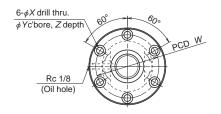
HMC type has two different preload systems with several models (Table 2).

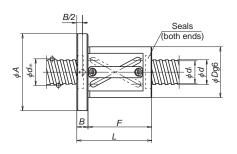
Table 2 HMC type product categories

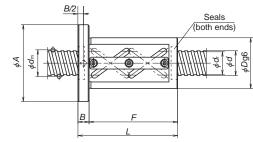

Nut models	Shape	Flange shape	Preload system
HZC		Flanged	Z preload
HZF		Circular I	(medium preload)
HDC		Flanged	D preload
HDF		Circular I	(medium preload)

7. Example of model number in dimension tables

A structure of "Model number" and "Reference number for ball screw" are as follows.

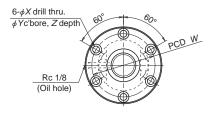


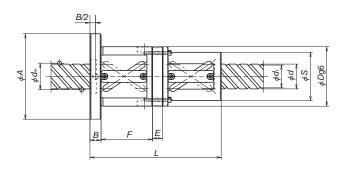



B113 B114

	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective	Nut		rating (N)	Axial r K (N	igidity
Model No.	uia.	Leau	Ball ula.	dia.	uia.	turns of balls	model	Dynamic	Static	,	ľ
	d	1	$D_{\scriptscriptstyle \mathrm{w}}$	d _m	d _r	Dalis	Ca	C_{0a}	5% <i>C</i> _a	10% <i>C</i> _a	
HZF3616-5 HZC3616-5		16	4.7625	36.5	31.7	5	I	40200	102000	1130	1420
HZF3620-3.5	36										
HZC3620-3.5		20	6.35	37	30.6	3.5	I	44000	98500	830	1050
HZF4016-5		16	4.7625	40.5	35.7	5	I	41200	112000	1230	1550
HZC4016-5			1.7020	10.0	00.7	Ŭ		11200	112000	1200	1000
HZF4020-3.5 HZC4020-3.5	40		6.35	41	34.6	3.5	I	46100	107000	900	1130
HZF4020-5		20	4.05	4.4	04.6	_		10100	450000	40/0	4500
HZC4020-5			6.35	41	34.6	5	I	62600	153000	1260	1590
HZF4516-5		16	4.7625	45.5	40.7	5	I	43800	127000	1340	1690
HZF4516-7.5 HZF4520-3.5		20				7.5		62100	191000	1960	2470
HZF4520-3.5 HZC4520-3.5			6.35	46	39.6	3.5	I	47600	120000	990	1240
HZF4520-5	45		6.35	46	39.6	5	п	64700	170000	1380	1740
HZC4520-5			0.55	40	37.0	3		04700	170000	1300	1740
HZF4525-3.5 HZC4525-3.5		25	7.1438	46.5	39.3	3.5	I	56800	137000	1010	1280
HZF5020-3.5			6.35	51	44.6	3.5	I	50400	133000	1080	1360
HZC5020-3.5 HZF5020-5		20									
HZC5020-5			6.35	51	44.6	5	I	68500	191000	1520	1910
HZF5025-3.5	50		7.1438	51.5	44.3	3.5	I	58900	152000	1100	1390
HZC5025-3.5	30	25	7.1430	31.3	77.5	3.5	-	30700	132000	1100	1370
HZF5025-5 HZC5025-5		23	7.1438	51.5	44.3	5	I	80100	216000	1540	1940
HZF5030-3.5	30		7.4.400			0.5		50005	150005	1100	1000
HZC5030-3.5			7.1438	51.5	44.3	3.5	I	58900	152000	1100	1390
HZF5520-3.5		20	6.35	56	49.6	3.5	I	51600	145000	1150	1450
HZF5520-5		20	6.35	56	49.6	5	I	70200	208000	1630	2050
HZF5525-3.5	55	25	7.1438	56.5	49.3	3.5	I	62600	165000	1190	1560
HZF5525-5			7.1438	56.5	49.3	5	I	85000	238000	1680	2120
HZF5530-3.5		30	7.1438	56.5	49.3	3.5	I	62600	165000	1190	1560

Nut model I (Offset preload)


Nut model I (Offset preload)


length. L 134 121	78 71 94 78 79	A 120 113 136 120	Ball Flange width B	nut dimens Nut length <i>F</i> 116	Bolt I	nole demen	sions	Bolt hole PCD	Max. feeding speed
length. L 134 121	78 71 94 78	A 120 113 136	width <i>B</i>	F	X			PCD	speed
134 121	78 71 94 78	120 113 136	В			Υ	7		
134 121	78 71 94 78	120 113 136				1		W	(m/min)
134	71 94 78	113 136	18	116				98	60
121	78				11	17.5	11	91	44
		120	10	100	4.4	47.5	1.1	114	75
	79	120	18	103	11	17.5	11	98	56
134		121	18	116	11	17.5	11	99	54
	76	118	10	110	11	17.5	11	96	40
121 I	96	138	18	103	11	17.5	11	116	67
	82	124				.,,,,		102	50
161 I	96	138	18	143	11	17.5	11	116	67
	82	124	10	11/	4.4	17.5	11	102	50
	82	124	18	116	11	17.5	11	102	48
	98	128 140	22	165	14	20	13	104 118	48 60
122 I	88	130	18	104	11	17.5	11	108	44
	98	140						118	60
167)	88	130	18	144	11	17.5	11	108	44
1	01	143						121	75
1/1	92	134	18	123	11	17.5	11	112	56
100 1	01	143	10	101		47.5		121	54
122 '	95	137	18	104	11	17.5	11	115	40
162	01	143	18	144	11	17.5	11	121	54
102	95	137	10	144	11	17.5	11	115	40
141	03	145	18	123	11	17.5	11	123	67
	98	140	10	123		17.5	11	118	50
101	03	145	18	173	11	17.5	11	123	67
	98	140						118	50
150	03	145	18	141	11	17.5	11	123	81
	98	140						118	60
	03	145	18	104	11	17.5	11	123	49
	03	145	18	144	11	17.5	11	123	49
	05 05	147	18 18	123 173	11 11	17.5 17.5	11 11	125 125	61
	05	147	18	1/3	11	17.5	11	125	73
109	03	147	10	141	11	17.5	- 11	120	73

B115 B116

Remarks 1. Ball screws of 32 or 36 mm lead have triple start threads. Others have double start threads.

2. Rigidity listed under the 5%Ca column is when a 5% dynamic load rating is applied as preload. Similarly, those listed under the 10%Ca column means a 10% dynamic load rating is applied.

Nut model **I** (Double nut spacer, preload) (the figure indicates use of double start threads)

Model No.	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of	Nut	Basic load Dynamic	rating (N) Static	Axial r K (N.	
woder no.	d	1	$D_{\rm w}$	dia. d _m	d,	balls model	C _a	C_{0a}	5% <i>C</i> _a	10% <i>C</i> _a	
HDF3620-5											
HDC3620-5	36	20	6.35	37	30.6	5	Ш	59800	138000	1160	1460
HDF4025-5						_	_				
HDC4025-5		25	7.1438	41.5	34.3	5	Ⅲ	74000	175000	1320	1660
HDF4030-5		20	7.1.100	44.5	24.0	_		7.4000	175000	1000	1//0
HDC4030-5	40	30	7.1438	41.5	34.3	5	Ш	74000	175000	1320	1660
HDF4032-7.5		20	/ 25	41	247	7.	π	00700	220000	1000	2420
HDC4032-7.5		32	6.35	41	34.6	7.5	ш	88700	230000	1920	2420
HDF4036-4.5		36	6.35	41	34.6	4.5	Ш	57200	138000	1170	1480
HDF4525-5		25	7.1438	46.5	39.3	5	ш	77200	197000	1430	1800
HDC4525-5		25	7.1438	46.5	39.3	5	Ш	77200	197000	1430	1800
HDF4530-5		30	7.1438	46.5	39.3	5	ш	77200	197000	1430	1800
HDC4530-5	45	30	7.1430	40.3	39.3	5	ш	77200	197000	1430	1600
HDF4532-7.5		32	6.35	46	39.6	7.5	ш	91700	256000	2090	2630
HDC4532-7.5		52	0.55	40	37.0	7.5		71700	230000	2070	2030
HDF4536-4.5		36	6.35	46	39.6	4.5	Ш	59100	155000	1280	1620
HDF5030-5		30	7.1438	51.5	44.3	5	ш	80100	216000	1540	1940
HDC5030-5	E0.	30	7.1438	31.5	44.3	5	Ш	80100	210000	1540	1940
HDF5032-7.5	50	22	/ 25	F1	447	7.5	ш	07100	20/000	2270	20/0
HDC5032-7.5		32	6.35	51	44.6	7.5	Ш	97100	286000	2270	2860
HDF5530-5	55	30	7.1438	56.5	49.3	5	II	85000	238000	1680	2120
HDF5532-7.5	35	32	6.35	56	49.6	7.5	Ш	99500	313000	2420	3050

											Unit: mm
					nut dimen:					I	Max.
Nut entire length.	Niut	dia.	Flange dia.	Flange width	Nut length	Spacer dimensions	R	olt hole siz	70	Bolt hele PCD	feeding speed
L	D	S S	A	B	F	E	X	οπ ποιε 312 Υ	l z	W	(m/min)
	94	76	136			_				114	75
191	78	60	120	18	77	5	11	17.5	11	98	56
228.5	98	80	140	18	91	13.5	11	17.5	11	118	84
220.0	86	68	128	10	91	13.3	11	17.5	11	106	63
248	98	80	140	18	104	8	11	17.5	11	118	101
240	86	68	128	10	104	0	11	17.5	11	106	75
265	96	78	142	22	109	11	14	20	13	118	108
200	82	64	128	22	22 107	11	14	20	13	106	80
200	96	78	138	18	83	4	11	17.5	11	116	120
228.5	101	83	143	18	91	13.5	11	17.5	11	121	75
228.5	92	74	134	18	71	13.3	11	17.5	11	112	56
248	101	83	143	18	104	8	11	17.5	11	121	90
240	92	74	134	10	104	0	- 11	17.5	11	112	67
266	98	80	144	22	109	11	14	20	13	120	96
200	88	70	134	22	109	11	14	20	13	110	71
200	98	80	140	18	83	4	11	17.5	11	118	108
249	103	85	145	18	104	8	11	17.5	11	123	81
249	98	80	140	10	104	0	11	17.5	11	118	60
266	101	83	147	22	100	11	1.4	20	13	123	86
200	95	77	141	22	22 109	11	14	20	13	117	64
249	105	87	147	18	104	8	11	17.5	11	125	73
266	103	85	149	22	109	11	14	20	13	125	78

B117 B118

Remarks 1. Ball screws of 32 or 36 mm lead have triple start threads. Others have double start threads.

2. Rigidity listed under the 5%Ca column is when a 5% dynamic load rating is applied as preload. Similarly, those listed under the 10%Ca column means a 10% dynamic load rating is applied.

B-3-1.3 BSL Type for Miniature Lathe

1. Features

Prompt delivery

Screw shaft configuration and ball nut shape are standardized for prompt delivery.

High speed and low noise

Adoption of end-deflector recirculation system realized high-speed operation with low noise.

Excellent dust resistance

Thin plastic seal and specially designed ball grooves prevent the entry of foreign matters.

2. Specifications

(1) Recirculation system

End-deflector recirculation system has features of high-speed operation with low-noise, and compact ball nut. The structure of recirculation system is shown in Fig.1.

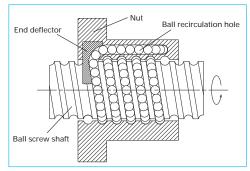


Fig. 1 Structure of end-deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	C5
Axial play	0 mm (Preloaded product)

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d·n value: 180 000 or less Criterion of maximum rotational speed

: 4 000 min⁻¹

Note: Please also review the critical speed.

See "Technical Description: Permissible rotational speed" (Page B51) for details.

(4) Options

Optional NSK K1 lubrication unit, molded from resin and impregnated with lubrication oil, supplies fresh oil onto ball rolling surface, ensuring long-term, maintenance-free operation. Please consult NSK when using NSK K1.

3. Design Precautions

When designing the screw shaft end, one end of the screw must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

Special bearings which have higher-load carrying capacity are available.

For general precautions regarding ball screws, refer to "Design Precautions" (Page B84) and "Handling Precautions" (Page B103).

4. Product categories

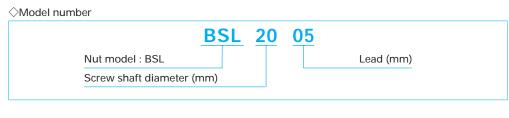
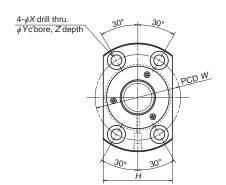

The BSL type has a model as follows.

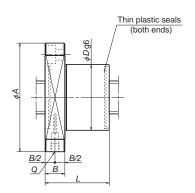
Table 2 BSL type product categories

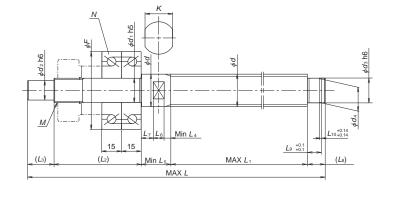
Nut models	Shape	Flange shape	Preload system
BSL		Circular II	P Preload (Slight preload)

5. Example of model number in dimension table

A structure of "Model number" and "Reference number for ball screw" are as follows.




6. Handling Precautions


Maximum operating temperature: 80°C If using NSK K1, operating temperature should not exceed 50°C. Refer to "Designing Precautions" (Page B84).

B119 B120

			N	1ain fa	ctor							Ball r	nut d	Ball nut dimensions							
	Shaft	Lead	Ball dia.	Ball	Root	Basic load	rating (N)	Ext	erna	l dim	ensi	ons	Bolt	hole c	limer	nsions	Oil hole				
Model No.	dia.			circle dia.	dia.	Dynamic	Static														
	d	1	$D_{\rm w}$	d _m	d,	C _a	$C_{\scriptscriptstyle \mathrm{Oa}}$	D	Α	Н	В	L	W	Χ	Υ	Ζ	Q	d ₁			
BSL2005	20	5	3.175	20.5	17.2	8920	16300	36	63	38	12	37	49		11	6.5	M6×1.0	15			
BSL2006	20	6	3.9688	20.5	16.4	11900	20000	40	65	42	12	45	51	6.6	11	0.5		15			
BSL2505		5	3.175	25.5	22.2	9900	20500	40	65	42		38	51								
BSL2506	٦٢	6	3.9688	25.5	21.4	13300	25200	43	69	45	10	44	55	, ,	11	/ -					
BSL2508	25	8	4.7625	25.5	20.5	17100	30100	46	72	48	12	55	58	6.6	11	6.5	M6×1.0	20			
BSL2510		10	4.7625	25.5	20.5	17100	30100	46	72	48		65	58								
BSL3210	22	10	6.35	33	26.4	27700	F1200	/1	02	/ 2	10	68	7/	0	1 4	0.5	N441 O	٦٢			
BSL3212	32	12	6.35	33	26.4	27700	51300	61	93	63	18	77	76	9	14	8.5	M6×1.0	25			

Remarks 1. The right turn screw is standard. Please consult NSK for left turn screw. 2. Shaft dimensions are for reference. Shaft length L_1 and shaft entire length L are the maximum length.

																		U	nit: mm	
	Shaft configuration and dimensions (reference)																			
						SI	naft (dime	nsio	n						Exclusive bear	Exclusive bearing N		Permissible	
$d_{\scriptscriptstyle 2}$	d ₃	d_4	L	L ₁	L ₂	L ₃	L ₄	L _s	L ₆	L ₇	L _s	L,	L ₁₀	К	М	Bearing reference number	F	ldynamic load rating C _a	axial load (N)	
12	15	14.3 0.11	500	500	66	20	3	20 21	8	9	14	10.15	1.15	17	M15×1.0	15TAC47B	47	21900		В
		0					3	27 28												12
15	20	19 ^{-0.21}	700	700	71	27	5	29	10	14	19	15.35	1.35	22	M20×1.0	20TAC62B	62	28500	40500	
							5	29												
20	25	23.9 0.21	1000	800	71	33	6 7	33	12	15	20	16.35	1.35	27	M25×1.5	25TAC62B	62	28500	40500	

B121 B122

B-3-1.4.1 HTF-SRC Type for High-Load Drive

1. Features

High-speed operation and low noise

The SRC recirculation system contributes to more than twice the feed speed (d·n value: 140000 and 160000) and the noise level of less than 8 to 10 dB (half to 1/3 of noise) compared with the HTF type.

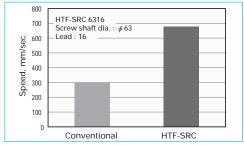


Fig. 1 Feed speed comparison

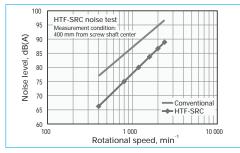


Fig. 2 Noise level comparison

2. Specifications

(1) Recirculation system

The SRC recirculation system picks up balls in the direction they are moving, and contributed high-speed operation with low noise. Structure of recirculation system is as follows.

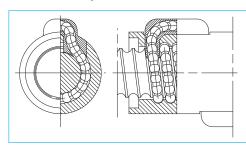


Fig. 3 Structure of SRC recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	Ct7
Axial play	S,0.020 mm or less; N,0.050 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Table 2 Allowable d·n value and the criterion of maximum rotational speed

Lead	14, 16 mm	20, 25 mm
	160000 or less	140000 or less
Criterion of maximum rotational speed	4225	min ⁻¹

d·n value: Shaft dia. d[mm] × Rotational speed n[min⁻¹]

Note: Please also review the critical speed. See "Technical Description: Permissible rotational speed" (Page B51) for details.

(4) Ball retaining piece NSK S1™

The NSK S1, resin retainers between the balls, significantly extend ball screw durability to the moment load.

(5) Other

Please consult NSK for special requests, such as the addition of a recirculation circuit to increase the load capacity, or the arrangement of all recirculation circuits on the same phase of ball nut circumference

3. Design Precautions

The HTF-SRC type is designed to distribute the load uniformly to the load balls for high-load drive mechanism. We recommend installing the ball screws in the way shown below for the full use of this characteristic.

In addition, we will make full analysis when you use the HTF-SRC type under extreme conditions such as application of extremely high load or operating in short stroke. Contact NSK about operating conditions. (Refer to page B31)

When designing the screw shaft end, one end

of the screw shaft must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

- · Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

For general precautions regarding ball screws, refer to "Design Precautions" (Page B84) and "Handling Precautions" (Page B103).

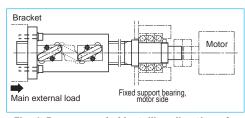
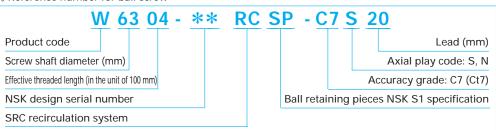


Fig. 4 Recommended installing direction of high-load drive ball screw

4. Product categories

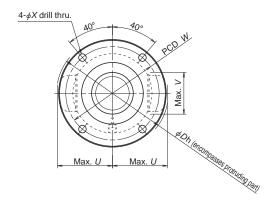
The HTF-SRC type has a model as follows.

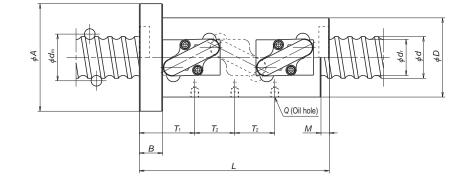

Table 3 HTF-SRC type product categories

Nut models	Shape	Flange shape	Preload system
HTF-SRC		Flanged Circular I	Non-preload Slight axial play

5. Example of model number in dimension tables

A structure of "Model number" and "Reference number for ball screw" are as follows.




6. Handling Precautions

Maximum operating temperature: 70°C (at outside diameter of ball nut)

Please consult NSK in the case of a short stroke operation less than or equal to four times the length of the ball screw lead.

Unit: mm

	Shaft	Lead	Ball dia.	Ball	Root	Effective turns of balls	Basic load	rating (kN)	Allowable
Model No.	dia.			circle	dia.	Turns	Dynamic	Static	axial load
Model No.				dia.		×			
	d	1	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	$C_{\rm a}$	C_{0a}	(kN)
HTF-SRC5014-7.5	50	14	9.525	51.4	41.6	2.5×3	211	623	73.1
HTF-SRC5016-7.5	50	16	12.7	52	39	2.5X3	306	818	91.1
HTF-SRC6316-7.5		16	12.7	65	52	2.5×3	343	1050	119.7
HTF-SRC6316-10.5	63	16	12.7	65	52	3.5×3	450	1450	167.6
HTF-SRC6320-7.5	03	20	15.875	65.5	49	2.5×3	457	1280	147.1
HTF-SRC6325-10.5		25	15.875	65.5	49	3.5×3	600	1770	170.0
HTF-SRC8016-10.5		16	12.7	82	69	3.5×3	501	1870	221.3
HTF-SRC8020-10.5	80	20	15.875	82.5	66	3.5×3	671	2300	267.4
HTF-SRC8025-7.5		25	19.05	83	63	2.5×3	632	1960	221.1
HTF-SRC10020-10.5	100	20	15.875	102.5	86	3.5×3	749	2910	345.9
HTF-SRC10025-10.5	100	25	19.05	103	83	3.0X3	964	3430	408.4
HTF-SRC12020-7.5	120	20	15.875	122.5	106	2.5×3	621	2550	304.6
HTF-SRC12025-10.5	120	25	19.05	123	103	3.5×3	1040	4200	498.0

Remarks 1. The right hand screw is the standard. For specifications on left hand screws, contact NSK.
2. The ball nut length with no seals is shorter by M than that length of a ball nut with seals.
3. Please consult NSK if load exceeds the allowable axial load.

- 4. The allowable axial load is determined in accordance with the mounting conditions of ball screws recommended by NSK (Refer to page B124). If your mounting conditions differ from those provided, please consult NSK.

													O
					Ball	nut dim	ensions						Max.
Nut	Nut dia.	Flange	Flange	Seal	Bolt hole	Bolt hole	Drotrudir	ng tube dir	maneinne	Oil hole	Oil hole position		feeding
length.		dia.	width	width	PCD	size	TTOttuuli	ig tube uii					speed
L	D	Α	В	М	W	X	U	V	Dh	Q	T_1	T_2	(mm/sec)
202	80	114	28	10	97	9	54.5	46	111	M6×1	69	42	750
228	95	129	28	10	112	9	66	50	134	Rc1/8	74.5	48	860
228	105	139	28	10	122	9	72.5	50	148		74.5	48	680
276	105	139	28	10	122	9	72.5	50	148	D=1/0	74.5	64	680
279	117	157	32	12	137	11	80	62	163	Rc1/8	90	60	740
405	117	157	32	12	137	11	81.5	61	167		101.75	100	930
278	120	154	32	10	137	9	80	60	165		78.5	64	540
339	130	170	32	12	150	11	88	64	180	Rc1/8	90	80	590
347	145	185	40	17	165	11	99.5	73	202		111.75	75	730
339	145	185	32	12	165	11	97	78	199	D=1/0	90	80	470
422	159	199	40	17	179	11	108	79	220	Rc1/8	111.75	100	590
287	173	213	40	12	193		109.5	88	229	D : 1/0	98	60	390
421	173	213	40	17	193	11	116	92	238	Rc1/8	111.25	100	490

B125 B126

B-3-1.4.2 HTF-SRD Type for High-Load Drive

This product is patented by NSK.

1. Features

High-speed operation and low noise

Used with end deflectors, HTF-SRD type ball screws achieve the maximum feed speed of 1600 mm/s. The ball nut body surface is completely round, thus enabling well balanced ball nut rotation.

Double start thread structure which has more recirculation circuits, and large diameter balls contribute to have high load carrying capacity.

Low noise and compact design

End deflector system using a ball scooping mechanism in the direction of screw spiral offers smoother ball recirculation system, thus contributing to less than half the noise level compared with existing ball screws equipped with a return tube.

Compact, high-performance seal is available. Nut outside diameter is compact compare with the return tube recirculation system.

Also, compact, thin plastic seal is available. Nut outside diameter is compact compare with the return tube recirculation system.

2. Specifications

(1) Recirculation system

End-deflector recirculation system has features of high-speed operation with low-noise, and compact nut. The structure of recirculation parts are as follows.

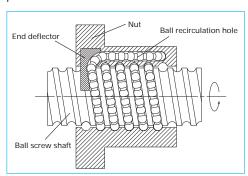


Fig. 1 Structure of End-deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	Ct7
Axial play	S, 0.020 mm or less; N, 0.050 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Table 2 Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value	120000 or less
Criterion of maximum rotational speed	2400 min ⁻¹

d·n value: Shaft dia. d[mm] x Rotational speed n[min-1]

Note: Please also review the critical speed. See "Technical Description: Permissible rotational speed" (Page B51) for details.

(4) Ball retaining piece NSK S1™

The NSK S1, resin retainers between the balls, significantly extend ball screw durability to the moment load.

3. Design Precautions

The HTF-SRD type is designed to distribute the load uniformly to the load balls for high-load drive mechanism. We recommend installing the ball screws in the way shown below for the full use of this characteristic.

In addition, we will make full analysis when you use the HTF-SRC type under extreme conditions such as application of extremely high load or operating in short stroke. Contact NSK about operating conditions. (Refer to page B31)

When designing the screw shaft end, one end

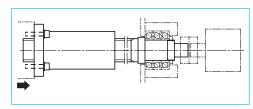


Fig. 2 Recommended installing direction of high-load drive ball screw

of the screw shaft must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

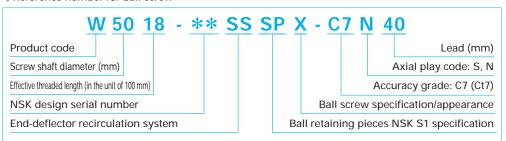
- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

For general precautions regarding ball screws, refer to "Design Precautions" (Page B84) and

"Handling Precautions" (Page B103).

4. Product categories

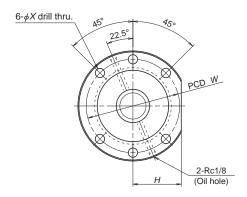
The HTF-SRC type has a model as follows.

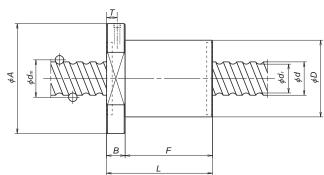

Table 3 HTF-SRD type product categories

Nut models	Shape	Flange shape	Preload system
HTF-SRD	0,,,,,,	Semicircular II	Non-preload Slight axial play

5. Example of model number in dimension tables

A structure of "Model number" and "Reference number for ball screw" are as follows.


6. Handling Precautions


Maximum operating temperature: 70°C (at outside diameter of ball nut)

Please consult NSK in the case of a short stroke

operation less than or equal to four times the length of the ball screw lead.

	Shaft dia.	Lead	Ball dia.	Ball	Root	Effective	Basic load	rating (kN)	Allowable
Model No.				circle dia.	dia.	turns	Dynamic	Static	axial load
	d	1	$D_{\rm w}$	d _m	d _r	of balls	$C_{\rm a}$	$C_{\scriptscriptstyle 0a}$	(kN)
HTF-SRD5040-6E	50	40	12.7	52	39	6	195	491	67.6
HTF-SRD5040-8E	50	40	12.7	52	39	8	255	679	92
HTF-SRD6332-4E		32				4	233	590	72.6
HTF-SRD6340-6E	63	40	15.875	65.5	49	6	291	768	106.3
HTF-SRD6340-8E		40				8	381	1060	144.7
HTF-SRD8050-6E	80	50	19.05	83	63	6	401	1180	163.7
HTF-SRD8050-8E	80	50	19.05	83	03	8	526	1630	224.1

Remarks 1. The right hand screw is the standard. For specifications on left hand screws, contact NSK.

2. Please consult NSK if load exceeds the allowable axial load.

The allowable axial load is determined in accordance with the mounting conditions of ball screws recommended by NSK (Refer to page B127). If your mounting conditions differ from those provided, please consult NSK.

Pφ				 Q 0 0 0
٢	,	В	E F	

Unit: mm

									Max.	•
	Ball nut dimensions									ľ
Nut entire	Nut dia.	Flange	Notch	Flange	Nut	Bolt hole	Bolt hole	Oil hole	feeding	
length		dia.	size	width	length	PCD	size	position	speed	
L	D	Α	Н	В	F	W	Χ	T	(mm/sec)	E
159	115	165	72.5	28	131	140	14	16	1600	1
199	115	105	/2.5	28	171	140	14	10	1000	
176		190	85		144	165	14		1000	
163	140	200	00	32	131	170	10	18	1050	
203		200	90		171	170	18		1250	
194	175	250	110	40	154	210	22	10	1050	l
244	1/5	175 250 110 40		40	204	210	22	18	1250	

B129 B130

R

B-3-1.4.3 HTF Type for high load drive

This product is patented by NSK.

1. Features

High load carrying capacity

Has an ideal design to bear heavy load. It significantly enhances load rating as well as maximum permissible load.

Abundant diameter / lead combinations Twenty five types of shaft diameter/lead combinations are available. Please consult NSK

combinations are available. Please consult NSK when you require other combination.

Respond to various shaft end configuration
 Additional ball screw shaft machining is not required. HTF type responds to various shaft ends that convey high torque.

HTF type can be used with: involute spline (JIS B 1603), straight sided spline (JIS B 1601), Key seat, etc.

2. Specifications

(1) Recirculation system

Structure of recirculation system is shown in Fig. 1.

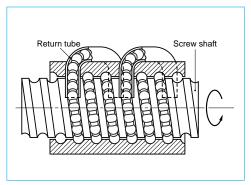


Fig. 1 Structure of return tube recirculation system

(2) Accuracy grade and axial play

The allowable standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

1	Accuracy grade	Ct7
	Axial play	S, 0.020 mm or under; N, 0.050 mm or under

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below. For higher-speed operation, HTF-SRC type is recommended.

Table 2 Allowable d•n value and the criterion of maximum rotational speed

Lead	t	– 20 mm	25 mm	30 – 32 mm
Allowable	Standard specification	70000 or less	70000 or less	50000 or less
d·n value	High-speed specification	100000 or less	-	-
Criterion of maximum	rotational speed		3125 min ⁻¹	

d•n value: Shaft dia. d [mm]×Rotational speed n [min⁻¹]

Note: Please also review the critical speed. See "Technical Description: Permissible rotational speed" (Page B51) for details.

(4) Ball retaining piece NSK S1[™]

The NSK S1, resin retainers between the balls, significantly extend ball screw durability to the moment load.

(5) Other

Please consult NSK for special requests, such as the addition of a recirculation circuit to increase the load capacity, or the arrangement of all recirculation circuits on the same phase of ball nut circumference.

3. Design precautions

For designing shaft end configuration, you should take into account that the HTF type ball screws are dedicated to high load drive.

The HTF type is designed to distribute the load uniformly to the load balls for high load drive mechanism. (This product is patented by NSK.) We recommend installing the ball screws in the way shown in Fig. 2 for the full use of this characteristic. In addition, we will make full analysis when you use the HTF type under extreme conditions such as application of extremely high load or operating in short stroke. Contact NSK about operating conditions. (Refer to page B31)

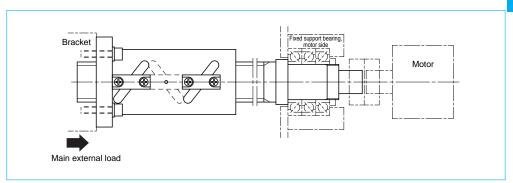
For general precautions regarding ball screws, refer to "Design Precautions" (Page B84) and "Handling Precautions" (Page B103).

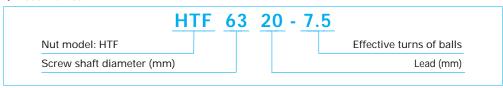
4. Product categories

The HTF type has a model as follows.

Table 3 HTF type product categories

Nut model	Shape	Flange shape	Preload system
HTF		Flanged Circular I	Non-preloaded Slight axial play



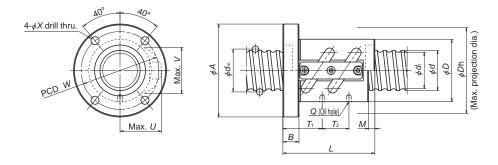

Fig. 2 Recommended installing direction of ball screws for high load drive

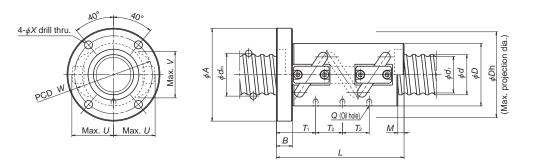
NSK

5. Example of model number in dimension table

A structure of "Model number" and "Reference number for ball screw" are as follows.

♦ Reference number for ball screw




6. Handling precautions

Please consult NSK in the case of a short stroke operation less than or equal to four times the length of the ball screw lead.

Maximum operating temperature: 70°C (at outside diameter of ball nut)

Nliit	model	Т

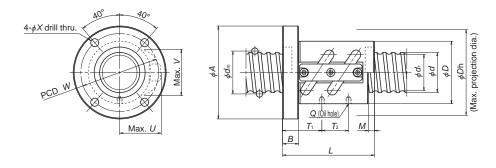
Model No.	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	Nut	Basic load Dynamic	rating (kN) Static	Permissible axial load
Wiodel No.	d	1	D_{w}	d _m	d _r	× Circuits	model	$C_{\rm a}$	C_{0a}	(kN)
HTF3210-5	32	10	7.144	33	25.6	2.5×2	I	71	169	20.3
HTF3610-5	36	10	7.144	37	29.6	2.5×2	I	76.9	191	23.4
HTF3612-5	30	12	7.938	37.25	29	2.582	1	90	228	28.3
HTF4010-7.5	40	10	7.144	41	33.6	2.5×3	п	120	344	39.6
HTF4012-7.5	40	12	7.938	41.25	33	2.583	ш	147	422	48
HTF4510-7.5	45	10	7.144	46	38.6	2.5×3	п	127	386	45.3
HTF4512-7.5	45	12	7.938	46.25	38	2.585	ш	156	473	55
HTF5010-7.5		10	7.144	51	43.6			133	435	51
HTF5012-7.5	50	12	7.938	51.25	43	2.5×3	п	164	525	62
HTF5014-7.5	30	14	9.525	51.5	41.7	2.585	ш	211	623	73.1
HTF5016-7.5		16	12.700	52	39			306	818	91.1
HTF5510-7.5		10	7.144	56	48.6			139	477	55.7
HTF5512-7.5	55	12	7.938	56.25	48	2.5×3	π	171	586	69.1
HTF5514-7.5	33	14	9.525	56.5	46.7	2.3/3		216	696	81.2
HTF5516-7.5		16	12.700	57	44			319	922	101.9
HTF6312-7.5		12	7.938	64.25	56	2.5×3		181	668	80.3
HTF6314-7.5		14	9.525	64.5	54.7	2.5×3		233	800	93.5
HTF6316-7.5	63	16	12.700	65	52	2.5×3	I	343	1050	119.7
HTF6316-10.5		16	12.700	65	52	3.5×3		450	1450	167.6
HTF6320-7.5		20	15.875	66	49	2.5×3		457	1320	147.3

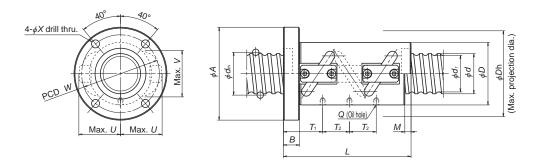
Remarks 1. The right hand screw is the standard. "L" is added to the end of the model code for the left turn screw.

Nut model I

Unit: mm

					Ball	nut dime	ensions						Max. feeding
Nut	Nut	Flange	Flange			Bolt hole	Tube	orojectin	g size	Oil hole	Oil hole	positions	speed
length	appearance D	appearance A	width B	dimensions M	PCD W	size X	IJ	V	Dh	0	T.	T ₂	(mm/sec)
103	58	92	18	7	75	9	40.5	42	82	M6×1	36.5	30	520
103	62	96	18	7	79	9	43	45	87	M6×1	36.5	30	460
123	66	100	22	8	83	9	46.5	46	94	IVIOXI	44	36	550
143	66	100	18	7	83	9	45	48	91	M6×1	46.5	30	410
171	70	104	22	8	87	7	47.5	50	96	IVIOAT	56	36	500
143	70	104	18	7	87	9	47	52	95	M6×1	46.5	30	370
171	72	106	22	8	89	7	49.5	54	100	IVIOAT	56	36	440
143	75	109	18	7	92		49	57	99	M6×1	46.5	30	330
171	77	111	22	8	94	9	52	59	105	M6×1	56	36	400
200	80	114	28	10	97	7	55.5	61	112	M6×1	66.5	42	460
223	95	129	28	10	112		68	66	137	Rc1/8	73	48	530
143	80	114	18	7	97		51.5	62	104	M6×1	46.5	30	300
171	82	116	22	8	99	9	54.5	63	110	M6×1	56	36	360
200	85	119	28	10	102	, ,	57.5	65	116	M6×1	66.5	42	420
223	99	133	28	10	116		70	70	141	Rc1/8	73	48	480
171	92	126	22	8	109	9	58.5	70	118	M6×1	56	36	310
200	94	128	28	10	111	9	61.5	72	124	M6×1	66.5	42	370
223	105	139	28	10	122	9	72.5	76	146	Rc1/8	73	48	420
271	105	139	28	10	122	9	72.5	76	146	Rc1/8	73	64	420
273	117	157	32	12	137	11	83.5	81	168	Rc1/8	88	60	520


3. Please consult NSK if load exceeds the allowable axial load.


B135 B136

^{2.} If there is no seal, the nut length is shorter by the lengths of "M" than those with a seal.

The allowable axial load is determined in accordance with the mounting conditions of ball screws recommended by NSK (Refer to page B132). If your mounting conditions differ from those provided, please consult NSK.

		_
Nut	model	Ι

Model No.	Shaft dia.	Lead	Ball dia.	Ball circle dia.		of balls Turns ×	Nut model	Dynamic	Otatio	Permissible axial load (kN)
	d	1	$D_{\rm w}$	$d_{\scriptscriptstyle m}$	d_{r}	Circuits		$C_{\rm a}$	C_{0a}	, ,
HTF8014-7.5		14	9.525	81.5	71.7	2.5×3		261	1020	121.9
HTF8016-7.5		16	12.7	82	69	2.5×3		382	1340	159
HTF8016-10.5	80	16	12.7	82	69	3.5×3	п	501	1870	221.3
HTF8020-7.5	00	20	15.875	83	66	2.5×3		511	1690	192.6
HTF8020-10.5		20	15.875	83	66	3.5×3		670	2300	272.4
HTF8025-7.5		25	19.05	84	64	2.5×3		663	2020	228.3
HTF10016-7.5		16	12.7	102	89	2.5×3		423	1710	202.3
HTF10020-7.5	100	20	15.875	103	86	2.5×3	п	571	2140	248.6
HTF10025-7.5	100	25	19.05	104	84	2.5×3	"	734	2550	293.2
HTF10025-10.5		25	19.05	104	84	3.5×3		962	3490	409.1
HTF12016-7.5		16	12.7	122	109	2.5×3		457	2050	248.9
HTF12020-7.5	120	20	15.875	123	106	2.5×3	п	620	2550	304.7
HTF12025-7.5	120	25	19.05	124	104	2.5×3	"	792	3080	358.2
HTF12025-10.5		25	19.05	124	104	3.5×3		1040	4200	505.7
HTF14020-7.5		20	15.875	143	126			663	3000	360.9
HTF14025-7.5	140	25	19.05	144	124	2.5×3	п	842	3610	423.1
HTF14030-7.5	140	30	22.225	144	121	2.3/3	"	1050	4110	487.1
HTF14032-7.5		32	25.4	144	118			1270	4740	549.3
HTF16025-7.5		25	19.05	164	144			909	4140	495.3
HTF16030-7.5	160	30	22.225	164	141	2.5×3	I	1120	4760	564.3
HTF16032-7.5		32	25.4	164	138			1330	5370	636
HTF20030-7.5	200	30	22.225	204	181	2.5×3	п	1240	5960	718.8
HTF20032-7.5	200	32	25.4	204	178	2.383	п	1470	6840	809.4

Remarks 1. The right hand screw is the standard. "L" is added to the end of the model code for the left turn screw.

Nut model I

Unit: mm

						nut dim							Max. feeding
Nut	Nut	Flange	Flange			Bolt hole	Tube i	orojectin	a size	Oil hole	Oil hole i	positions	speed
length	appearance			dimensions		size			0		·		'
L	D	Α	В	М	W	Χ	U	V	Dh	Q	T_1	T_2	(mm/sec)
200	116	150	28	10	133	9	72	87	146	M6×1	66.5	42	290
227	120	154	32	10	137	9	80	92	161	Rc1/8	77	48	330
275	120	154	32	10	137	9	80	92	161	Rc1/8	77	64	330
273	130	170	32	12	150	11	89.5	96	181	Rc1/8	88	60	410
333	130	170	32	12	150	11	89.5	96	181	Rc1/8	88	80	410
338	145	185	40	17	165	11	102	100	206	Rc1/8	109.25	75	360
227	145	185	32	10	165		91	109	184		77	48	260
273	145	185	32	12	165	11	97.5	114	196	Rc1/8	88	60	330
338	159	199	40	17	179	''	108.5	118	219	RC1/8	109.25	75	290
413	159	199	40	17	179		108.5	118	219		109.25	100	290
227	173	213	32	10	193		104	126	210		77	48	220
281	173	213	40	12	193	11	111	131	223	Rc1/8	96	60	270
338	173	213	40	17	193		116	135	233	RC1/8	109.25	75	240
413	173	213	40	17	193		116	135	233		109.25	100	240
281	204	250	40	12	226	14	122.5	148	248		96	60	230
338	204	250	40	17	226	14	127.5	153	258	D-1/0	109.25	75	200
411	222	282	50	22	252	18	139	160	281	Rc1/8	134.5	90	170
465	222	296	70	22	259	22	148	163	299		166.5	96	190
338	234	280	40	17	256	14	138	173	279		109.25	75	180
411	234	294	50	22	264	18	148	177	299	Rc1/8	134.5	90	150
465	234	308	70	22	271	22	152	181	307		166.5	96	160
411	290	350	50	22	320	18	178	212	359	D.1/C	134.5	90	120
465	290	364	70	22	327	22	182	215	367	Rc1/8	166.5	96	130

3. Please consult NSK if load exceeds the allowable axial load.

B137 B138

^{2.} If there is no seal, the nut length is shorter by the lengths of "M" than those with a seal.

^{4.} The allowable axial load is determined in accordance with the mounting conditions of ball screws recommended by NSK (Refer to page B132). If your mounting conditions differ from those provided, please consult NSK.

B-3-1.5 VSS Type for Contaminated Environments

1. Features

High dust-resistance

Specially profiled screw shaft grooves and high performance seals prevent the entry of fine contaminants. Reduces particle penetration rate to less than 1/15 of existing standard products.

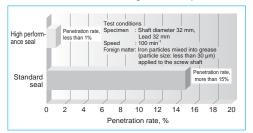


Fig. 1 Particle penetration rate



Fig. 2 Contamination before and after particle penetration test

Long life

High performance seals extend ball screw durability under severely contaminated environments with iron powder.

Extreme durability tests under contaminated environments show the durability of the VSS type extends more than four times longer than our existing type with a standard seal.

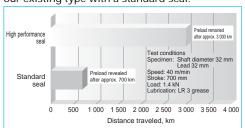


Fig. 3 Extreme durability test results using iron particles

High speed

For ultimate smoothness of ball recirculation, the internal ball recirculation system enables high-speed operation at a maximum of $d \cdot n$

150 000. Large lead specifications allow highspeeds of 150 m/min.

Low-noise

Reduces noise level by more than 6 dB compared with our conventional tube-type ball screws, thereby providing low-noise and good noise tone features.

Compact size

Ball nut external diameter is up to 25% smaller than our conventional models.

2. Specifications

(1) Recirculation system

End-deflector recirculation system has features of high-speed operation with low-noise, and compact ball nut. The structure of recirculation system is shown in Fig.4.

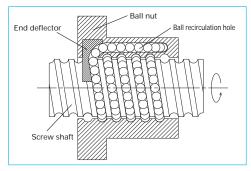


Fig. 4 Structure of end deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	C5
	Z, 0 mm (Preloaded)
Axial play	T, 0.005 mm or less; S, 0.020 mm or less

(3) Allowable d•n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d·n value: 150000 or less

Criterion of maximum rotational speed: 3000 min⁻¹ Note: Please also review critical speed. See "Technical Description: Permissible rotational speed" (Page B51) for details.

(4) High performance seal

High performance seal (Japan patents: 3646452, 3692203) with special lip that contacts screw shaft cross-section and prevents entry of fine contaminants.

(5) Lubrication unit

Incorporates NSK K1 Iubrication unit to sufficiently lubricate the high performance seal lip, reduce friction, and improve durability.

(6) optional

Non-contact metal protector that traces the ball screw grooves and safeguards the seal against high-temperature foreign matter.

3. Design precaution

When designing the screw shaft end, one end of

the screw must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

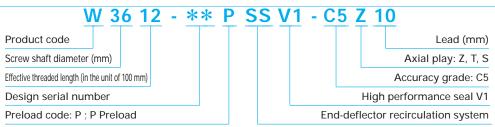
- · Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

High performance seals may increase torque, which may in turn increase temperature. Please consult with NSK prior to usage under severe service conditions

For general precautions regarding ball screws, refer to "Design Precautions" (Page B84) and "Handling Precautions" (Page B103).

4. Product categories

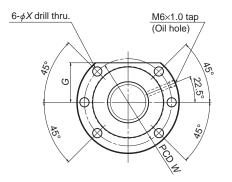
VSS Type has the model as follows.

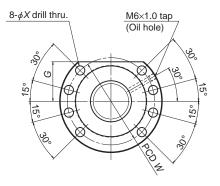

Table 2 VSS type product categories

Nut model	Shape	Flange shape	Preload system
VSS		Circular II	Non-preload, Slight axial play
V33		Circulat II	P preload (light preload)

5. Example of model number in dimension table

A structure of "Model number" and "Reference number for ball screw" are as follows.


6. Handling Precautions


Maximum operating temperature: 50°C Maximum momentary operating temperature: 80°C

Chemical precautions: Never expose the ball screw to grease-removing organic solvents such as hexane or thinner. Never immerse the ball screw in kerosene or rust preventive oils which contain kerosene.

140

View X-X

Flange TYPE I

Flange TYPE II

	Shaft	Lead	Ball dia.	Ball circle	Root	Effective		Basic load	rating (N)	Axial
Model No.	dia.			dia.	dia.	turns of	Flange	Dynamic	Static	rigidity
iviodei ivo.						balls	shape			K
	d	1	$D_{\rm w}$	d _m	$d_{\scriptscriptstyle \mathrm{r}}$	Turns		$C_{\rm a}$	C_{0a}	(N/µm)
VSS3210-6E		10				6		43300	111000	682
VSS3216-5E	32	16	5.5563	33	27.5	5	I	36700	90800	563
VSS3220-5E	32	20	5.5563			5		36700	90800	561
VSS3232-4E		32				4		25000	58300	387
VSS4040-4E	40	40	6.35	41	34.4	4	I	33600	83900	472
VSS5050-4E	50	50	6.35	51	44.4	4	I	37300	105000	559

- Remarks 1. The right hand screw is the standard. For specifications on left hand screws, contact NSK.
 - 2. Rigidity in the Table is theoretical value obtained from the elastic deformation between screw groove and ball when the preload is 1.5% of the basic dynamic load rating, and axial load is applied to it. Refer to "Technical Description" (Page B41) if axial load and preload differs from the conditions above, or when considering change in the deformation of the ball nut itself.
 - 3. Products with axial play may have a partially negative play (preloaded condition) depending on screw length. Refer to "Manufacturing range of effective screw length in combination of accuracy grade and axial play. (Page B20)"

├ ─X	<u>B/2</u>		<i>B</i> /2	High perfor (both ends	mance Seals + s)	- K1 + (F	Protector)
φφ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ		•					Po
ı⊢x	VC_	В.	-	L	F	vc	

Unit: mm

			Ball	nut dimens	ions				
Nut entire	Nut outside	Flange outside	Flange	Nut	Notch size	Seal installation	Bolt hole	Bolt hole	Maximum
length	diameter	diameter	width	length		dimensions	PCD	dimensions	shaft length
L	D	Α	В	F	G	VC	W	X	
132				89.5					
150	F/	07	10	107.5	2.4	24.5	71		2000
169	56	86	18	126.5	34	24.5	71	9	2800
122				79.5					
144	70	100	22	94	38.5	27.5	85	9	3800
164	82	118	22	114.5	46	27.5	100	11	5000

B141 B142

B-3-1.6 TW Series for Twin-Drive Systems

(1) Features

Variations in lead accuracy and preload torque between two ball screws, which consists of a unit of TW Series, are controlled, resulting improved travel accuracy and ball screw operating lifetime. Fig. 1 shows measures variation in lead accuracy while Fig. 2 displays an example of variation in thermal expansion between the two ball screws. Fig. 3 is a schematic diagram comparing travel accuracy between the TW Series and conventional model.

High rigidity and long lifetime

Twin-drive systems are superior to single-drive systems in system rigidity, supporting the design of long-life feeding mechanism even if they make the shaft diameter one size smaller.

- High responsiveness to positioning commands Twin-drive systems permit the use of screw shaft diameters that are one size smaller, thereby reducing screw shaft inertia by up to 50%, offering high responsiveness to positioning commands.
- Improved high-speed capability and noise level Twin-drive systems allow the use of smaller screw diameters, resulting in no increase in the level of noise. The end-deflector recirculation system significantly improves high-speed capability and noise level compared with the existing return tube recirculation system, offering high-speed feeding of up to 1200 mm/min (shaft dia. 40 mm, lead 30 mm, rotational speed 4000 min⁻¹).

(2) Specifications

Table 1 Specifications of twin-drive systems

Recirculation	End-deflector recirculation system,
systems	Return tube system, Deflector system
Shaft dia.	φ 32 – 63 mm
Lead	10 – 30 mm
Accuracy grade	C5
Screw shaft length	3 m or less

(3) Optional specifications

- Hollow shaft ball screw
- Provides high accuracy through the use of forced cooling. Please refer to hollow shaft ball screw (page B144) for more details.

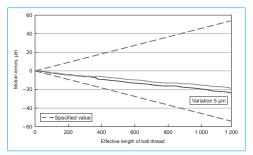


Fig. 1 Example of measured variation in lead accuracy

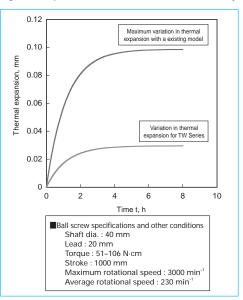


Fig. 2 Calculation example of the variation of thermal expansion

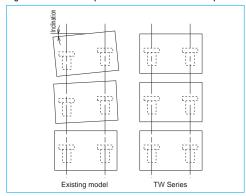


Fig. 3 Schematic diagram of travel accuracy

B-3-1.7 Hollow Shaft Ball Screw for high accuracy machine tools

The increase in speed of the feeding mechanism for highly accurate positioning may require some measures against thermal expansion of the ball screw (forced cooling using hollow ball screw). NSK standardized hollowed screw shafts and shaft ends configuration (sealing section and support bearing seat). NSK recommends this as the most effective measure against thermal expansion.

1. Features

Stable positioning accuracy

Suppresses expansion of the ball screw shaft by rising temperature, and provides stable, precise positioning.

- Prevents displacement of various sections Minimizes deformation of the ball screw support bearings as well as of the machine base which is caused by thermal expansion of ball screw. Forced cooling keeps the heat from spreading to other sections, and prevents the processing table from deforming due to heat.
- Reduces warm-up time
 Temperature does not rise high, therefore cuts machine warm-up period.
- Maintains lubricant's effect
 Removes heat from the ball screw, deterring
 lubricant deterioration.
- Easy designing for installation

Use support bearing unit exclusive for NSK ball screws (high load capacity for machine tools, see Page B449) and seal unit (Page B147) to standardized shaft end. This makes designing of mounting ball screw easy.

2. Design precautions

Refer to HMC type, end-deflector recirculation system, return tube recirculation system, and deflector recirculation system for ball screw specifications. If the overall ball screw length exceeds 3000 mm, contact NSK. For general precautions regarding ball screw, refer to "Design Precautions" (Page B84) and "Handling precautions" (Page B497).

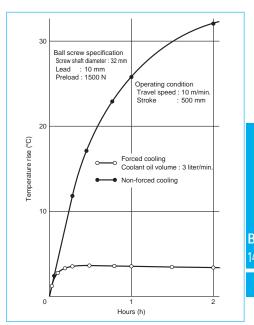
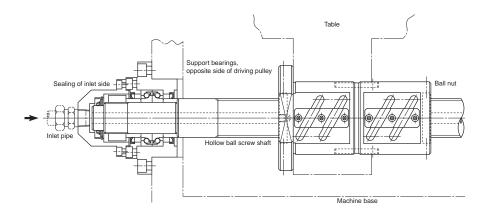
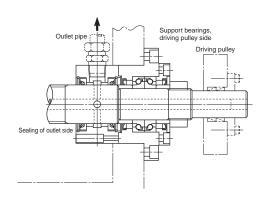
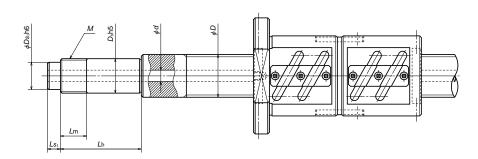


Fig. 1 Effect of forced cooling by hollow shaft ball screw

3. Model example of dimension table


A model number that indicates specification factors is structured as shown below.


 \Diamond Example of model



B143 B144

4. Example installation and standard dimensions

Hollow shaft ball	Screw	/ shaft		Bearing			Sea	ıling				
screw	Diameter	Hollow	Diameter	Lo	Lock nut Inlet Outlet							
Model No.	D	d	<i>D</i> b	М	<i>L</i> m	<i>L</i> b	Ds ₁	Ls ₁	Ds ₂	LS ₂	La	ds
H32-10	32	10	25	M25×1.5	26	89 104 119	20	15	32	60	25	6
H40-12	40	12	30	M30×1.5	26	89 104 119	25	15	40	60	25	7
						92						

30

107

122

32

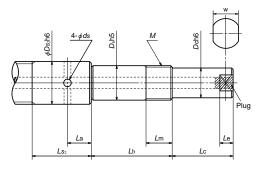
15

50

65

27

Remarks 1. Please consult NSK for other models.


15

40

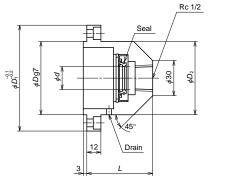
M40×1.5

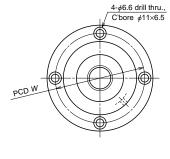
50

H50-15

Unit: mm

Drive	Drive side Spanner flats		or flate	Applicable		Equipped seal unit			
DIIVE			support	Used bearing	Shaft end	Shaft outer			
Dc	Lc	W	Le	unit		Shart cha	surface		
20	40	17	8	WBK25DF-31 WBK25DFD-31	25TAC62BDFC10PN7A 25TAC62BDFDC10PN7A	WSK20A-01	WSK32B-01		
				(25TAC62BDFFC10PN7A)					
25	50	22	10	WBK30DF-31 WBK30DFD-31	30TAC62BDFC10PN7A 30TAC62BDFDC10PN7A (30TAC62BDFFC10PN7A)	WSK25A-01	WSK40B-01		
35	70	30	13	WBK40DF-31 WBK40DFD-31 WBK40DFF-31	40TAC72BDFC10PN7A 40TAC72BDFDC10PN7A 40TAC72BDFFC10PN7A	WSK32A-01	WSK50B-01		

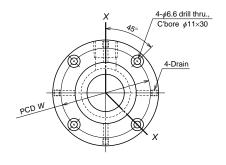

B145 B146

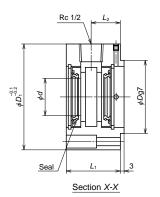

NSK

5. Seal units for hollow ball screw shaft (available by order)

This is an exclusive joint for coolant of the hollow ball screw shaft.

A Type (for shaft end)





Unit: mm

Reference number	d	D	D_1	D_2	L	W	Fixing bolt
WSK20A-01	20	57	85	57	56	70	M6
WSK25A-01	25	57	85	57	56	70	M6
WSK32A-01	32	69	95	67	61	80	M6

B Type (for shaft outer surface)

Unit: mm

Reference number	d	D	D_1	L ₁	L_2	W	Fixing bolt
WSK32B-01	32	57	85	46	25	70	M6
WSK40B-01	40	57	85	46	25	70	M6
WSK50B-01	50	69	95	49	27	80	M6

♦ Handling precautions

- Use NSK support unit (high load capacity for machine tools in Page B449) for installation in order to maintain the eccentricity between screw shaft and seal unit.
- Apply grease to the lip section for protection

at the time of installation to the ball screw.

 Make certain that the drain holes (one for A Type, four for B Type) of the seal unit directly face downward when the unit is installed.

B147 B148

B-3-1.8 ND Series for Nut-Rotatable Drive

· This product is patented by NSK.

A nut rotatable ball screw is developed as a unit into which angular contact support ball bearings are integrated. It is best suited for an application that requires rotation of the ball nut while the screw shaft is fixed.

NDT model

1. Structure

Balls are installed between the assembly housing and the ball nut. The outer bearing rings are integrated into the assembly housing and thus, compact design are attained.

A timing pulley (prepared by the user) is directly secured to the end face of the nut.

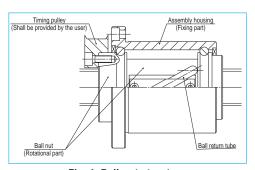


Fig. 1 Ball nut structure

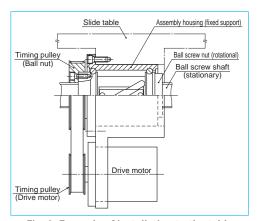


Fig. 2 Example of installation to the table

2. Features

Multi-nut drive

Two or more nut units can be installed in a single ball screw shaft. They can be operated by respective motors.

High operation speed

High feeding speed operation, but yet low rotational speed, is feasible by means of medium to high-helix lead ball screws.

Easy installation

Merely install a mount housing to the table of the machine to take advantage of this multi-nut rotation system.

Simple shaft end configuration

Shaft end configuration is simple because this unit does not need support bearings.

Shaft diameter/lead combination

There are 10 types of "shaft diameter/lead" combinations.

Selections are: Shaft diameters -- 32, 40, 50 mm; Leads -- 20, 25, 32, 40, 50 mm.

Low inertia

Compared to the NSK current product (end cap ball recirculation system), rotational inertia was reduced by 16% at most.

3. Specifications

(1) Recirculation system

The structure of return tube recirculation system is shown below.

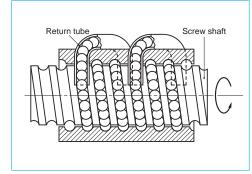


Fig. 3 Structure of ball return tube recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Axial play

Axial play code	Z	Т	S
Axial play	0	0.005 mm or less	0.020 mm or less

Table 2 Combination of accuracy grades and axial play

Accuracy grade	C3	C5	Ct7
Axial play code	Z, T, S	Z, T, S	S

Allowable d•n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Note: The basic concept is the same as that of general ball screws. Refer to "Technical Description: Permissible rotational speed" (Page B51).

Table 3 Allowable d•n value and the criterion of maximum rotational speed

Allowable d·n value	Standard specification 70000 or less High-speed specification 100000 or less					
Criterion of maximum rotational speed	3000 min ⁻¹					

d·n value: shaft dia. d [mm] × Rotational speed n [min-1]

Critical speed n_c

As shown Fig. 4, calculate unsupported length (mm) of L_1 , L_2 , and L_3 (Assumed that the nut section is a fixed support.) Table 4 shows the coefficients "f" of each shaft end mounting condition.

$$n_c = f \cdot \frac{d_r}{L^2} \times 10^7 \text{ (min}^{-1})$$
 (III-1)

*d*_r: Screw shaft root diameter [See the dimension table]

L_i: Unsupported length (mm) [See Fig. 4 Unsupported length]

f : Factor determined by the ball screw shaft end mounting condition

Table 4

Shaft end mounting condition	f
Fixed Fixed support	21.9
Fixed Simple support	15.1
Fixed Free support	3.4

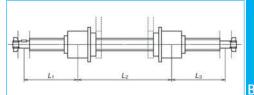


Fig. 4 Installation example

5. Design precautions

One end of the screw thread should be cutthrough. Also, if the nut must be removed from the screw shaft, the user should have an arbor to prevent the balls from falling out during this process. (NSK manufactures arbors on request.) For general precautions regarding ball screws, refer to "Design Precautions" (Page B84) and "Handling Precautions" (Page B103).

NDD Type: (Incorporating vibration damper)

An increase in stroke length may restrict required rotational speed of a ball screw due to the issue of critical speed even if there is no problem on d·n limitation.

In such a case, we recommend using NDD Type nut rotatable ball screws equipped with vibration damper.

It will make it possible to operate a ball screw exceeding the critical speed, which is conventionally considered being impossible.

- Note: 1) However, NDD Type cannot be used exceeding the d·n limitation. Please consult with NSK in such a case.
 - 2) You cannot rotate the screw shaft of NDD Series.

1. Structure

Hollow ball screw shaft has a mechanism to absorb vibration energy (vibration damper). This increases dynamic rigidity of the screw shaft and lowers vibration when exceeding the critical speed.

Construction of the ball nuts are the same as those of NDT Type.

2. Features

- No need for measures against critical speed. Conventionally, an increase in screw shaft diameter or use of intermediate support is the measure against the issue of critical speed. NDD Type ball screw will make these measures needless.
- Dimensional interchageability with NDT Type ball screws

The vibration damper is set inside a ball screw shaft, and therefore, there is no difference with existing series in regards to external dimensions. The ball nuts of NDD Type are interchangeable with those of NDT Type.

Others

Benefits in multiple ball nut on a screw shaft, high feeding speed for long stroke, easy in installation, and low inertia of the ball nuts are the same as NDT Type.

3. Specification

Recirculation system, accuracy grade, axial play and preload system are the same as NDT Type.

4. Design precautions

They are the same as NDT Type.

5. Permissible rotational speed

The d•n value is the same as NDT Type. You don't need to consider the critical speed.

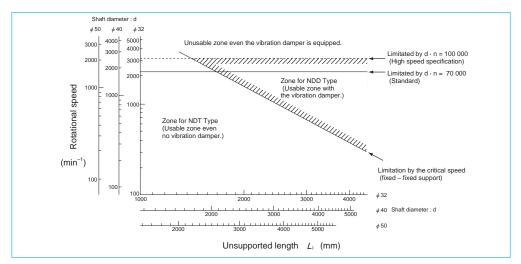
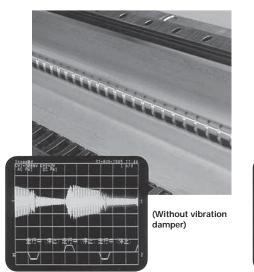



Fig. 5 Type composition to rotational speed and unsupported length

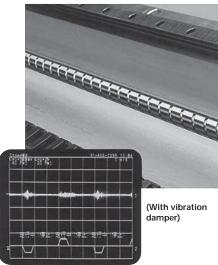


Fig. 6 Vibration of screw shaft when nut is rotating

(With vibration damper)

Fig. 7 Effect of vibration damper (results of endurance test)

NSK

Calculation example of permissible rotational speed

[Calculation example]

Assume a system which moves two nuts on a shaft as shown at below.

Does this system operate appropriately if: both ends of the ball screw (shaft diameter 40 mm/ lead 40 mm) are fixed, and the travel speed is at 60 m/min?

[Answer]

The rotational speed n (min⁻¹) when the lead of the ball screw is 40 mm, and the travel speed is at 60 m/min is:

$$n = \frac{60 \times 10^3}{40} = 1500 \text{ (min}^{-1}\text{)}$$

Calculate d • n value

As the d • n value of standard specification is 7000, therefore, the permissible rotational speed is;

$$n \le \frac{70000}{40} = 1750 \text{ (min}^{-1}\text{)}$$

Calculate critical speed

The maximum unsupported length comes between Nut A and B.

$$L_2 = 3300 \text{ (mm)}$$

f = 21.9 (Fixed-Fixed)

Root diameter: $d_r = 35.1$ (mm)

Therefore, the permissible rotational speed is;

$$n \le \frac{21.9 \times 35.1}{3300^2} \times 10^7 = 706 \text{ (min}^{-1}\text{)}$$

The calculation indicates that the d • n value is at the safe level. But the critical speed exceeds the limitation. However, with a vibration damper, the system can be operated at 1500 min⁻¹.

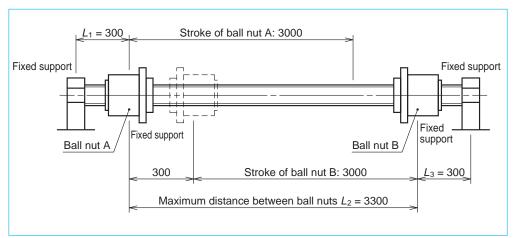
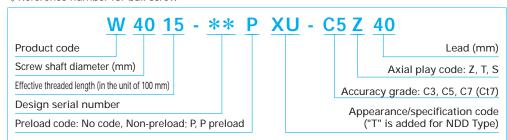
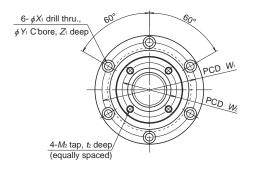



Fig. 8 Calculation example of permissible rotational speed


Example of model number in dimention table

A structure of "Reference number for ball screw" is as follows.

♦ Reference number for ball screw

Model No.	odel No. dia. Lead dia. circle dia.		Root dia.	Effective turns of balls Turns ×	Dynamic Static		Moment of inertia, ball nut	Ball nut mass W		
	d	I	D_{w}	d _m	d,	Circuits	C _a	C_{0a}	(kg·cm²)	(kg)
NDT NDD 3220-2.5		20	4.762	33.25	28.3	2.5×1	17900	41800	6.2	2.9
NDT NDD 3225-2.5	32	25	4.762	33.25	28.3	2.5×1	17900	41800	6.7	3.2
NDT NDD 3232-1.5	32	32	47/0	33.25	28.3	1.5×1	11500	24800	()	2.0
NDT 3232-3		32	4.762	33.25	28.3	1.5×2	18900	44600	6.2	2.9
NDT NDD 4025-2.5		25	6.35	41.75	35.1	2.5×1	28500	70000	19.3	6.0
NDT NDD 4032-1.5		22	6.35	41.75	25.1	1.5×1	18400	41200	18.0	5.5
NDT NDD 4032-3	32		0.33 41.73		35.1	1.5×2	30100	30100 74100		5.5
NDT NDD 4040-1.5		40	/ 25	41.75	25.1	1.5×1	18400	41200	10.0	
NDT NDD 4040-3		40	6.35	41.75	35.1	1.5×2	30100	74100	19.2	6.0
NDT NDD 5025-2.5		25	7.938	52.25	44.0	2.5×1	42700	109000	45.7	8.5
NDT NDD 5032-2.5		32	7.938	52.25	40.0	2.5×1	42700	109000	48.9	9.4
NDT NDD 5040-1.5	50	40	7.938	52.25	44.0	1.5×1	27500	66500	45.5	8.5
NDT NDD 5040-3	30	40	7.936	52.25	44.0	1.5×2	44900	120000	40.0	0.0
NDT NDD 5050-1.5		FO	7.020	E2 2E	44.0	1.5×1	27500	66500	40.7	9.4
NDT NDD 5050-3		50	7.938	52.25	44.0	1.5×2	44900	120000	48.7	9.4

Remarks	1. The right ha 2. Seal is stan	e standard. C	onsult NSK	for the left	hand scre	WS.

1	Seal /(both sides)
A D D D D D D D D D D D D D D D D D D D	a de de de de de de de de de de de de de
<u> </u>	T B F

						nut dime							Tap hole
Nut entire length	Nut outside diameter	Flange outside diameter	Flange width	Nut length	Projection tub	e dimensions	Bolt ho	ole dime	nsions	Bolt hole PCD	Tap hole d	PCD	
L	D	A	В	F	D_{r}	T	<i>X</i> ₁	X_1 Y_1 Z_1		W_1	M_2	t_2	W_2
107	78	105	12	83	60	12	6.6	11	6.5	91	M6	12	50
120	78	105	12	96	60	12	6.6	11	6.5	91	M6	12	50
107	78	105	12	83	60	12	6.6	11	6.5	91	M6	12	50
136	100	133	15	106	76 15		9	14	8.5	116	M8	16	62
122	100	133	15	92	76	15	9	14	8.5	116	M8	16	62
136	100	133	15	106	76	15	9	14	8.5	116	M8	16	62
140	120	156	18	107	96	15	11	17.5	11	136	M10	18	78
158	120	156	18	125	96	15	11	17.5	11	136	M10	18	78
140	120	156	18	107	96	15	11	17.5	11	136	M10	18	78
158	120	156	18	125	96	15	11	17.5	11	136	M10	18	78

B156 B155

B-3-1.9 Σ Series for Robbot

1. Features

 Σ Series (NSK's Robotte) is a ball screw with a high-performance spline. It is ideal for various actuators such as the vertical axis of SCALA type robot.

A ball screw groove and a ball spline groove are made in one shaft, combining the ball screw and the ball spline.

Mount housing, nuts, and support bearings are combined into a single unit.

Timing pulley (prepared by the user) is directly secured at the end face of the nut.

High functions

A single shaft has both feeding mechanism and guide functions. This allows the shaft ends to move back and forth (linear motion), as well as to rotate.

Compact and lightweight

A ball screw nut and a spline nut are placed on one shaft, and a support bearings are also combined to the unit. This allows compact and high-precision design. Hollow shaft is standard to reduce weight. The hollow can be used for wiring and piping. Other components are also designed to be light in weight.

Low inertia

Because of return tube type ball nut of which outside diameter is decreased, low inertia design is enabled.

It reduces the inertia by 19% of conventional products.

2. Functions

As shown in Fig. 1, the ball screw nut and a spline nut are rotated independently to control rotation value. Thereby the shaft can move in any direction -- linear and rotational. Table 1 shows the relationship between power input and output.

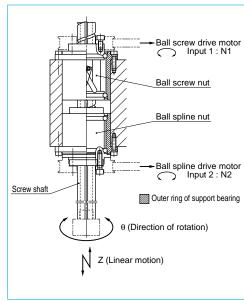


Fig. 1 Example structure of Z axis plus θ axis actuator

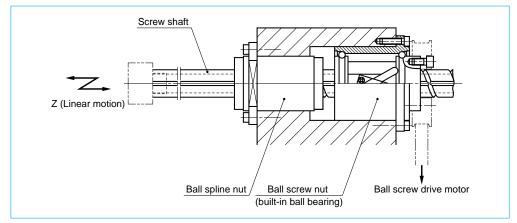


Fig. 2 Example structure of single Z axis unit

Table 1 Power input and output of Σ Series

Shaft movem	nent (output)		Input	
Z (Up-down movement) (mm/min)		① Ball screw (min ⁻¹)	② Spline (min ⁻¹)	Remarks
Up, down	Stop 0	Rotate N1	Stop	_
Stop	Rotate N2	Rotate N1	Rotate N2	N1 = N2
Up, down	Rotate N2	Stop 0	Rotate N2	-
Up, down N1-N2× <i>I</i>	Rotate N2	Rotate N1	Rotate N2	N1≠N2

3. Specifications

(1) Recirculation system

A structure of return tube recirculation system is shown below.

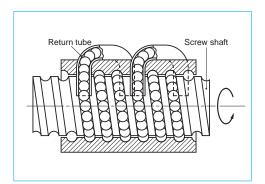


Fig. 3 Structure of return tube recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play for ball screw are as follows. The axial play for spline is 0 mm (preloaded product). Please consult NSK for other grades.

Table 2 Accuracy grade and axial play

Accuracy grade	C3, C5, Ct7
Avial play	Z, 0 mm (Preloaded)
Axial play	T, 0.005 mm or less; S, 0.020 mm or less

(3) Allowable don value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

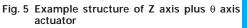
Permissible d•n value: 70000 or less

Criterion of maximum rotational speed: 3000 min⁻¹ Note: Please also review the critical speed.

For details, see "Technical Description: Permissible rotational speed" (Page B51).

(4) Application

SCALA type and Cartesian type industrial robots, semiconductor manufacturing machines, machines for automobile production facilities, material handling systems, other Z (vertical) axis and Z axis plus θ (rotation) axis actuators.


4. Design precautions

The overall length L can be extended to 25 times of the shaft diameter.

To remove the spline nut from the shaft for assembling, use an arbor as shown in Fig. 4. Avoid removing ball screw nut as much as possible. Refer to root diameter in the dimension table for arbor diameter. (NSK manufactures the arbors on request.)

For general precautions regarding ball screws, refer to "Precautions in Designing" (Page B84) and "Precautions in Handling" (Page B103).

B157 B158

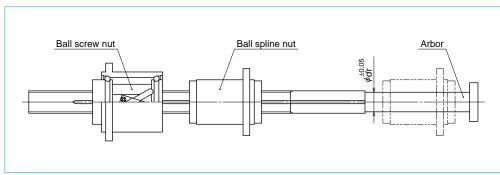


Fig. 4 Removing spline nut

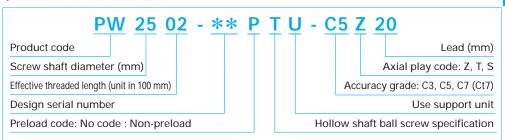
5. Product categories

 Σ Series (NSK's Robotte) is four models with different moving functions and performances are available. Select a standard model if rigidity is important. A compact system is recommended for reducing the weight of machine.

Table 3 Σ Series product categories

Model	Appearance	Size	Structure (Movement)
Σ		Standard	Z+θ Unit
ΣZ		Standard	Z Unit
ΣC		Compact	Z+θ Unit
ΣCZ		Compact	Z Unit

6. Load rating and life

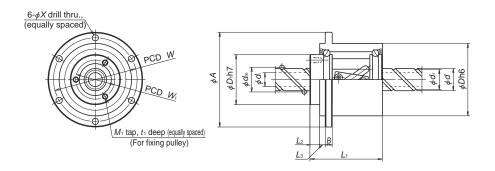

The relationship between load rating of the ball spline section and life is the same as in other NSK liner motion products. However, various loads that apply to Robotte must be taken into account. For example, the following factors must be considered in calculating life when the product is used as shown in Fig. 5.

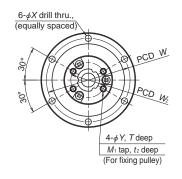
- Fa: Load that is generated when the shaft moves in up-down direction. (Load is applied to the ball screw nut.)
- T : Torque that is generated to the shaft by Fa.
- Fr: Load that is generated by moment of inertia of the shaft and the work attached to Robotte as well as by centrifugal force when the arm rotates.
- $\boldsymbol{\theta}$: Direction of Fr load that changes by shaft rotation.

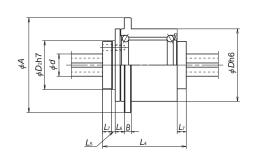
NSK has life calculation programs which take these factors into account. Please ask NSK for more details.

7. Example of model number in dimension table

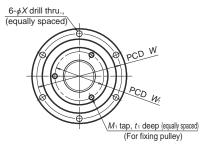
A structure of "Reference number for ball screw" is as follows.

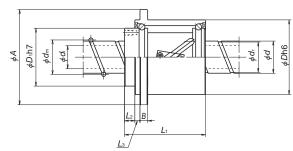


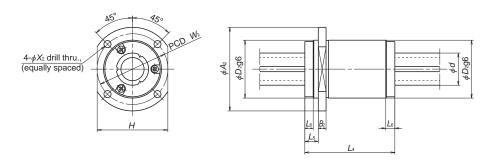

В


100

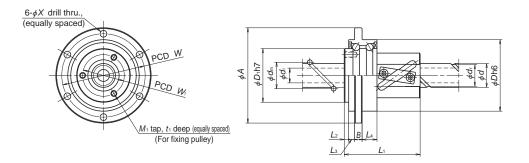
 Σ Type

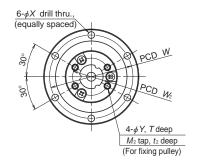

Unit: mm

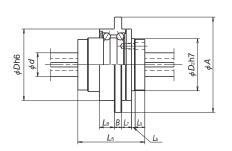

	Shaft	Lead	Ball	Ball	Root	Screw							В	all s	screw n	nut					
Model	dia.		dia.	circle	dia.	shaft	Basic load	rating (N)					[Dim	ensions	S					Moment
No.				dia.		hollow	Dynamic	Static													of inertia
	d	1	$D_{\rm w}$	d _m	d,	d _i	C _a	C_{0a}	D	Α	В	L_1	L_2	L ₃	M_1	t ₁	W_1	D_1	W	Χ	(kg·cm²)
∑1610	16	10	3.175	16.75	13.4	(8)	4710	8110	40	64	5	47	7	4	3-M4	6	20	35	E 4	4 E	0.41
∑1632	10	32	3.175	5.175 10.75	13.4	(8)	2990	4870	48	04	5	52	/	4	3-1014	0	28	35	50	4.5	0.44
∑ 2010		10					8210	17500				57									0.64
∑ 2020	20	20	3.175	175 20.75	17.4	` '	5290	10300	54	70	6	63	8	4	3-M4 6	6	32	40	62	4.5	0.65
∑ 2040		40					6170				57									0.64	
∑ 2510		10					9110	21900	58	74	6	57			3-M4 6						1.10
∑ 2520	25	20	3.175	25.75	22.4	(18)	5870	13200				63	8	4		6	38	45	66	4.5	1.18
∑ 2525		25					5870	13200				72									1.30
∑ 3220	32	20	3.175	32.75	29.4	(25)	6540	16800	70	95	8	70	10	6	3-M5	10		53	0.2		2.60
∑3232	32	32	3.175	32.75	29.4	(25)	6540	16800	70	95	Ö	91	10	0	3-1015	10	44	53	82	0.0	3.15
∑ 4020	40	20	2.040	41.0	24.0	(20)	9770	26300	O.E.	110	0	73	10	,	4 1 4 5	10	EO	47	04		5.96
∑ 4040	40	40	3.969	41.0	36.9	(30)	9770	26300 85 1	110	8	107	10	6	4-M5	10	28	67	90	0.0	7.85	
∑ 4520	4.5	20	2 040	44.0	41.0	(25)	10300	29700		115	0	73	10	,	4 1 4 5	10	42	72	101		7.73
∑ 4540	45	40	3.969	46.0	41.9	(35)	10300	29700	90	115	8	107	10	6	4-M5	10	03	72	101	0.6	10.3


									Ва	ll sp	line r	nut										
Mass	Basic load	d rating (N)	Basic tord	que (N·m)							Dim	nensi	ions							Moment	Mass	
	Dynamic	Static	Dynamic	Static																of inertia		
(kg)	C_r	C_{or}	C_{t}	C_{ot}	D	Α	В	L_4	L_5	L ₆	L ₇	Y	T	M_2	t_2	W_2	D_2	W	Χ	(kg·cm²)	(kg)	
0.50	5530	7270	61.5	91.3	48	64	5	60	2.5	4 E	4 E	4 5	4 E	N // /	7	25	35	56	4 E	0.71	0.62	
0.55	5890	8000	65.5	100	48	04	5	60	2.5	6.5	0.5	4.5	0.5	M4	/	25	35	50	4.5	0.71	0.63	
0.74	6260	8720	86.3	135																		
0.81	6610	9450	91.1	145	54	70	6	65	2.5	6.5	6.5	5.5	6.5	M5	8	30.5	40	62	4.5	1.15	0.87	В
0.74	6610	9450	91.1	145																		16
0.81	6630	9450	115	185																		
0.88	7290	10900	125	210	58	74	6	70	2.5	6.5	6.5	5.5	6.5	M5	8	35.5	45	66	4.5	1.88	1.03	
1.00	7290	10900	125	210																		
1.46	7630	11600	165	285	70	95	8	75	2.5	7.5	6.5	5.5	6.5	M5	8	42	50	82	6.6	3.80	1.62	
1.83	7950	12400	175	305	70	7.5	U	73	2.5	7.5	0.5	5.5	0.5	1013	U	42	30	02	0.0	3.00	1.02	
2.02	10600	14800	290	455	85	110	8	80	4	7.5	8	5.5	8	M5	8	55	65	96	6.6	9.74	2.38	
2.85	11200	15900	305	490	00	110	0	00	4	7.5	0	5.5	0	IVIS	0	55	03	70	0.0	7.74	2.30	
2.17	11200	15900	340	550	90	115	8	85	4	7.5	8	5.5	8	M5	8	60	70	101	6.6	12.5	2.56	
3.06	11700	17000	360	590	70	113	O	03	4	7.5	0	5.5	°	IVIO	0	00	/0	101	0.0	12.0	2.50	

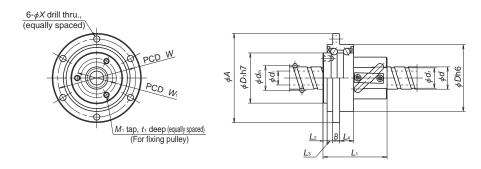
B161 B162

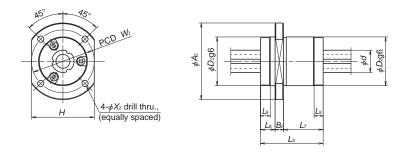





	Shaft	Lead	Ball	Ball	Root	Screw						Ball	scre	w nı	ut					
Model	dia.		dia.	circle	dia.	shaft	Basic load	rating (N)						Dime	ensions					
No.				dia.		hollow	Dynamic	Static												
	d	1	$D_{\rm w}$	d _m	d,	d _i	C _a	$C_{\scriptscriptstyle 0a}$	D	Α	В	L ₁	L_2	L ₃	M_1	t_1	W_1	D_1	W	Χ
∑ Z 1610	16	10	3.175	16.75	13.4	(8)	4710	8110	48	64	5	47	7	4	3-M4	6	28	35	56	4.5
Σ Z1632	10	32	3.173	10.75	13.4	(0)	2990	4870	40	04	ລ	52	/	4	3-1014	0	20	ວິ	50	4.5
Σ Z2010		10					8210	17500				57								
∑ Z2020	20	20	3.175	20.75	17.4	(14)	5290	10300	54	70	6	63	8	4	3-M4	6	32	40	62	4.5
∑ Z2040		40					3360	6170				57								
∑ Z2510		10					9110	21900				57								
∑ Z2520	25	20	3.175	25.75	22.4	(18)	5870	13200	58	74	6	63	8	4	3-M4	6	38	45	66	4.5
∑ Z2525		25					5870	13200				72								
∑ Z3220	32	20	3.175	32.75	29.4	(DE)	6540	16800	70	95	8	70	10	6	3-M5	10	44	53	82	
∑ Z3232	32	32	3.175	32.75	29.4	(25)	6540	16800	/0	95	8	91	10	0	3-1015	10	44	53	82	6.6
∑ Z 4020	40	20	2.040	41.0	24.0	(20)	9770	26300	O.E.	110	8	73	10	,	4 1 4 5	10	EO	47	04	
∑ Z 4040	40	40	3.969	41.0	36.9	(30)	9770	26300	85	110	8	107	10	6	4-M5	10	58	67	96	6.6
∑ Z 4520	45	20	20/0	47.0	41.0	(25)	10300	29700	00	115	0	73	10	,	4 1 4 5	10	/ 2	70	101	, ,
∑ Z 4540	45	40	3.969	46.0	41.9	(35)	10300	29700	90	115	8	107	10	6	4-M5	10	63	72	101	6.6

								Ball sp	line nut							
Moment	Mass	Basic load	I rating (N)	Basic tor	que (N·m)				Di	mensio	ns				Mass	
of inertia		Dynamic	Static	Dynamic	Static											
(kg·cm²)	(kg)	C_r	C_{or}	C_{t}	C_{ot}	D_2	A_2	B_2	L_4	$L_{\scriptscriptstyle 5}$	L ₆	Н	W_2	X	(kg)	
0.41	0.50	5530	7270	61.5	91.3	35	55	6	60	10.5	6.5	4.5	4.5	4.5	0.35	
0.44	0.55	5890	8000	65.5	100	35	55	0	60	10.5	0.5	4.5	4.5	4.5	0.35	
0.64	0.74	6260	8720	86.5	135											
0.65	0.81	6610	9450	91.1	145	40	60	6	65	10.5	6.5	50	50	5.5	0.46	В
0.64	0.74	6610	9450	91.1	145											16
1.10	0.81	6630	9450	115	185											
1.18	0.88	7290	10900	125	210	45	65	6	70	10.5	6.5	55	55	5.5	0.57	
1.30	1.00	7290	10900	125	210											
2.60	1.46	7630	11600	165	285	50	70	6	75	10.5	6.5	60	60	5.5	0.64	
3.15	1.83	7950	12400	175	305	30	70	0	75	10.5	0.5	00	00	5.5	0.04	
5.96	2.02	10600	14800	290	455	65	88	8	80	12	8	76	76	6.6	1.20	
7.85	2.85	11200	15900	305	490	00	00	0	60	12	0	70	70	0.0	1.20	
7.73	2.17	11200	15900	340	550	70	93	8	85	12	8	81	81	6.6	1.39	
10.3	3.06	11700	17000	360	590	70	73	o o	00	12	O	01	01	0.0	1.37	




- 1	Ini	Ι.	m	m	

	Shaft	Lead	Ball	Ball	Root	Screw							Ball	scr	ew	nut						
Model	dia.		dia.	circle	dia.	shaft	Basic load	d rating(N)						Di	mer	sions						Moment
No.				dia.		hollow	Dynamic	Static														of inertia
	d	1	$D_{\rm w}$	d _m	d_{r}	d _i	$C_{\rm a}$	C_{oa}	D	Α	В	L_1	L_2	L_3	L_4	M_1	t_1	W_1	D_1	W	Χ	(kg·cm²)
∑C1610	16	10	3.175	16.75	13.4	(8)	4710	8110	10	64	5	46	3	4	10	3-M4	6	28	2	E 4	1 E	0.40
∑C1632	10	32	3.173	10.75	15.4	(0)	2990	4870	40	04	5	51	J	4	10	3-1014	0	20	33	30	4.5	0.43
∑C2010		10					8210	17500				56			10							0.63
∑C2020	20	20	3.175	20.75	17.4	(14)	5290	10300	54	70	6	63	4	4	10	3-M4	6	32	40	62	4.5	0.65
∑C2040		40					3360	6170				56			10							0.63
∑C2510		10					9110	21900				56			10							1.04
∑C2520	25	20	3.175	25.75	22.4	(18)	5870	13200	58	74	6	63	4	4	10	3-M4	6	38	45	66	4.5	1.13
∑C2525		25					5870	13200				71			10							1.24

									E	3all s	pline	nut											
Mass	Basic load	d rating(N)	Basic tor	que(N·m)							D	imer	nsior	ns							Moment	Mass	
	Dynamic	Static	Dynamic	Static																	of inertia		
(kg)	C_r	C_{0r}	C_{t}	C_{ot}	D	Α	В	L_5	L ₆	L,	L ₈	L ₉	Y	Τ	M_2	$t_{\scriptscriptstyle 3}$	W_2	D_2	W	Χ	(kg·cm²)	(kg)	
0.41	4300	5090	47.9	63.9	48	64	5	45	2.5	6.5	10	4 E	4 5	4 E	M4	7	25	35	56	4.5	0.52	0.42	
0.43	4300	5090	47.9	63.9	48	04	n	45	2.5	0.5	10	0.5	4.5	0.5	IVI4	/	25	35	50	4.5	0.52	0.42	
0.53	4730	5820	65.1	90.5																			
0.56	5110	6540	70.5	100	54	70	6	50	2.5	6.5	10	6.5	5.5	6.5	M5	8	30.5	40	62	4.5	0.86	0.56	В
0.53	5110	6540	70.5	100																			166
0.60	5130	6540	87.8	125																			
0.64	5870	8000	100	155	58	74	6	55	2.5	6.5	10	6.5	5.5	6.5	M5	8	35.5	45	66	4.5	1.44	0.67	
0.69	5870	8000	100	155																			

	Shaft	Lead	Ball	Ball	Root	Screw						Ball	scr	ew	nut						
Model	dia.		dia.	circle	dia.	shaft	Basic load	rating(N)						Di	mer	nsions					
No.				dia.		hollow	Dynamic	Static													
	d	1	$D_{\rm w}$	d _m	d,	d_{i}	C_{a}	C_{0a}	D	Α	В	L_1	L_2	L ₃	L_4	M_1	t_1	W_1	D_1	W	X
∑CZ1610	16	10	3.175	16.75	13.4	(8)	4710	8110	10	64	5	46	3	4	10	3-M4	6	20	35	E4	1 5
∑CZ1632	10	32	3.173	10.75	13.4	(0)	2990	4870	40	04	5	51	J	4	10	3-1014	0	20	33	50	4.5
Σ CZ2010		10					8210	17500				56									
Σ CZ2020	20	20	3.175	20.75	17.4	(14)	5290	10300	54	70	6	63	4	4	10	3-M4	6	32	40	62	4.5
Σ CZ2040		40					3360	6170				56									
∑CZ2510		10					9110	21900				56									
∑CZ2520	25	20	3.175	25.75	22.4	(18)	5870	13200	58	74	6	63	4	4	10	3-M4	6	38	45	66	4.5
∑CZ2525		25					5870	13200				71									

								Ball	spline	nut							
Moment	Mass	Basic load	d rating(N)	Basic tor	que(N·m)					Dime	nsions					Mass	
of inertia		Dynamic	Static	Dynamic	Static												
(kg·cm²)	(kg)	C _r	C_{or}	$C_{\rm t}$	C_{ot}	D_2	A_2	B_2	L_{5}	L ₆	L,	L_8	Н	W_2	X_2	(kg)	
0.40	0.41	4300	5090	47.9	63.9	25		,	45	10.5	20.5		45	45	4.5	0.07	
0.43	0.43	4300	5090	47.9	63.9	35	55	6	45	10.5	28.5	6.5	45	45	4.5	0.26	
0.63	0.53	4730	5820	65.1	90.5												
0.65	0.56	5110	6540	70.5	100	40	60	6	50	10.5	33.5	6.5	50	50	5.5	0.35	В
0.63	0.53	5110	6540	70.5	100												16
1.04	0.60	5130	6540	87.8	125												
1.13	0.64	5870	8000	100	155	45	65	6	55	10.5	38.5	6.5	55	55	5.5	0.44	
1.24	0.69	5870	8000	100	155												

B-3-1.10 Ball Screws for Transfer Equipment

1. Features

Transporting mechanism

Ct7 and Ct10 grades series demonstrate high ball screw performance for transporting mechanism of Cartesian type robots and single axis actuators. The following types are categorized ball screw for transfer equipment. VFA and RMA types have finished shaft ends. RMS type, R series of RNFTL, RNFBL, RNCT, RNFCL, and RNSTL types have blank shaft ends.

Table 1 Classifications of ball screws for transfer equipment

Finished shaft end	VFA type, RMA type
	RMS type
District of a sect	R Series
Blank shaft end	RNFTL type, RNFBL type
	RNCT type, RNFCL type, RNSTL type

• Interchangeable screw shaft and ball nut Screw shaft and nut assembly components are sold separately, and randomly-matched. The maximum axial play after assembly is shown in

2. Specifications

the dimension tables.

(1) Recirculation system

Fig. 1, 2, and 3 show the structures of ball return tube, deflector, and end cap recirculation systems. Deflector recirculation system has the feature of compact nut outside diameter for small lead. End cap recirculation system is for screws with high helix lead and multiple start threads. Since the leads are in the range larger than 1.3 times of the screw shaft diameter, it is suitable for high-speed operation.

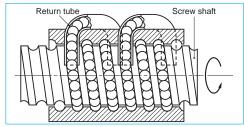


Fig. 1 Structure of return tube recirculation system B169

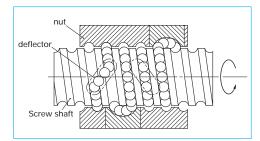


Fig. 2 Structure of deflector recirculation system

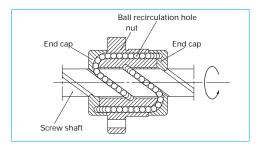


Fig. 3 Structure of end cap recirculation system

(2) Accuracy grade and axial play

Standard lead accuracy and axial play are shown on Table 2. Axial play varies with internal specification. Refer to the dimension tables.

Table 2 Accuracy grade and axial play

Accuracy grade	VFA type, RMA type, RMS type : Ct7 R Series : Ct10
Axial play	See dimension tables

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Table 2 Allowable d·n value and the criterion of maximum rotational speed

Allowable d∙n value	50000 or less
Criterion of maximum rotational speed	3000 min ⁻¹

d•n value: Shaft dia. d [mm] × Rotational speed n [min⁻¹]

Note: Please also review the critical speed. See "Technical Description: Permissible rotational speed" (Page B51) for details.

3. Design precautions

For general precautions regarding ball screws, refer to "Design Precautions" (Page B84) and "Handling Precautions" (Page B497).

(1) Nut installation

Nut assembly and the screw shaft are separated at the time of delivery. Refer to "Technical description: Installation of Ball Screw" (page B77) for installation of ball nut assembly.

(2) Shaft end machining

It is necessary to machine screw shaft end of RMS and R series. Refer to "Selection Guide to NSK Ball Screw: Configuration of shaft end" (Page B27) if you use standard support units. Refer to "Technical Description: Shaft end machining" (Page B83) for procedures and precautions.

4. Product categories

Ball screws for transfer equipment have models as follows.

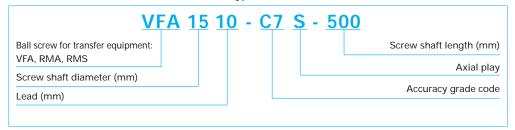
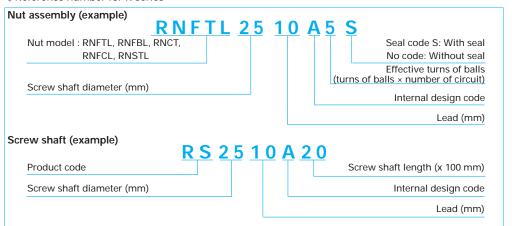

Table 4 Product categories of ball screws for transfer equipment

	Table 4 Product Categories of ba			-	
Nut models	Shape	Flange shape	Recirculation system	Preload system	Page
VFA		Flanged rectangular	Return tube type	Non- preload Slight axial play	B173 - B178
RMA RMS		Flanged Circular II	Deflector type	Non- preload Slight axial play	B179 - B192
RNFTL	minimare of the manufacture of t	Flanged Circular I Projecting tube type	Return tube type	Non- preload Slight axial play	B193 - B196
RNFBL	fatatatatatata	Flanged Circular II	Return tube type	Non- preload Slight axial play	B199
RNCT		V-thread (no flange) Projecting tube type	Return tube type	Non- preload Slight axial play	B201
RNFCL		Flanged Circular II	End cap type	Non- preload Slight axial play	B203 - B206
RNSTL	mananaa Di mananaaa	Square type	Return tube type	Non- preload Slight axial play	B207


5. Example of model number in dimension table

A structure of "Reference number for ball screw" is as follows.

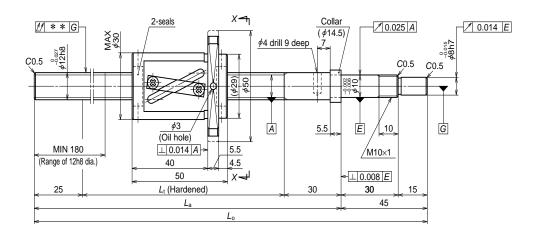
♦ Reference number for VFA, RMA, and RMS types

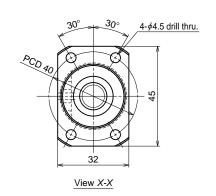
♦ Reference number for R series

6. Combinations of shaft diameter and lead

Combinations of shaft diameter and lead are shown below. For details of standard stock products, contact NSK.

Table 5 Combinations of shaft diameter and lead for VFA, RMA, RMS types


Lead Screw shaft diameter	1	1.5	2	10	20
6	B179, 191				
8	B181, 191	B183, 191	B185, 191		
10			B187, 191		
12			B189, 191	B173	
15				B175	B177


Table 6 Combinations of shaft diameter and lead for R series

Screw shaft		Lead (mm)													
diameter (mm)	3	4	5	6	8	10	12	16	20	25	32	40	50	64	80
10	○B193 △B201	-	3	○B193 ●B199		10			20		52	-10	30	04	00
12					○B193●B199		○B197@B203								
14		○B193 ●B199 △B201 □B207	○B193 ●B199 △B201 □B207												
15									○ B203						
16						○B193		○B197 ○B203			○B205				
18					○B193●B199 △B201□B207										
20			○B193 ●B199 △B201 □B207			○B193 ● B199 □B207			○B197			◎B205			
25			○B193 ●B199 △B201 □B207			○B193 ●B199 △B201 □B207				○B197 ○B203			◎B205		
28				○B195 ●B199 △B201 □ B207											
32						○B195 ●B199 △B201 □B207					○B197 ○B203			◎B205	
36						○B195 ●B199 △B201 □B207									
40						○B195△B201 ●B199						○B197 ○B203			◎B205
45							○B195 △B201□B207								
50						○B195 △B201		○B195 △B201					○B203		

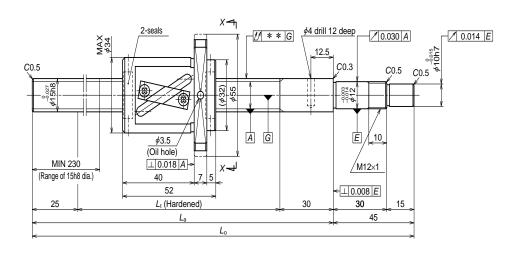
○: RNFTL •: RNFBL △: RNCT ◎: RNFCL □: RNSTL

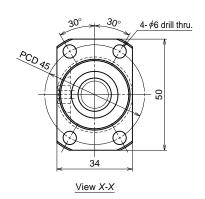
B171 B172

Ball screw specification					
Shaft dia.xLead	/ Direction of turn	12×10/Right			
Ball reci	rculation	Return tube			
Ball dia. / B	all circle dia.	2.381/12.5			
Screw sha	aft root dia.	10.0			
Effective to	urns of balls	2.5×1			
Accuracy grade	/ Axial play code	Ct7/S			
Basic load	Dynamic C _a	3750			
rating (N)	Static C _{0a}	6480			
Axia	l play	0.010 or less			
,	ction torque cm)	1.5 or less			
Spac	er ball	None			
Factory pre-p	acked grease	NSK grease LR3			
Internal spatial v	olume of nut (cm³)	1.4			
Reference of grease	replenishing amount	0.7			
D	ecommend	support units			

Recommend support units					
WBK10-01A	(Square, fixed side)				
WBK12SF-01	(Square, simple side)				
WBK10-11	(Round, fixed side)				

Unit: mm


Load accuracy		Shaft		Permissible rotational speed N (min ⁻¹)					
L	Lead accuracy		Lead accuracy		v_{300} run-out** Mass (kg)		Supporting condition		
Τ	$e_{\scriptscriptstyle p}$	$v_{\scriptscriptstyle 300}$	Fixed - Simple support	Fixed - Free					
0	0.085	0.052	0.100	0.56	3000	3000			
0	0.155	0.052	0.160	0.73	3000	1300			

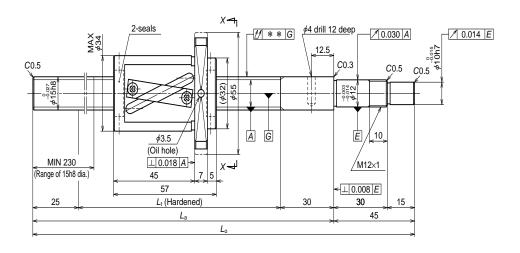

	Str	oke	Screw shaft length			
Ball screw No.	Nominal	Maximum	Screw shart length			
	INOITIIIIai	(L _t -nut length)	$L_{\rm t}$	La	Lo	
VFA1210C7S-410	250	260	310	365	410	
VFA1210C7S-610	450	460	510	565	610	

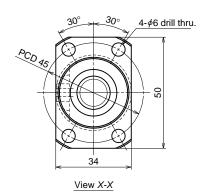
Remarks 1. We recommend NSK support units (page B433). WBK12SF-01 (on the simple support side) supports the ball screw directly on the shaft OD.

- 2. NSK grease LR3 is recommended. The amount for grease replenishing should be about 50% of nut internal space capacity. Please refer to page D16 on details.
- 3. Permissible rotational speed is determined by a d · n value and a critical speed. See page B169 and page B51.

Ball screw specification						
Shaft dia.xLead	Direction of turn	15×10/Right				
Ball reci	rculation	Return tube				
Ball dia. / B	all circle dia.	3.175/15.5				
Screw sha	ıft root dia.	12.2				
Effective to	urns of balls	2.5×1				
Accuracy grade	/ Axial play code	Ct7/S				
	Dynamic C_a	7070				
rating (N)	Static C _{0a}	12800				
Axia	l play	0.010 or less				
,	ction torque cm)	2.5 or less				
Spac	er ball	None				
Factory pre-p	acked grease	NSK grease LR3				
Internal spatial v	olume of nut (cm³)	2.3				
Reference of grease	replenishing amount	1.2				

Recommend support units					
WBK12-01A	(Square, fixed side)				
WBK15SF-01	(Square, simple side)				
WBK12-11	(Round, fixed side)				


Unit: mm


Load accuracy		Shaft		Permissible rotational speed N (min ⁻¹)			
L	Lead accuracy		run-out**	Mass	Supporting condition		
Τ	$e_{\scriptscriptstyle p}$	$v_{\scriptscriptstyle 300}$		(kg)	Fixed - Simple support	Fixed - Free	
0	0.120	0.052	0.075	0.89	3000	2600	
0	0.195	0.052	0.110	1.1	3000	1150	
0	0.310	0.052	0.180	1.5	2340	510	

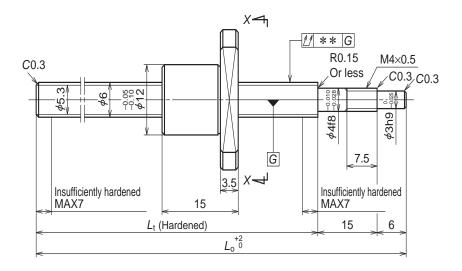
	Str	oke	Saraw shaft langth			
Ball screw No.	Naminal	Maximum	Screw shaft length			
	Nominal	$(L_t$ -nut length)	$L_{\rm t}$	La	Lo	
VFA1510C7S-500	300	348	400	455	500	
VFA1510C7S-700	500	548	600	655	700	
VFA1510C7S-1000	800	848	900	955	1000	

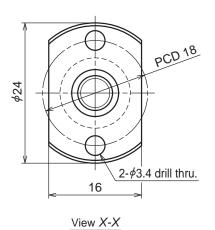
Remarks 1. We recommend NSK support units (page B433). WBK12SF-01 (on the simple support side) supports the ball screw directly on the shaft OD.

- NSK grease LR3 is recommended. The amount for grease replenishing should be about 50% of nut internal space capacity. Please refer to page D16 on details.
- 3. Permissible rotational speed is determined by a d · n value and a critical speed. See page B169 and page B51.

Ball screw specification						
Shaft dia.xLead	Direction of turn	15×20/Right				
Ball reci	rculation	Return tube				
Ball dia. / B	all circle dia.	3.175/15.5				
Screw sha	ıft root dia.	12.2				
Effective to	urns of balls	1.5×1				
Accuracy grade	/ Axial play code	Ct7/S				
Basic load	Dynamic C_a	4560				
rating (N)	Static C _{0a}	7730				
Axia	l play	0.010 or less				
,	ction torque cm)	2.5 or less				
Space	er ball	None				
Factory pre-p	acked grease	NSK grease LR3				
Internal spatial vo	olume of nut (cm³)	2.3				
Reference of grease	replenishing amount	1.4				
D	ocommond	support units				

Recommend support units					
WBK12-01A	(Square, fixed side)				
WBK15SF-01	(Square, simple side)				
WBK12-11	(Round, fixed side)				


Unit: mm


	Lead accuracy			Shaft		Permissible rotational speed N (min ⁻¹)		
				run-out**	Mass (kg)	Supporting condition		
	T	$e_{\scriptscriptstyle p}$	$v_{\scriptscriptstyle 300}$	<u>/</u> / (kg) F		Fixed - Simple support	Fixed - Free	
	0	0.120	0.052	0.075	0.94	3000	2630	
	0	0.195	0.052	0.110	1.2	3000	1160	
	0	0.310	0.052	0.180	1.6	2350	510	

	Str	oke	Scrow shaft longth			
Ball screw No.	500 543 600 655	Maximum	Screw shart length			
		La	Lo			
VFA1520C7S-500	300	343	400	455	500	
VFA1520C7S-700	500	543	600	655	700	
VFA1520C7S-1000	800	843	900	955	1000	

Remarks 1. We recommend NSK support units (page B433). WBK12SF-01 (on the simple support side) supports the ball screw directly on the shaft OD.

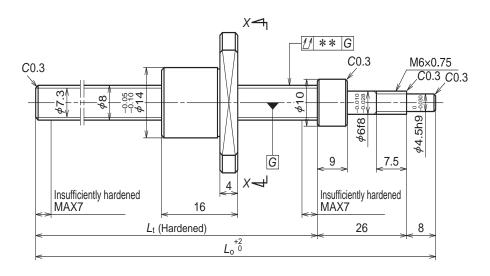
- NSK grease LR3 is recommended. The amount for grease replenishing should be about 50% of nut internal space capacity. Please refer to page D16 on details.
- 3. Permissible rotational speed is determined by a $d \cdot n$ value and a critical speed. See page B169 and page B51.

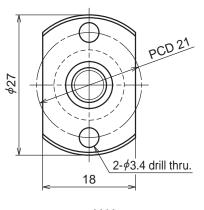
Ball screw specification					
Shaft dia.×Lead	/ Direction of turn	6×1/Right			
Ball reci	irculation	Deflector			
Ball dia. / B	all circle dia.	0.800/6.2			
Screw sha	ıft root dia.	5.2			
Effective to	urns of balls	1×3			
Accuracy grade	/ Axial play code	Ct7/S			
Basic load	Dynamic C _a	520			
rating (N)	Static C _{0a}	925			
Axia	l play	0.020 or less			
	iction torque cm)	1.0 or less			
Spac	er ball	None	В		
Factory pre-p	acked grease	Refer to the remarks 2.	18		

Recommend support unit				
WBK04R-11	(Round, fixed side)			

(Roulia, fixed side)

Unit: mm


	Lead accuracy		Shaft run-out**	Mass (kg)	Permissible rotational speed N (min ⁻¹)	
Target compensation T	Deviation $e_{\scriptscriptstyle p}$	Variation $\upsilon_{\tiny 300}$	<i>† †</i>	(kg)		
0	0.052	0.052	0.060	0.045	3000	
0	0.085	0.052	0.090	0.065	3000	


Ball screw No.	Stro	oke	- Screw shaft length		
	Nominal	Maximum			
	NOTHILIAI	$(L_{t}$ -Nut length)	L_{t}	Lo	
RMA0601C7S-160	100	124	139	160	
RMA0601C7S-260	200	224	239	260	

Remarks 1. We recommend NSK support bearing kit (page B445).

2. Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to page D13 on details.

3. Permissible rotational speed is determined by a d·n value and a critical speed. See page B169 and page B51.

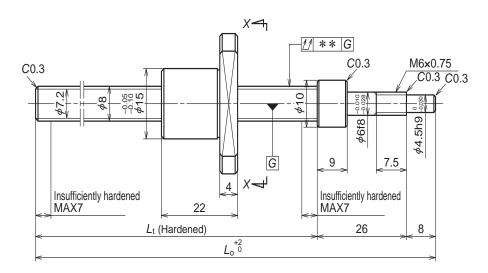
View X-X

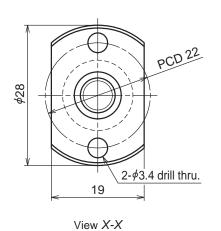
U	ш	н.	Ш	Ш	ı

Ball screw specification					
Shaft dia.×Lead	/ Direction of turn	8×1/Right			
Ball reci	irculation	Deflector			
Ball dia. / B	all circle dia.	0.800/8.2			
Screw sha	ıft root dia.	7.2			
Effective to	urns of balls	1×3			
Accuracy grade	/ Axial play code	Ct7/S			
Basic load	Dynamic C _a	600			
rating (N)	Static C _{0a}	1290			
Axia	l play	0.020 or less			
Dynamic fri	iction torque	1.0 or less			
(N·	cm)	1.0 01 1633			
Spac	er ball	None	B		
actory pre-p	acked grease	Refer to the remarks 2.	18		

Recommend support unit				
WBK06R-11	(Round, fixed side)			

Unit: mm


	Lead accuracy		Shaft run-out**	Mass (kg)	Permissible rotational speed	
Target compensation T	Deviation $e_{\scriptscriptstyle p}$	Variation $\upsilon_{\tiny 300}$	<i>Lt</i>	(kg)	N (min ⁻¹)	
0	0.052	0.052	0.060	0.085	3000	
0	0.085	0.052	0.090	0.12	3000	


Ball screw No.	Stro	oke	Screw shaft length		
	Nominal	Maximum			
	NOTHILIAI	$(L_{t}$ -Nut length)	$L_{\rm t}$	L _o	
RMA0801C7S-180	100	130	146	180	
RMA0801C7S-280	200	230	246	280	

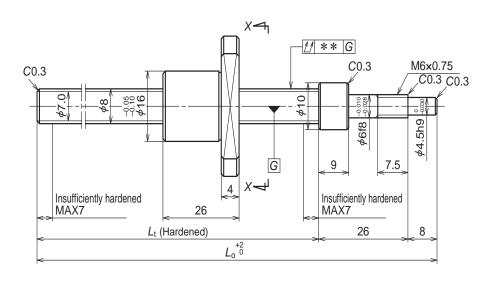
Remarks 1. We recommend NSK support bearing kit (page B445).

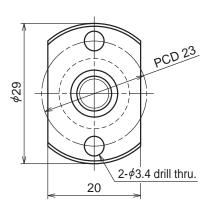
2. Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to page D13 on details.

3. Permissible rotational speed is determined by a d·n value and a critical speed. See page B169 and page B51.

U	ſ	11	ι	:	I	I	11	I	

Ball screw specification					
Shaft dia.xLead	/ Direction of turn	8×1.5/Right			
Ball reci	rculation	Deflector			
Ball dia. / B	all circle dia.	1.000/8.3			
Screw sha	ft root dia.	7.0			
Effective to	urns of balls	1×3			
Accuracy grade	/ Axial play code	Ct7/S			
Basic load	Dynamic C _a	810			
rating (N)	Static C _{0a}	1590			
Axia	l play	0.020 or less			
,	ction torque	1.0 or less			
•	cm)	Nicol	В		
Spac	er ball	None			
Factory pre-p	acked grease	Refer to the remarks 2.	18		


Recommend support unit				
WBK06R-11 (Round, fixed side				


Lead accuracy			Shaft run-out**	Mass (kg)	Permissible rotational speed
Target compensation T	Deviation $e_{\scriptscriptstyle p}$	Variation υ_{300}		(kg)	N (min ⁻¹)
0	0.052	0.052	0.060	0.093	3000
0	0.085	0.052	0.090	0.13	3000

Ball screw No.	Stro	oke	Screw shaft length	
	Nominal	Maximum		
	NOTHILIAI	$(L_{t}$ -Nut length)	$L_{\rm t}$	Lo
RMA0801.5C7S-180	100	124	146	180
RMA0801.5C7S-280	200	224	246	280

Remarks
1. We recommend NSK support bearing kit (page B445).
2. Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use.
Refer to page D13 on details.

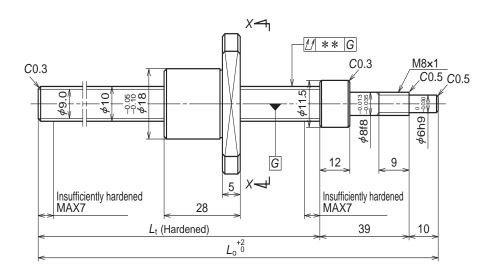
3. Permissible rotational speed is determined by a d·n value and a critical speed. See page B169 and page B51.

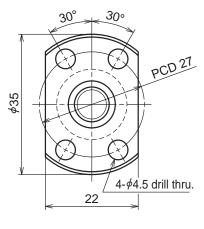
View X-X

Unit:	mm

Ball screw specification					
Shaft dia.×Lead	/ Direction of turn	8×2/Right			
Ball reci	irculation	Deflector			
Ball dia. / B	all circle dia.	1.200/8.3			
Screw sha	ıft root dia.	6.9			
Effective to	urns of balls	1×3			
Accuracy grade	/ Axial play code	Ct7/S			
Basic load rating (N)	Dynamic C _a	1070			
	Static C _{0a}	1950			
Axia	l play	0.020 or less			
Dynamic fri	iction torque	1.0 or less			
(N·cm)		1.12 17 1000	_		
Spac	er ball	None	В		
actory pre-p	oacked grease	Refer to the remarks 2.	18		

Recommend support unit				
WBK06R-11 (Round, fixed sid				


Lead accuracy			Shaft run-out**	Mass	Permissible rotational speed
Target compensation T	Deviation $e_{\scriptscriptstyle p}$	Variation v_{300}		(kg)	N (min⁻¹)
0	0.052	0.052	0.060	0.10	3000
0	0.085	0.052	0.090	0.14	3000


	Stro	oke	Screw shaft length	
Ball screw No.	Nominal	Maximum		
	NOTHILIAI	(L_{t} -Nut length)	$L_{\rm t}$	Lo
RMA0802C7S-180	100	120	146	180
RMA0802C7S-280	200	220	246	280

Remarks 1. We recommend NSK support bearing kit (page B445).

2. Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to page D13 on details.

3. Permissible rotational speed is determined by a d·n value and a critical speed. See page B169 and page B51.

View X-X

Ball screw specification					
Shaft dia.×Lead	/ Direction of turn	10×2/Right			
Ball reci	rculation	Deflector			
Ball dia. / B	all circle dia.	1.200/10.3			
Screw sha	ft root dia.	8.9			
Effective turns of balls		1×3			
Accuracy grade / Axial play code		Ct7/S			
Basic load	Dynamic C _a	1210			
rating (N)	Static C _{0a}	2510			
Axial play		0.020 or less			
Dynamic friction torque (N·cm)		1.0 or less			

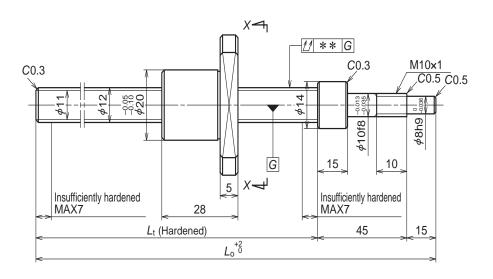
Recommend support unit				
WBK08-01A	(Square, fixed side)			
WBK08-11	(Round, fixed side)			

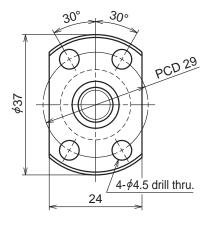
Factory pre-packed grease Refer to the remarks 2.

Spacer ball

Unit: mm

None


Lead accuracy			Shaft run-out**	Mass (kg)	Permissible rotational speed
Target compensation T	Deviation $e_{\scriptscriptstyle p}$	Variation υ ₃₀₀		(kg)	N (min⁻¹)
0	0.085	0.052	0.070	0.19	3000
0	0.085	0.052	0.100	0.25	3000


	Stro	oke	Screw shaft length				
Ball screw No.	Nominal	Maximum	Sciew Sii	art ierigiri			
	NOTHILIAI	$(L_{t}$ -Nut length)	L_{t}	Lo			
RMA1002C7S-250	150	173	201	250			
RMA1002C7S-350	250	273	301	350			

Remarks 1. We recommend NSK support bearing kit (page B445).

2. Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to page D13 on details.

3. Permissible rotational speed is determined by a d·n value and a critical speed. See page B169 and page B51.

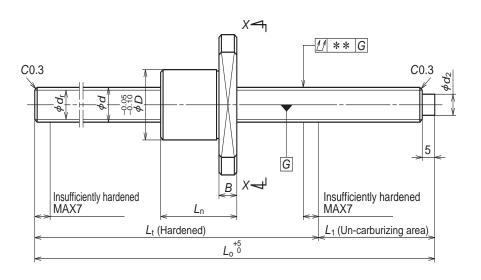
View X-X

UI	III.	ш	П

	Ball screw s	pecification
Shaft dia.xLead	/ Direction of turn	12×2/Right
Ball reci	rculation	Deflector
Ball dia. / B	all circle dia.	1.200/12.3
Screw sha	ft root dia.	10.9
Effective to	urns of balls	1×3
Accuracy grade	/ Axial play code	Ct7/S
Basic load	Dynamic C _a	1350
rating (N)	Static C _{0a}	3190
Axia	l play	0.020 or less
,	ction torque cm)	1.0 or less
Space	er ball	None
Factory pre-p	acked grease	Refer to the remarks 2.

Recommend support unit							
WBK10-01A	(Square, fixed side)						
WBK10-11	(Round, fixed side)						

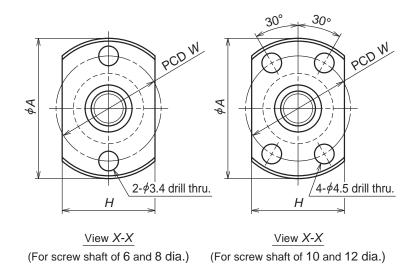
	Lead accuracy		Shaft run-out**	Mass (kg)	Permissible rotational speed		
Target compensation T	Deviation $e_{\scriptscriptstyle \! p}$	Variation v_{300}		(kg)	N (min ⁻¹)		
0	0.060	0.052	0.070	0.26	3000		
0	0.085	0.052	0.100	0.34	3000		


	Str	oke	Screw shaft length			
Ball screw No.	Nominal	Maximum	Sciew Sii	art ierigiri		
	NOTHITAL	(L _t -Nut length)	L_{t}	Lo		
RMA1202C7S-250	150	162	190	250		
RMA1202C7S-350	250	262	290	350		

Remarks 1. We recommend NSK support bearing kit (page B445).

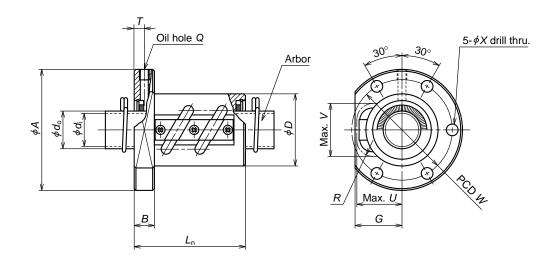
Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to page D13 on details.

3. Permissible rotational speed is determined by a d·n value and a critical speed. See page B169 and page B51.


ø6×1, ø8×1, ø8×1.5 ø8×2, ø10×2, ø12×2

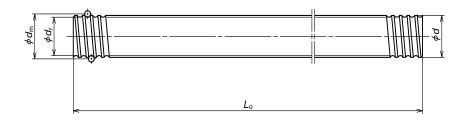
Dell consul No	Stroke	Shaft			Ball circle	Root	Effective	Basic loa	5	Axial
Ball screw No.	Max. L _t -L _n	dia. d	Lead 1	Ball dia. <i>D</i> _w	dia. d _m	dia.	turns of balls	Dynamic C _a	Static C _{0a}	play Max.
RMS0601C7S-300	235	6	1	0.800	6.2	5.3	3	520	925	0.02
RMS0801C7S-300	234		1	0.800	8.2	7.3		600	1290	
RMS0801.5C7S-300	228	8	1.5	1.000	8.3	7.2	3	810	1590	0.02
RMS0802C7S-300	224		2	1.200	8.3	7.0		1070	1950	
RMS1002C7S-350	262	10	2	1.200	10.3	9.0	3	1210	2510	0.02
RMS1202C7S-350	262	12	2	1.200	12.3	11.0	3	1350	3190	0.02

- Remarks 1. We recommend NSK support unit (page B433) or support kit (page B445).


 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use Refer to page D13 on details.
 - 3. Seal is not installed.
 - 4. Permissible rotational speed is determined by a d-n value and a critical speed. See page B169 and page B51.

Unit: mm

	N	ut dim	ensior	าร			shaft c	dimensi			ead accur		Shaft run-out**	Mass	Permissible rotational
D	Α	Н	В	L _n	W	Effective thread length L _t	Shaf L ₁	t end	Overall length L _o	Target compensation T	Deviation $e_{\scriptscriptstyle m p}$	Variation $\upsilon_{\scriptscriptstyle 300}$	11	(Kg)	speed N (min ⁻¹)
12	24	16	3.5	15	18	250	50	4	300	0	0.085	0.052	0.09	0.075	
14	27	18		16	21									0.13	
15	28	19	4	22	22	250	50	6	300	0	0.085	0.052	0.09	0.14	3000
16	29	20		26	23									0.15	
18	35	22	5	28	27	290	60	8	350	0	0.085	0.052	0.10	0.25	
20	37	24	5	28	29	290	60	10	350	0	0.085	0.052	0.10	0.35	


Tube type: Flanged nut (fine, medium lead)

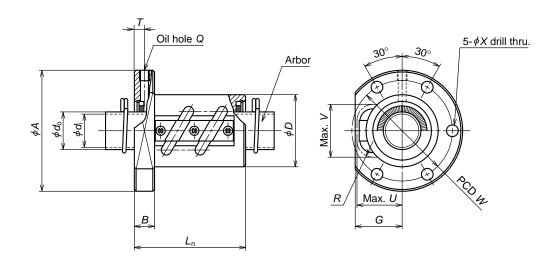
Ball nut No.	Shaft dia.	Lead	Ball dia.	Ball circle		Effective turns of balls Turns	Dasic iu	ad rating N)	Axiai	Ball nut dimensions
Ball flut No.	d	1	$D_{\rm w}$	dia. d _m	d _r	×	Dynamic C _a	Static $C_{\scriptscriptstyle 0a}$	play Max.	Outside dia. D
RNFTL 1003A3.5	10	3	2.381	10.65	8.1	3.5×1	3780	6730	0.10	20
RNFTL 1006A2.5S	10	6	2.381	10.65	8.1	2.5×1	2830	4810	0.10	20
RNFTL 1208A2.5S	12	8	2.778	12.65	9.6	2.5×1	3730	6560	0.10	25
RNFTL 1404A3.5S	14	4	2.778	14.5	11.5	3.5×1	5370	10800	0.10	25
RNFTL 1405A2.5S	14	5	3.175	14.5	11.0	2.5×1	5260	9720	0.10	30
RNFTL 1610A2.5 RNFTL 1610A2.5S	16	10	3.175	16.75	13.3	2.5×1	5660	11500	0.10	30
RNFTL 1808A3.5 RNFTL 1808A3.5S	18	8	4.762	18.5	13.6	3.5×1	13200	25800	0.15	34
RNFTL 2005A2.5 RNFTL 2005A2.5S	20	5	3.175	20.5	17.0	2.5×1	6360	14200	0.10	40
RNFTL 2010A2.5 RNFTL 2010A2.5S	20	10	4.762	21.25	16.2	2.5×1	10900	21800	0.15	40
RNFTL 2505A5 RNFTL 2505A5S	25	5	3.175	25.5	22.0	2.5×2	12800	36300	0.10	42
RNFTL 2510A2.5 RNFTL 2510A2.5S	25	10	4 2E	26	19.0	2.5×1	17500	35200	0.20	44
RNFTL 2510A5 RNFTL 2510A5S	2510A5		20	19.0	2.5×2	31800	70300	0.20	44	

- Remarks 1. Protruding portion of the tube does not have any interference with the ball nut housing if its dimensions corresponding to U and V are large enough.

 - 2. The overall screw shaft length may be slightly longer than nominal length L₅ due to manufacturing tolerance.

 3. Only ball nut part numbers ending "S" are equipped with seals. External dimensions of nuts with seals are the same as those without.
 - In the side view of the ball nut, view above the centerline shows internal seals, and view beneath the external
 - geometry.
 Seals for shaft diameters 14 mm or less are made of synthetic resin. Seals for 16 mm diameter or greater are "Brush"

Unit: mm

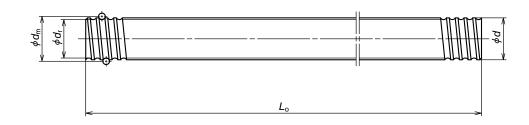

				Ва	ll nut	dimensio	ns				Nut	Ar	bor		Sc	rew s	haft	Shaft	Internal spatial	Standard volume
F	lang	e	Length	Bolt	hole	Oil ho	le	Proje	ecting	tube	Mass.	Outside dia.	Bore	Stan	dard le	ength	Screw shaft	mass/m	volume of nut	of greas replenishing
Α	G	В	Ln	W	Χ	Q	Τ	U	V	R	(kg)	d _o	d		Lo		No.	(kg)		(cm³)
40	15	6	34	30	4.5	M3×0.5	3.0	15	15	7	0.092	8.1	6.1	400	800	-	RS1003A··	0.50	-	-
40	15	6	36	30	4.5	M3×0.5	3.5	15	15	5	0.095	8.1	6.1	400	800	-	RS1006A	0.56	1.1	0.6
45	19	8	46	35	4.5	M3×0.5	5.5	19	18	7	0.18	9.6	7.6	400	800	-	RS1208A	0.74	1.8	0.9
50	19	10	43	40	4.5	M6×1	5.0	19	20	7	0.20	11.5	9.5	500	1000	-	RS1404A··	1.02	2.0	1.0
50	22	10	45	40	4.5	M6×1	5.0	22	21	8	0.26	11.0	9.0	500	1000	-	RS1405A··	1.00	2.4	1.2
53	23	10	54	41	5.5	M6×1	5.5	23	22.5	8	0.28	13.3	11.3	500	1000	1500	RS1610A··	1.37	2.7	1.4
63	27	12	58	49	6.6	M6×1	6.0	27	27	8	0.43	13.6	11.6	500	1000	1500	RS1808A··	1.60	5.2	2.6
60	28	10	46	50	4.5	M6×1	5.0	28	27	10	0.42	17.0	14.6	500	1000	2000	RS2005A··	2.17	3.5	1.8
67	30	12	59	53	6.6	M6×1	6.0	30	29	12	0.55	16.2	13.8	500	1000	2000	RS2010A··	2.18	7.1	3.6
71	28	12	66	57	6.6	M6×1	6.0	28	31	10	0.62	22.0	19.6	1000	2000	2500	RS2505A··	3.47	6.5	3.3
80	34	15	62	62	9	M6×1	7.5	34	37	17	0.75	19.0	14.4	1000	2000	2500	RS2510A··	3.13	13	6.5
80	34	15	92	62	9	M6×1	7.5	34	37	17	0.75	17.0	10.0	1000	2000	2500	K32310A	3.13	18	9.0

- Remarks 4. Nut assembly with arbor and screw shaft are shipped separately.
 5. In the portion of the screw shaft reference number indicated by ···, enter the value obtained by diving the standard screw shaft length by 100 mm.

 - screw shart length by 100 mm.

 6. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.

 7. The internal spatial volume of nut and standard volume of grease replenishing in the dimension table are the values with seal. The amount for grease replenishing should be about 50% of nut internal space capacity. If there is no seal, spread the screw shaft with grease or move the ball nut by hand while replenishing grease, so the grease permeates all area of nut. Please refer to page D16 for details.



Tube type: Flanged nut (fine, medium lead)

Ball nut No.	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	(oad rating (N)	Axiai	Ball nut dimensions
Bail Hat No.	d	1	$D_{\rm w}$	d _m	d _r	× Circuits	Dynamic C _a	Static C _{0a}	Max.	Outside dia. D
RNFTL 2806A2.5 RNFTL 2806A2.5S	00	,	0.475	00.5	05.0	2.5×1	7430	20300	0.40	50
RNFTL 2806A5 RNFTL 2806A5S	- 28	6	3.175	28.5	25.0	2.5×2	13500	40600	0.10	50
RNFTL 3210A5 RNFTL 3210A5S	32	10	6.35	33.75	27.0	2.5×2	35700	92200	0.20	55
RNFTL 3610A2.5 RNFTL 3610A2.5S	36	10	6.35	37	20.0	2.5×1	21000	51000	0.20	60
RNFTL 3610A5 RNFTL 3610A5S	30	10	0.35	37	30.0	2.5×2	38100	102000	0.20	60
RNFTL 4010A7 RNFTL 4010A7S	40	10	6.35	41.75	35.0	3.5×2	53500	164000	0.20	65
RNFTL 4512A5 RNFTL 4512A5S	45	12	7.144	46.5	39.0	2.5×2	49600	147000	0.23	70
RNFTL 5010A7 RNFTL 5010A7S	50	10	6.35	51.75	45.0	3.5×2	59500	205000	0.20	80
RNFTL 5016A5 RNFTL 5016A5S	50	16	9.525	52	42.0	2.5×2	99900	293000	0.23	85

Domarke	1 Drotruding portion of the tube does not be	have any interference with the ball nut housing if its dimensions
I/CIIIai N3	1. Frottuding portion of the tube does not n	lave any interrelence with the ball nut housing it its difficultions

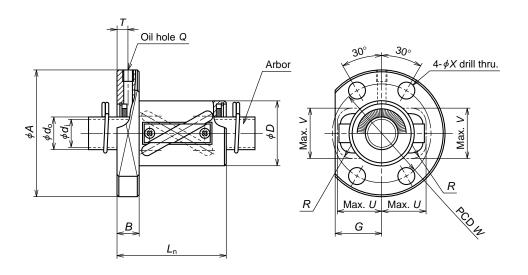
geometry. Seals for shaft diameters 14 mm or less are made of synthetic resin. Seals for 16 mm diameter or greater are "Brush"

Unit: mm

																				Cill	-
				Ва	ll nut	dimensic	ns				Nut	1	bor		Sc	rew sł	naft	Shaft	Internal spatial	Standard volume	
F	lang	е	Length	Bolt	hole	Oil ho	ole	Proje	cting	tube	Mass.	Outside dia	Bore	Stan	dard I	ength	Screw	mass/m	volume of nut	of greas replenishin	0
Α	G	В	Ln	W	Χ	Q	Τ	U	V	R	(kg)	d _o	d		Lo		shaft No.	(kg)		(cm³)	
79	33	15	55	65	6.6	M6×1	7.5	33	34	10	0.85	25.0	22.4	1000	2000	2500	RS2806A··	4.47	5.9	3.0	
79	33	15	79	65	6.6	M6×1	7.5	33	34	10	1.07	25.0	22.0	1000	2000	2500	K25000A	4.47	8.4	4.2	
97	39	18	97	75	11	M6×1	9.0	39	42	17	1.55	27.0	24.6	1000	2000	3000	RS3210A··	5.53	29	15	
102	42	18	68	80	11	M6×1	9.0	42	46	17	1.47	30.0	27.4	1000	2000	2000	RS3610A··	6.91	21	11	
102	42	18	98	80	11	M6×1	9.0	42	46	17	1.80	30.0	27.0	1000	2000	3000	K33010A	0.71	33	17	
114	44	20	120	90	14	M6×1	10.0	44	50	20	2.49	35.0	31.8	2000	3000	4000	RS4010A··	8.87	42	21	-
130	47	22	116	100	18	M6×1	11.0	47	55	20	3.07	39.0	35.8	2000	3000	4000	RS4512A··	11.16	49	25	
140	52	22	122	110	18	M6×1	11.0	52	59	20	4.06	45.0	41.8	2000	3000	4000	RS5010A··	14.15	53	27	_
163	57	28	146	125	22	M6×1	14.0	57	63	25	6.42	42.0	38.8	2000	3000	4000	RS5016A··	13.48	94	47	

Remarks
4. Nut assembly with arbor and screw shaft are shipped separately.
5. In the portion of the screw shaft reference number indicated by ···, enter the value obtained by diving the standard screw shaft length by 100 mm.

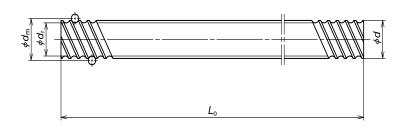
6. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.
7. The internal spatial volume of nut and standard volume of grease replenishing in the dimension table are the values with seal. The amount for grease replenishing should be about 50% of nut internal space capacity. If there is no seal, spread the screw shaft with grease or move the ball nut by hand while replenishing grease, so the grease permeates all area of nut. Please refer to page D16 for details.


corresponding to U and V are large enough.

2. The overall screw shaft length may be slightly longer than nominal length L₁ due to manufacturing tolerance.

3. Only ball nut part numbers ending "S" are equipped with seals. External dimensions of nuts with seals are the same as those without.

In the side view of the ball nut, view above the centerline shows internal seals, and view beneath the external

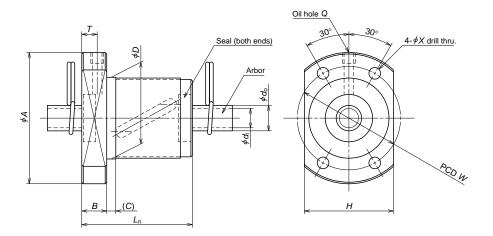

Ball nut No.	Shaft dia. d	Lead <i>1</i>	Ball dia. $D_{\rm w}$	Ball circle dia. d _m	Root dia.	Effective turns of balls Turns × Circuits	Basic io	ad rating N) Static C_{0a}	Axial play Max.	Ball nut dimensions Outside dia. D
RNFTL 1212A3	12	12	2.381	12.65	10.1	1.5×2	3360	6270	0.10	24
RNFTL 1616A3 RNFTL 1616A3S	16	16	2.778	16.65	13.6	1.5 × 2	4880	9650	0.10	30
RNFTL 2020A3 RNFTL 2020A3S	20	20	3.175	20.75	17.3	1.5 × 2	7010	15400	0.10	35
RNFTL 2525A3 RNFTL 2525A3S	25	25	3.969	26	22.0	1.5 × 2	10500	24100	0.12	45
RNFTL 3232A3 RNFTL 3232A3S	32	32	4.762	33.25	28.0	1.5 × 2	15300	37100	0.15	55
RNFTL 4040A3 RNFTL 4040A3S	40	40	6.35	41.75	35.0	1.5 × 2	24400	61600	0.20	70

Remarks 1. Protruding portion of the tube does not have any interference with the ball nut housing if its dimensions

- corresponding to U and V are large enough.

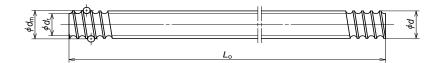
 2. The overall screw shaft length may be slightly longer than nominal length L₀ due to manufacturing tolerance.

 3. Only ball nut part numbers ending "S" are equipped with seals. External dimensions of nuts with seals are the same as those without.
 - In the side view of the ball nut, view above the centerline shows internal seals, and view beneath the external
 - Seals for shaft diameters 14 mm or less are made of synthetic resin. Seals for 16 mm diameter or greater are "Brush" seals.


Unit: mm

			Ва	ll n	ut dir	mensio	ns				Nut	Ar	bor		Scr	ew s	haft	Shaft	Internal spatial	Standard volume	
F	lang	е	Length	Во	It hole	Oil h	ole	Proje	cting	tube	Mass.	Outside dia.	Bore	Stand	dard le	ength	Screw	mass/m	volume of nut	of greas replenishing	
Α	G	В	Ln	W	X	Q	T	U	V	R	(kg)	$d_{\scriptscriptstyle 0}$	di		L_{\circ}		shaft No.	(kg)	(cm³)	(cm³)	В
44	17	8	44	34	4.5	M3 × 0.5	4.0	17	16	5	0.16	10.1	8.1	400	800		RS1212A··	0.74	1.7	0.9	19
55	22	10	50	43	6.6	M6 × 1	5.0	22	22	7	0.29	13.6	11.6	500	1000	1500	RS1616A··	1.37	2.8	1.4	
68	25	12	59	52	9	M6 × 1	6.0	25	27	8	0.49	17.3	14.9	500	1000	2000	RS2020A··	2.19	4.9	2.5	
80	31	12	69	63	9	M6 × 1	6.0	31	32	10	0.80	22.0	19.6	1000	2000	2500	RS2525A··	3.43	9.1	4.6	
100	37	15	84	80	11	M6 × 1	7.5	37	40	12	1.46	28.0	25.6	1000	2000	3000	RS3232A··	5.71	19	9.5	
120	46	18	103	95	14	M6 × 1	9.0	46	49	15	2.69	35.0	31.8	2000	3000	4000	RS4040A··	8.82	39	20	

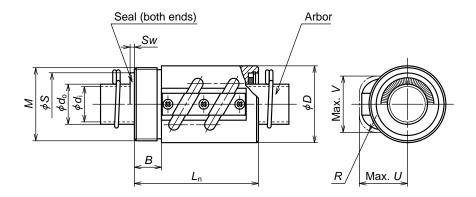
- Remarks 4. Nut assembly with arbor and screw shaft are shipped separately. 5. In the portion of the screw shaft reference number indicated by \cdots , enter the value obtained by diving the standard


 - In the portion of the screw shaft reference number indicated by ..., enter the value obtained by diving the standard screw shaft length by 100 mm.
 Items in stock do not have surface treatment. For details of standard stock products, contact NSK.
 The internal spatial volume of nut and standard volume of grease replenishing in the dimension table are the values with seal. The amount for grease replenishing should be about 50% of nut internal space capacity. If there is no seal, spread the screw shaft with grease or move the ball nut by hand while replenishing grease, so the grease permeates all area of nut. Please refer to page D16 for details.

B197 B198

Dall and Na	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls Turns	Basic lo	ad rating N)	Axial	Ball nut dimensions Outside dia.
Ball nut No.	d	1	$D_{\rm w}$	dia. d _m	d _r	×	Dynamic C _a	Static C _{oa}	play Max.	D
RNFBL 1006A2.5S	10	6	2.381	10.65	8.1	2.5×1	2830	4810	0.10	26
RNFBL 1208A2.5S	12	8	2.778	12.65	9.6	2.5×1	3730	6560	0.10	29
RNFBL 1404A3.5S	14	4	2.778	14.5	11.5	3.5×1	5370	10800	0.10	31
RNFBL 1405A2.5S	14	5	3.175	14.5	11.0	2.5×1	5260	9720	0.10	32
RNFBL 1808A3.5S	18	8	4.762	18.5	13.6	3.5×1	13200	25800	0.15	50
RNFBL 2005A2.5S	20	5	3.175	20.5	17.0	2.5×1	6360	14200	0.10	40
RNFBL 2010A2.5S	20	10	4.762	21.25	16.2	2.5×1	10900	21800	0.15	52
RNFBL 2505A2.5S	25	5	2 175	25.5	22.0	2.5×1	7070	18200	0.10	43
RNFBL 2505A5S	25	5	3.175	25.5	22.0	2.5×2	12800	36300	0.10	43
RNFBL 2510A2.5S	25	10	6.35	26	19.0	2.5×1	17500	35200	0.20	60
RNFBL 2510A5S	25	10	0.35	20	19.0	2.5×2	31800	70300	0.20	60
RNFBL 2806A2.5S	28	6	3.175	28.5	25.0	2.5×1	7430	20300	0.10	50
RNFBL 2806A5S	20	0	3.173	20.0	25.0	2.5×2	13500	40600	0.10	50
RNFBL 3210A2.5S	22	10	6.35	33.75	27.0	2.5×1	19700	46100	0.20	67
RNFBL 3210A5S	32	10	0.35	33.75	27.0	2.5×2	35700	92200	0.20	67
RNFBL 3610A2.5S	36	10	6.35	37	30.0	2.5×1	21000	51000	0.20	70
RNFBL 3610A5S	36	10	0.35	3/	30.0	2.5×2	38100	102000	0.20	_ /0]
RNFBL 4010A5S	40	10	6.35	41.75	35.0	2.5×2	40100	116000	0.20	76

Remarks	 The overal 	II screw	shaft leng	th may b	oe slightly	longer than	nominal length L₀ du	e to manufacturing tolerance.


			Ball	nut	dimer	nsions				Arb	or		Sc	rew sh	aft		Internal	Standard
F	lange	9	Len			hole	Oil hol	е	Nut Mass.	Outside dia.		Star	ndard le			Shaft	spatial	volume of areas
Α	Н	В	Overall length $L_{\rm n}$	(C)	W	X	Q	Т	(kg)	d _o	d _i		L _o		Screw shaft No.	mass/m (kg)	volume of nut (cm ³)	replenishing
42	29	8	36	3	34	4.5	M3×0.5	5.0	0.16	8.1	6.1	400	800		RS1006A··	0.56	1.1	0.6
45	32	8	44	3	37	4.5	M3×0.5	5.5	0.21	9.6	7.6	400	800		RS1208A··	0.81	1.6	0.8
50	37	10	40	4	40	4.5	M6×1	5.0	0.25	11.5	9.5	500	1000		RS1404A··	1.02	2.4	1.2
50	38	10	40	4	40	4.5	M6×1	5.0	0.26	11.0	9.0	500	1000		RS1405A··	1.00	1.9	1.0
80	60	12	61	4	65	6.6	M6×1	6.0	1.00	13.6	11.6	500	1000	1500	RS1808A··	1.60	5.8	2.9
60	46	10	40	4	50	4.5	M6×1	5.0	0.37	17.0	14.6	500	1000	2000	RS2005A··	2.17	2.8	1.4
82	64	12	61	5	67	6.6	M6×1	6.0	1.05	16.2	13.8	500	1000	2000	RS2010A··	2.18	7.6	3.8
67	50	10	40 55	4	55	5.5	M6×1	5.0	0.40	22.0	19.6	1000	2000	2500	RS2505A··	3.47	3.5	1.8
96	72	15	66 96	5	78	9.0	M6×1	7.5	1.52	19.0	16.6	1000	2000	2500	RS2510A··	3.13	14 19	7.0
80	60	12	47 65	5	65	6.6	M6×1	6.0	0.70	25.0	22.6	1000	2000	2500	RS2806A··	4.47	4.5 7.6	2.3
103	78	15	67 97	5	85	9.0	M6×1	7.5	1.72 2.25	27.0	24.6	1000	2000	3000	RS3210A··	5.53	20 28	10 14
110	82	17	69 99	5	90	11.0	M6×1	8.5	1.97 2.53	30.0	27.6	1000	2000	3000	RS3610A··	6.91	21 29	11 15
116	88	17	99	5	96	11.0	M6×1	8.5	2.86	35.0	31.8	2000	3000	4000	RS4010A··	8.87	36	18

Remarks 4. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.

- 5. Seal for shaft diameters 14 mm or less are made of synthetic resin. Seal for 16 mm diameter or greater are "Brush"
- 6. The amount for grease replenishing should be about 50% of nut internal space capacity. Please refer to page D16 on

Nut assembly with arbor and screw shaft are shipped separately.
 In the portion of the screw shaft reference number indicated by ··, enter the value obtained by diving the standard screw shaft length by 100 mm.

Ball nut No.	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	Basic Ic	ad rating (N)	Axial	Ball nut dimensions
Ball Hut No.	d	1	$D_{\rm w}$	dia. d _m	d,	× Circuits	Dynamic C_a	Static C _{oa}	play Max.	Outside dia.
RNCT 1003A3.5	10	3	2.381	10.65	8.1	3.5×1	3780	6730	0.10	20
RNCT 1404A3.5S	14	4	2.778	14.5	11.5	3.5×1	5370	10800	0.10	25
RNCT 1405A2.5S	14	5	3.175	14.5	11.0	2.5×1	5260	9720	0.10	30
RNCT 1808A3.5 RNCT 1808A3.5S	18	8	4.762	18.5	13.6	3.5 × 1	13200	25800	0.15	34
RNCT 2005A2.5 RNCT 2005A2.5S	20	5	3.175	20.5	17.0	2.5 × 1	6360	14200	0.10	40
RNCT 2505A5 RNCT 2505A5S	25	5	3.175	25.5	22.0	2.5 × 2	12800	36300	0.10	42
RNCT 2510A5 RNCT 2510A5S	25	10	6.35	26	19.0	2.5 × 2	31800	70300	0.20	44
RNCT 2806A5 RNCT 2806A5S	28	6	3.175	28.5	25.0	2.5 × 2	13500	40600	0.10	50
RNCT 3210A5 RNCT 3210A5S	32	10	6.35	33.75	27.0	2.5 × 2	35700	92200	0.20	55
RNCT 3610A5 RNCT 3610A5S	36	10	6.35	37	30.0	2.5 × 2	38100	102000	0.20	60
RNCT 4010A7 RNCT 4010A7S	40	10	6.35	41.75	35.0	3.5 × 2	53500	164000	0.20	65
RNCT 4512A5 RNCT 4512A5S	45	12	7.144	46.5	39.0	2.5 × 2	49600	147000	0.23	70
RNCT 5010A7 RNCT 5010A7S	50	10	6.35	51.75	45.0	3.5 × 2	59500	205000	0.20	80
RNCT 5016A5 RNCT 5016A5S	50	16	9.525	52	42.0	2.5 × 2	99900	293000	0.23	85

Remarks 1. Protruding portion of the tube does not have any interference with the ball nut housing if its dimensions corresponding to U and V are large enough.

2. The overall screw shaft length may be slightly longer than nominal length L₀ due to manufacturing tolerance.

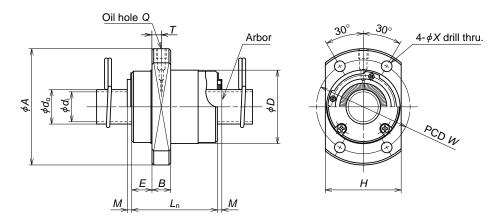
3. Only ball nut part numbers ending "S" are equipped with seals. External dimensions of nuts with seals are the same as those without.

In the side view of the ball nut, view above the centerline shows internal seals, and view beneath the external

Seals for shaft diameters 14 mm or less are made of synthetic resin. Seals for 16 mm diameter or greater are "Brush"

Unit: mm

Ва	all nu	t dime	nsion	S		Nut	Seal dim	ensions	Arl	oor		Sc	rew s	haft	Shaft	Internal	Standard volume
V-thread	i	Length	Proje	ecting	tube	Mass.	Diameter	Thickness	Outside dia.	Bore	Stand	dard le	ength	Screw shaft	mass/m	spatial volume of nut	of greas replenishing
М	В	Ln	U	V	R	(kg)	S	Sw	$d_{\scriptscriptstyle 0}$	d _i		Lo		No.	(kg)	(cm ³)	(cm³)
M18 × 1	10	38	15	15	7	0.049			8.1	6.1	400	800		RS1003A··	0.50		
M24 × 1	10	43	19	20	7	0.083			11.5	9.5	500	1000		RS1404A	1.02	2.7	1.4
M26 × 1.5	10	45	22	21	8	0.15			11.0	9.0	500	1000		RS1405A··	1.00	3.1	1.6
M32 × 1.5	12	58	27	27	8	0.21	28.5	2.5	13.6	11.6	500	1000	1500	RS1808A··	1.60	6.6	3.3
M36 × 1.5	12	48	28	27	10	0.28	29.5	2.5	17.0	14.6	500	1000	2000	RS2005A··	2.17	4.8	2.4
M40 × 1.5	15	69	28	31	10	0.38	34.5	2.5	22.0	19.6	1000	2000	2500	RS2505A··	3.47	8.4	4.2
M42 × 1.5	15	92	34	37	17	0.49	38.5	2.5	19.0	16.6	1000	2000	2500	RS2510A··	3.13	21	1
M45 × 1.5	15	79	33	34	10	0.68	37.5	2.5	25.0	22.6	1000	2000	2500	RS2806A··	4.47	9.7	4.9
M50 × 1.5	18	97	39	42	17	0.79	45.5	2.5	27.0	24.6	1000	2000	3000	RS3210A··	5.53	32	16
M55 × 2	18	98	42	46	17	0.97	50.5	3.0	30.0	27.6	1000	2000	3000	RS3610A··	6.91	32	16
M60 × 2	25	125	44	50	20	1.37	54.5	3.0	35.0	31.8	2000	3000	4000	RS4010A··	8.87	51	26
M65 × 2	30	124	47	55	20	1.42	60.5	3.0	39.0	35.8	2000	3000	4000	RS4512A··	11.16	60	30
M75 × 2	40	140	52	59	20	2.41	64.5	3.0	45.0	41.8	2000	3000	4000	RS5010A··	14.15	76	38
M80 × 2	40	158	57	63	25	3.14	68.5	3.0	42.0	38.8	2000	3000	4000	RS5016A··	13.48	114	57


Remarks 4. Nut assembly with arbor and screw shaft are shipped separately.
5. In the portion of the screw shaft reference number indicated by ···, enter the value obtained by diving the standard screw shaft length by 100 mm.

6. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.

7. The internal spatial volume of nut and standard volume of grease replenishing in the dimension table are the values with seal. The amount for grease replenishing should be about 50% of nut internal space capacity. If there is no seal, spread the screw shaft with grease or move the ball nut by hand while replenishing grease, so the grease permeates all area of nut. Please refer to page D16 for details.

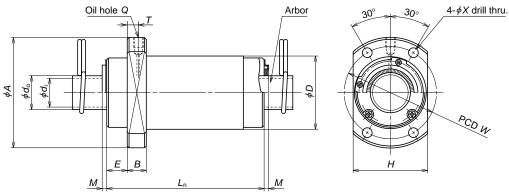
B201 B202

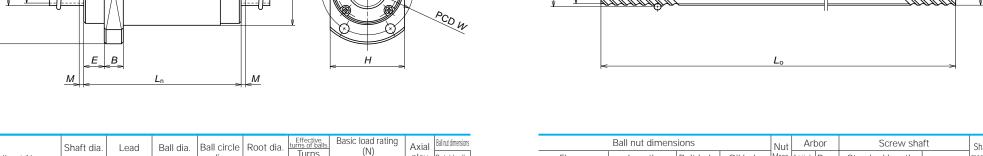
Ball nut No.	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns		V)	Axial	Ball nut dimensions Outside dia.
Bail Hat No.	d	1	$D_{\rm w}$	d _m	d,	× Circuits	Dynamic C_a	Static $C_{\circ\circ}$	Max.	D D
RNFCL 1212A3 RNFCL 1212A6	12	12	2.381	12.65	10.1	1.7 × 2 1.7 × 4	3740 6780	6640 13300	0.10	26
RNFCL 1520A3 RNFCL 1520A3S	15	20	3.175	15.5	12.2	1.7 × 2	6730	12300	0.10	33
RNFCL 1616A3 RNFCL 1616A3S	16	16	2.778	16.65	13.5	1.7 × 2	5430	10400	0.10	32
RNFCL 1616A6 RNFCL 1616A6S	10	10	2.770	10.03	13.5	1.7 × 4	9860	20800	0.10	32
RNFCL 2020A3 RNFCL 2020A3S	20	20	3.175	20.75	17.3	1.7 × 2	7810	16500	0.10	39
RNFCL 2020A6 RNFCL 2020A6S	20	20	3.173	20.73	17.5	1.7 × 4	14200	33000	0.10	37
RNFCL 2525A3 RNFCL 2525A3S	25	25	3.969	26	22.0	1.7 × 2	11700	25800	0.12	47
RNFCL 2525A6 RNFCL 2525A6S	25	23	3.707	20	22.0	1.7 × 4	21200	51500	0.12	47
RNFCL 3232A3 RNFCL 3232A3S	32	32	4.762	33.25	28.0	1.7 × 2	17100	40500	0.15	58
RNFCL 3232A6 RNFCL 3232A6S	32	32	4.702	33.23	20.0	1.7 × 4	31000	81000	0.13	30
RNFCL 4040A3 RNFCL 4040A3S	40	40	6.35	41.75	35.0	1.7 × 2	27200	67900	0.20	73
RNFCL 4040A6 RNFCL 4040A6S	40	40	0.33	41.75	33.0	1.7 × 4	49300	136000	0.20	73
RNFCL 5050A3 RNFCL 5050A3S	50	50	7.938	52.25	44.0	1.7 × 2	40600	106000	0.25	90
RNFCL 5050A6 RNFCL 5050A6S	30	30	7.730	52.25	44.0	1.7 × 4	73700	212000	0.23	70

Domarke	1 The everall scrow shaft	longth may be clightly longer t	than nominal longth L	due to manufacturing tolerance.

- 2. Nut assembly with arbor and screw shaft are shipped separately.

 3. In the portion of the screw shaft reference number indicated by --, enter the value obtained by diving the standard screw shaft length by 100 mm.
- Items in stock do not have surface treatment. For details of standard stock products, contact NSK.
 The entire length of the nut becomes longer by "2 x M" for those with a seal. The seal is "Brush" seal.


$\phi d_{\mathbb{T}}$		$\phi \phi$
	L _s	


			Bal	l nut	dime	nsior	าร			Nut	Arl	oor		Sci	rew sl	naft	Shaft	Internal spatial	Standard volume
	Flange			.engt			hole	Oil ho	_	Mass. (kg)			Stan	dard le	ength	Screw shaft	mass/m (kg)	volume of nut	of greas replenishing
Α	Н	В	Ε	L _n	М	W	Χ	Q	T	(Rg)	d _o	d _i		L _o		No.	(kg)	(cm³)	(cm³)
44	28	6	9	30	-	35	4.5	M3 × 0.5	3.0	0.12	10.1	8.1	400	800		RS1212A··	0.74		
51	35	10	11	45	3	42	4.5	M6 × 1	5.0	0.28	12.2	10.2	500	1000	1500	RS1520A··	1.15	3.3	1.7
53	34	10	10	38	3	42	4.5	M6 × 1	5.0	0.23	13.5	11 5	500	1000	1500	RS1616A··	1.37	2.6	1.3
55	34	10	10	30	3	42	4.5	1010 × 1	5.0	0.23	13.5	11.5	300	1000	1300	KSTOTOA	1.37	2.6	1.3
62	41	10	11.5	46	3	50	5.5	M6 × 1	5.0	0.37	17.3	1/1 0	500	1000	2000	RS2020A··	2.19	4.4	2.2
	71	10	11.5	40	3	30	3.3	1010 × 1	3.0	0.37	17.5	14.7	300	1000	2000	NSZUZUA	2.17	4.9	2.5
74	49	12	13	55	3	60	6.6	M6 × 1	6.0	0.62	22.0	10 6	1000	2000	2500	RS2525A··	3.43	8.2	4.1
, 4	77	12	13	33	3	00	0.0	IVIO X I	0.0	0.02	22.0	17.0	1000	2000	2300	113232371	3.43	8.9	4.5
92	60	12	16	70	3	74	9	M6 × 1	5.5	1 10	20 0	25.6	1000	2000	3000	RS3232A··	5.71	16	8.0
72	00	12	10	70	3	74	7	1010 × 1	5.5	1.10	20.0	23.0	1000	2000	3000	K33232A	5.71	17	8.5
114	75	15	19.5	85	3.5	93	11	M6 × 1	4.5	2 00	25.0	21 0	2000	3000	4000	RS4040A··	8.82	32	16
114	75	10	17.5	00	3.5	73	11	1010 × 1	0.5	2.07	33.0	31.0	2000	3000	4000	K34040A	0.02	33	17
135	92	20	21.5	107	3.5	112	14	M6 v 1	7.0	3 00	44.0	40 Q	2000	3000	4000	RS5050A··	13.81	64	32
133	74	20	∠ I.J	107	3.5	112	14	IVIO X I	7.0	3.70	44.0	40.0	2000	3000	4000	K20000A	13.01	68	34

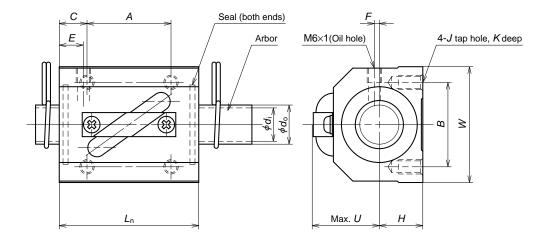
Remarks 6. The internal spatial volume of nut and standard volume of grease replenishing in the dimension table are the values with seal. The amount for grease replenishing should be about 50% of nut internal space capacity.

If there is no seal, spread the screw shaft with grease or move the ball nut by hand while replenishing grease, so the grease permeates all area of nut. Please refer to page D16 for details.

Ball nut No.	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	1)	۷)	Axial play	Ball nut dimensions Outside dia.
Bail Hat 110	d	1	$D_{\rm w}$	d _m	d,	× Circuits	Dynamic C _a	C_{oa}	Max.	D
RNFCL 1632A2						0.7 × 4	4600	8460		
RNFCL 1632A2S RNFCL 1632A3										
RNFCL 1632A3S	16	32	2.778	16.65	13.5	1.7×2	5430	10400	0.10	32
RNFCL 1632A6						1.7 × 4	9860	20800		
RNFCL 1632A6S						1.7 \ 4	7000	20000		
RNFCL 2040A2 RNFCL 2040A2S						0.7 × 4	6610	13600		
RNFCL 2040A3	20	40	3.175	20.75	17.3	1.7 × 2	7810	16500	0.10	38
RNFCL 2040A3S	20	40	3.173	20.75	17.3	1.7 X Z	7010	10300	0.10	30
RNFCL 2040A6						1.7 × 4	14200	33000		
RNFCL 2040A6S										
RNFCL 2550A2 RNFCL 2550A2S						0.7×4	9870	21200		
RNFCL 2550A3	25	50	3.969	26	22.0	1.7 × 2	11700	25800	0.12	46
RNFCL 2550A3S		00	0.707		22.0		11700	20000	02	
RNFCL 2550A6 RNFCL 2550A6S						1.7 × 4	21200	51500		
RNFCL 3264A3						1.7 × 2	17100	40500		
RNFCL 3264A3S	32	64	4.762	33.25	28.0	1.7 \ \ \ \ \ \ \	17100	40300	0.15	58
RNFCL 3264A6	02		11702	00.20	20.0	1.7 × 4	31000	81000	00	
RNFCL 3264A6S										
RNFCL 4080A3 RNFCL 4080A3S	40	00	(250	44.75	25.0	1.7 × 2	27200	67900	0.00	70
RNFCL 4080A6 RNFCL 4080A6S	40	80	6.350	41.75	35.0	1.7 × 4	49300	136000	0.20	73

Remarks 1.	The
------------	-----

- 1. The overall screw shaft length may be slightly longer than nominal length L_{\circ} due to manufacturing tolerance. 2. Nut assembly with arbor and screw shaft are shipped separately.
- 3. In the portion of the screw shaft reference number indicated by .., enter the value obtained by diving the standard screw shaft length by 100 mm.
- Items in stock do not have surface treatment. For details of standard stock products, contact NSK.
 The entire length of the nut becomes longer by "2 x M" for those with a seal. The seal is "Brush" seal.

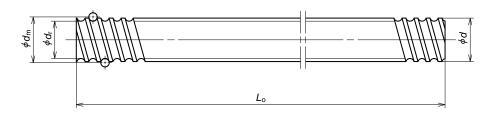

ϕd_{m}			
*	<u> </u>		
	<	Lo	

			Ball	nut di	imensions					Nut	Arl			Ç	Screv	v sha	ft	Shaft	Internal spatial	Standard volume
	Flange		_	engtl		Bolt		Oil h		Mass. (kg)	Outside dia.		Sta	Standard length		gth	Screw		volume	of greas replenishing
Α	Н	В	Ε	Ln	М	W	Χ	Q	Τ	(Kg)	$d_{\scriptscriptstyle 0}$	d _i		L	0		shaft No.	(kg)	(cm³)	replenishing (cm³)
				34	3					0.21									2.4	1.2
50	34	10	10	66	3	41	4.5	M6 × 1	5.5	0.33	13.5	11.5	500	1000	1500		RS1632A··	1.34	3.9	2.0
				66	3					0.33									4.1	2.1
				41	3					0.31									4.1	2.1
58	40	10	11	81	3	48	5.5	M6 × 1	5.5	0.53	17.3	14.9	500	1000	1500	2000	RS2040A··	2.15	6.3	3.2
				81	3					0.53									7.0	3.5
				50	3					0.53									8.4	4.2
70	48	12	13	100	3	58	6.6	M6 × 1	7.0	0.91	22.0	19.6	1000	2000	2500		RS2550A··	3.37	14	7.0
				100	3					0.91									15	7.5
92	60	12	15.5	126	3	74	9	M6 × 1	7.5	1.76	28.0	25.6	1000	2000	3000	4000	RS3264A··	5.63	24	12
	00	12	10.0	120	3	/ -	,	IVIO X I	7.5	1.70	20.0	20.0	1000	2000	3000	4000	113320471	3.03	26	13
114	75	15	19	158	3.5	93	11	M6 × 1	10.0	3.44	35.0	31.8	2000	3000	4000	5000	RS4080A··	8.69	52	26
114	75	10	17	130	3.5	73	11	1410 × 1	10.0	3.44	33.0	31.0	2000	3000	- 000	5000	NOTOUR	0.07	55	28

Remarks 6. The internal spatial volume of nut and standard volume of grease replenishing in the dimension table are the values with seal. The amount for grease replenishing should be about 50% of nut internal space capacity.

If there is no seal, spread the screw shaft with grease or move the ball nut by hand while replenishing grease, so the grease permeates all area of nut. Please refer to page D16 for details.

B205 B206


Ball nut No.	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	l .	ad rating (N)	Axial play	Ball nut dimensions Length
Ball Hut NO.	d	1	$D_{\rm w}$	dia. d _m	d _r	× Circuits	Dynamic C _a	Static $C_{\circ\circ}$	Мах.	Ln
RNSTL 1404A3.5S	14	4	2.778	14.5	11.5	3.5×1	5370	10800	0.10	38
RNSTL 1405A2.5S	14	5	3.175	14.5	11.0	2.5×1	5260	9720	0.10	38
RNSTL 1808A3.5S	18	8	4.762	18.5	13.6	3.5×1	13200	25800	0.15	56
RNSTL 2005A2.5S	20	5	3.175	20.5	17.0	2.5×1	6360	14200	0.10	38
RNSTL 2010A2.5S	20	10	4.762	21.25	16.2	2.5×1	10900	21800	0.15	58
RNSTL 2505A2.5S	25	5	3.175	25.5	22.0	2.5×1	7070	18200	0.10	35
RNSTL 2510A5S	25	10	6.35	26	19.0	2.5×2	31800	70300	0.20	94
RNSTL 2806A2.5S	28	6	3.175	28.5	25.0	2.5×1	7430	20300	0.10	42
RNSTL 2806A5S	20	0	3.173	20.3	25.0	2.5×2	13500	40600	0.10	67
RNSTL 3210A2.5S	32	10	6.35	33.75	27.0	2.5×1	19700	46100	0.20	64
RNSTL 3210A5S	32	10	0.33	33.73	27.0	2.5×2	35700	92200	0.20	94
RNSTL 3610A2.5S	36	10	6.35	37	30.0	2.5×1	21000	51000	0.20	64
RNSTL 3610A5S	30	10	0.55	31	30.0	2.5×2	38100	102000	0.20	96
RNSTL 4512A5S	45	12	7.144	46.5	39.0	2.5×2	49600	147000	0.23	115

Remarks

1. The overall screw shaft length may be slightly longer than nominal length L_o due to manufacturing tolerance.

2. Nut assembly with arbor and screw shaft are shipped separately.

3. In the portion of the screw shaft reference number indicated by ··, enter the value obtained by diving the standard screw shaft length by 100 mm.

Unit: mm

B208

			Ball	nut d	imens	ions				Nut	Arbor Screw shaft				haft	Shaft	Internal	Standard	
Width	Center height		В	olt ho	le		Oil h	ole		Mass.	Outside dia.	Bore	Stan	dard le	ength	Screw shaft	mass/m	spatial volume	volume of greas
W	Н	Α	В	С	J	Κ	Ε	F	U	(kg)	$d_{\scriptscriptstyle 0}$	d _i		L _o		No.	(kg)	of nut	replenishing (cm³)
34	13	22	26	8	M4	7	7	3	20	0.20	11.5	9.5	500	1000		RS1404A··	1.02	1.6	0.8
34	13	22	26	8	M4	7	7	3	21	0.20	11.0	9.0	500	1000		RS1405A··	1.00	1.8	0.9
48	17	35	35	10.5	M6	10	8	3	26	0.31	13.6	11.6	500	1000	1500	RS1808A··	1.60	3.4	1.7
48	17	22	35	8	M6	9	6	2	27	0.24	17.0	14.6	500	1000	2000	RS2005A··	2.17	2.5	1.3
48	18	35	35	11.5	M6	10	10	2	28	0.35	16.2	13.8	500	1000	2000	RS2010A··	2.18	6.3	3.2
60	20	22	40	6.5	M8	10	6	0	27	0.31	22.0	19.6	1000	2000	2500	RS2505A··	3.47	2.6	1.3
60	23	60	40	17	M8	12	10	0	32	1.32	19.0	16.6	1000	2000	2500	RS2510A··	3.13	18	9.0
60	22	18	40	12	M8	12	8	0	32	0.65	25.0	22.6	1000	2000	2500	RS2806A··	4.47	3.5	1.8
60	22	40	40	13.5	IVIO	12	0	0	32	1.04	25.0	22.0	1000	2000	2300	K32000A	4.47	7.0	3.5
70	26	45	50	9.5	M8	12	10	0	38	1.12	27.0	24.6	1000	2000	3000	RS3210A··	5.53	18	9.0
70	26	60	50	17	IVIO	12	10	U	30	1.75	27.0	24.0	1000	2000	3000	K33210A	0.00	27	14
86	29	45	60	9.5	M10	16	11	0	41	1.76	30.0	27.6	1000	2000	3000	RS3610A··	6.91	18	9.0
86	29	60	60	18	IVITU	10	1 1	U	41	2.64	30.0	21.0	1000	2000	3000	K33010A	0.71	27	14
100	36	75	75	20	M12	20	13	0	46	1.22	39.0	35.8	2000	3000	4000	RS4512A··	11.16	47	24

Remarks
4. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.
5. The entire length of the nut becomes longer by "2 x M" for those with a seal. The seal is "Brush" seal.
6. The amount for grease replenishing should be about 50% of nut internal space capacity. Please refer to page D16 on

B-3-1.11 Equipped with "NSK K1™" Lubrication Unit

This product is patented by NSK Ltd.

1. Features

"NSK K1TM" is a new, efficient lubrication unit. Equipped with "NSK K1[™]", the ball screws demonstrate a superb performance as shown below.

Long-term, maintenance-free usage

In mechanical environments where lubrication is difficult to apply, long-term running efficiency is maintained by using the "NSK K1™" in combination with grease.

[ex.] For automotive component processing lines, etc.

Does not pollute the environment

A very small volume of grease combined with NSK K1 Seal can provide sufficient lubrication in the environment where grease is undesirable as well as in the environment where high cleanliness is required.

[ex.] Food processing/medical equipment, liquid crystal display/semiconductor manufacturing equipment, etc.

 Good for environments where lubricant is washed away

When used with grease, life of the machine is prolonged even when the machine is washed entirely by water, or in an environment where the machine is exposed to rain or wind.

[ex.] Food processing equipment, housing/ construction machines, etc.

 Maintains efficiency in dusty environment In environment where oil- and grease-absorbing dust is produced, long-term efficiency in lubrication and prevention from foreign inclusions are maintained by using the "NSK $K1^{TM}$ in combination with grease.

[ex.] Woodworking machines, etc.

 Comparative duration test of samples with and without NSK K1

Sample, testing conditions and test result are shown in Table 1 and Fig. 1.

Without lubricant, operation became impossible after running 8.6 km. With NSK K1 alone, it was possible to continue running exceeding 10000

NSK conducts various tests under different conditions. Please consult NSK.

Table 1 Sample and testing conditions

Ball screw	Shaft dia. 20 mm, lead 20 mm
Lubrication	Comparison with only NSK K1 against no lubrication
Speed	4 000 min ⁻¹ (80 m/min)
Stroke	600 mm

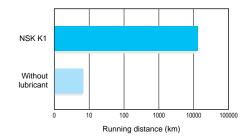


Fig. 1 Duration test results on ball screws without lubricant

2. Specifications

(1) Structure

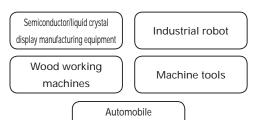
The structure makes it possible to have a stable contact between the NSK K1 and outside of a ball screw with moderate force by a garter spring which fits onto outside of the NSK K1.

NSK K1 is installed between the ball screw nut and the labyrinth seal. The overall nut length is slightly longer than Standard ball screw.

Combination of NSK standard grease (factorypacked in the nut) and NSK K1 are standard specifications.

Fig. 2 NSK K1

(2) Accuracy grade and axial play


Accuracy grade, clearance and preload specifications remain unchanged. There is a slight

(3) Overall nut length after equipped with NSK K1™

The nut length become longer than standard ball screw after equipped with NSK K1. The nut length after equipped K1 shown in page B211 to 214 for each recirculation. "NSK K1" can be installed on other types not listed in the dimension table, please consult with NSK.

(4) Application examples

Ball screws equipped with NSK K1 are maintenance-free for a long period of time. Its application is expanding in various industries.

manufacturing machines

3. Precautions for use

Temperature range for use: Maximum temperature for use: 50°C

> Momentary maximum temperature in use: 80°C

Chemicals that should not come to contact with K1: Do not leave K1 Seal in organic solvent, white kerosene such as hexane, thinner which removes oil, and rust preventive oil which contains white kerosene.

Note: Water-type cutting oil, oil-type cutting oil, grease such as mineral-type AS2 and ester-type PS2 do not damage K1 Seal.

4. Example of reference number

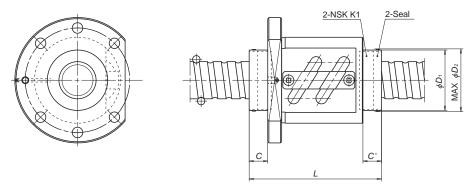
A structure of "Reference number for ball screw" is as follows.

Note: "K1" is added at the end of "nut model code" and "Specifications number".

♦ Reference number for ball screw equipped with NSK K1

W1401 -** P K1 - C3 Z10

NSK K1 equipped type ball screw code



increase in torque due to the equipped NSK K1.

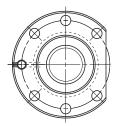
B209 B210

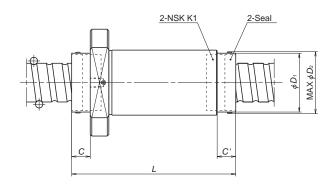
NSK

(1) Tube type

Tube type

N Andal Na	Screw shaft dia.	Lead		talling nsion	Overall length when equipped K1	K1 cap	dimension
Model No.			uiiile	1151011		Cup dia.	Protruding
	d	1	С	C '	L	ϕD_1	dimension ϕD_2
PFT1004-2.5	10	4	14	15	61.5	φ 22	MAX ø 24
PFT1205-2.5	12	5	14	15	66	φ 26.5	MAX φ 29
LPFT1210-2.5	12	10	14	17	79	φ 26.5	MAX ø 29
PFT1405-2.5	14	5	14	15	65	ø 30	MAX ø 32
LPFT1510-2.5	15	10	14	15	76	ø 30	MAX φ 32
PFT1605-2.5	16	5	14	15	67	φ 32	MAX ø 34
PFT2005-5	20	5	14	14	81	ø 38	MAX ø 40
LPFT2010-2.5	20	10	14	14	78	φ 38	MAX φ 40
LPFT2020-1.5	20	20	14	14	84	ø 38	MAX ø 40
ZFT2505-10	25	5	16	17	115	φ 44	MAX ø 46
PFT2506-5	25	6	16	17	93	φ 44	MAX φ 46
PFT2510-2.5	25	10	16	17	89	φ 44	MAX φ 46
ZFT2510-3	25	10	16	17	103	φ 44	MAX φ 46
LPFT2520-2.5	25	20	12	12	109	ø 38	MAX ø 40
LPFT2525-1.5	25	25	12	12	98	φ 38	MAX ø 40
DFT2805-5	28	5	16	17	137	φ 48	MAX ø 50
PFT2810-2.5	28	10	16	17	90	ø 48	MAX φ 50
DFT2810-3	28	10	16	17	174	ø 48	MAX ø 50
PFT3206-5	32	6	16	17	93	φ 52	MAX φ 54
ZFT3206-10	32	6	16	17	129	φ 52	MAX φ 54
PFT3210-5	32	10	16	17	122	φ 52	MAX φ 54
ZFT3210-5	32	10	16	17	122	φ 52	MAX ø 54
DFT3210-5	32	10	16	16	212	φ 52	MAX φ 54
PFT3212-3	32	12	16	17	114	φ 52	MAX φ 54
DFT3212-3	32	12	16	16	198	φ 52	MAX φ 54
LPFT3225-2.5	32	25	12	12	122	φ 46	MAX φ 48
LPFT3232-1.5	32	32	12	12	109	φ 46	MAX φ 48

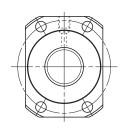

Domarko	1 "NICV V1	can be installed on other t	mos not listed in the table	Dloggo concult NSV
Remarks	1. NON N1	carr be installed on other t	ypes not listed in the table.	. Piease consult ivsk.

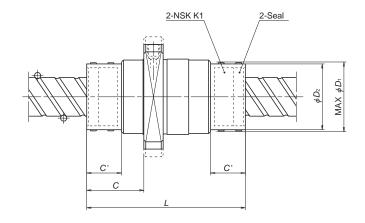

C,C' and L are the dimensions when one NSK K1 is equipped to both ends of the nut.

Model No.	Screw shaft dia.	Lead		talling nsion	Overall length when equipped k1	·	dimension
iviouei ivo.						Cup dia.	Protruding
	d	1	С	C'	L	φ D ₁	dimension ϕD_2
PFT3610-5	36	10	19	20	131	ø 56	MAX ø 58
DFT3610-5	36	10	19	19	221	φ 56	MAX ø 58
HZF3616-5	36	16	19	19	163	φ 56	MAX φ 58
HZF3620-3.5	36	20	19	19	146	φ 56	MAX ø 58
PFT4008-5	40	8	19	20	117	φ 62	MAX φ 64
ZFT4008-10	40	8	19	20	165	φ 62	MAX φ 64
ZFT4010-7	40	10	19	20	152	φ 62	MAX φ 64
DFT4010-5	40	10	19	19	222	φ 61	MAX φ 64
PFT4012-5	40	12	19	20	144	φ 62	MAX φ 64
DFT4012-5	40	12	19	19	252	φ 61	MAX φ 64
HZF4016-5	40	16	19	19	164	φ 61	MAX φ 64
HZF4020-5	40	20	19	19	189	φ 61	MAX φ 64
LPFT4032-2.5	40	32	14	14	151	φ 54	MAX φ 56
LPFT4040-1.5	40	40	14	14	133	φ 54	MAX φ 56
DFT4510-5	45	10	19	19	222	φ72	MAX φ 75
DFT4512-5	45	12	19	19	254	φ 72	MAX φ 75
HZF4520-5	45	20	19	19	190	φ72	MAX φ 75
ZFT5010-10	50	10	19	20	194	φ 73	MAX φ 76
DFT5012-5	50	12	19	19	256	φ 73	MAX φ 76
ZFT5016-5	50	16	19	20	172	φ 73	MAX φ 76
DFT5016-5	50	16	19	19	300	φ 73	MAX φ 76
HZF5020-5	50	20	19	19	192	φ 73	MAX φ 76
HZF5025-5	50	25	19	19	221	φ 73	MAX φ 76
DFT5516-5	55	16	22	22	178	φ 81	MAX ø 87
HZF5520-5	55	20	22	22	198	<i>φ</i> 81	MAX φ 81
HZF5525-5	55	25	22	22	227	φ 81	MAX φ 81
DFT6316-5	63	16	22	22	322	φ 89	MAX φ 95
DFT6320-5	63	20	22	22	362	φ 89	MAX φ 95

B211 B212

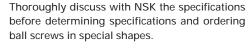
(2) Deflector type




Deflector type

	Screw shaft dia.	Lead		stalling	Overall length when equipped K1	K1 cap o	dimension
Model No.	d	1	dimension C C'		L	Cup dia. <i>∳</i> D₁	Protruding dimension ϕD_2
ZFD2005-6	20	5	9	9	87	φ 32	MAX ø 34
ZFD2506-6	25	6	12	_	102	φ 38	MAX ø 40
ZFD2510-4	25	10	12	12	106	ø 38	MAX ø 40
ZFD3208-8	32	8	12	12	136	φ 46	MAX ø 48
ZFD3210-6	32	10	12	12	138	φ 46	MAX ø 48
ZFD3212-6	32	12	12	12	153	φ 46	MAX ø 48
ZFD4010-8	40	10	14	14	167	φ 54	MAX φ 57
ZFD4012-8	40	12	14	14	189	φ 54	MAX φ 57
ZFD5010-8	50	10	14	14	169	φ 64	MAX φ 67
ZFD5012-6	50	12	14	14	167	φ 64	MAX φ 67

Remarks 1. "NSK K1" can be installed on other types not listed in the table. Please consult NSK. 2. C,C' and L are the dimensions when one NSK K1 is equipped to both ends of the nut.

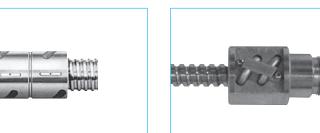

End cap type

Model No.	Screw shaft dia.	Lead		talling nsion	Overall length when equipped K1	'	dimension
	d	1	С	C'	L	Cup dia. ∮ D₁	Protruding dimension ϕD_2
UPFC1520-1.5	15	20	29	18	81	ø 30	MAX ø 32
LPFC1616-3	16	16	28	18	74	ø 28	MAX ø 30
LPFC2020-3	20	20	29.5	18	82	ø 34	MAX ø 36
UPFC2040-1	20	40	29	18	77	φ 32	MAX ø 34
LPFC2525-3	25	25	34	21	97	φ 44	MAX ø 46
UPFC2550-1	25	50	34	21	92	φ 44	MAX ø 46
LPFC3232-3	32	32	37	21	112	φ 52	MAX ø 54
UPFC3264-1	32	64	36.5	21	104	φ 52	MAX ø 54
LPFC4040-3	40	40	43.5	24	133	φ 62	MAX ø 65
LPFC5050-3	50	50	45.5	24	155	φ 74	MAX φ 77

Remarks 1. "NSK K1" can be installed on other types not listed in the table. Please consult NSK. 2. C,C' and L are the dimensions when one NSK K1 is equipped to both ends of the nut.

B-3-1.12 Special Ball Screws.

In addition to the standard ball screws, NSK manufactures various types of ball screws in special shapes as shown below.

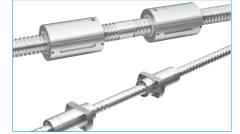


Nut with gear

Double nut with flat mounting face

Flanged to flanged ball nut

Lightly preloaded single nut with bearing seat


Lightly preloaded single nut with flat mounting face

Cylindrical double nut

Ball screw for Nuclear power

Nut with trunion

Double nut with right and left turn thread on each side of screw shaft

Ceramic ball screw

B215 B216

Compact FA PSS Type	B219
Finished Shaft End	B241
MA Type, Miniature, Fine Lead	B243
FA Type for Small Equipment	B265
SA Type for Machine Tools	B301
Finished Shaft End	B357
KA Type Stainless Steel Product	
Blank Shaft End	B383
MS Type, Miniature, Fine Lead	B385
FS Type for Small Equipment	B393
SS Type for Machine Tools	B405
Accessories	B433

NSK

B-3-2 Dimension Table and Reference Number of Standard Ball Screws

B217 B218

B-3- 2.1 Compact FA PSS Type

○Features

In order to respond quickly to a wide range of needs, NSK keeps end-deflector recirculation system ball screws, which offer high-speed and low-noise operation and compact design, in standard stock as the Compact FA Series. The exceptionally high performance ball screws are ready for use in a variety of fields such as semiconductor manufacturing equipment, LCD manufacturing equipment, chip mounting equipment, measuring apparatus, and medical equipment.

Quieter sound

The noise level of ball screws has been reduced by 6 dB, about half of what is sensed by the ear.

Compac

B219

The outside diameter of the ball nut is as much as 30% smaller than those of NSK conventional products. This contributes to more compact design of all sorts of equipment and devices such as thinner XY tables.

Shaft diameter 25 - Lead 50 Shaft diameter 15 - Lead 50 Shaft diameter 25 - Lead 50 Shaft diameter 15 - Lead 50 Shaft diameter 15 - Lead 50 Shaft diameter 15 - Lead 50 Shaft diameter 25 - Lead 50 Shaft diameter 15 (Microphone was positioned at a distance of 400 mm for all noise levels)

Fig. 1 Comparison of noise level

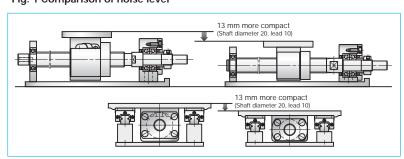


Fig. 3 Comparison of FA Type and Compact FA Series

High speed

Permissible rotational speeds up to 5 000 min⁻¹. This capability dramatically expands the range of service conditions.

Please refer to the dimension table for details of permissible rotational speed.

Grease fitting provided as standard equipment

The new ball screws are standardly equipped with a grease fitting (M5 \times 0.8). Lubrication ports are provided in 2 places to facilitate maintenance. The ball screws can be easily connected to an integrated lubrication system. Also, compact, thin plastic seal is available. Nut outside diameter is compact compare with the return tube recirculation system.

Low-profile design

The low-profile support units especially compatible with the compact FA PSS type are available for uniquely space-saving design.

Fig. 2 Comparison of support units

♦ Ball screw sizes are arranged in order of the page number.

Table begins with the smallest shaft diameter ball screw, and proceeds to the larger sizes

♦Dimension tables

Dimension tables show shapes/sizes as well as specification factors of each shaft diameter/lead combination. Tables also contain data as follows:

Stroke

Nominal stroke: A reference for your use.

Maximum stroke: The limit stroke that the nut can move. The figure is obtained by subtracting the nut length from the effective threaded length (L1).

Lead accuracy

Lead accuracy is C5 grades

T: Travel compensation;

 e_p : Tolerance on specified travel;

υ...: Travel variation

See "Technical Description: Lead accuracy" (Page B41) for the details of the codes.

Permissible rotational speed

d • n: Limited by the relative peripheral speed between the

screw shaft and the nut.

Critical speed: Limited by the natural

frequency of a ball screw shaft. Critical speed depends on the supporting condition of screw

shaft.

The lower of the two criteria, d·n and Critical Speed, will determine the overall Permissible Rotational Speed of the ball screw. For details, see "Technical description: Permissible rotational speed" (Page B51).

♦Other

The seal of the ball screw and end deflector are made of synthetic resin. Consult NSK when using our ball screws under extreme environments or in special environments, or if using special lubricant or oil.

For special environments, refer to Pages B74 and D2. For lubricants, refer to Pages B71 and D13.

Note: For details of standard stock products, contack NSK

Table 1 Combinations of screw shaft diameter and lead

Lead Screw shaft diameter	5	10	20	25	30	40	50	60
10	B221	B221						
12	B223	B223	B223		B223			
15	B225	B225	B227		B227			
20	B229	B229	B231		B231	B233		B233
25	B235	B235	B237	B237	B239		B239	

∕ 0.018 **A**

⊥[0.005]F]

Screw shaft ø10

Lead 5, 10

Unit: mm

Unit: mm

Ball screw s	pecification
Preload type	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	2.000 / 8.2
Ball circle dia.	10.3
Accuracy grade/axial play	C5 / 0
Factory pre-packed grease	NSK grease PS2

Recommended su	upport unit	For drive side	For opposite to drive side
WBK08-01B	(square)	0	
WBK08S-01B	(square)		0
WBK08-11B	(round)	0	

	Screw shaft	Lood	Basic load	ratings (N)	Str	oke	Nut	Screws	shaft dim	ensions
Ball screw No.	diameter	Lead	Dynamic	Static	NI.	Max.	length			
	d	1	$C_{\rm a}$	C_{0a}	Nominal L _t -L		L	L_{t}	La	L _o
PSS1005N1D0171					50	83		112	125	171
PSS1005N1D0221					100	133		162	175	221
PSS1005N1D0321		5	2 930	4 790	200	233	29	262	275	321
PSS1005N1D0421					300	333		362	375	421
PSS1005N1D0521	10				400	433		462	475	521
PSS1010N1D0221					100	130		162	175	221
PSS1010N1D0321		10	1 970	3 010	200	230		262	275	321
PSS1010N1D0421		10	1 970	3 010	300	330	32	362	375	421
PSS1010N1D0521					400	430		462	475	521

✓0.018 A

-⊥0.005*E*

Remarks: 1. Indicates ball screw preload control value. About 2.0 N·cm of torque is added due to thin plastic seal.
2. Contact NSK if permissible rotational speed is to be exceeded.
3. Service temperature range is 0°C to 80°C.

2-thin plastic seal

Lea Target value	ad accura Error	cy Variation	Shaft runout	Dynamic preload torque	Mass	Permissible rotational speed (min ⁻¹) *2		Standard volume of grease replenishing
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	С	(N·cm) *1	(kg)	Fixed-Simple	(cm³)	(cm³)
	0.020	0.018	0.030	0.7 - 3.3	0.3			
	0.020	0.018	0.045	0.7 - 3.3	0.3			
	0.023	0.018	0.060	0.6 - 4.3	0.3	5 000	0.8	0.4
	0.025	0.020	0.070	0.6 - 4.3	0.4			
0	0.027	0.020	0.085	0.4 - 4.9	0.5			
	0.020	0.018	0.045	0.7 - 3.3	0.3			
	0.023	0.018	0.060	0.6 - 4.3	0.4	5 000	0.7	0.4
	0.025	0.020	0.070	0.6 - 4.3	0.4	5 000	0.7	0.4
	0.027	0.020	0.085	0.4 - 4.9	0.5			

Remarks: 4. NSK support unit is recommended. Refer to Page B433 for details.

5. The amount for replenishing should be about 50% of nut internal space capacity. Refer to Page D16 for details.

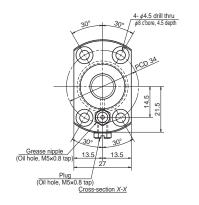
B221 B222 2-thin plastic seal (Synthetic plastic)

Lt (quenching range)

- 0.018 A

0.8

⊥[0.005]F]-



Screw shaft ø12 Lead 5, 10, 20, 30

Unit: mm

Ball screw s	pecification
Preload type	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	2.000 / 10.2
Ball circle dia.	12.3
Accuracy grade/axial play	C5 / 0
Factory pre-packed grease	NSK grease PS2

Recommended s	upport unit	For drive side	For opposite to drive side
WBK08-01B	(square)	0	
WBK08S-01B	(square)		0
WBK08-11B	(round)	0	

	Screw shaft	Lead	Basic load		Stro		Nut	Screv	v shaft	dimen	sions	
Ball screw No.	diameter		Dynamic	Static	Nominal	Max.	length					
	d	1	$C_{\rm a}$	$C_{\scriptscriptstyle \mathrm{Oa}}$		L_{t} - L	L	L_{t}	La	L_{\circ}	L_1	
PSS1205N1D0171					50	80		110	125	171		
PSS1205N1D0221					100	130		160	175	221		
PSS1205N1D0321		5	3 200	5 860	200	230	30	260	275	321	7	
PSS1205N1D0421		5	3 200	3 000	300	330	30	360	375	421	_ ′	
PSS1205N1D0521					400	430		460	475	521		
PSS1205N1D0621					500	530		560	575	621		
PSS1210N1D0221					100	117	43	160	175	221		
PSS1210N1D0321	12		3 200	5 860	200	217		260	275	321		
PSS1210N1D0421		10			300	317		360	375	421	7	
PSS1210N1D0521						400	417		460	475	521	
PSS1210N1D0621					500	517		560	575	621		
PSS1220N1D0271				3 610	100	158		208	225	271		
PSS1220N1D0371					200	258		308	325	371		
PSS1220N1D0471		20	2 150		300	358	50	408	425	471	9	
PSS1220N1D0571					400	458		508	525	571		
PSS1220N1D0671					500	558		608	625	671		
PSS1230N1D0271					100	133		203	225	271		
PSS1230N1D0371					200	233		303	325	371		
PSS1230N1D0471		30	2 150	3 610	300	333	70	403	425	471	14	
PSS1230N1D0571					400	433		503	525	571		
PSS1230N1D0671					500	533		603	625	671		

∕0.018 *A*

Ė

10.005 E

Remarks: 1. Indicates ball screw preload control value. About 2.0 N·cm of torque is added due to thin plastic seal.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0°C to 80°C.

								Unit: mm	
Lea	ad accura	асу	Shaft	Dynamic preload		Dynamic preload Mass Permissible rotational speed (min ⁻¹) *2		Internal spatial	Standard volume of
Target value	Error	Variation	runout	torque	iviass	Fixed-Simple	volume of nut	grease replenishing	
T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	С	(N·cm) *1	(kg)	Fixed-Simple	(cm³)	(cm³)	
	0.020	0.018	0.030	0.7 - 3.3	0.3				
	0.020	0.018	0.045	0.7 - 3.3	0.3				
	0.023	0.018	0.060	0.6 - 4.3	0.4	5 000	1.0	0.5	
	0.025	0.020	0.070	0.6 - 4.3	0.5	5 000	1.0	0.5	
	0.027	0.020	0.085	0.6 - 4.3	0.6				
	0.030	0.023	0.085	0.4 - 4.9	0.7				
	0.020	0.018	0.045	0.7 - 3.3	0.4				
	0.023	0.018	0.060	0.6 - 4.3	0.5		1.0		
	0.025	0.020	0.070	0.6 - 4.3	0.5	5 000		0.5	
	0.027	0.020	0.085	0.6 - 4.3	0.6				
0	0.030	0.023	0.085	0.4 - 4.9	0.7				
	0.023	0.018	0.045	1.4 - 4.5	0.4				
	0.023	0.018	0.060	0.9 - 4.9	0.5	5 000			
	0.027	0.020	0.070	0.9 - 4.9	0.6	5 000	1.2	0.6	
	0.030	0.023	0.085	0.6 - 5.9	0.7				
	0.030	0.023	0.110	0.6 - 5.9	0.8	4 200			
	0.023	0.018	0.045	1.4 - 4.5	0.5				
	0.023	0.018	0.060	0.9 - 4.9	0.6	F 000			
	0.027	0.020	0.070	0.9 - 4.9	0.7	5 000	1.5	0.8	
	0.030	0.023	0.085	0.6 - 5.9	0.7				
	0.030	0.023	0.110	0.6 - 5.9	0.8	4 300			

Remarks: 4. NSK support unit is recommended. Refer to Page B433 for details.

5. The amount for replenishing should be about 50% of nut internal space capacity. Refer to Page D16 for details.

B223 B224

Screw shaft ø15

Lead 5, 10

Unit: mm

Ball screw s	pecification
Preload type	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	2.778 / 12.6
Ball circle dia.	15.5
Accuracy grade/axial play	C5 / 0
Factory pre-packed grease	NSK grease LR3

Recommended s	upport unit	For drive side	For opposite to drive side
WBK12-01B	(square)	0	
WBK12S-01B	(square)		0
WBK12-11	(round)	0	
WBK10-01B	(square)		0
WBK10-11	(round)		0

Unit: mm

eft shaft end	Le	ad accura	асу	Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) ^{*2}	Internal spatial	
(opposite	Target value	Error	Variation	runout	preload torque	iviass	Fixed-	Fixed-	volume of nut	grease replenishinç
driven side)	T	$e_{\scriptscriptstyle p}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
		0.020	0.018	0.035	0.2 - 6.9	0.5				
		0.020	0.018	0.035	0.2 - 6.9	0.5				
		0.023	0.018	0.045	0.2 - 6.9	0.6	5 000			
П		0.025	0.020	0.050	0.4 - 9.8	0.8	3 000	_	2.0	1.0
		0.027	0.020	0.060	0.4 - 9.8	0.9				
		0.030	0.023	0.075	0.4 - 9.8	1.0				
		0.035	0.025	0.075	0.4 - 11.8	1.1	3 600			
	0	0.020	0.018	0.035	0.6 - 7.4	0.6				
	0	0.023	0.018	0.045	0.6 - 7.4	0.7				
П		0.025	0.020	0.050	0.4 - 9.8	0.8	5 000			
П		0.027	0.020	0.060	0.4 - 9.8	1.0		_		
		0.030	0.023	0.075	0.4 - 9.8	1.1			2.0	1.0
		0.035	0.025	0.075	0.4 - 11.8	1.2	3 600			
		0.035	0.025	0.095	0.4 - 11.8	1.4	2 700	3 400		
I		0.040	0.027	0.095	0.4 - 11.8	1.5	2 200	3 400		
		0.046	0.030	0.120	0.4 - 11.8	1.7	1 400	2 300	volume of nut (cm³)	

Remarks: 4. NSK support unit is recommended. Refer to Page B433 for details.

5. The amount for replenishing should be about 50% of nut internal space capacity. Refer to Page D16 for details.

∕0.017|A 2-thin plastic seal Shape II M12×1.0 **∕** 0.017 A <u></u> ∐0.010|*A*} M10¥1. - ⊥ 0.005 E L₁ (quenching range)

	Screw shaft	Lead	Basic load	ratings (N)	Stro	oke	Nut	Screv	w shaft	dimens	ions			
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length							
	d	1	$C_{\scriptscriptstyle a}$	C_{0a}	NOTTIITAI	L_{t} - L	L	$L_{\rm t}$	La	Lo	L ₁			
PSS1505N1D0211					50	109		139	154	211				
PSS1505N1D0261					100	159		189	204	261				
PSS1505N1D0361					200	259		289	304	361				
PSS1505N1D0461		5	5 460	10 200	300	359	30	389	404	461	15			
PSS1505N1D0561						400	459		489	504	561			
PSS1505N1D0661					500	559		589	604	661				
PSS1505N1D0761					600	659		689	704	761				
PSS1510N1D0261	15				100	146		189	204	261				
PSS1510N1D0361					200	246		289	304	361				
PSS1510N1D0461					300	346		389	404	461				
PSS1510N1D0561					400	446		489	504	561				
PSS1510N1D0661		10	5 460	10 200	500	546	43	589	604	661	15			
PSS1510N1D0761					600	646		689	704	761				
PSS1510N1D0879								700	746		789	804	879	
PSS1510N1D0979					800	846		889	904	979				
PSS1510N1D1179					1 000	1 046		1 089	1 104	1 179				

Remarks: 1. Indicates ball screw preload control value. About 2.0 N·cm of torque is added due to thin plastic seal. 2. Contact NSK if permissible rotational speed is to be exceeded.

3. Service temperature range is 0°C to 80°C.

B225 B226

Plug (Oil hole, M5×0.8 tap)

Cross-section X-X

Screw shaft ø15

Lead 20, 30

Unit: mm

Ball screw s	pecification
Preload type	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	3.175 / 12.2
Ball circle dia.	15.5
Accuracy grade/axial play	C5 / 0
Factory pre-packed grease	NSK grease LR3

Recommended s	upport unit	For drive side	For opposite to drive side
WBK12-01B	(square)	0	
WBK12S-01B	(square)		0
WBK12-11	(round)	0	
WBK10-01B	(square)		0
WBK10-11	(round)		0

Cross-section X-X

										Unit: mm		
Left shaft end	Lea	ad accura	асу	Shaft	Dynamic	N 4000	Permissible rotatio	nal speed (min ⁻¹) *2	Internal spatial	Standard volume of		
(opposite	Target value	Error	Variation	runout	preload torque	Mass	Fixed-	Fixed-	volume of nut	grease replenishing		
driven side)	T	$e_{\scriptscriptstyle p}$	บู	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)		
		0.020	0.018	0.035	0.8 - 8.8	0.7						
		0.023	0.018	0.045	0.8 - 8.8	0.8						
П		0.025	0.020	0.050	0.8 - 10.8	0.9	5 000					
п		0.027	0.020	0.060	0.8 - 10.8	1.1		_	_			В
		0.030	0.023	0.075	0.8 - 10.8	1.2			2.8	1.4	228	
		0.035	0.025	0.075	0.8 - 13.8	1.3	3 700					
		0.035	0.025	0.095	0.8 - 13.8	1.5	2 900	4 200				
I		0.040	0.027	0.095	0.8 - 13.8	1.6	2 200	3 300				
	0	0.046	0.030	0.120	0.8 - 13.8	1.9	1 500	2 200				
	0	0.023	0.018	0.035	1.2 - 9.3	0.8						
		0.025	0.020	0.050	0.8 - 10.8	1.0	5 000					
п		0.027	0.020	0.060	0.8 - 10.8	1.1	5 000					
п	П	0.030	0.023	0.060	0.8 - 10.8	1.2						
	0.030	0.023	0.075	0.8 - 13.8	1.4	4 500		3.4	1.7			

Remarks: 4. NSK support unit is recommended. Refer to Page B433 for details.

0.027

0.027

0.030

0.095

0.095

0.120

0.120

0.035 0.025

0.040

0.040

0.046

5. The amount for replenishing should be about 50% of nut internal space capacity. Refer to Page D16 for details.

0.8 - 13.8

0.8 - 13.8

0.8 - 13.8

0.8 - 13.8

1.5

1.6

1.8

2.0

3 300

2 600

2 000

1 400

3 800

3 000

2 000

12	2-thin plastic seal (Synthetic plastic) (Synthetic plastic) (Synthetic plastic) (Synthetic plastic) (Synthetic plastic) (Synthetic plastic) (Synthetic plastic) (Synthetic plastic)	C G	Z10.017/Z		Ø9.0011E
<u> </u>	L ₁ (quenching range)	L ₁	30	15	
30	La	٠	45		
	L _o				
					1

	Screw shaft	Lead	Basic load	ratings (N)	Stro	oke	Nut	Scre	w shaft	dimens	ions
Ball screw No.	diameter	Lead	Dynamic	Static	Nominal	Max.	length				
	d	1	$C_{\rm a}$	C_{0a}	INOMINA	L _t -L	L	$L_{\rm t}$	La	L _o	L ₁
PSS1520N1D0261					100	135		186	204	261	
PSS1520N1D0361					200	235		286	304	361	
PSS1520N1D0461					300	335		386	404	461	
PSS1520N1D0561					400	435		486	504	561	
PSS1520N1D0661		20	5 070	8 730	500	535	51	586	604	661	18
PSS1520N1D0761					600	635		686	704	761	
PSS1520N1D0879					700	735		786	804	879	
PSS1520N1D0979					800	835		886	904	979	
PSS1520N1D1179	15				1 000	1 035		1 086	1 104	1 179	
PSS1530N1D0311					100	159		230	254	311	
PSS1530N1D0411					200	259		330	354	411	
PSS1530N1D0511					300	359		430	454	511	
PSS1530N1D0611					400	459		530	554	611	
PSS1530N1D0711		30	5 070	8 730	500	559	71	630	654	711	24
PSS1530N1D0811					600	659		730	754	811	
PSS1530N1D0929					700	759		830	854	929	
PSS1530N1D1029					800	859		930	954	1 029	
PSS1530N1D1229					1 000	1 059		1 130	1 154	1 229	

Remarks: 1. Indicates ball screw preload control value. About 2.0 N·cm of torque is added due to thin plastic seal.

2. Contact NSK if permissible rotational speed is to be exceeded.

3. Service temperature range is 0°C to 80°C.

B227 B228 ✓0.017 A

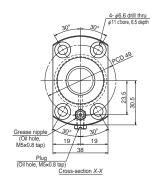
15 F

1.15⁻8⁻¹⁴ 10.15⁻8⁻¹

Shape I

NSK

Screw shaft ø20


Lead 5, 10

Unit: mm

Unit: mm

Ball screw specification								
Preload type	Oversize ball preload (P-preload)							
Ball diameter/screw shaft root diameter	3.175 / 17.2							
Ball circle dia.	20.5							
Accuracy grade/axial play	C5 / 0							
Factory pre-packed grease	NSK grease LR3							

Recommended s	upport unit	For drive side	For opposite to drive side
WBK15-01B	(square)	0	0
WBK15S-01B	(square)		0
WBK15-11	(round)	0	0

	Screw shaft	Lead	Basic load	ratings (N)	Stro	oke	Nut	Scre	w shaft	dimensi	ions	
Ball screw No.	diameter	LCdd	Dynamic	Static	Nominal	Max.	length					
	d	1	$C_{\rm a}$	C_{0a}	INOTTIITIAI	L_{t} - L	L	$L_{\rm t}$	La	L _o	L ₁	
PSS2005N1D0323					150	197		228	250	323		
PSS2005N1D0373					200	247		278	300	373		
PSS2005N1D0473					300	347		378	400	473		
PSS2005N1D0573		5	8 790	18 500	400	447	31	478	500	573	22	
PSS2005N1D0673		5	0 /90	16 300	500	547	31	578	600	673	22	
PSS2005N1D0773	20					600	647		678	700	773	
PSS2005N1D0873						700	747		778	800	873	
PSS2005N1D1000					800	847		878	900	1000		
PSS2010N1D0387					200	247		292	314	387		
PSS2010N1D0487					300	347		392	414	487		
PSS2010N1D0587					400	447		492	514	587		
PSS2010N1D0687					500	547		592	614	687		
PSS2010N1D0787		10	8 790	18 500	600	647	45	692	714	787	22	
PSS2010N1D0887					700	747		792	814	887		
PSS2010N1D1014					800	847		892	914	1014		
PSS2010N1D1214					1 000	1047		1092	1 114	1214		
PSS2010N1D1414					1 200	1247		1292	1 314	1414		

✓0.017 A

- <u>⊥</u>|0.005|*E*

Remarks: 1. Indicates ball screw preload control value. About 2.0 N·cm of torque is added due to thin plastic seal.

2. Contact NSK if permissible rotational speed is to be exceeded.

3. Service temperature range is 0°C to 80°C.

Left shaft end	Le	ad accura	асу	Shaft	Dynamic	Mass	Permissible rotatio	nal speed (min ⁻¹) *2		Standard volume of				
(opposite	Target value	Error	Variation	runout	preload torque	IVIUSS	Fixed-	Fixed-	volume of nut	grease replenishing				
driven side)	T	$e_{\scriptscriptstyle \mathrm{p}}$	υ _u	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)				
		0.023	0.018	0.045	0.6 - 7.4	1.0								
		0.023	0.018	0.045	0.6 - 7.4	1.1								
		0.025	0.020	0.050	0.6 - 7.4	1.3	5 000							
П		0.027	0.020	0.060	0.4 - 9.8	1.5	3 000	_	3.4	1.7	B			
		0.030	0.023	0.075	0.4 - 9.8	1.7		3.	3.4	1.7	2:			
		0.035	0.025	0.075	0.4 - 9.8	1.9								
		0.035	0.025	0.095	0.4 - 9.8	2.2	4 000							
I		0.040	0.027	0.095	0.4 - 11.8	2.4	3 200	4 700						
	0	0.023	0.018	0.045	1.2 - 9.3	1.2								
		0.025	0.020	0.050	1.2 - 9.3	1.4	1							
П		0.027	0.020	0.060	0.8 - 10.8	1.7	5 000		_					
П		0.030	0.023	0.075	0.8 - 10.8	1.9		_						
		0.035	0.025	0.075	0.8 - 10.8	2.1			3.2	1.6				
		0.035	0.025	0.095	0.8 - 10.8	2.4	4 000							
		0.040	0.027	0.120	0.8 - 13.8	2.6	3 100	4 600						
I		0.046	0.030	0.120	0.8 - 13.8	3.1	2 100 3 100							
		0.054	0.035	0.160	0.8 - 13.8	3.6	1 500	2 200						

Remarks: 4. NSK support unit is recommended. Refer to Page B433 for details.

5. The amount for replenishing should be about 50% of nut internal space capacity. Refer to Page D16 for details.

B229 B230

✓0.017 A

/0.017 A

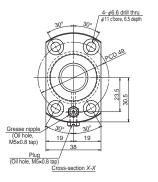
15 F

1.15⁻8⁻¹⁴ 10.15⁻8⁻¹

M15¥1.0

Shape I

Screw shaft ø20


Lead 20, 30

Unit: mm

Unit: mm

Recommended s	upport unit	For drive side	For opposite to drive side
WBK15-01B	(square)	0	0
WBK15S-01B	(square)		0
WBK15-11	(round)	0	0

	Screw shaft	Lead	Basic load ratings (N)		Str	oke	Nut	Scre	w shaft	dimens	ions
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length				
	d	1	$C_{\rm a}$	C_{0a}	INOTTIIIIai	L _t -L	L	L_{t}	La	L _o	L ₁
PSS2020N1D0508					300	359		413	435	508	
PSS2020N1D0608					400	459		513	535	608	
PSS2020N1D0708					500	559		613	635	708	
PSS2020N1D0808					600	659		713	735	808	
PSS2020N1D0908		20 !	5 900	11 700	700	759	54	813	835	908	22
PSS2020N1D1035					800	859		913	935	1 035	
PSS2020N1D1235					1 000	1 059		1 113	1 135	1 235	
PSS2020N1D1435					1 200	1 259		1 313	1 335	1 435	
PSS2020N1D1835	20				1 600	1 659		1 713	1 735	1 835	
PSS2030N1D0408] 20				200	234		308	335	408	
PSS2030N1D0508					300	334		408	435	508	
PSS2030N1D0608					400	434		508	535	608	
PSS2030N1D0708					500	534		608	635	708	
PSS2030N1D0808		30	5 900	11 700	600	634	74	708	735	808	27
PSS2030N1D0908					700	734		808	835	908	
PSS2030N1D1035					800	834		908	935	1 035	
PSS2030N1D1235				1 000	1 034		1 108	1 135	1 235		
PSS2030N1D1435					1 200	1 234		1 308	1 335	1 435	

L₁ (quenching range)

✓0.017 A

- <u>⊥</u>|0.005|*E*

Remarks: 1. Indicates ball screw preload control value. About 2.0 N·cm of torque is added due to thin plastic seal.

2. Contact NSK if permissible rotational speed is to be exceeded.

3. Service temperature range is 0°C to 80°C.

Left shaft end	Le	ad accura	асу	Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2		Standard volume of
(opposite	Target value	Error	Variation	runout	preload torque	ividəs	Fixed-	Fixed-	volume of nut	grease replenishing
driven side)	T	$e_{\scriptscriptstyle p}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
		0.027	0.020	0.060	1.4 – 11.8	1.6				
		0.030	0.023	0.060	1.4 - 11.8	1.8	5 000			
П		0.030	0.023	0.075	1.4 - 11.8	2.0	3 000	_		
		0.035	0.025	0.095	1.4 - 11.8	2.3				
		0.040	0.027	0.095	0.8 - 13.8	2.5	3 700		3.2	1.6
		0.040	0.027	0.120	0.8 - 13.8	2.8	3 000	4 500		
I		0.046	0.030	0.120	0.8 - 13.8	3.3	2 000	3 000		
1		0.054	0.035	0.160	0.8 - 13.8	3.8	1 400	2 100		
	0	0.065	0.040	0.200	0.8 - 13.8	4.7	800	1 200		
		0.023	0.018	0.050	1.6 - 9.8	1.4				
		0.027	0.020	0.060	1.4 - 11.8	1.7				
П		0.030	0.023	0.060	1.4 - 11.8	1.9	5 000			
п		0.030	0.023	0.075	1.4 - 11.8	2.1		_		
		0.035	0.025	0.095	1.4 - 11.8	2.4]		4.6	2.3
		0.040	0.027	0.095	0.8 - 13.8	2.6	3 900			
		0.040	0.027	0.120	0.8 - 13.8	2.9	3 100	4 600		
I		0.046	0.030	0.120	0.8 - 13.8	3.4	2 100	3 000		
		0.054	0.035	0.160	0.8 - 13.8	3.9	1 500	2 200		

Remarks: 4. NSK support unit is recommended. Refer to Page B433 for details.

5. The amount for replenishing should be about 50% of nut internal space capacity. Refer to Page D16 for details.

B231 B232

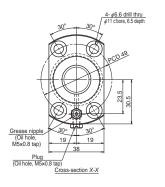
✓0.017 A

15 F

1.15⁻⁸⁻¹⁴ 10.15⁻⁸⁻¹

Shape I

Screw shaft ø20


Lead 40, 60

Unit: mm

Unit: mm

Ball screw s	pecification				
Preload type	Oversize ball preload (P-preload)				
Ball diameter/screw shaft root diameter	3.175 / 17.2				
Ball circle dia.	20.5				
Accuracy grade/axial play	C5 / 0				
Factory pre-packed grease	NSK grease LR3				

Recommended s	upport unit	For drive side	For opposite to drive side
WBK15-01B	(square)	0	0
WBK15S-01B	(square)		0
WBK15-11	(round)	0	0

			I		_			I -			
	Screw shaft	Lead		ratings (N)	Str		Nut	Scre	w shaft	dimens	ions
Ball screw No.	diameter		Dynamic	Static	Nominal	Max.	length				
	d	1	$C_{\rm a}$	C_{oa}		L_{t} - L	L	L_{t}	L _a	L_{\circ}	L_1
PSS2040N1D0658					400	461		553	585	658	
PSS2040N1D0758					500	561		653	685	758	
PSS2040N1D0858					600	661		753	785	858	
PSS2040N1D0958					700	761		853	885	958	
PSS2040N1D1085		40	5 900	11 700	800	861	92	953	985	1 085	32
PSS2040N1D1285		1 000	1 061		1 153	1 185	1 285				
PSS2040N1D1485					1 200	1 261		1 353	1 385	1 485	
PSS2040N1D1885					1 600	1 661		1 753	1 785	1 885	
PSS2040N1D2285	20				2 000	2 061		2 153	2 185	2 285	
PSS2060N1D0708] 20				400	464		593	635	708	
PSS2060N1D0808					500	564		693	735	808	
PSS2060N1D0908					600	664		793	835	908	
PSS2060N1D1008					700	764		893	935	1 008	
PSS2060N1D1135		60	5 900	11 700	800	864	129	993	1 035	1 135	42
PSS2060N1D1335					1 000	1 064		1 193	1 235	1 335	
PSS2060N1D1535					1 200	1 264		1 393	1 435	1 535	
PSS2060N1D1935				1 600	1 664		1 793	1 835	1 935		
PSS2060N1D2335					2 000	2 064		2 193	2 235	2 335	

L₁ (quenching range)

✓0.017 A

- <u>⊥</u>|0.005|*E*

Remarks: 1. Indicates ball screw preload control value. About 2.0 N·cm of torque is added due to thin plastic seal.

2. Contact NSK if permissible rotational speed is to be exceeded.

3. Service temperature range is 0°C to 80°C.

Left shaft end	Le	ad accura	асу	Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2	Internal spatial	
(opposite	Target value	Error	Variation	runout	preload torque	171033	Fixed-	Fixed-	volume of nut	grease replenishing
driven side)	T	$e_{\scriptscriptstyle p}$	บู	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
		0.030	0.023	0.075	2.2 - 12.8	2.1				
П		0.035	0.025	0.075	2.2 - 12.8	2.4	5 000			
п		0.035	0.025	0.095	2.2 - 12.8	2.6		_		
		0.040	0.027	0.095	1.8 - 14.8	2.8	3 500			
		0.040	0.027	0.120	1.8 - 14.8	3.1	2 800	4 200	5.3	2.7
		0.046	0.030	0.160	1.8 - 14.8	3.6	1 900	2 800		
I		0.054	0.035	0.160	1.8 - 14.8	4.1	1 400	2 000		
		0.065	0.040	0.200	1.8 - 14.8	5.1	800	1 200		
	0	0.077	0.046	0.240	1.8 - 14.8	6.0	500	800		
		0.030	0.023	0.075	2.7 - 13.8	2.4	5 000			
П		0.035	0.025	0.095	2.7 - 13.8	2.6	5 000			
п		0.035	0.025	0.095	2.7 - 13.8	2.9	4 200	_		
		0.040	0.027	0.120	1.8 - 14.8	3.1	3 300			
		0.040	0.027	0.120	1.8 - 14.8	3.4	2 600	3 900	7.0	3.5
		0.046	0.030	0.160	1.8 - 14.8	3.9	1 800	2 700		
I		0.054	0.035	0.160	1.8 - 14.8	4.4	1 300	1 900		
		0.065	0.040	0.200	1.8 - 14.8	5.4	800	1 100		
		0.077	0.046	0.240	1.8 - 14.8	6.3	500	700		

Remarks: 4. NSK support unit is recommended. Refer to Page B433 for details.

5. The amount for replenishing should be about 50% of nut internal space capacity. Refer to Page D16 for details.

B233 B234

√0.015 A

2-thin plastic seal (Synthetic plastic)

∕ 0.016 A

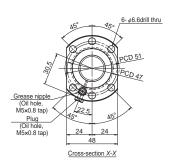
∕0.016|A

Shape II

Shape I

M20×1.0

Screw shaft ø25


Lead 5, 10

Unit: mm

Unit: mm

Ball screw s	specification				
Preload type	Oversize ball preload (P-preload)				
Ball diameter/screw shaft root diameter	3.175 / 22.2				
Ball circle dia.	25.5				
Accuracy grade/axial play	C5 / 0				
Factory pre-packed grease	NSK grease LR3				

Recommended	support unit	For drive side	For opposite to drive side
WBK20-01	(square)	0	0
WBK20S-01	(square)		0
WBK20-11	(round)	0	0

	L L		Cross-section X-X	TELLEGO G.
10.005F	L ₁ (quenching range)	<u> </u>		WBK20-11
53	La	80		
7	Lo	T-	-	
			'	

√0.012*E*

/ 0.022 A

16_

12 10

M20×1.0

			I		_		Nut				
	Screw shaft	Lead	Basic load ratings (N)		Str	Stroke		Scre	w shaft	<u>dimens</u>	ions
Ball screw No.	diameter	2000	Dynamic	Static	Nominal	Max.	length				
	d	1	$C_{\rm a}$	C_{oa}	NOTHINA	L_{t} - L	L	L_{t}	La	Lo	L_1
PSS2505N1D0349					150	191		223	250	349	
PSS2505N1D0399					200	241		273	300	399	
PSS2505N1D0499					300	341		373	400	499	
PSS2505N1D0599		5	9 760	23 600	400	441	32	473	500	599	27
PSS2505N1D0699		5	9 760	23 600	500	541	32	573	600	699	21
PSS2505N1D0899					700	741		773	800	899	
PSS2505N1D0999					800	841		873	900	999	
PSS2505N1D1233	25				1 000	1 041		1 073	1 100	1 233	
PSS2510N1D0549	25				300	367		423	450	549	
PSS2510N1D0649					400	467		523	550	649	
PSS2510N1D0749					500	567		623	650	749	
PSS2510N1D0849		10	12 800	32 300	600	667	56	723	750	849	27
PSS2510N1D0949		10	12 800	32 300	700	767	26	823	850	949	21
PSS2510N1D1049					800	867		923	950	1 049	
PSS2510N1D1283					1 000	1 067		1 123	1 150	1 283	
PSS2510N1D1883					1 600	1 667		1 723	1 750	1 883	

Remarks: 1. Indicates ball screw preload control value. About 2.0 N·cm of torque is added due to thin plastic seal.
2. Contact NSK if permissible rotational speed is to be exceeded.

- 3. Service temperature range is 0°C to 80°C.

	La	nd accur	201	Chaft	Dumania		Permissible rotation	nal anoad (min-1*2	Internal and Co.	Chandred and are
Left shaft end (opposite	Target value	ad accura Error	Variation	Shaft runout	Dynamic preload torque	Mass	Fixed-	Fixed-		Standard volume of grease replenishing
driven side)	T	e_{p}	$\upsilon_{\scriptscriptstyle \rm u}$	С	(N·cm) *1	(kg)	Simple	Fixed- Fixed	(cm³)	(cm³)
		0.023	0.018	0.035	1.2 - 9.3	1.5				
		0.023	0.018	0.035	1.2 - 9.3	1.6				
		0.025	0.020	0.040	1.2 - 9.3	2.0	5 000			2.2
П		0.027	0.020	0.045	1.2 - 9.3	2.3	3 000	_	4.4	
		0.030	0.023	0.055	0.8 - 10.8	2.7			4.4	2.2
		0.035	0.025	0.065	0.8 - 10.8	3.4				
		0.040	0.027	0.065	0.8 - 10.8	3.7	4 100			
I	0	0.046	0.030	0.080	0.8 - 13.8	4.5	2 700	4 000		
		0.027	0.020	0.045	3.1 - 11.8	2.4				
		0.030	0.023	0.055	2.2 - 12.8	2.7				
П		0.030	0.023	0.055	2.2 - 12.8	3.1	5 000			
п		0.035	0.025	0.065	2.2 - 12.8	3.5		_	4.7	2.4
		0.040 0.027 0.065 2.2 - 12.8 3.8		4.7	2.4					
		0.040	0.027	0.080	2.2 - 12.8	4.2	3 600			
I		0.046	0.030	0.100	1.8 - 14.8	5.0	2 500	3 700		
1		0.065	0.040	0.130	1.8 - 14.8	7.2	1 000	1 600		

Remarks: 4. NSK support unit is recommended. Refer to Page B433 for details.

5. The amount for replenishing should be about 50% of nut internal space capacity. Refer to Page D16 for details.

B235 B236 10.005 F

√0.015 A

2-thin plastic seal (Synthetic plastic) ✓ 0.022 A

16_

-<u>⊥|0.005|E</u> 53

12 10

M20×1.0

2 150 2 180 2 313

√0.012*E*

∕ 0.016 A

∕0.016 A

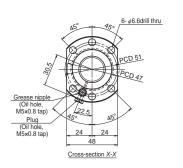
Shape II

Shape I

M20×1.0

PSS2525N1D2313

Screw shaft ø25


Lead 20, 25

Unit: mm

Unit: mm

Ball screw s	pecification
Preload type	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	3.175 / 22.2
Ball circle dia.	25.5
Accuracy grade/axial play	C5 / 0
Factory pre-packed grease	NSK grease LR3

Recommended	support unit	For drive side	For opposite to drive side
WBK20-01	(square)	0	0
WBK20S-01	(square)		0
WBK20-11	(round)	0	0

	Screw shaft	Lead	Basic load	ratings (N)	Stro	oke	Nut	Scre	Screw shaft dimensions			
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length					
	d	1	$C_{\rm a}$	C_{0a}	Norminai	L _t -L	L	$L_{\rm t}$	La	L _o	L ₁	
PSS2520N1D0729					500	550		604	630	729		
PSS2520N1D0829					600	650		704	730	829		
PSS2520N1D0929					700	750		804	830	929		
PSS2520N1D1029		20	6 560	14 600	800	850	54	904	930	1 029	24	
PSS2520N1D1263		20	0 300	14 000	1 000	1 050	04	1 104	1 130	1 263	26	
PSS2520N1D1463					1 200	1 250		1 304	1 330	1 463		
PSS2520N1D1863					1 600	1 650		1 704	1 730	1 863		
PSS2520N1D2263	25				2 000	2 050		2 104	2 130	2 263		
PSS2525N1D0779] 25				500	587		650	680	779	30	
PSS2525N1D0879					600	687		750	780	879		
PSS2525N1D0979					700	787		850	880	979		
PSS2525N1D1079		25	6 560	14 600	800	887	63	950	980	1 079		
PSS2525N1D1313		25	0 300	14 000	1 000	1 087	03	1 150	1 180	1 313		
PSS2525N1D1513					1 200	1 287		1 350	1 380	1 513		
PSS2525N1D1913					1 600	1 687		1 750	1 780	1 913		

2 000

2 087

Remarks: 1. Indicates ball screw preload control value. About 2.0 N·cm of torque is added due to thin plastic seal.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0°C to 80°C.

Left shaft end	Le	ad accura	асу	Shaft	Dynamic	Mass	Permissible rotatio	nal speed (min ⁻¹) *2	Internal spatial			
(opposite	Target value	Error	Variation	runout	preload torque	ividəs	Fixed-	Fixed-	volume of nut	grease replenishing		
driven side)	T	$e_{\scriptscriptstyle \mathrm{p}}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)		
		0.030	0.023	0.055	2.2 – 12.8	3.1	5 000					
П		0.035	0.025	0.065	2.2 - 12.8	3.4	3 000					
п		0.040	0.027	0.065	2.2 - 12.8	3.8	4 800	_				
		0.040	0.027	0.080	2.2 - 12.8	4.2	3 800		3.9	2.0		
		0.046	0.030	0.100	1.8 - 14.8	5.0	2 600	3 800	3.7	2.0		
I		0.054	0.035	0.100	1.8 - 14.8	5.8	1 800	2 700				
		0.065	0.040	0.130	1.8 - 14.8	7.3	1 100	1 600				
	0	0.077	0.046	0.170	1.8 - 14.8	8.8	700	1 000				
	0	0.035	0.025	0.055	2.7 - 13.8	3.3	5 000					
П		0.035	0.025	0.065	2.7 - 13.8	3.7	3 000					
п		0.040	0.027	0.065	2.7 - 13.8	4.1	4 300	_				
		0.040	0.027	0.080	2.7 - 13.8	4.4	3 400		4.3	2.2		
		0.046	0.030	0.100	1.8 - 14.8	5.3	2 300	3 500	4.3	2.2		
I		0.054	0.035	0.100	1.8 - 14.8	6.0	1 700	2 600				
		0.065	0.040	0.130	1.8 - 14.8	7.5	1 000	1 500				
		0.077	0.046	0.170	1.8 - 14.8	9.1	700	1 000				

Remarks: 4. NSK support unit is recommended. Refer to Page B433 for details.

5. The amount for replenishing should be about 50% of nut internal space capacity. Refer to Page D16 for details.

B237 B238

10.005 F

-[∕]0.015[A]

2-thin plastic seal (Synthetic plastic)

✓ 0.022 A

16

-<u>⊥|0.005|E</u> 53

12 10

M20×1.0

∕ 0.016 A

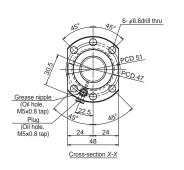
∕0.016|A

Shape II

Shape I

M20×1.0

Screw shaft ø25


Lead 30, 50

Unit: mm

Unit: mm

Ball screw s	pecification
Preload type	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	3.175 / 22.2
Ball circle dia.	25.5
Accuracy grade/axial play	C5 / 0
Factory pre-packed grease	NSK grease LR3

Recommended :	support unit	For drive side	For opposite to drive side
WBK20-01	(square)	0	0
WBK20S-01	(square)		0
WBK20-11	(round)	0	0

	Screw shaft	Lead	Basic load	ratings (N)	Str	oke	Nut	Scre	Screw shaft dimensions		
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length				
	d	1	$C_{\rm a}$	C_{0a}	Norminai	L _t -L	L	$L_{\rm t}$	La	L _o	L_1
PSS2530N1D0779					500	576		650	680	779	
PSS2530N1D0879					600	676		750	780	879	
PSS2530N1D0979					700	776		850	880	979	
PSS2530N1D1079		30	6 560	14 600	800	876	74	950	980	1 079	20
PSS2530N1D1313		30	0 500	14 600	1 000	1 076	/4	1 150	1 180	1 313	30
PSS2530N1D1513					1 200	1 276		1 350	1 380	1 513	
PSS2530N1D1913					1 600	1 676		1 750	1 780	1 913	
PSS2530N1D2313	25				2 000	2 076		2 150	2 180	2 313	
PSS2550N1D0829	25				500	576		690	730	829	
PSS2550N1D0929					600	676		790	830	929	
PSS2550N1D1029					700	776		890	930	1 029	40
PSS2550N1D1129		50	6 560	14 600	800	876	114	990	1 030	1 129	
PSS2550N1D1363		50	0 300	14 000	1 000	1 076	114	1 190	1 230	1 363	
PSS2550N1D1563					1 200	1 276		1 390	1 430	1 563	
PSS2550N1D1963					1 600	1 676		1 790	1 830	1 963	
PSS2550N1D2363					2 000	2 076		2 190	2 230	2 363	

Remarks: 1. Indicates ball screw preload control value. About 2.0 N·cm of torque is added due to thin plastic seal. 2. Contact NSK if permissible rotational speed is to be exceeded.

- 3. Service temperature range is 0°C to 80°C.

Left shaft end	Le	ad accura	асу	Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2		Standard volume of				
(opposite	Target value	Error	Variation	runout	preload torque	IVIdSS	Fixed-	Fixed-	volume of nut	grease replenishing				
driven side)	T	$e_{\scriptscriptstyle p}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)				
		0.035	0.025	0.055	2.7 - 13.8	3.4	5 000							
П		0.035	0.025	0.065	2.7 - 13.8	3.7	3 000							
п		0.040	0.027	0.065	2.7 - 13.8	4.1	4 300	_						
		0.040	0.027	0.080	2.7 - 13.8	4.5	3 400		5.5	2.8	B			
		0.046	0.030	0.100	1.8 - 14.8	5.3	2 300	3 600	3 600	2.0	24			
I		0.054	0.035	0.100	1.8 - 14.8	6.1	1 700	2 600			H			
1		0.065	0.040	0.130	1.8 - 14.8	7.6	1 000	1 500						
	0	0.077	0.046	0.170	1.8 - 14.8	9.1	700	1 000						
		0.035	0.025	0.065	5.4 - 17.6	3.8	5 000							
П		0.035	0.025	0.065	5.4 - 17.6	4.1	4 800							
п		0.040	0.027	0.080	5.4 - 17.6	4.5	3 800	_						
		0.040	0.027	0.080	5.4 - 17.6	4.9	3 100		7.7	3.9				
		0.046	0.030	0.100	4.1 - 19.6	5.8	2 200	3 400	7.7	3.9				
т		0.054	0.035	0.100	4.1 - 19.6	6.5	1 600	2 500						
I		0.065	0.040	0.130	4.1 - 19.6	8.0	900	1 500						
		0.077	0.046	0.170	4.1 - 19.6	9.6	600	1 000						

Remarks: 4. NSK support unit is recommended. Refer to Page B433 for details.

5. The amount for replenishing should be about 50% of nut internal space capacity. Refer to Page D16 for details.

B239 B240

B-3-2.2 Finished Shaft End MA type, FA type, SA type

◇Ball screw sizes are arranged in order of the page number.

The Table begins with the smallest shaft diameter of each MA, FA, and SA type ball screws, and proceeds to the larger sizes. If ball screws have the same shaft diameter, those with smaller leads appear first. Page numbers of shaft diameter and lead combinations are shown in Table 1.

○Dimension tables

Dimension tables show shapes/sizes as well as specification factors of each shaft diameter/ lead combination. Tables also contain data as follows:

Stroke

Nominal stroke: A reference for your use.

Maximum stroke: The limit stroke that the nut can move. The figure is obtained by subtracting the nut length from the effective threaded length

Lead accuracy

Lead accuracy is C3 and C5 grades

T: Travel compensation;

e_p: Tolerance on specified travel;

 (L_1) .

υ_u: Travel variation

See "Technical Description: Lead accuracy"

Table 1 Combinations of screw shaft diameter and lead

Lead (mm) Screw shaft diameter (mm)	1	1.5	2	2.5	4	5	6
4	B243						
6	B245						
8	B247	B249	B251				
10			B253	B255	B265		
12			B257	B259		B267	
14						B271	
15							
16			B261	B263		B279	
20					B301	B303	
25					B305	B307	B309
28						B313	B317
20						B315	B319
32						B321	B325
J2						B323	B327
36							
40						B339	
45							
50							

(Page B41) for the details of the codes.

Permissible rotational speed

d • n: Limited by the relative peripheral speed between the

screw shaft and the nut.

Critical speed: Limited by the natural frequency of a ball screw shaft. Critical speed depends on the supporting condition of screw shaft.

The lower of the two criteria, d·n and Critical Speed, will determine the overall Permissible Rotational Speed of the ball screw. For details, see "Technical description: Permissible rotational speed" (Page B51).

○Other

The seal of the ball screw, ball recirculating deflector, and end cap are made of synthetic resin. Consult NSK when using our ball screws under extreme environments or in special environments, or if using special lubricant or oil. For special environments, refer to Pages B74 and D2. For lubricants, refer to Pages B71 and D13

Note: For details of standard stock products, contack NSK.

8	10	12	16	20	25	32	40	50
	B269							
B273								
	B275			B277				
			B281			B283		
	B285			B287			B289	
	B311			B291	B293			B295
B329	B331				B297	B299		
	B333							
	B335							
	B337							
B341	B343	B347						
	B345	B349						
	B351							
	B353							
	B355							

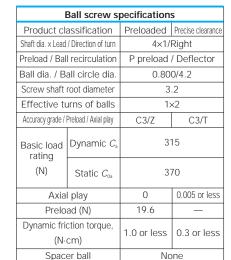
B241 B242

⊥ 0.008 A >

9

12

/ 0.009 A

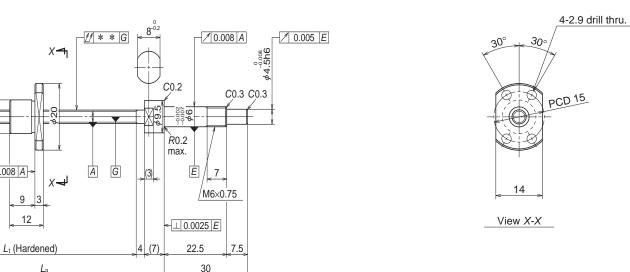

C0.2

(Fine lead) Dia. 4, Lead 1

Nut models: MPFD, MSFD

NSK $\emptyset 4 \times 1$

Unit: mm


Recommended support unit						
WBK06-01A	(square)					
WBK06-11	(round)					

Factory packed grease

NSK grease PS2

Unit: mm

	Offic. Hilli												
Scre	ew shaft le	ngth	Le	ead accura	СУ	Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition					
$L_{\rm t}$	La	Lo	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle \mathrm{u}}$		(kg)	Fixed - Free					
44	55	85	0	0.008	0.008	0.015	0.024	3000					
64	75	105	0	0.008	0.008	0.020	0.026	3000					
94	105	135	0	0.008	0.008	0.025	0.028	3000					

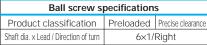
Ball screw No.		
W0400MA-2Y-C3T1	20	32
W0400MA-4Y-C3T1	40	52
W0401MA-2Y-C3T1	70	82
	Precise clearance (MSFD) W0400MA-2Y-C3T1 W0400MA-4Y-C3T1	Precise clearance (MSFD) W0400MA-2Y-C3T1 20 W0400MA-4Y-C3T1 40

Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.

- 2. NSK grease PS2 is recommended. Apply to the screw shaft surface when replenishing. Refer to Page D16 for details.
- 3. Nut does not have a seal.
- 4. Contact NSK if permissible rotational speed is to be exceeded.

B243

16


View X-X

4-φ3.4 drill thru.

PCD 18

ø6×1

I Toduct Ci	assilication	Treloaded	T TECISE CICATATICE	
Shaft dia. x Lead	/ Direction of turn	6×1/Right		
Preload / Bal	I recirculation	P preload / Deflector		
Ball dia. / B	all circle dia.	0.80	0/6.2	
Screw shaft	root diameter	5	.2	
Effective to	urns of balls	1×3		
Accuracy grade /	Preload / Axial play	C3/Z	C3/T	
Basic load rating	Dynamic C _a	575		
(N)			25	
Axia	l play	0	0.005 or less	

Preload (N) Dynamic friction torque,

> (N·cm) Spacer ball

Factory packed grease

31 0	Ü
Recommende	ed support unit
WBK06-01A	(square)
WBK06-11	(round)

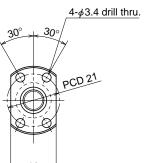
24.5

1.3 or less | 0.3 or less

None NSK grease PS2

U	nit:	mm

Screw shaft length			Lead accuracy			Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition
$L_{\rm t}$	La	Lo	Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Free
65	75	105	0	0.008	0.008	0.015	0.039	3000
95	105	135	0	0.008	0.008	0.020	0.045	3000
125	135	165	0	0.010	0.008	0.025	0.051	3000


C0.2 M2.5×0.45 Depth 5	11.5 3.5	*G 802 0.008 A 0.005 E C0.2 C0.3 C0.3 R0.2 max. G 30 E 7 M6×0.75
	L _t (Hardened)	3 (7) 22.5 7.5
	L _a	30
	L _o	· · · · · · · · · · · · · · · · · · ·

Ball scr	Stroke		
Dali Sci	Nominal	Maximum	
Preloaded (MPFD)	Preloaded (MPFD) Precise clearance (MSFD)		
W0600MA-1PY-C3Z1 W0600MA-2Y-C3T1		40	50
W0601MA-1PY-C3Z1	W0601MA-2Y-C3T1	70	80
W0601MA-3PY-C3Z1	W0601MA-4Y-C3T1	100	110

- Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.
 2. NSK grease PS2 is recommended. Apply to the screw shaft surface when replenishing. Refer to Page D16 for details.
 - 3. Nut does not have a seal.
 - 4. Contact NSK if permissible rotational speed is to be exceeded.

B245 B246

Unit: mm

_4-φ3.4 drill	thru.
30° 30°	
PCD 21	
18	
< · · →	
View X-X	

Ball screw specifications					
Product cl	assification	Preloaded	Precise clearance		
Shaft dia. x Lead	/ Direction of turn	8×1/	Right		
Preload / Bal	I recirculation	P preload	/ Deflector		
Ball dia. / B	all circle dia.	0.80	0/8.2		
Screw shaft	root diameter	7	.2		
Effective to	urns of balls	1:	< 3		
Accuracy grade /	Preload / Axial play	C3/Z	C3/T		
Basic load rating	Dynamic C_a	670			
(N)	Static C _{0a}	1290			
Axia	l play	0	0.005 or less		
Prelo	ad (N)	29.4	_		
Dynamic friction torque, (N·cm)		1.8 or less	0.5 or less		
Spacer ball		None			
Factory page	cked grease	NSK grease PS2			

Recommended s	support unit	For drive side	For opposite to drive side
WBK08-01A	(square)	0	
WBK08S-01	(square)		0
WBK08-11	(round)	0	

Unit: mm

								OTHE. ITHIT
Screw shaft length		Lead accuracy		Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-i) Supporting condition		
$L_{\rm t}$	La	Lo	Т	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle \mathrm{u}}$	\sqcup	(kg)	Fixed - Simple support
80	92	138	0	0.008	0.008	0.025	0.073	3000
110	122	168	0	0.010	0.008	0.030	0.084	3000
140	152	198	0	0.010	0.008	0.030	0.095	3000
190	202	248	0	0.010	0.008	0.035	0.11	3000

(0.008 A) (0.008 A) (0.008 A) (0.002 A)	12 4 Lt (Hardened)	## * G A G	C0.2 C0.5 C0.5 C0.5 R0.2 max. E 9 M8×1
9	$L_{\rm a}$		37
* *	L		
-		J	*

Ball scr	Stroke		
——————————————————————————————————————	Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	rvorriiriai	(L _t —Nut length)
W0800MA-1PY-C3Z1	W0800MA-2Y-C3T1	40	64
W0801MA-1PY-C3Z1	W0801MA-2Y-C3T1	70	94
W0801MA-3PY-C3Z1	W0801MA-4Y-C3T1	100	124
W0802MA-1PY-C3Z1	W0802MA-2Y-C3T1	150	174

Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.
2. NSK grease PS2 is recommended. Apply to the screw shaft surface when replenishing. Refer to Page D16 for details.

3. Nut does not have a seal.

4. Contact NSK if permissible rotational speed is to be exceeded.


19

View X-X

Ø8×1.5 Unit: mm

4-φ3.4 drill thru.

| Product classification | Preloaded | Product classification |

Recommended sup	port unit	For drive side	For opposite to drive side
WBK08-01A (square)	0	
WBK08S-01 (square)		0
WBK08-11	(round)	0	

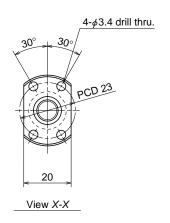
Factory packed grease

Unit: mm

NSK grease PS2

	Cinc. Hint							
Screw shaft length		L€	Lead accuracy		Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition	
$L_{\rm t}$	La	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle \mathrm{u}}$		(Kg)	Fixed - Simple support
80	92	138	0	0.008	0.008	0.025	0.082	3000
110	122	168	0	0.010	0.008	0.030	0.093	3000
140	152	198	0	0.010	0.008	0.030	0.10	3000
190	202	248	0	0.010	0.008	0.035	0.12	3000

C0.2 C0.5 F 0.0025 F	41596	X	11. 21. 12. 12. 13. 14. 15. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16	0.2	0.005 E
9	L,	a	-	<u>37</u>	
<		Lo			


Ball scr	Stroke		
	Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	11011111111111	(L _t —Nut length)
W0800MA-3PY-C3Z1.5	W0800MA-4Y-C3T1.5	40	58
W0801MA-5PY-C3Z1.5	W0801MA-6Y-C3T1.5	70	88
W0801MA-7PY-C3Z1.5	W0801MA-8Y-C3T1.5	100	118
W0802MA-3PY-C3Z1.5	W0802MA-4Y-C3T1.5	150	168

Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.

2. NSK grease PS2 is recommended. Apply to the screw shaft surface when replenishing. Refer to Page D16 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

 $\emptyset 8 \times 2$ Unit: mm

I	Ball screw specifications					
Product cl	assification	Preloaded	Precise clearance			
Shaft dia. x Lead	/ Direction of turn	8×2/	Right			
Preload / Bal	I recirculation	P preload	/ Deflector			
Ball dia. / B	all circle dia.	1.20	0/8.3			
Screw shaft	root diameter	6	.9			
Effective to	urns of balls	1:	< 3			
Accuracy grade /	Preload / Axial play	C3/Z	C3/T			
Basic load rating	Dynamic C_a	1320				
(N)	Static C _{0a}	22	10			
Axia	l play	0	0.005 or less			
Prelo	ad (N)	49.0	_			
Dynamic friction torque, (N·cm)		2.0 or less	0.5 or less			
Spac	er ball	None				
Factory page	cked grease	NSK grease PS2				

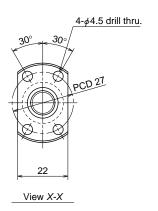
Recommended :	support unit	For drive side	For opposite to drive side
WBK08-01A	(square)	0	
WBK08S-01	(square)		0
WBK08-11	(round)	0	

Unit: mm

								OTHE. THEFT
Scre	Screw shaft length			Lead accuracy		Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-i) Supporting condition
$L_{\rm t}$	La	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Rg)	Fixed - Simple support
80	92	138	0	0.008	0.008	0.025	0.09	3000
110	122	168	0	0.010	0.008	0.030	0.10	3000
140	152	198	0	0.010	0.008	0.030	0.11	3000
190	202	248	0	0.010	0.008	0.035	0.13	3000

0.008 A 0.0	max. □ 0.008	2 4 6	C0.2	2	0.005 E 99 90 0.5 C0.5
9		La	1 - 7	37	
* *		L _o	*		→
<		L ₀			>

Ball scr	Stroke		
	Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)		(L _t —Nut length)
W0800MA-5PY-C3Z2	W0800MA-6Y-C3T2	40	54
W0801MA-9PY-C3Z2	W0801MA-10Y-C3T2	70	84
W0801MA-11PY-C3Z2	W0801MA-12Y-C3T2	100	114
W0802MA-5PY-C3Z2	W0802MA-6Y-C3T2	150	164


Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.
2. NSK grease PS2 is recommended. Apply to the screw shaft surface when replenishing. Refer to Page D16 for details.
3. Contact NSK if permissible rotational speed is to be exceeded.

None

NSK grease PS2

58.8 0.1 - 2.4 ø10×2 Unit: mm

0.5 or less

Ball screw specifications						
Product cl	assification	Preloaded	Precise clearance			
Shaft dia. x Lead	/ Direction of turn	10×2	?/Right			
Preload / Bal	I recirculation	P preload	/ Deflector			
Ball dia. / B	all circle dia.	1.20	0/10.3			
Screw shaft	root diameter	8	3.9			
Effective to	urns of balls	1×3				
Accuracy grade /	Preload / Axial play	C3/Z	C3/T			
Basic load rating	Dynamic C _a	1490				
(N)	Static C _{0a}	2850				
Axial play		0	0.005 or less			
Prelo	ad (N)	58.8	_			
Dynamic fri	ction torque,					

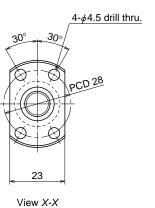
(N·cm) Spacer ball

Factory packed grease

Recommended s	support unit	For drive side	For opposite to drive side
WBK08-01A	(square)	0	
WBK08S-01	(square)		0
WBK08-11	(round)	0	

- Cit									
Scr	Screw shaft length			Lead accuracy			Mass (kg)	Permissible rotational speed N (min-1) Supporting condition	
$L_{\rm t}$	La	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$			Fixed - Simple support	
100	112	158	0	0.008	0.008	0.020	0.13	3000	
150	162	208	0	0.010	0.008	0.030	0.16	3000	
200	212	258	0	0.010	0.008	0.030	0.19	3000	
250	262	308	0	0.012	0.008	0.030	0.22	3000	

0.007 A 0.0	Seals (two places) X 0.008 A 23 5	# * * G A G	C0.2 1	9 M8×1 025 E	✓ 0.005 F C0.5
-	L _t (Hardened)		4 (8) 27	7 10	
9	La		*	37	
_	Lo				


Ball scr	Stroke		
Dali Sci	Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	rvorriiriai	(L _t —Nut length)
W1001MA-1PY-C3Z2	W1001MA-2Y-C3T2	50	72
W1001MA-3PY-C3Z2	W1001MA-4Y-C3T2	100	122
W1002MA-1PY-C3Z2	W1002MA-2Y-C3T2	150	172
W1002MA-3PY-C3Z2	W1002MA-4Y-C3T2	200	222

Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.
2. NSK grease PS2 is recommended. Apply to the screw shaft surface when replenishing. Refer to Page D16 for details.

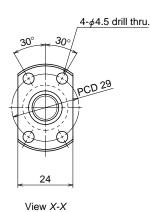
3. Contact NSK if permissible rotational speed is to be exceeded.

Unit: mm

Ball screw specifications								
Product cla	assification	Preloaded	Precise clearance					
Shaft dia. x Lead	/ Direction of turn	10×2.5	5/Right					
Preload / Bal	I recirculation	P preload	/ Deflector					
Ball dia. / B	all circle dia.	1.588	3/10.4					
Screw shaft	root diameter	8	.6					
Effective to	urns of balls	1:	< 3					
Accuracy grade /	Preload / Axial play	C3/Z	C3/T					
Basic load rating	Dynamic C _a	2130						
(N)	Static C _{0a}	36	40					
Axia	l play	0	0.005 or less					
Prelo	ad (N)	98.1	_					
Dynamic friction torque, (N·cm)		0.2 – 2.9	0.5 or less					
Spac	er ball	No	ne					
Factory pag	cked grease	NSK gre	ase PS2					

Recommended s	support unit	For drive side	For opposite to drive side
WBK08-01A	(square)	0	
WBK08S-01	(square)		0
WBK08-11	(round)	0	

Unit: mm


Office										
Scre	ew shaft le	ngth	Lead accuracy			Shaft run- out **	1/1000	Permissible rotational speed N (min-1) Supporting condition		
$L_{\rm t}$	La	L _o	T	$e_{\scriptscriptstyle p}$	υu		(Ng)	Fixed - Simple support		
100	112	158	0	0.008	0.008	0.020	0.14	3000		
150	162	208	0	0.010	0.008	0.030	0.17	3000		
200	212	258	0	0.010	0.008	0.030	0.20	3000		
250	262	308	0	0.012	0.008	0.030	0.23	3000		

(0.007 A) (0.007	0.010 A 9661	Seals (two places) X 1 27 32	# * G A G	C0.2 C0.5 C0.5 R0.2 R0.2 R0.2 R8.1 (4) P 9 M8×1
<u> </u>		L _t (Hardened)		4 (8) 27 10
9		La		37
		Lo		
•				"

Ball scr	Stroke		
Ddii Sci	Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	rvorriiriai	(L _t —Nut length)
W1001MA-5PY-C3Z2.5	W1001MA-6Y-C3T2.5	50	68
W1001MA-7PY-C3Z2.5	W1001MA-8Y-C3T2.5	100	118
W1002MA-5PY-C3Z2.5	W1002MA-6Y-C3T2.5	150	168
W1002MA-7PY-C3Z2.5	W1002MA-8Y-C3T2.5	200	218

Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.
2. NSK grease PS2 is recommended. Apply to the screw shaft surface when replenishing. Refer to Page D16 for details.
3. Contact NSK if permissible rotational speed is to be exceeded.

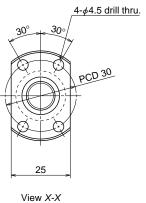
ø12×2 Unit: mm

	Ball screw s	pecification	s
Product cl	assification	Preloaded	Precise clearance
Shaft dia. x Lead	/ Direction of turn	12×2	/Right
Preload / Bal	I recirculation	P preload	/ Deflector
Ball dia. / B	all circle dia.	1.200	0/12.3
Screw shaft	root diameter	10).9
Effective to	urns of balls	1>	< 3
Accuracy grade /	Preload / Axial play	C3/Z	C3/T
Basic load rating	Dynamic C_a	1660	
(N)	Static C _{0a}	36	20
Axia	l play	0	0.005 or less
Prelo	ad (N)	98.1	_
Dynamic friction torque, (N·cm)		0.4 – 3.4 1.0 or les	
Spac	er ball	None	
Factory page	cked grease	NSK gre	ase PS2

Recommended s	support unit	For drive side	For opposite to drive side
WBK10-01A	(square)	0	
WBK10S-01	(square)		0
WBK10-11	(round)	0	

OIIII:										
	Screw shaft length			Lead accuracy			Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition	B 2!
	$L_{\rm t}$	$L_{\rm a}$	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle m u}$	- f (kg)		Fixed - Simple support	
	110	125	180	0	0.010	0.008	0.020	0.20	3000	
	160	175	230	0	0.010	0.008	0.030	0.24	3000	_
	210	225	280	0	0.012	0.008	0.030	0.28	3000	
	260	275	330	0	0.012	0.008	0.040	0.32	3000	
	310	325	380	0	0.012	0.008	0.040	0.36	3000	

(0.007 A) (0.007 A) (0.007 A) (0.002 A)	ax.	Seals (two places) X 1 008 A	# * G A G		[<u>> 0.00</u>	948 900 900 900 900 900 900 900 900 900 90	<u>√0.005</u> <u>E</u>
10	(La		<u> </u>	< 33 → 45	< ,	
*	<u> </u>	Lo	<u> </u>			-	


Dall cor	Stroke			
Dali Sci	Ball screw No.		Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	Nominal	(L _t —Nut length)	
W1201MA-1PY-C3Z2	W1201MA-2Y-C3T2	50	82	
W1201MA-3PY-C3Z2	W1201MA-4Y-C3T2	100	132	
W1202MA-1PY-C3Z2	W1202MA-2Y-C3T2	150	182	
W1202MA-3PY-C3Z2	W1202MA-4Y-C3T2	200	232	
W1203MA-1PY-C3Z2	W1203MA-2Y-C3T2	250	282	

- Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.
 2. NSK grease PS2 is recommended. Apply to the screw shaft surface when replenishing. Refer to Page D16 for details.
 3. Contact NSK if permissible rotational speed is to be exceeded.

None

NSK grease PS2

Unit: mm

	Ball screw specifications				
5 drill thru.	Product cla	assification	Preloaded	Precise clearance	
	Shaft dia. x Lead	/ Direction of turn	12×2.5	5/Right	
	Preload / Bal	I recirculation	P preload	/ Deflector	
-	Ball dia. / B	all circle dia.	1.588	3/12.4	
0 30	Screw shaft	root diameter	10).6	
	Effective to	urns of balls	1×3		
	Accuracy grade /	Preload / Axial play	C3/Z	C3/T	
	Basic load Dynamic C _a		2360		
	rating (N)	Static C _{0a}	45	40	
	Axial play		0	0.005 or less	
	Preload (N)		98.1	_	
	Dynamic friction torque, (N·cm)		0.4 - 3.4	1.0 or less	

Recommended support unit		For drive side	For opposite to drive side
WBK10-01A	(square)	0	
WBK10S-01	(square)		0
WBK10-11	(round)	0	

Spacer ball

Factory packed grease

Unit: mm

Scre	Screw shaft length			Lead accuracy			Mass (kg)	Permissible rotational speed N (min-i) Supporting condition
$L_{\rm t}$	La	Lo	Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle \mathrm{u}}$		(kg)	Fixed - Simple support
110	125	180	0	0.010	0.008	0.020	0.21	3000
160	175	230	0	0.010	0.008	0.030	0.25	3000
210	225	280	0	0.012	0.008	0.030	0.29	3000
260	275	330	0	0.012	0.008	0.040	0.33	3000
310	325	380	0	0.012	0.008	0.040	0.37	3000

C0.2 C0.5 R0.2 ma F 0.003 F	\$ 12	Seals (two places) X	# * G A G	12 12 (5)	CO.2 (0.003) RO.2 max. E 10 M10×1	7 A 0.005 E
10		La			< 45	
=		Lo				

Pall cor	Stroke		
Ball screw No.		Nominal	Maximum
Preloaded (MPFD)	Precise clearance (MSFD)	Norminal	(L _t —Nut length)
W1201MA-5PY-C3Z2.5	W1201MA-6Y-C3T2.5	50	78
W1201MA-7PY-C3Z2.5	W1201MA-8Y-C3T2.5	100	128
W1202MA-5PY-C3Z2.5	W1202MA-6Y-C3T2.5	150	178
W1202MA-7PY-C3Z2.5	W1202MA-8Y-C3T2.5	200	228
W1203MA-3PY-C3Z2.5	W1203MA-4Y-C3T2.5	250	278

Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.

- 2. NSK grease PS2 is recommended. Apply to the screw shaft surface when replenishing. Refer to Page D16 for details.
- 3. Contact NSK if permissible rotational speed is to be exceeded.

29 View X-X $4-\phi 5.5$ drill thru.

M6×1 (Oil hole)

	Ball screw specifications				
Product cl	assification	Preloaded	Precise clearance		
Shaft dia. x Lead	/ Direction of turn	16×2	/Right		
Preload / Bal	l recirculation	P preload	/ Deflector		
Ball dia. / B	all circle dia.	1.588	3/16.4		
Screw shaft	root diameter	14	1.6		
Effective to	irns of balls	1:	×4		
Accuracy grade /	Preload / Axial play	C3/Z	C3/T		
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	35	10		
(N)	Static C _{0a}	84	50		
Axia	play	0	0.005 or less		
Prelo	ad (N)	147	_		
•	Dynamic friction torque, (N·cm)		1.5 or less		
Space	Spacer ball		ne		
Factory page	ked grease	NSK grease PS2			
Internal spatial vo	olume of nut (cm³)	1.6			
Standard volume of gr	ease replenishing (cm³)	0.8			

Recommended support	For drive side	For opposite to drive side	
WBK12-01A (squ	are)	0	
WBK12S-01 (squ	are)		0
WBK12-11 (rou	und)	0	

									Unit: mm	
Construction of the contra		opath	L and annual			Shaft run-		Permissible rotation	Permissible rotational speed N (min-1)	
Sciev	crew shaft length		Le	Lead accuracy		Out Was		Supporting	condition	
$L_{\rm t}$	La	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed	
139	154	221	0	0.010	0.008	0.020	0.41	3000	3000	
189	204	271	0	0.010	0.008	0.020	0.48	3000	3000	
239	254	321	0	0.012	0.008	0.030	0.55	3000	3000	
289	304	371	0	0.012	0.008	0.030	0.62	3000	3000	
389	404	471	0	0.013	0.010	0.035	0.77	3000	3000	

C0.5 C0.2 C0.5 C0.2 C0.	υ ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	Seals (two places) X = 1 10.008 A	# * * G A G	35 (10)	0.0	90.5 00.5 00.5
22		La		- ' '	45	
<		Lo				

Pall cor	Stroke		
Ball screw No.		Nominal	Maximum
Preloaded (MPFD)	Precise clearance (MSFD)		(L _t —Nut length)
W1601MA-1PY-C3Z2	W1601MA-2Y-C3T2	50	99
W1601MA-3PY-C3Z2	W1601MA-4Y-C3T2	100	149
W1602MA-1PY-C3Z2	W1602MA-2Y-C3T2	150	199
W1602MA-3PY-C3Z2	W1602MA-4Y-C3T2	200	249
W1603MA-1PY-C3Z2	W1603MA-2Y-C3T2	300	349

Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.

2. NSK grease PS2 is recommended. The amount for replenishing should be about 50% of the nut internal space capacity. Refer to Page D16 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

29

View X-X

 $4-\phi 5.5$ drill thru.

M6×1

(Oil hole)

389

404

471

0

Ball screw s	pecification	S	
Product classification	Preloaded	Precise clearance	
Shaft dia. x Lead / Direction of turn	16×2.5/Right		
Preload / Ball recirculation	P preload / Deflector		
Ball dia. / Ball circle dia.	1.588/16.4		
Screw shaft root diameter	14.6		
Effective turns of balls	1×4		
Accuracy grade / Preload / Axial play	C3/Z	C3/T	

C3/T Basic load Dynamic C_a 3510 rating (N) 8450 Static C_{0a} 0 0.005 or less Axial play

Preload (N) Dynamic friction torque,

> (N·cm) Spacer ball

Factory packed grease Internal spatial volume of nut (cm3)

Standard volume of grease replenishing (cm³)

147

0.5 - 4.9

None NSK grease PS2

1.6

0.8

Recommended s	upport unit	For drive side	For opposite to drive side
WBK12-01A	(square)	0	
WBK12S-01	(square)		0
WBK12-11	(round)	0	

3000

Unit: mm

1.5 or less

									OTHE: ITH			
Caro	Screw shaft length Le		ad accur	201	Shaft run-	N 4	Permissible rotatio	nal speed N (min-1)				
Screv	N SHALL IS	engui	Le	Lead accuracy		Lead accuracy		- Out		iviass (kg)	Supporting	g condition
$L_{\rm t}$	La	Lo	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed			
139	154	221	0	0.010	0.008	0.020	0.42	3000	3000			
189	204	271	0	0.010	0.008	0.020	0.49	3000	3000			
239	254	321	0	0.012	0.008	0.030	0.57	3000	3000			
289	304	371	0	0.012	0.008	0.030	0.64	3000	3000			

0.79

0.013 | 0.010 | 0.035

CO	0.007 A CO.2 RO.2 m 1.15 9.15 0.003 F	9 0.010 A	Seals (two places) X 1 1 1 1 1 1 1 1 1 1 1 1	# * G A G	35 n	2 C0.5 (C0.5 (C))))))))))))))))))))))))))))	0.005 E
	-		Lt (Hardened)		5 (10)	30 15	
	< 22		La		*	45	
			Lo				

Ball scr	Stroke		
Dali Sci	Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	NOTHILIAI	(L _t —Nut length)
W1601MA-5PY-C3Z2.5	W1601MA-6Y-C3T2.5	50	95
W1601MA-7PY-C3Z2.5	W1601MA-8Y-C3T2.5	100	145
W1602MA-5PY-C3Z2.5	W1602MA-6Y-C3T2.5	150	195
W1602MA-7PY-C3Z2.5	W1602MA-8Y-C3T2.5	200	245
W1603MA-3PY-C3Z2.5	W1603MA-4Y-C3T2.5	300	345

Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.

2. NSK grease PS2 is recommended. The amount for replenishing should be about 50% of the nut internal space capacity. Refer to Page D16 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

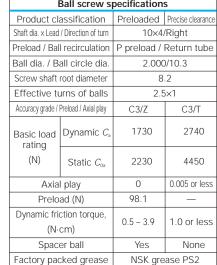
B263

3000

28

View X-X

M6×1


(Oil hole)

4-φ4.5 drill thru.,

C'bore *ϕ*8×4.5

Unit: mm

Ball screw specifications

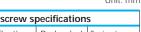
Recommended s	upport unit	For drive side	For opposite to drive side
WBK10-01A	(square)	0	
WBK10S-01	(square)		0
WBK10-11	(round)	0	

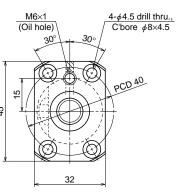
Internal spatial volume of nut (cm3) Standard volume of grease replenishing (cm²) 8.0

0.4

								Unit: mm
Screw shaft length			Lead accuracy			Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition
L _t	La	Lo	Т	$e_{\scriptscriptstyle p}$	υ _u		(kg)	Fixed - Simple support
110	125	180	0	0.010	0.008	0.020	0.26	3000
160	175	230	0	0.010	0.008	0.030	0.28	3000
210	225	280	0	0.012	0.008	0.030	0.31	3000
260	275	330	0	0.012	0.008	0.040	0.34	3000
310	325	380	0	0.012	0.008	0.040	0.37	3000
360	375	430	0	0.013	0.010	0.050	0.39	3000

(0.007 A	7 1	A G (5)	୍ଦ୍ରଷ୍ଟ କୁ	0.005 E
_10	La		45	
ļ	Lo			


Ball scr	Stroke		
Preloaded (PFT)	Nominal	Maximum (<i>L</i> ₊—Nut length)	
W1001FA-1P-C3Z4	W1001FA-2-C3T4	50	76
W1001FA-3P-C3Z4	W1001FA-4-C3T4	100	126
W1002FA-1P-C3Z4	W1002FA-2-C3T4	150	176
W1002FA-3P-C3Z4	W1002FA-4-C3T4	200	226
W1003FA-1P-C3Z4	W1003FA-2-C3T4	250	276
W1003FA-3P-C3Z4	W1003FA-4-C3T4	300	326


Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.

2. NSK grease PS2 is recommended. The amount for replenishing should be about 50% of the nut internal space capacity. Refer to Page D16 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

ø12×5 Unit: mm

View X-X

Ball screw specifications						
Product cla	assification	Preloaded	Precise clearance			
Shaft dia. x Lead	/ Direction of turn	12×5	/Right			
Preload / Bal	I recirculation	P preload /	Return tube			
Ball dia. / B	all circle dia.	2.38	1/12.3			
Screw shaft	root diameter	9	.8			
Effective to	urns of balls	2.5	5×1			
Accuracy grade /	Preload / Axial play	C3/Z	C3/T			
Basic load rating	Dynamic C _a	2370	3760			
(N)	Static C _{0a}	3160	6310			
Axia	l play	0	0.005 or less			
Prelo	ad (N)	98.1	_			
Dynamic friction torque, (N·cm)		1.0 – 4.4	1.0 or less			
Space	er ball	Yes	None			
Factory pag	cked grease	NSK grease PS2				
Internal spatial vo	olume of nut (cm³)	1	.2			
Standard volume of gr	rease replenishing (cm³)	0	.6			

Recommended s	support unit	For drive side	For opposite to drive side
WBK10-01A	(square)	0	
WBK10S-01	(square)		0
WBK10-11	(round)	0	

								Unit: mm
Scre	ew shaft le	ngth	L€	ead accura	СУ	Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-i) Supporting condition
$L_{\rm t}$	L _a	L _o	Т	$e_{\scriptscriptstyle p}$	$v_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
110	125	180	0	0.010	0.008	0.020	0.35	3000
160	175	230	0	0.010	0.008	0.030	0.38	3000
210	225	280	0	0.012	0.008	0.030	0.42	3000
260	275	330	0	0.012	0.008	0.040	0.46	3000
310	325	380	0	0.012	0.008	0.040	0.50	3000
410	425	480	0	0.015	0.010	0.050	0.58	3000
510	525	580	0	0.016	0.012	0.065	0.66	3000

(0.007 A (0.010 A) (0.010	Seals (two places) X ** G W ** G A G 10.008 A A G 40 L ₄ (Hardened)	C0.2 C0.5 C0.5 C0.5 R0.2 max. E 10 M10x1
10	La	45
*	L _o	

Dall con	Stroke		
Ball Sci	Ball screw No.		Maximum
Preloaded (PFT)	Precise clearance (SFT)	Nominal	(L _t —Nut length)
W1201FA-1P-C3Z5	W1201FA-2-C3T5	50	70
W1201FA-3P-C3Z5	W1201FA-4-C3T5	100	120
W1202FA-1P-C3Z5	W1202FA-2-C3T5	150	170
W1202FA-3P-C3Z5	W1202FA-4-C3T5	200	220
W1203FA-1P-C3Z5	W1203FA-2-C3T5	250	270
W1204FA-1P-C3Z5	W1204FA-2-C3T5	350	370
W1205FA-1P-C3Z5	W1205FA-2-C3T5	450	470

Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.

NSK grease PS2 is recommended. The amount for replenishing should be about 50% of the nut internal space capacity. Refer to Page D16 for details.
 Contact NSK if permissible rotational speed is to be exceeded.

ø12×10

Unit: mm

C5/Z

2360

3240

0

98.1

1.0 - 4.9

Yes

NSK grease LR3

1.4

0.7

Preload / Ball recirculation | P preload / Return tube

12×10/Right

2.381/12.5

10.0

2.5×1

C5/T

3750

6480

0.005 or less

1.5 or less

None

Shaft dia. x Lead / Direction of turn

Ball dia. / Ball circle dia.

Screw shaft root diameter

Effective turns of balls

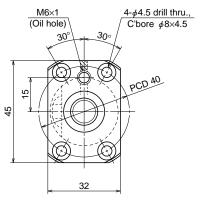
Accuracy grade / Preload / Axial play

Axial play

Preload (N)

Dynamic friction torque,

(N·cm)
Spacer ball


Factory packed grease
Internal spatial volume of nut (cm³)

Standard volume of grease replenishing (cm3)

Basic load rating (N)

Dynamic C_a

Static C_{0a}

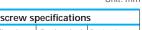
View X-X

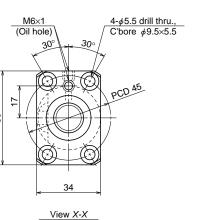
Recommended s	support unit	For drive side	For opposite to drive side
WBK10-01A	(square)	0	
WBK10S-01	(square)		0
WBK10-11	(round)	0	

Unit: mm 27

								Unit: mm
Screw shaft length			Lead accuracy		Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-i) Supporting condition	
L_{t}	L _a	L _o	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle \mathrm{u}}$		(Kg)	Fixed - Simple support
160	175	230	0	0.020	0.018	0.035	0.43	3000
210	225	280	0	0.023	0.018	0.035	0.47	3000
310	325	380	0	0.023	0.018	0.050	0.56	3000
410	425	480	0	0.027	0.020	0.060	0.64	3000
510	525	580	0	0.030	0.023	0.075	0.72	3000

C0.5 R0.2 max. 0.012 A Seals (two places) X	414	C0.2 R0.2 R0.2 M10×1	948 9 C0.5 C0.5	
	L _t (Hardened)	5 (10)	30	15
< 10 ×	La	>	45	
•	Lo			


Pall cor	Stroke		
Ball screw No. Preloaded (LPFT) Precise clearance (LSFT)		Nominal	Maximum (L,—Nut length)
W1201FA-5P-C5Z10	W1201FA-6-C5T10	100	110
W1202FA-5P-C5Z10	W1202FA-6-C5T10	150	160
W1203FA-3P-C5Z10	W1203FA-4-C5T10	250	260
W1204FA-3P-C5Z10	W1204FA-4-C5T10	350	360
W1205FA-3P-C5Z10	W1205FA-4-C5T10	450	460


Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.

2. NSK grease LR3 is recommended. The amount for replenishing should be about 50% of the nut internal space capacity. Refer to Page D16 for details.

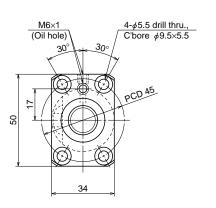
3. Contact NSK if permissible rotational speed is to be exceeded.

Unit: mm

Ball screw specifications					
Product cl	assification	Preloaded	Precise clearance		
Shaft dia. x Lead	/ Direction of turn	14×5	/Right		
Preload / Bal	I recirculation	P preload /	Return tube		
Ball dia. / B	all circle dia.	3.175	5/14.5		
Screw shaft	root diameter	11	1.2		
Effective to	urns of balls	2.5	5×1		
Accuracy grade /	Preload / Axial play	C3/Z	C3/T		
Basic load rating	Dynamic C_a	4280	6790		
(N)	Static C _{0a}	5840	11700		
Axia	l play	0	0.005 or less		
Prelo	ad (N)	147	_		
Dynamic friction torque, (N·cm)		1.5 – 6.9	2.0 or less		
Spac	er ball	Yes	None		
Factory page	cked grease	NSK grease LR3			
Internal spatial v	olume of nut (cm³)	2.2			
Standard volume of gr	rease replenishing (cm³)	1.1			

Recommended s	support unit	For drive side	For opposite to drive side
WBK12-01A	(square)	0	
WBK12S-01	(square)		0
WBK12-11	(round)	0	

									Unit: mm
Coro	rew shaft length Lead accuracy Shaft run-			Permissible rotational speed N (min-					
Screv	w snart ie	engtn	Lead accuracy		out ** Mass f f (kg)		Supporting	g condition	
L_{t}	La	Lo	T	$e_{\scriptscriptstyle p}$	$\nu_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
189	204	271	0	0.010	0.008	0.020	0.52	3000	3000
239	254	321	0	0.012	0.008	0.030	0.57	3000	3000
339	354	421	0	0.013	0.010	0.035	0.67	3000	3000
439	454	521	0	0.015	0.010	0.045	0.77	3000	3000
539	554	621	0	0.016	0.012	0.045	0.87	3000	3000
689	704	771	0	0.018	0.013	0.055	1.0	3000	3000


M5×0.8 Depth 12 9.15	0.010 A	40 ardened)	# * G A G	R0.2 R0	0.006 <i>E</i>
22		La		 45	
<u> </u>		Lo			

Dall cor	Stroke			
Ball screw No.		Nominal	Maximum	
Preloaded (PFT)	Precise clearance (SFT)		(L _t —Nut length)	
W1401FA-1P-C3Z5	W1401FA-2-C3T5	100	149	
W1402FA-1P-C3Z5	W1402FA-2-C3T5	150	199	
W1403FA-1P-C3Z5	W1403FA-2-C3T5	250	299	
W1404FA-1P-C3Z5	W1404FA-2-C3T5	350	399	
W1405FA-1P-C3Z5	W1405FA-2-C3T5	450	499	
W1406FA-1P-C3Z5	W1406FA-2-C3T5	600	649	

Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.

2. NSK grease LR3 is recommended. The amount for replenishing should be about 50% of the nut internal space capacity. Refer to Page D16 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

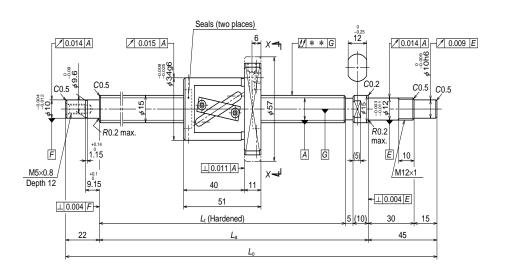
View X-X

Recommended s	support unit	For drive side	For opposite to drive side
WBK12-01A	(square)	0	
WBK12S-01	(square)		0
WBK12-11	(round)	0	

			OHIL: HIH
I	Ball screw s	pecification	s
Product cl	assification	Preloaded	Precise clearance
Shaft dia. x Lead	/ Direction of turn	14×8	/Right
Preload / Bal	I recirculation	P preload /	Return tube
Ball dia. / B	all circle dia.	3.175	5/14.5
Screw shaft	root diameter	11	1.2
Effective to	urns of balls	2.5	5×1
Accuracy grade /	Preload / Axial play	C5/Z	C5/T
Basic load rating	Dynamic C _a	4280	6790
(N)	Static C _{0a}	5840	11700
Axia	l play	0	0.005 or less
Prelo	ad (N)	147	_
Dynamic friction torque, (N·cm)		1.5 – 7.8	2.4 or less
Spacer ball		Yes	None
Factory page	cked grease	NSK grease LR3	
Internal spatial v	olume of nut (cm³)	2.1	
Standard volume of gr	rease replenishing (cm³)	1.1	

Unit:	mm

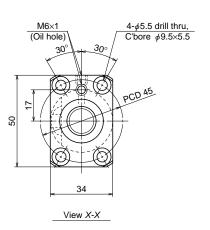
Coro	w choft l	onath	Lo	ad accur	201	Shaft run-		Permissible rotational speed N (min-1)		
SCIE	w shaft le	engui	Le	ad accura	асу	out **	Mass (kg)	Supporting	condition	
$L_{\rm t}$	La	Lo	Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed	
189	204	271	0	0.020	0.018	0.025	0.56	3000	3000	
239	254	321	0	0.023	0.018	0.035	0.61	3000	3000	
289	304	371	0	0.023	0.018	0.035	0.67	3000	3000	
339	354	421	0	0.025	0.020	0.040	0.72	3000	3000	
389	404	471	0	0.025	0.020	0.040	0.78	3000	3000	
439	454	521	0	0.027	0.020	0.050	0.83	3000	3000	
489	504	571	0	0.027	0.020	0.050	0.88	3000	3000	
539	554	621	0	0.030	0.023	0.050	0.94	3000	3000	
589	604	671	0	0.030	0.023	0.065	0.99	3000	3000	
639	654	721	0	0.035	0.025	0.065	1.0	3000	3000	
689	704	771	0	0.035	0.025	0.065	1.1	3000	3000	
789	804	871	0	0.035	0.025	0.085	1.2	2800	3000	


22 L _a 45	0.014 A 0.014 A 0.014 A 0.004 A 0.0	□ 0.015 A □ □ 0.015 A □ □ 0.015 A □ □ 0.015 A □ □ 0.015 A □ □ 0.015 A □ 0.0	(two places) 6 X 111 111 46 ardened)	## G	R m	2 C0.5 C0.5 C0.5 C0.5 C0.5 M12x1 L0.004 E	C0.5
1.	22		La			45	
L - J			Lo		7]

Ball scr	Stroke			
Ddil SCI	Nominal	Maximum		
Preloaded (LPFT)	Precise clearance (LSFT)	NOMinal	(L _t —Nut length)	
W1401FA-3P-C5Z8	W1401FA-4-C5T8	100	143	
W1402FA-3P-C5Z8	W1402FA-4-C5T8	150	193	
W1402FA-5P-C5Z8	W1402FA-6-C5T8	200	243	
W1403FA-3P-C5Z8	W1403FA-4-C5T8	250	293	
W1403FA-5P-C5Z8	W1403FA-6-C5T8	300	343	
W1404FA-3P-C5Z8	W1404FA-4-C5T8	350	393	
W1404FA-5P-C5Z8	W1404FA-6-C5T8	400	443	
W1405FA-3P-C5Z8	W1405FA-4-C5T8	450	493	
W1405FA-5P-C5Z8	W1405FA-6-C5T8	500	543	
W1406FA-3P-C5Z8	W1406FA-4-C5T8	550	593	
W1406FA-5P-C5Z8	W1406FA-6-C5T8	600	643	
W1407FA-1P-C5Z8	W1407FA-2-C5T8	700	743	

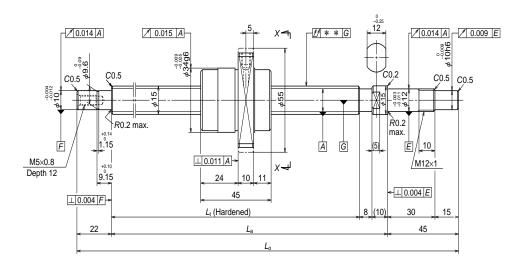
Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.

2. NSK grease LR3 is recommended. The amount for replenishing should be about 50% of the nut internal space capacity. Refer to Page D16 for details.


3. Contact NSK if permissible rotational speed is to be exceeded.

D.II.	NI.	Stroke		
Ball Scr	rew No.	Nominal	Maximum	
Preloaded (LPFT)	Precise clearance (LSFT)	rvorriiriai	(L _t —Nut length)	
W1501FA-1P-C5Z10	W1501FA-2-C5T10	100	138	
W1502FA-1P-C5Z10	W1502FA-2-C5T10	150	188	
W1502FA-3P-C5Z10	W1502FA-4-C5T10	200	238	
W1503FA-1P-C5Z10	W1503FA-2-C5T10	250	288	
W1503FA-3P-C5Z10	W1503FA-4-C5T10	300	338	
W1504FA-1P-C5Z10	W1504FA-2-C5T10	350	388	
W1504FA-3P-C5Z10	W1504FA-4-C5T10	400	438	
W1505FA-1P-C5Z10	W1505FA-2-C5T10	450	488	
W1505FA-3P-C5Z10	W1505FA-4-C5T10	500	538	
W1506FA-1P-C5Z10	W1506FA-2-C5T10	550	588	
W1506FA-3P-C5Z10	W1506FA-4-C5T10	600	638	
W1507FA-1P-C5Z10	W1507FA-2-C5T10	700	738	
W1508FA-1P-C5Z10	W1508FA-2-C5T10	800	838	
W1510FA-1P-C5Z10	W1510FA-2-C5T10	1000	1038	

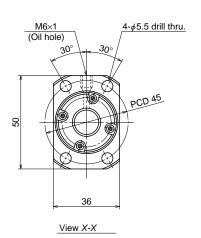
Remarks: 1. We recommend NSK support unit. Refer to Page B433 for de	details.	detail	for	3433	ae B	Pa	to	Refer	unit.	support	NSK	recommend	. W	Remarks: 1	
--	----------	--------	-----	------	------	----	----	-------	-------	---------	-----	-----------	-----	------------	--


- 2. NSK grease LR3 is recommended. The amount for replenishing should be about 50% of the nut internal space capacity. Refer to Page D16 for details.
- 3. Contact NSK if permissible rotational speed is to be exceeded.

Recommended s	upport unit	For drive side	For opposite to drive side
WBK12-01A	(square)	0	
WBK12S-01	(square)		0
WBK12-11	(round)	0	

			Unit: mm	
I	Ball screw s	pecification	S	
Product cla	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	15×10)/Right	
Preload / Bal	I recirculation	P preload /	Return tube	
Ball dia. / B	all circle dia.	3.175	5/15.5	
Screw shaft	root diameter	12	2.2	
Effective to	urns of balls	2.5	5×1	
Accuracy grade /	Preload / Axial play	C5/Z	C5/T	
Basic load rating	Dynamic C _a	4450	7070	
(N)	Static C _{0a}	6380	12800	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	147	_	
1	ction torque, cm)	1.5 – 7.8	2.4 or less	
Spac	er ball	Yes	None	
Factory pag	cked grease	NSK grease LR3		
Internal spatial vo	olume of nut (cm³)	2.3		
Standard volume of gr	ease replenishing (cm³)	1	.2	

									Unit: mm
Scro	w shaft le	nath	10	ad accura	301	Shaft run-	N 4 = = =	Permissible rotational speed N (min-	
30161	N SHALL I	engui	Le	au accur	асу	out ** Mass	(kg)	Supporting	g condition
L_{t}	$L_{\rm a}$	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	1 11	(Rg)	Fixed - Simple support	Fixed - Fixed
189	204	271	0	0.020	0.018	0.025	0.61	3000	3000
239	254	321	0	0.023	0.018	0.035	0.67	3000	3000
289	304	371	0	0.023	0.018	0.035	0.74	3000	3000
339	354	421	0	0.025	0.020	0.040	0.80	3000	3000
389	404	471	0	0.025	0.020	0.040	0.86	3000	3000
439	454	521	0	0.027	0.020	0.050	0.93	3000	3000
489	504	571	0	0.027	0.020	0.050	1.0	3000	3000
539	554	621	0	0.030	0.023	0.050	1.1	3000	3000
589	604	671	0	0.030	0.023	0.065	1.1	3000	3000
639	654	721	0	0.035	0.025	0.065	1.2	3000	3000
689	704	771	0	0.035	0.025	0.065	1.2	3000	3000
789	804	871	0	0.035	0.025	0.085	1.4	3000	3000
889	904	971	0	0.040	0.027	0.085	1.5	2400	3000
1089	1104	1171	0	0.046	0.030	0.110	1.8	1590	2250

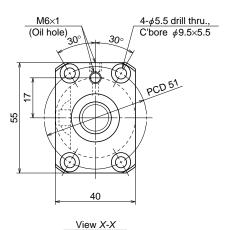


(High helix lead) Dia. 15, Lead 20

Dalloon	Stroke			
Ball Sci	ew No.	Nominal	Maximum	
Preloaded (UPFC)	Precise clearance (USFC)	rvorriiriai	(L _t —Nut length)	
W1501FA-3PG-C5Z20	W1501FA-4G-C5T20	100	141	
W1502FA-5PG-C5Z20	W1502FA-6G-C5T20	150	191	
W1502FA-7PG-C5Z20	W1502FA-8G-C5T20	200	241	
W1503FA-5PG-C5Z20	W1503FA-6G-C5T20	250	291	
W1503FA-7PG-C5Z20	W1503FA-8G-C5T20	300	341	
W1504FA-5PG-C5Z20	W1504FA-6G-C5T20	350	391	
W1504FA-7PG-C5Z20	W1504FA-8G-C5T20	400	441	
W1505FA-5PG-C5Z20	W1505FA-6G-C5T20	450	491	
W1505FA-7PG-C5Z20	W1505FA-8G-C5T20	500	541	
W1506FA-5PG-C5Z20	W1506FA-6G-C5T20	550	591	
W1506FA-7PG-C5Z20	W1506FA-8G-C5T20	600	641	
W1507FA-3PG-C5Z20	W1507FA-4G-C5T20	700	741	
W1508FA-3PG-C5Z20	W1508FA-4G-C5T20	800	841	
W1510FA-3PG-C5Z20	W1510FA-4G-C5T20	1000	1041	

Remarks:	1.	We recommend	NSK	support	unit.	Refer t	to Page	B433 for de	tails.

- 2. NSK grease LR3 is recommended. The amount for replenishing should be about 50% of the nut internal space capacity. Refer to Page D16 for details.
- 3. Contact NSK if permissible rotational speed is to be exceeded.


Recommended s	upport unit	For drive side	For opposite to drive side
WBK12-01A	(square)	0	
WBK12S-01	(square)		0
WBK12-11	(round)	0	

			Unit: mn					
Ball screw specifications								
Product cl	assification	Preloaded	Precise clearance					
Shaft dia. x Lead	/ Direction of turn	15×20)/Right					
Preload / Bal	I recirculation	P preload	/ End cap					
Ball dia. / B	all circle dia.	3.175	5/15.5					
Screw shaft	root diameter	12	2.2					
Effective to	urns of balls	1.7	7×1					
Accuracy grade /	Preload / Axial play	C5/Z	C5/T					
Basic load rating	Dynamic C _a	3870	5070					
(N)	Static C _{0a}	5820	8730					
Axia	l play	0	0.005 or less					
Prelo	ad (N)	147	_					
,	ction torque, cm)	1.5 – 7.8	2.4 or less					
Spac	er ball	Yes	None					
Factory page	cked grease	NSK gre	ase LR3					
Internal spatial v	olume of nut (cm³)	1.9						
Standard volume of gr	rease replenishing (cm³)	1	.0					

Unit: mn

	Unit:								
Scrov	v shaft le	anath	۵۱	ad accura	acv	Shaft run-	14000	Permissible rotatio	nal speed N (min-1)
	v snan i	out				Mass (kg)	Supporting	g condition	
$L_{\rm t}$	$L_{\rm a}$	Lo	Τ	$e_{\scriptscriptstyle \mathrm{p}}$	υu		(Ng)	Fixed - Simple support	Fixed - Fixed
186	204	271	0	0.020	0.018	0.025	0.61	3000	3000
236	254	321	0	0.023	0.018	0.035	0.68	3000	3000
286	304	371	0	0.023	0.018	0.035	0.75	3000	3000
336	354	421	0	0.025	0.020	0.040	0.81	3000	3000
386	404	471	0	0.025	0.020	0.040	0.88	3000	3000
436	454	521	0	0.027	0.020	0.050	0.95	3000	3000
486	504	571	0	0.027	0.020	0.050	1.0	3000	3000
536	554	621	0	0.030	0.023	0.050	1.1	3000	3000
586	604	671	0	0.030	0.023	0.065	1.1	3000	3000
636	654	721	0	0.035	0.025	0.065	1.2	3000	3000
686	704	771	0	0.035	0.025	0.065	1.3	3000	3000
786	804	871	0	0.035	0.025	0.085	1.4	3000	3000
886	904	971	0	0.040	0.027	0.085	1.5	2400	3000
1086	1104	1171	0	0.046	0.030	0.110	1.8	1590	2240

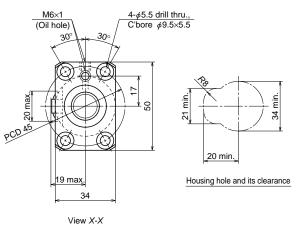
Unit: mm

Ball screw specifications							
Product cla	assification	Preloaded	Precise clearance				
Shaft dia. x Lead	/ Direction of turn	16×5/	/Right				
Preload / Bal	I recirculation	P preload /	Return tube				
Ball dia. / B	all circle dia.	3.175	5/16.5				
Screw shaft	root diameter	13	3.2				
Effective to	urns of balls	2.5	5×1				
Accuracy grade /	Preload / Axial play	C3/Z	C3/T				
Basic load rating	Dynamic C_a	4620	7330				
(N)	Static C _{0a}	6750	13500				
Axia	l play	0	0.005 or less				
Prelo	ad (N)	147	_				
1	ction torque, cm)	1.5 – 7.8	2.0 or less				
Spac	er ball	Yes	None				
Factory pag	cked grease	NSK grease LR3					
Internal spatial vo	olume of nut (cm³)	2.6					
Standard volume of gr	ease replenishing (cm³)	1	.3				

Recommended s	support unit	For drive side	For opposite to drive side
WBK12-01A	(square)	0	
WBK12S-01	(square)		0
WBK12-11	(round)	0	

	Unit: mir									
Coro			Shaft run-		Permissible rotatio	nal speed N (min-1)				
Screv	N SHALL II	engui	Lead accuracy		out ** IVIASS (kg)		out ** Mass Supporting cond			
L_{t}	La	Lo	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\nu_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed	
189	204	271	0	0.010	0.008	0.020	0.70	3000	3000	
289	304	371	0	0.012	0.008	0.030	0.83	3000	3000	
389	404	471	0	0.013	0.010	0.035	0.97	3000	3000	
489	504	571	0	0.015	0.010	0.045	1.1	3000	3000	
689	704	771	0	0.018	0.013	0.055	1.4	3000	3000	
889	904	971	0	0.021	0.015	0.075	1.6	2570	3000	

CO. Co. F		R0.2 max.	Seals (two place) Li 0.008 A 31 42 Li (Hardened)	X	# * G	\$12 \$415		00.5 CO.5 CO	0.000 [2]
	< 22	•	La				45		
	<		Lo					>	


Ball scr	Stroke		
Preloaded (PFT)	Nominal	Maximum (<i>L</i> ₊—Nut length)	
W1601FA-1P-C3Z5	W1601FA-2-C3T5	100	147
W1602FA-1P-C3Z5	W1602FA-2-C3T5	200	247
W1603FA-1P-C3Z5	W1603FA-2-C3T5	300	347
W1604FA-1P-C3Z5	W1604FA-2-C3T5	400	447
W1606FA-1P-C3Z5	W1606FA-2-C3T5	600	647
W1608FA-1P-C3Z5	W1608FA-2-C3T5	800	847

Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.

2. NSK grease LR3 is recommended. The amount for replenishing should be about 50% of the nut internal space capacity. Refer to Page D16 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

support unit	For drive side	For opposite to drive side
(square)	0	
(square)		0
(round)	0	
	(square) (square)	(square)

Ball screw specifications									
Product cl	assification	Preloaded	Precise clearance						
Shaft dia. x Lead	/ Direction of turn	16×16	/Right						
Preload / Ba	I recirculation	P preload /	Return tube						
Ball dia. / B	all circle dia.	3.175	/16.75						
Screw shaft	root diameter	13	3.4						
Effective to	urns of balls	1.5	5×1						
Accuracy grade /	Preload / Axial play	C5/Z	C5/T						
Basic load	Dynamic C_a	3600	4710						
rating (N)	Static C _{0a}	5410	8110						
Axia	l play	0	0.005 or less						
Prelo	ad (N)	147	_						
	ction torque, cm)	1.5 – 7.8	2.4 or less						
Spac	er ball	Yes	None						
Factory page	cked grease	NSK gre	ase LR3						
Internal spatial v	olume of nut (cm³)	2	.1						
Standard volume of o	rease renlenishing (cm³)	1 1							

B282

Unit: mm										
Screw shaft length		10	ad accura	acv	Shaft run-	Mags	Permissible rotatio	nal speed N (min-1)		
	/V SHALL I	engui	Le	au accur	acy	out **	Mass (kg)	Supporting	condition	
L_{t}	La	Lo	Т	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(Rg)	Fixed - Simple support	Fixed - Fixed	
184	204	271	0	0.020	0.018	0.025	0.69	3000	3000	
234	254	321	0	0.023	0.018	0.035	0.77	3000	3000	
284	304	371	0	0.023	0.018	0.035	0.84	3000	3000	
334	354	421	0	0.025	0.020	0.040	0.92	3000	3000	
384	404	471	0	0.025	0.020	0.040	0.99	3000	3000	
434	454	521	0	0.027	0.020	0.050	1.1	3000	3000	
484	504	571	0	0.027	0.020	0.050	1.1	3000	3000	
534	554	621	0	0.030	0.023	0.050	1.2	3000	3000	
584	604	671	0	0.030	0.023	0.065	1.3	3000	3000	
634	654	721	0	0.035	0.025	0.065	1.4	3000	3000	
684	704	771	0	0.035	0.025	0.065	1.4	3000	3000	
784	804	871	0	0.035	0.025	0.085	1.6	3000	3000	
884	904	971	0	0.040	0.027	0.085	1.7	2690	3000	
1084	1104	1171	0	0.046	0.030	0.110	2.0	1770	2480	

(C0.5 C0 C0.5 C0 C0.5 C0 C0.5 C0 C0.5 C0 C0.5 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0	5.5 PRO.2 max.	A G 5	70.014 A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.009 E 0.5
22	La		45	
<u> </u>	Lo		·	

Ball scr	St	Stroke		
Ddii SCi	Nominal	Maximum		
Preloaded (LPFT)	Precise clearance (LSFT)	Norminal	(L _t —Nut length)	
W1601FA-3P-C5Z16	W1601FA-4-C5T16	100	128	
W1602FA-3P-C5Z16	W1602FA-4-C5T16	150	178	
W1602FA-5P-C5Z16	W1602FA-6-C5T16	200	228	
W1603FA-3P-C5Z16	W1603FA-4-C5T16	250	278	
W1603FA-5P-C5Z16	W1603FA-6-C5T16	300	328	
W1604FA-3P-C5Z16	W1604FA-4-C5T16	350	378	
W1604FA-5P-C5Z16	W1604FA-6-C5T16	400	428	
W1605FA-1P-C5Z16	W1605FA-2-C5T16	450	478	
W1605FA-3P-C5Z16	W1605FA-4-C5T16	500	528	
W1606FA-3P-C5Z16	W1606FA-4-C5T16	550	578	
W1606FA-5P-C5Z16	W1606FA-6-C5T16	600	628	
W1607FA-1P-C5Z16	W1607FA-2-C5T16	700	728	
W1608FA-3P-C5Z16	W1608FA-4-C5T16	800	828	
W1610FA-1P-C5Z16	W1610FA-2-C5T16	1000	1028	

Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.
2. NSK grease LR3 is recommended. The amount for replenishing should be about 50% of the nut internal space capacity. Refer to Page D16 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

36

View X-X

 $4-\phi 5.5$ drill thru.

M6×1

(Oil hole)

ø16×32

Unit: mm

Product cla	assification	Preloaded Precise cleara			
Shaft dia. x Lead	/ Direction of turn	16×32/Right			
Preload / Bal	I recirculation	P preload	/ End cap		
Ball dia. / Ba	all circle dia.	3.175	/16.75		
Screw shaft	root diameter	13.4			
Effective tu	urns of balls	0.7×2			
Accuracy grade / I	Preload / Axial play	C5/Z C5/7			
Basic load rating	Dynamic C _a	4000			
(N)	Static C	6690			

rating	Dynamic C _a	10	00		
(N)	Static C _{0a}	6690			
Axia	l play	0	0.005 or les		
Prelo	ad (N)	118	_		
Dynamic fri	ction torque,	1.5 – 9.8	2.4 or les		
(N·cm)		1.5 - 7.0	2.4 01 163		
Spacer ball		No	ne		

Factory packed grease Internal spatial volume of nut (cm3)

Standard volume of grease replenishing (cm³)

Recommended sup	port unit	For drive side	For opposite to drive side
WBK12-01A (square)	0	
WBK12S-01 (square)		0
WRK12-11	(round)	0	

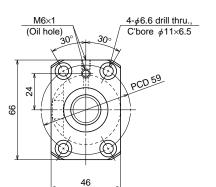
NSK grease LR3

2.0

1.0

									UIIII: IIII
Coro	oboft l	on ath				Shaft run-		Permissible rotatio	nal speed N (min-1)
Screv	Screw shaft length		Lead accuracy			out ** Mass (kg)		Supporting	condition
L_{t}	La	Lo	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
382	404	471	0	0.025	0.020	0.040	0.90	3000	3000
582	604	671	0	0.030	0.023	0.065	1.2	3000	3000
882	904	971	0	0.040	0.027	0.085	1.7	2630	3000
1282	1304	1371	0	0.054	0.035	0.150	2.3	1240	1740

F 1	C0.5 R0.2 max. 15 15	5 A S S S S S S S S S S S S S S S S S S	5 10 10.5	X 4	# * G	-	(5)		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	✓ 0.009 E
	<	Lt	(Hardened)			12	(10)	< 30	<u>15</u>	
<u>≈ 22</u>	><		La				>	45	>	
<				Lo					>	


Dall cor	Stroke		
Preloaded (UPFC)	Precise clearance (USFC)	Nominal	Maximum (L _t —Nut length)
W1603FA-7PGX-C5Z32	W1603FA-8GX-C5T32	300	348
W1605FA-5PGX-C5Z32	W1605FA-6GX-C5T32	500	548
W1608FA-5PGX-C5Z32	W1608FA-6GX-C5T32	800	848
W1612FA-1PGX-C5Z32	W1612FA-2GX-C5T32	1200	1248

Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.

- 2. NSK grease LR3 is recommended. The amount for replenishing should be about 50% of the nut internal space capacity. Refer to Page D16 for details.
- 3. Nut does not have a seal.
- 4. Contact NSK if permissible rotational speed is to be exceeded.

B283

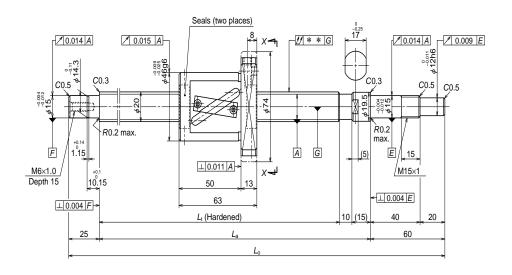
Unit: mm

View X-X

Recommended support unit		For drive side	For opposite to drive side
WBK15-01A	(square)	0	
WBK15S-01	(square)		0
WBK15-11	(round)	0	

Ball screw specifications						
Product cl	assification	Preloaded	Precise clearance			
Shaft dia. x Lead	/ Direction of turn	20×10)/Right			
Preload / Bal	II recirculation	P preload /	Return tube			
Ball dia. / B	all circle dia.	3.96	9/21			
Screw shaft	root diameter	16	5.9			
Effective to	urns of balls	2.5	5×1			
Accuracy grade /	Preload / Axial play	C5/Z	C5/T			
Basic load rating	Dynamic C_a	6880	10900			
(N)	Static C _{0a}	10800	21700			
Axia	l play	0	0.005 or less			
Prelo	ad (N)	196	_			
1	ction torque, cm)	2.0 – 11.8	2.9 or less			
Space	er ball	Yes	None			
Factory packed grease		NSK grease LR3				
Internal spatial vo	olume of nut (cm³)	4	.7			
Standard volume of gr	rease replenishing (cm³)	2.4				

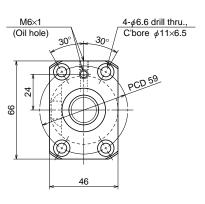
Unit: mm


Scro	Screw shaft length		Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)		
30161	w shart length		Le	au accur	асу	out **	** Mass (kg)	Supporting	g condition
L_{t}	La	Lo	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
289	314	399	0	0.023	0.018	0.035	1.4	3000	3000
389	414	499	0	0.025	0.020	0.040	1.6	3000	3000
489	514	599	0	0.027	0.020	0.050	1.9	3000	3000
589	614	699	0	0.030	0.023	0.065	2.1	3000	3000
689	714	799	0	0.035	0.025	0.065	2.3	3000	3000
789	814	899	0	0.035	0.025	0.085	2.5	3000	3000
889	914	999	0	0.040	0.027	0.085	2.8	3000	3000
989	1014	1099	0	0.040	0.027	0.110	3.0	2680	3000
1089	1114	1199	0	0.046	0.030	0.110	3.2	2210	3000
1189	1214	1299	0	0.046	0.030	0.150	3.4	1840	2570
1289	1314	1399	0	0.054	0.035	0.150	3.7	1570	2190

C0.5 C0.3 C0.3 C0.3 C0.5 R0.2 max. R0.2 max. M6×1.0 Depth 15 L0.004 F	Seals (two places) A G	C0.3 C0.5 C0.5 R0.2 max. [5] E 15 M15x1
25	L _t (Hardened)	10 (15) 40 20
* 	L _o	* ** **

Dall cor	Stroke		
Ball Sci	Ball screw No.		Maximum
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	(L _t —Nut length)
W2002FA-1P-C5Z10	W2002FA-2-C5T10	200	235
W2003FA-1P-C5Z10	W2003FA-2-C5T10	300	335
W2004FA-1P-C5Z10	W2004FA-2-C5T10	400	435
W2005FA-1P-C5Z10	W2005FA-2-C5T10	500	535
W2006FA-1P-C5Z10	W2006FA-2-C5T10	600	635
W2007FA-1P-C5Z10	W2007FA-2-C5T10	700	735
W2008FA-1P-C5Z10	W2008FA-2-C5T10	800	835
W2009FA-1P-C5Z10	W2009FA-2-C5T10	900	935
W2010FA-1P-C5Z10	W2010FA-2-C5T10	1000	1035
W2011FA-1P-C5Z10	W2011FA-2-C5T10	1100	1135
W2012FA-1P-C5Z10	W2012FA-2-C5T10	1200	1235

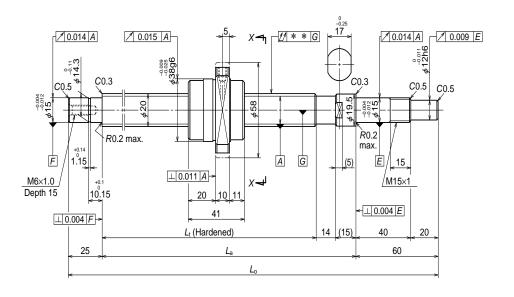
- Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.
 2. NSK grease LR3 is recommended. The amount for replenishing should be about 50% of the nut internal space capacity. Refer to Page D16 for details.
 - 3. Contact NSK if permissible rotational speed is to be exceeded.


B285

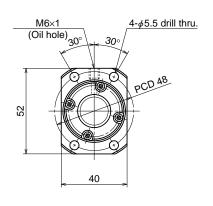
Dall cor	Stroke		
Ddii SCi	Ball screw No.		Maximum
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	(L _t —Nut length)
W2003FA-3P-C5Z20	W2003FA-4-C5T20	200	247
W2004FA-3P-C5Z20	W2004FA-4-C5T20	300	347
W2005FA-3P-C5Z20	W2005FA-4-C5T20	400	447
W2006FA-3P-C5Z20	W2006FA-4-C5T20	500	547
W2007FA-3P-C5Z20	W2007FA-4-C5T20	600	647
W2008FA-3P-C5Z20	W2008FA-4-C5T20	700	747
W2009FA-3P-C5Z20	W2009FA-4-C5T20	800	847
W2010FA-3P-C5Z20	W2010FA-4-C5T20	900	947
W2011FA-3P-C5Z20	W2011FA-4-C5T20	1000	1047
W2012FA-3P-C5Z20	W2012FA-4-C5T20	1100	1147
W2015FA-1P-C5Z20	W2015FA-2-C5T20	1400	1447

Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.

- 2. NSK grease LR3 is recommended. The amount for replenishing should be about 50% of the nut internal space capacity. Refer to Page D16 for details.
- 3. Contact NSK if permissible rotational speed is to be exceeded.


View X-X

Recommended s	support unit	For drive side	For opposite to drive side
WBK15-01A	(square)	0	
WBK15S-01	(square)		0
WBK15-11	(round)	0	


			Unit: mm
I	Ball screw s	pecification	S
Product cl	assification	Preloaded	Precise clearance
Shaft dia. x Lead	/ Direction of turn	20×20)/Right
Preload / Bal	I recirculation	P preload /	Return tube
Ball dia. / B	all circle dia.	3.96	9/21
Screw shaft	root diameter	16	5.9
Effective to	urns of balls	1.5	5×1
Accuracy grade / Preload / Axial play		C5/Z	C53/T
Basic load rating	Dynamic C _a	5370	7040
(N)	Static C _{0a}	8450	12700
Axia	l play	0	0.005 or less
Prelo	ad (N)	196	_
Dynamic friction torque, (N·cm)		2.0 – 11.8	2.9 or less
Spacer ball		Yes	None
Factory page	cked grease	NSK gre	ase LR3
Internal spatial v	olume of nut (cm³)	4	.2
Standard volume of gr	rease replenishing (cm³)	2	.1

Unit: mm

Scrov	v shaft le	onath	ngth Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)		
Sciev	v SHALLI	zngui	Le	au accura	асу	out **	Mass (kg)	Supporting	g condition
L _t	La	Lo	T	$e_{\scriptscriptstyle p}$	υu		(Ng)	Fixed - Simple support	Fixed - Fixed
310	335	420	0	0.023	0.018	0.040	1.6	3000	3000
410	435	520	0	0.027	0.020	0.050	1.8	3000	3000
510	535	620	0	0.030	0.023	0.050	2.0	3000	3000
610	635	720	0	0.030	0.023	0.065	2.3	3000	3000
710	735	820	0	0.035	0.025	0.085	2.5	3000	3000
810	835	920	0	0.040	0.027	0.085	2.7	3000	3000
910	935	1020	0	0.040	0.027	0.110	3.0	3000	3000
1010	1035	1120	0	0.046	0.030	0.110	3.2	2590	3000
1110	1135	1220	0	0.046	0.030	0.110	3.4	2140	2970
1210	1235	1320	0	0.046	0.030	0.150	3.7	1790	2500
1510	1535	1620	0	0.054	0.035	0.180	4.4	1140	1610

(Ultra high helix lead) Dia. 20, Lead 40

View	X-X

Ball screw specifications				
Product cl	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	20×40)/Right	
Preload / Bal	I recirculation	P preload	/ End cap	
Ball dia. / B	all circle dia.	3.175	/20.75	
Screw shaft	root diameter	17	7.4	
Effective to	urns of balls	0.7	7×2	
Accuracy grade /	Accuracy grade / Preload / Axial play		C5/T	
Basic load rating	Dynamic C _a	4490		
(N)	Static C _{0a}	8640		
Axia	Axial play		0.005 or less	
Prelo	ad (N)	148	_	
*	Dynamic friction torque, (N·cm)		2.9 or less	
Spacer ball		None		
Factory page	cked grease	NSK grease LR3		
Internal spatial v	olume of nut (cm³)	2.8		
Standard volume of gr	ease replenishing (cm³)	1	.4	

Recommended s	support unit	For drive side	For opposite to drive side
WBK15-01A	(square)	0	
WBK15S-01	(square)		0
WBK15-11	(round)	0	

Unit: mm

									OTHE THIS
Screw shaft length		Load accuracy		Shaft run-	Permissible rotational speed N (min-1)				
30161	N SHALLIG	engui	Lead accuracy		acy	out **	Mass (kg)	Supporting	g condition
$L_{\rm t}$	$L_{\rm a}$	Lo	T	$e_{\scriptscriptstyle p}$	υu		(149)	Fixed - Simple support	Fixed - Fixed
506	535	620	0	0.030	0.023	0.050	1.7	3000	3000
706	735	820	0	0.035	0.025	0.085	2.2	3000	3000
906	935	1020	0	0.040	0.027	0.110	2.7	3000	3000
1106	1135	1220	0	0.046	0.030	0.110	3.1	2170	3000
1306	1335	1420	0	0.054	0.035	0.150	3.6	1550	2160
1706	1735	1820	0	0.065	0.040	0.230	4.6	910	1270
									The state of the s

Pall cor	Stroke		
Ball screw No.		Nominal	Maximum
Preloaded (UPFC)	Precise clearance (USFC)	rvormiai	(L _t —Nut length)
W2005FA-5PGX-C5Z40	W2005FA-6GX-C5T40	400	465
W2007FA-5PGX-C5Z40	W2007FA-6GX-C5T40	600	665
W2009FA-5PGX-C5Z40	W2009FA-6GX-C5T40	800	865
W2011FA-5PGX-C5Z40	W2011FA-6GX-C5T40	1000	1065
W2013FA-1PGX-C5Z40	W2013FA-2GX-C5T40	1200	1265
W2017FA-1PGX-C5Z40	W2017FA-2GX-C5T40	1600	1665

Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.

- 2. NSK grease LR3 is recommended. The amount for replenishing should be about 50% of the nut internal space capacity. Refer to Page D16 for details.
- 3. Nut does not have a seal.
- 4. Contact NSK if permissible rotational speed is to be exceeded.

B289 B290 1.35

15.35

⊥ 0.004 F >

53

16 Ë

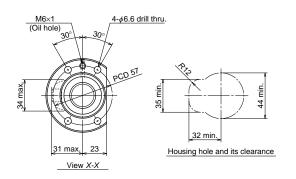
✓ 0.015 A

Seals (two places)

⊥ 0.011 A

96

Lt (Hardened)


76

∕ 0.013 A

C0.5

M20×1

Recommended :	support unit	For drive side	For opposite to drive side
WBK20-01	(square)	0	0
WBK20S-01	(square)		0
WBK20-11	(round)	0	0

			Unit: mr
I	Ball screw s	pecification	s
Product classification		Preloaded	Precise clearance
Shaft dia. x Lead	/ Direction of turn	25×20)/Right
Preload / Bal	I recirculation	P preload /	Return tube
Ball dia. / B	all circle dia.	4.762	/26.25
Screw shaft	root diameter	21	1.3
Effective to	urns of balls	2.5	5×1
Accuracy grade /	Preload / Axial play	C5/Z C5/T	
Basic load rating	Dynamic C _a	9900	15700
(N)	Static C _{0a}	16400	32800
Axia	l play	0	0.005 or less
Prelo	ad (N)	343	_
,	ction torque, cm)	3.9 – 24.5	4.9 or less
Spac	er ball	Yes	None
Factory page	cked grease	NSK gre	ase LR3
Internal spatial v	olume of nut (cm³)	1	2
Standard volume of gr	rease replenishing (cm³)	(5

Recommended :	support unit	For drive side	For opposite to drive side
WBK20-01	(square)	0	0
WBK20S-01	(square)		0
WBK20-11	(round)	0	0

Unit:	mm	Ī

Screw shaft length			Lead accuracy			Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1)	
								Supporting condition	
$L_{\rm t}$	La	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(NY)	Fixed - Simple support	Fixed - Fixed
750	780	913	0	0.035	0.025	0.055	4.0	2800	2800
950	980	1113	0	0.040	0.027	0.070	4.7	2800	2800
1150	1180	1313	0	0.046	0.030	0.090	5.4	2560	2800
1350	1380	1513	0	0.054	0.035	0.090	6.2	1840	2550
1550	1580	1713	0	0.054	0.035	0.120	6.9	1390	1940
1750	1780	1913	0	0.065	0.040	0.120	7.6	1080	1520
2150	2180	2313	0	0.077	0.046	0.160	9.1	710	1000

_	Ball sci	Stroke		
	Preloaded (LPFT)	Nominal	Maximum (L,—Nut length)	
	W2507FA-1P-C5Z20	Precise clearance (LSFT) W2507FA-2-C5T20	600	654
	W2509FA-1P-C5Z20	W2509FA-2-C5T20	800	854
	W2511FA-1P-C5Z20	W2511FA-2-C5T20	1000	1054
	W2513FA-1P-C5Z20	W2513FA-2-C5T20	1200	1254
	W2515FA-1P-C5Z20	W2515FA-2-C5T20	1400	1454
	W2517FA-1P-C5Z20	W2517FA-2-C5T20	1600	1654

A

∕ 0.018 A

R0.2

Ė/_16_

↓ 0.004 E

2000

2054

/M20×1

80

φ15h6

C0.5 C0.5

√ 0.010 E

Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.

W2521FA-1P-C5Z20

2. NSK grease LR3 is recommended. The amount for replenishing should be about 50% of the nut internal space capacity. Refer to Page D16 for details.

W2521FA-2-C5T20

3. Contact NSK if permissible rotational speed is to be exceeded.

B291 B292 ✓ 0.015 A

Seals (two places)

⊥ 0.011 A

90

Lt (Hardened)

∕ 0.013 A

16 F

⊥ 0.004 F

53

C0.5

M20×1

(High helix lead) Dia. 25, Lead 25

-0.011 ø15h6

C0.5

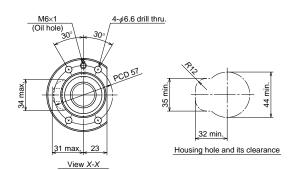
C0.5

27

16

/M20×1

80


⊢<u></u>⊥ 0.004 *E*

53

R0.2

10 (20)

Recommended s	support unit	For drive side	For opposite to drive side
WBK20-01	(square)	0	0
WBK20S-01	(square)		0
WBK20-11	(round)	0	0

			011111111111	
I	Ball screw s	pecification	s	
Product cla	assification	Preloaded Precise clearan		
Shaft dia. x Lead	/ Direction of turn	25×25	/Right	
Preload / Bal	I recirculation	P preload /	Return tube	
Ball dia. / B	all circle dia.	4.762	/26.25	
Screw shaft	root diameter	21	1.3	
Effective to	urns of balls	1.5	5×1	
Accuracy grade /	Preload / Axial play	C5/Z	C5/T	
Basic load rating	Dynamic C _a	7730	10100	
(N)	Static C _{0a}	12700	19100	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	294	_	
	ction torque, cm)	3.9 – 24.5	4.9	
Space	er ball	Yes None		
Factory pag	cked grease	NSK grease LR3		
Internal spatial vo	olume of nut (cm³)	7.5		
Standard volume of gr	ease replenishing (cm³)	3	.8	

WBK20-01 (square) WBK20S-01 (square) WBK20S-01 (round)	Recommended	support unit	For drive side	For opposite to drive side	
(545.5)	WBK20-01	(square)	0	0	
WBK20-11 (round) O	WBK20S-01	(square)		0	
(, , , , , , , , , , , , , , , , , , ,	WBK20-11	(round)	0	0	

Ball scr	Stroke		
Dall SCI	Nominal	Maximum	
Preloaded (LPFT)	Precise clearance (LSFT)	NOTTIITAI	(L _t —Nut length)
W2507FA-3P-C5Z25	W2507FA-4-C5T25	600	660
W2509FA-3P-C5Z25	W2509FA-4-C5T25	800	860
W2511FA-3P-C5Z25	W2511FA-4-C5T25	1000	1060
W2513FA-3P-C5Z25	W2513FA-4-C5T25	1200	1260
W2515FA-3P-C5Z25	W2515FA-4-C5T25	1400	1460
W2517FA-3P-C5Z25	W2517FA-4-C5T25	1600	1660
W2521FA-3P-C5725	W2521FA-4-C5T25	2000	2060

Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.
2. NSK grease LR3 is recommended. The amount for replenishing should be about 50% of the nut internal space capacity. Refer to Page D16 for details.
3. Contact NSK if permissible rotational speed is to be exceeded.

									Unit: mm	В
Screu	w shaft le	-nath	l e	ad accura	acv	Shaft run-	Mass	Permissible rotational speed N (min-1)		
36161	/v Shart iv	Silgtii	LC			out **	(kg)	Supporting	g condition	
$L_{\rm t}$	La	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Ng)	Fixed - Simple support	Fixed - Fixed	
750	780	913	0	0.035	0.025	0.055	4.0	2800	2800	
950	980	1113	0	0.040	0.027	0.070	4.7	2800	2800	
1150	1180	1313	0	0.046	0.030	0.090	5.4	2540	2800	
1350	1380	1513	0	0.054	0.035	0.090	6.2	1830	2540	
1550	1580	1713	0	0.054	0.035	0.120	7.0	1380	1930	
1750	1780	1913	0	0.065	0.040	0.120	7.7	1080	1510	
2150	2180	2313	0	0.077	0.046	0.160	9.1	710	1000	

1 0.015 A

R0.2 max.

⊥ 0.011 A →

25 12 13

50

Lt (Hardened)

+0.14 1.35

15.35

16 F

⊥ 0.004 F

53

M20×1

1 0.013 A ⋅

C0.5

-0.011 **≠15h6**

C_{0.5}

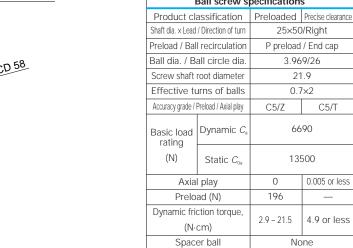
R0.2

max.

16 (20)

Ε 16

←<u></u> ⊥ 0.004 *E*


53

80

M20×1

27

Factory packed grease Internal spatial volume of nut (cm3)

Standard volume of grease replenishing (cm3)

Recommended	support unit	For drive side	For opposite to drive side
WBK20-01	(square)	0	
WBK20S-01	(square)		0
WBK20-11	(round)	0	0

NSK grease LR3

4.2

2.1

Unit: mm

M6×1 (Oil hole)	$\sqrt{\frac{4-\phi 6.6 \text{ drill thru.}}{}}$
	PCD 58
48 View X-X	

Ball scr	St	Stroke		
Dali Sci	Nominal	Maximum		
Preloaded (UPFC)	Precise clearance (USFC)	NOTTITIAL	(L _t —Nut length)	
W2508FA-1PGX-C5Z50	W2508FA-2GX-C5T50	700	794	
W2511FA-5PGX-C5Z50	W2511FA-6GX-C5T50	1000	1094	
W2516FA-1PGX-C5Z50	W2516FA-2GX-C5T50	1500	1594	
W2521FA-5PGX-C5Z50	W2521FA-6GX-C5T50	2000	2094	

11 * * G

Ġ

A

Remarks: 1. We recommend NSK support unit. Refer to Page B433 for details.

2. NSK grease LR3 is recommended. The amount for replenishing should be about 50% of the nut internal space capacity. Refer to Page D16 for details.

3. Nut does not have a seal.

4. Contact NSK if permissible rotational speed is to be exceeded.

									01111: 111111
Corous shaft longth		Lo	Lood accuracy			Shaft run-	Permissible rotatio	nal speed N (min-1)	
30161	Screw shaft length		Lead accuracy			out **	Mass (kg)	Supporting condition	
$L_{\rm t}$	$L_{\rm a}$	Lo	T	$e_{\scriptscriptstyle p}$	υu		(149)	Fixed - Simple support	Fixed - Fixed
844	880	1013	0	0.040	0.027	0.070	4.1	2800	2800
1144	1180	1313	0	0.046	0.030	0.090	5.3	2550	2800
1644	1680	1813	0	0.065	0.040	0.120	7.2	1230	1710
2144	2180	2313	0	0.077	0.046	0.160	9.1	720	1010

∕ 0.019 A

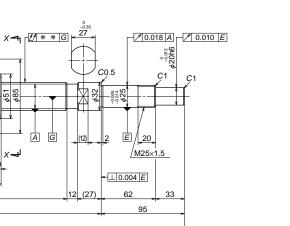
Seals (two places)

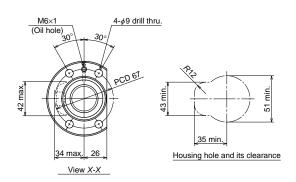
⊥ 0.013 A →

117

Lt (Hardened)

92


A G


∕ 0.013 A

M25×1.5/_20_F

⊥ 0.004 F →

62

Ball screw specifications							
Product cla	assification	Preloaded Precise clearance					
Shaft dia. x Lead	/ Direction of turn	32×25	/Right				
Preload / Bal	I recirculation	P preload /	Return tube				
Ball dia. / B	all circle dia.	4.762	/33.25				
Screw shaft	root diameter	28	3.3				
Effective to	urns of balls	2.5	5×1				
Accuracy grade /	Preload / Axial play	C5/Z	C5/T				
Basic load rating	Dynamic C _a	11300	17900				
(N)	Static C _{0a}	20900	41800				
Axia	l play	0	0.005 or less				
Prelo	ad (N)	441	_				
	ction torque, cm)	6.8 – 31.5	7.8 or less				
Space	er ball	Yes	None				
Factory pag	ked grease	NSK grease LR3					
Internal spatial vo	olume of nut (cm³)	17.5					
Standard volume of gr	ease replenishing (cm³)	8	.8				

support unit	For drive side	For opposite to drive side
(square)	0	0
(square)		0
(round)	0	0
	(square) (square)	(square)

									OHIL HIH
Screw shaft length		1		Shaft run-		Permissible rotational speed N (min-1)			
		engui	Lead accuracy			out **	I SIINNORT	Supporting	ng condition
L_{t}	La	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
1180	1219	1376	0	0.046	0.030	0.090	9.3	2180	2180
1680	1719	1876	0	0.065	0.040	0.120	12.3	1580	2180
2180	2219	2376	0	0.077	0.046	0.160	15.4	930	1300
2780	2819	2976	0	0.093	0.054	0.200	19.1	560	800

Ball screw No.		Stroke		
		Nominal	Maximum	
Preloaded (LPFT)	Precise clearance (LSFT)		(L _t —Nut length)	
W3211FA-1P-C5Z25	W3211FA-2-C5T25	1000	1063	
W3216FA-1P-C5Z25	W3216FA-2-C5T25	1500	1563	
W3221FA-1P-C5Z25	W3221FA-2-C5T25	2000	2063	
W3227FA-1P-C5Z25	W3227FA-2-C5T25	2600	2663	

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

2. NSK grease LR3 is recommended. The amount for replenishing should be about 50% of the nut internal space capacity. Refer to Page D16 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

Screw shaft length

1219

1719

2219

2819

Lo

1376

1876

2376

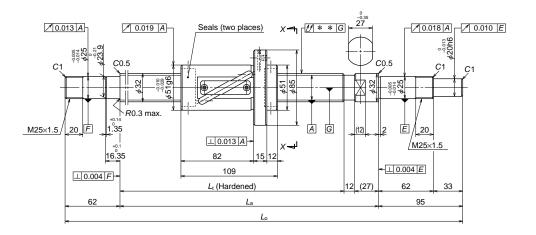
2976

Τ

0

0

0


 L_{t}

1180

1680

2180

2780

(Oil hole) 30° 30° 30° 30° 30° 30° 30° 30° 30° 30°
--

Lead accuracy

 e_{n}

0.046

0.065

0.077

0.093

Ball screw specifications				
Product cla	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	32×32/Right		
Preload / Bal	I recirculation	P preload /	Return tube	
Ball dia. / Ba	all circle dia.	4.762/33.25		
Screw shaft	root diameter	28	3.3	
Effective to	urns of balls	1.5	5×1	
Accuracy grade /	Preload / Axial play	C5/Z	C5/T	
Basic load rating	Dynamic C _a	8800	11500	
(N)	Static C _{0a}	16600	24800	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	392	_	
Dynamic friction torque, (N·cm)		6.9 – 31.5	7.8 or less	
Spacer ball		Yes	None	
Factory packed grease		NSK grease LR3		
Internal spatial volume of nut (cm ³)		14		
Standard volume of grease replenishing (cm ³)		7		

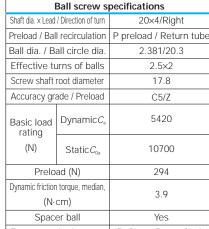
Recommended	support unit	For drive side	For opposite to drive side
WBK25-01	(square)	0	0
WBK25S-01	(square)		0
WBK25-11	(round)	0	0

					Unit: mm
		Shaft run-		Permissible rotation	nal speed N (min-1)
		Supporting	g condition		
	υu		(Ng)	Fixed - Simple support	Fixed - Fixed
	0.030	0.090	9.3	2180	2180
	0.040	0.120	12.3	1570	2180
	0.046	0.160	15.4	920	1290
	0.054	0.200	19.1	560	790

Ball screw No.		Stroke	
Ball screw No.		Nominal	Maximum
Preloaded (LPFT)	Precise clearance (LSFT)	Normilai	(L _t —Nut length)
W3211FA-3P-C5Z32	W3211FA-4-C5T32	1000	1071
W3216FA-3P-C5Z32	W3216FA-4-C5T32	1500	1571
W3221FA-3P-C5Z32	W3221FA-4-C5T32	2000	2071
W3227FA-3P-C5Z32	W3227FA-4-C5T32	2600	2671

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

2. NSK grease LR3 is recommended. The amount for replenishing should be about 50% of the nut internal space capacity. Refer to Page D16 for details.


3. Contact NSK if permissible rotational speed is to be exceeded.

B299

View X-X

6-*ϕ*5.5 drill thru., C'bore \(\phi 9.5 \times 5.5 \)

Recommended support un	it For drive side	For opposite to drive side
WBK15-01A (square	e) O	
WBK15S-01 (square	e)	0
WBK15-11 (round	(t	

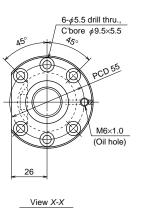
_	302

Shaft dia. × Lead / Direction of turn		20×4/Right	
Preload / Bal	I recirculation	P preload / Return tub	
Ball dia. / B	all circle dia.	2.381/20.3	
Effective to	urns of balls	2.5×2	
Screw shaft	root diameter	17.8	
Accuracy gra	ade / Preload	C5/Z	
Basic load rating	Dynamic C_a	5420	
(N)	Static C _{0a}	10700	
Prelo	ad (N)	294	
Dynamic friction	torque, median,	3.9	
(N-	cm)	3.7	
Spacer ball		Yes	
Factory packed grease		Refer to Remarks 2.	
Internal spatial volume of nut (cm³)		2.7	
Standard volume of grease replenishing (cm ³)		1.4	

Recommended s	support unit	For drive side	For opposite to drive side
WBK15-01A	(square)	0	
WBK15S-01	(square)		0
WBK15-11	(round)	0	

Uni	t: mm

Lead accuracy		Shaft run-	Permissible rotational speed N (min-1)			
	Lead accuracy		out ** Mass - + + (kg)		Supporting condition	
Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Ng)	Fixed - Simple support	Fixed - Fixed
-0.005	0.023	0.018	0.045	1.1	3000	3000
-0.007	0.023	0.018	0.045	1.2	3000	3000
-0.009	0.025	0.020	0.055	1.5	3000	3000
-0.011	0.027	0.020	0.070	1.7	3000	3000
-0.014	0.030	0.023	0.085	1.9	3000	3000
-0.016	0.035	0.025	0.085	2.1	3000	3000


C0.5 (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	A 2000 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Seals (two places) X I Seals (two places) X A A A A A A A A A A A A	# * G	8 9	3 3 3 10 10 10 10 10 10 10 10 10 10 10 10 10	(A) (1.00
		L _t (Hardened)		25	40	20
25		La	7		60	
· '		Lo		'		

Ball screw No.	Stro	oke	Screw shaft length		
	Nominal	Maximum	Screw shart length		
	Nominal	(L _t —Nut length)	L_{t}	La	Lo
W2002SA-1P-C5Z4	150	176	225	250	335
W2002SA-2P-C5Z4	200	226	275	300	385
W2003SA-1P-C5Z4	300	326	375	400	485
W2004SA-1P-C5Z4	400	426	475	500	585
W2005SA-1P-C5Z4	500	526	575	600	685
W2006SA-1P-C5Z4	600	626	675	700	785

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	20×5/Right
Preload / Bal	I recirculation	P preload / Return tube
Ball dia. / B	all circle dia.	3.175/20.5
Screw shaft	root diameter	17.2
Effective turns of balls Accuracy grade / Preload		2.5×2
		C5/Z
Basic load rating	Dynamic C _a	9410
(N)	Static C _{0a}	17100
Prelo	ad (N)	490
Dynamic friction torque, median, (N·cm) Spacer ball		7.8
		Yes
Factory page	ked grease	Refer to Remarks 2.
Internal spatial v	olume of nut (cm³)	4.3
Standard volume of grease replenishing (cm ³)		2.2

ecommended s	support unit	For drive side	For opposite to drive side
NBK15-01A	(square)	0	
NBK15S-01	(square)		0
WBK15-11	(round)	0	

						Othe: Ithiri
Lead accuracy		Load accuracy			Permissible rotatio	nal speed N (min-1)
L		~y	out **	Mass	Supporting	g condition
Τ	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed
-0.005	0.023	0.018	0.045	1.3	3000	3000
-0.007	0.023	0.018	0.045	1.4	3000	3000
-0.009	0.025	0.020	0.055	1.6	3000	3000
-0.011	0.027	0.020	0.070	1.8	3000	3000
-0.014	0.030	0.023	0.085	2.0	3000	3000
-0.019	0.035	0.025	0.110	2.5	3000	3000

45 11 X-4	A G		M15×1 15 M15×1		
Lt (Hardened)		25	40	20	
		*	60	,	-
_	45 11 X-4	45 11 X - 45 56 L ₁ (Hardened)	L ₁ (Hardened) 25	L ₁ (Hardened) L ₂ (Hardened) L ₃ (Hardened)	L ₁ (Hardened) 25 40 20 60

	Str	oke	Screw shaft length			
Ball screw No.	Niemeinel	Maximum	Sciew shart length			
	Nominal	(L _t —Nut length)	L_{t}	L_{a}	L _o	
W2002SA-3P-C5Z5	150	169	225	250	335	
W2002SA-4P-C5Z5	200	219	275	300	385	
W2003SA-2P-C5Z5	300	319	375	400	485	
W2004SA-2P-C5Z5	400	419	475	500	585	
W2005SA-2P-C5Z5	500	519	575	600	685	
W2007SA-1P-C5Z5	700	719	775	800	885	

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.
 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
 3. Contact NSK if permissible rotational speed is to be exceeded.

15.35

1.35+0.14 +C0.3

₩C0.3

R0.2 max.

C0.5 R0.2

⊥ 0.005 F

53

max.

✓ 0.015 A

Seals (two places)

⊥ 0.011 A

Lt (Hardened)

37

48

La

- £4 * * G

∕ 0.014 A

Shape II

Shape I

M20×1

∕ 0.017 A C0.5

0.017 A 0.012 E

C0.5

16

M20×1

R0.2 max.

< ⊥ 0.005 E

53

80

10 14

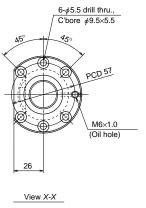
C0.5

ø25×4

	I	Ball screw s	pecifications
	Shaft dia. x Lead	/ Direction of turn	25×4/Right
	Preload / Ball recirculation		P preload / Return tube
	Ball dia. / Ball circle dia.		2.381/25.3
	Screw shaft root diameter Effective turns of balls		22.8
			2.5×2
	Accuracy gra	ade / Preload	C5/Z
	Basic load rating	Dynamic C _a	6020
	(N)	Static C _{0a}	13600
	Prelo	ad (N)	290
	Dynamic friction torque, median, (N·cm)		4.9
	Spac	er ball	Yes
	Factory pag	ked grease	Refer to Remarks 2.

Recommended	support unit	For drive side	For opposite to drive side
WBK20-01	(square)	0	0
WBK20S-01	(square)		0
WBK20-11	(round)	0	0

Internal spatial volume of nut (cm3)


Standard volume of grease replenishing (cm²)

Unit: mm

ndition	D
Fixed - Fixed	30
_	
_	
_	
_	

3.2

1.6

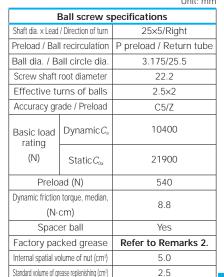
6- ϕ 5.5 drill thru., C'bore ϕ 9.5×5.5
450
PCD 57
M6×1.0 (Oil hole)
26
View X-X

	Str	oke	Scrow shaft longth			
Ball screw No.	Naminal	Maximum	Screw shaft length			
	Nominal (L,—Nut le	(L _t —Nut length)	$L_{\rm t}$	$L_{\rm a}$	Lo	
W2502SA-1P-C5Z4	150	172	220	250	349	
W2502SA-2P-C5Z4	200	222	270	300	399	
W2503SA-1P-C5Z4	300	322	370	400	499	
W2504SA-1P-C5Z4	400	422	470	500	599	
W2505SA-1P-C5Z4	500	522	570	600	733	
W2507SA-1P-C5Z4	700	722	770	800	933	

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.


Left side shaft	Lead accuracy		Shaft run- out ** Mass		Permissible rotational speed N (min-1) Supporting condition		
end	Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.005	0.023	0.018	0.035	1.6	2800	_
П	-0.006	0.023	0.018	0.035	1.8	2800	_
П	-0.009	0.025	0.020	0.040	2.2	2800	_
П	-0.011	0.027	0.020	0.050	2.5	2800	
I	-0.014	0.030	0.023	0.060	3.0	2800	2800
I	-0.018	0.035	0.025	0.075	3.7	2800	2800

View X-X

 $6-\phi 5.5$ drill thru.,

C'bore \$\phi 9.5 \times 5.5\$

M6×1.0 (Oil hole) Unit: mm

Recommended	support unit	For drive side	For opposite to drive side
WBK20-01	(square)	0	0
WBK20S-01	(square)		0
WBK20-11	(round)	0	0

	30

ecommended	support unit	For drive side	For opposite to drive side
NBK20-01	(square)		
NBK20S-01	(square)		0
NBK 20-11	(round)		

Unit: mm

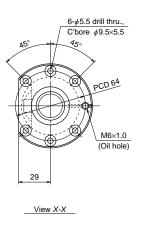
Left side shaft	Le	ad accura	асу	Shaft run- out **	Mass	Permissible rotatio Supporting	
end	Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.005	0.023	0.018	0.035	1.8	2800	_
П	-0.006	0.023	0.018	0.035	2.0	2800	_
П	-0.009	0.025	0.020	0.040	2.3	2800	_
П	-0.011	0.027	0.020	0.050	2.7	2800	_
I	-0.014	0.030	0.023	0.060	3.1	2800	2800
I	-0.016	0.035	0.025	0.075	3.4	2800	2800
I	-0.018	0.035	0.025	0.075	3.8	2800	2800
Ι	-0.023	0.040	0.027	0.090	4.5	2800	2800
I	-0.028	0.046	0.030	0.120	5.2	2480	2800

Shape II	C0.5 R0.2 max.	CO.3	(two places) X A A G	10 14	80.2 max.	C0.5 C0.5
	⊥0.005 F	L _t (Hardened)		30	53	27
	53	La		-1-	80	
	- 7		Lo		17	

	Str	oke	Sor	ew shaft ler	aath
Ball screw No.	Nominal	Maximum	3016	ew shart lei	igtii
	INOITIIIIai	(L _t —Nut length)	$L_{\rm t}$	$L_{\rm a}$	Lo
W2502SA-3P-C5Z5	150	165	220	250	349
W2502SA-4P-C5Z5	200	215	270	300	399
W2503SA-2P-C5Z5	300	315	370	400	499
W2504SA-2P-C5Z5	400	415	470	500	599
W2505SA-2P-C5Z5	500	515	570	600	733
W2506SA-1P-C5Z5	600	615	670	700	833
W2507SA-2P-C5Z5	700	715	770	800	933
W2509SA-1P-C5Z5	900	915	970	1000	1133
W2511SA-1P-C5Z5	1000	1115	1170	1200	1333

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.


3. Contact NSK if permissible rotational speed is to be exceeded.

Τ

-0.009

-0.014

-0.018 -0.028

ı	Ball screw s	pecifications	
Shaft dia. x Lead / Direction of turn		25×6/Right	
Preload / Bal	I recirculation	P preload / Return tube	
Ball dia. / B	all circle dia.	3.969/25.5	
Screw shaft	root diameter	21.4	
Effective to	urns of balls	2.5×2	
Accuracy grade / Preload Basic load rating DynamicC	ade / Preload	C5/Z	
	Dynamic C _a	14100	
(N)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26800	
Prelo	ad (N)	685	
,		13.8	
Spacer ball		Yes	
Factory pag	ked grease	Refer to Remarks 2.	
Internal spatial vo	olume of nut (cm³)	7.0	
Standard volume of gr	ease replenishing (cm³)	3.5	

Recommended s	support unit	For drive side	For opposite to drive side
WBK20-01	(square)	0	0
WBK20S-01	(square)		0
WBK20-11	(round)	0	0

	Offic: Hill								
Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)					
		_y	out **	Mass	Supporting condition				
	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	(kg)		Fixed - Simple support	Fixed - Fixed			
9	0.025	0.020	0.050	2.5	2800	2800			
4	0.030	0.023	0.060	3.2	2800	2800			
3	0.035	0.025	0.075	3.9	2800	2800			
3	0.046	0.030	0.120	5.2	2410	2800			

1	20 κτο C0.3	(10.019 A)	Seals (two places) X-1 Line 10.013 Air Air Air Air Air Air Air Air Air Air		C0.3 C0.3 R0.2 R0.2 R0.2 max. E	M20×1	M2 E
	53		L _t (Hardened)	*	30 5	3 27	
	33		L _a		*	ou	

	Stroke		Screw shaft length		aath
Ball screw No.	Niemeinel	Maximum	Screw Shart length		
	Nominal	(L _t —Nut length)	$L_{\rm t}$	La	L_{\circ}
W2503SA-3P-C5Z6	250	308	370	400	533
W2505SA-3P-C5Z6	450	508	570	600	733
W2507SA-3P-C5Z6	650	708	770	800	933
W2511SA-2P-C5Z6	1050	1108	1170	1200	1333

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

View X-X

Lead accuracy

 $e_{\scriptscriptstyle p}$

0.025

0.030

0.035

0.040

0.046

0.054

Τ

-0.009

-0.014

-0.018

-0.023

-0.028

-0.035

6-*ϕ*6.6 drill thru.,

C'bore *ϕ*11×6.5

Shaft run-

out ** tt

0.050

0.060 0.075

0.090

0.120

0.150

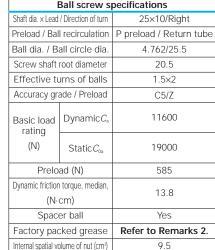
6.9

 $\upsilon_{\scriptscriptstyle \sf u}$

0.020

0.023

0.025


0.027

0.030

0.035

NSK

Recommended support unit		For drive side	For opposite to drive side
WBK20-01	(square)	0	0
WBK20S-01	(square)		0
WBK20-11	(round)	0	0

4.8

2050

Unit: mm

	Permissible rotational speed N (min-1) Supporting condition					
Mass (kg)						
(kg)	Fixed - Simple support	Fixed - Fixed				
3.2	2800	2800				
3.8	2800	2800				
4.5	2800	2800				
5.2	2800	2800				
5.9	2340	2800				

1470

Standard volume of grease replenishing (cm3)

C0.5 (0.017 A) (80.2 max.	Seals (two places) X 1 1 1 1 1 1 1 1 1 1 1 1	# * G	10 14	20.3 R0.2 max. E 16 M20×	CO.5.	C0.5
53		L _t (Hardened)	+	30	53	27	
*	*	L _o		*		÷	

	Stroke		Screw shaft length		aath
Ball screw No.	Namainal	Maximum	Screw shart length		
	Nominal	(L _t —Nut length)	L_{t}	La	Lo
W2503SA-4P-C5Z10	250	289	370	400	533
W2505SA-4P-C5Z10	450	489	570	600	733
W2507SA-4P-C5Z10	650	689	770	800	933
W2509SA-2P-C5Z10	850	889	970	1000	1133
W2511SA-3P-C5Z10	1050	1089	1170	1200	1333
W2514SA-1P-C5Z10	1350	1389	1470	1500	1633

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

B311 B312

Left side

shaft end

Π

 \prod

 \blacksquare

-0.006

-0.009

-0.011

-0.014-0.018

-0.024

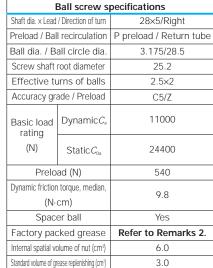
-0.028

View X-X

0.046

0.120

6.5


0.030

6-*ϕ*6.6 drill thru.,

C'bore *ϕ*11×6.5

ø28×5

Recommended :	support unit	For drive side	For opposite to drive side
WBK20-01	(square)	0	0
WBK20S-01	(square)		0
WBK20-11	(round)	0	0

יי
 94
31

					WBK20-01	(square)	0	0
					WBK20S-01	(square)		0
					WBK20-11	(round)	0	0
								Unit: mm
Lo	ad accura	1614	Shaft run-		Permissible	rotational	speed N	(min-1)
Le	au accura	icy	out **	Mass	Sup	porting co	ndition	
-	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple s	upport	Fixed - F	ixed
06	0.023	0.018	0.035	2.5	2500		_	
09	0.025	0.020	0.040	2.9	2500		_	
11	0.027	0.020	0.050	3.3	2500		_	
14	0.030	0.023	0.060	3.8	2500		2500)
18	0.035	0.025	0.075	4.7	2500		2500)
24	0.040	0.027	0.090	5.6	2500		2500)

2500

	✓0.014 Shape II ✓0.0 C0.5 Shape I —	C0.5 R0.2 max.	L ₀ L ₁ 15.35 *61	A G 10 14	C0.3 CC 87 CQ R0.2 max. E 16 M20x1	م15h6 ¢15h6
12 L ₁ (Hardened) 30 53 27		⊥0.005 F →	2 L _t (Hardened)	30	53	27
53 L _a 80		53	La	· · · · · · · · · · · · · · · · · · ·	80	
		ļ	L _o		'	

	Stroke		Screw shaft length		agth
Ball screw No.	Nominal	Maximum	Screw shart length		
	Nominal	(L _t —Nut length)	$L_{\rm t}$	$L_{\rm a}$	Lo
W2802SA-1P-C5Z5	200	214	270	300	399
W2803SA-1P-C5Z5	300	314	370	400	499
W2804SA-1P-C5Z5	400	414	470	500	599
W2805SA-1P-C5Z5	450	502	558	600	733
W2807SA-1P-C5Z5	650	702	758	800	933
W2809SA-1P-C5Z5	850	902	958	1000	1133
W2811SA-1P-C5Z5	1050	1102	1158	1200	1333

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

B313

2500

Left side

View X-X

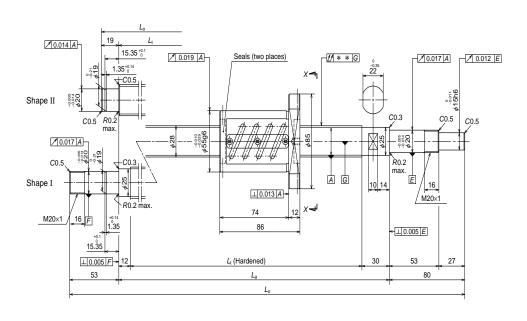
Lead accuracy

 $6-\phi6.6$ drill thru.,

C'bore *ϕ*11×6.5

M6×1.0

(Oil hole)

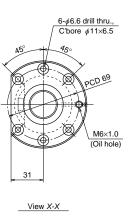


	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	28×5/Right
Preload / Bal	I recirculation	Z preload / Return tube
Ball dia. / B	all circle dia.	3.175/28.5
Screw shaft	root diameter	25.2
Effective to	urns of balls	2.5×2
Accuracy gr	ade / Preload	C5/Z
Basic load rating	Dynamic C _a	17400
(N)	Static C _{0a}	48800
Prelo	ad (N)	1220
Dynamic friction torque, median, (N·cm)		21.5
Spacer ball		None
Factory packed grease		Refer to Remarks 2.
Internal spatial v	olume of nut (cm³)	9.0
Standard unlump of a	roseo ronlonichina (cmi)	4.5

Recommended support unit		For drive side	For opposite to drive side
WBK20-01	(square)	0	0
WBK20S-01	(square)		0
WBK20-11	(round)	0	0

_
0.4
31

		Factory packed grease			Refer to Re	marks 2.
		Internal spatial volume	of nut (cm ³)		9.0)
		Standard volume of grease re	eplenishing (cm³		4.5	5
		Recommended s	support ι	ınit	For drive side	For opposite to drive side
		WBK20-01	(squa	re)	0	0
		WBK20S-01	(squa	re)		0
		WBK20-11	(rour	nd)	0	0
						Unit: mm
		Permissible	rotatio	nal	speed N	(min-1)
Mass		Sup	porting	CC	ndition	
(kg)	Fix	ed - Simple sı	upport		Fixed - F	ixed
2.8		2500			_	
3.2		2500			_	
3.7		2500			_	
4.2		2500			2500)
5.1		2500			2500)


	Str	oke	Screw shaft length		
Ball screw No.	Nominal	Maximum (L _i —Nut length)	L_1 L_2 L_3 L_4		
W2802SA-2Z-C5Z5	150	184	270	-	399
WZ6UZ5A-ZZ-C5Z5	150	104	270	300	399
W2803SA-2Z-C5Z5	250	284	370	400	499
W2804SA-2Z-C5Z5	350	384	470	500	599
W2805SA-2Z-C5Z5	450	472	558	600	733
W2807SA-2Z-C5Z5	650	672	758	800	933
W2809SA-2Z-C5Z5	850	872	958	1000	1133
W2811SA-2Z-C5Z5	1050	1072	1158	1200	1333

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
- 3. Contact NSK if permissible rotational speed is to be exceeded.

shaft	LO	ad docare		out ** (kg) Supporting condition			
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.006	0.023	0.018	0.035	2.8	2500	_
П	-0.009	0.025	0.020	0.040	3.2	2500	
П	-0.011	0.027	0.020	0.050	3.7	2500	_
Ι	-0.013	0.030	0.023	0.060	4.2	2500	2500
I	-0.018	0.035	0.025	0.075	5.1	2500	2500
Ι	-0.023	0.040	0.027	0.090	5.9	2500	2500
I	-0.028	0.046	0.030	0.120	6.8	2500	2500

Shaft run-

Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	28×6/Right			
Preload / Bal	I recirculation	P preload / Return tube			
Ball dia. / B	all circle dia.	3.175/28.5			
Screw shaft	root diameter	25.2			
Effective to	urns of balls	2.5×2			
Accuracy gra	ade / Preload	C5/Z			
Basic load rating	Dynamic C _a	11000			
(N)	Static C _{0a}	24400			
Prelo	ad (N)	540			
,	torque, median, cm)	11.8			
Space	er ball	Yes			
Factory pag	cked grease	Refer to Remarks 2.			
Internal spatial vo	olume of nut (cm³)	6.0			
Standard volume of gr	ease replenishing (cm³)	3.0			

Recommended suppo	For drive side	For opposite to drive side	
WBK20-01 (sc	quare)	0	0
WBK20S-01 (so	quare)		0
WBK20-11 (r	ound)	0	0

Left side shaft	Lead accuracy		Shaft run- out ** Mass (kg)		Permissible rotatio Supporting		
end	Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(Kg)	Fixed - Simple support	Fixed - Fixed
П	-0.009	0.025	0.020	0.040	3.0	2500	_
П	-0.014	0.030	0.023	0.060	3.9	2500	
I	-0.018	0.035	0.025	0.075	4.9	2500	2500
I	-0.023	0.040	0.027	0.090	5.8	2500	2500
I	-0.028	0.046	0.030	0.120	6.6	2500	2500

Shape II	X-1 X-1 X-1 X-1 X-1 X-1 X-1 X-1 X-1 X-1	G 10 14	C0.3 R0.2 R0.2 max. E 16 M20×	0.5 C0.5
⊥0.005 F → 1	2 L _t (Hardened)	30	53	27
53	L _a		80	
-	L _o			

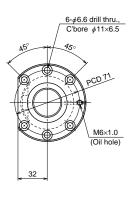
	Str	oke	Screw shaft length		
Ball screw No.	Maximum		Screw shart length		
	Nominal	$(L_t$ —Nut length)	$L_{\rm t}$	La	Lo
W2803SA-3P-C5Z6	250	307	370	400	499
W2805SA-3P-C5Z6	450	507	570	600	699
W2807SA-3P-C5Z6	650	695	758	800	933
W2809SA-3P-C5Z6	850	895	958	1000	1133
W2811SA-3P-C5Z6	1050	1095	1158	1200	1333

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
3. Contact NSK if permissible rotational speed is to be exceeded.

6-\$6.6 drill thru., C'bore \$11×6.5
31
View X-X

		Unit: mm				
ı	Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	28×6/Right				
Preload / Bal	I recirculation	Z preload / Return tube				
Ball dia. / B	all circle dia.	3.175/28.5				
Screw shaft	root diameter	25.2				
Effective to	urns of balls	2.5×2				
Accuracy gra	ade / Preload	C5/Z				
Basic load rating	Dynamic C _a	17400				
(N)	Static C _{0a}	48800				
Prelo	ad (N)	1220				
,	torque, median, cm)	23.5				
Space	er ball	None				
Factory pag	cked grease	Refer to Remarks 2.				
Internal spatial vo	olume of nut (cm³)	9.5				
Standard volume of gr	ease replenishing (cm³)	4.8				


Recommended s	support unit	For drive side	For opposite to drive side
WBK20-01	(square)	0	0
WBK20S-01	(square)		0
WBK20-11	(round)	0	0

							Offit: Iffiff
Left side Lead accuracy		Shaft run-		Permissible rotatio	nal speed N (min-1)		
shaft	Leau accuracy		out **	Mass	Supporting condition		
end	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.009	0.025	0.020	0.040	3.4	2500	_
П	-0.014	0.030	0.023	0.060	4.3	2500	_
I	-0.018	0.035	0.025	0.075	5.3	2500	2500
I	-0.023	0.040	0.027	0.090	6.2	2500	2500
I	-0.028	0.046	0.030	0.120	7.1	2500	2500

© 1.01. Shape II © 0.5. Shape I -	4E 0E+0.1	LI0013A	988	10 14	0.3 0.3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	CO.5 CO.5
	⊥0.005 F → 12	Lt (Hardened)		30	53	27
	53	La	·	-	80	
	-	L _o				

	Str	oke	Screw shaft length		
Ball screw No.	Nominal	Maximum			
		(L _t —Nut length)	$L_{\rm t}$	La	Lo
W2803SA-4Z-C5Z6	250	271	370	400	499
W2805SA-4Z-C5Z6	450	471	570	600	699
W2807SA-4Z-C5Z6	650	659	758	800	933
W2809SA-4Z-C5Z6	850	859	958	1000	1133
W2811SA-4Z-C5Z6	1050	1059	1158	1200	1333

Remarks
 1. We recommend NSK support unit. Refer to Page B433 for details.
 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
 3. Contact NSK if permissible rotational speed is to be exceeded.

View X-X

Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	32×5/Right			
Preload / Bal	I recirculation	P preload / Return tube			
Ball dia. / Ball	all circle dia.	3.175/32.5			
Screw shaft	root diameter	29.2			
Effective to	urns of balls	2.5×2			
Accuracy gra	ade / Preload	C5/Z			
Basic load rating	Dynamic C _a	11600			
(N)	Static C _{0a}	28000			
Prelo	ad (N)	590			
1	n torque, median, cm)	11.8			
Space	er ball	Yes			
Factory pag	cked grease	Refer to Remarks 2.			
Internal spatial vo	olume of nut (cm³)	7.0			
Standard volume of gr	rease replenishing (cm³)	3.5			

Recommended :	support unit	For drive side	For opposite to drive side
WBK25-01	(square)	0	0
WBK25S-01	(square)		0
WBK25-11	(round)	0	0

	В
_	322

							Unit: mm
Left side	Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)		
shaft			out **	Mass	Supporting condition		
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.006	0.023	0.018	0.040	3.1	2180	_
П	-0.009	0.025	0.020	0.050	3.7	2180	_
П	-0.011	0.027	0.020	0.050	4.2	2180	_
П	-0.014	0.030	0.023	0.060	4.8	2180	_
I	-0.016	0.035	0.025	0.075	5.6	2180	2180
I	-0.018	0.035	0.025	0.075	6.1	2180	2180
I	-0.023	0.040	0.027	0.090	7.3	2180	2180
I	-0.028	0.046	0.030	0.120	8.5	2180	2180
I	-0.035	0.054	0.035	0.150	10.2	2070	2180

Shape II	L ₀ 3.35 3.35 3.35 3.35 3.35 3.35 3.35 3.3	27	\$2000 \$0004 \$0004	9402¢ C1
⊥0.006 F →	L _t (Hardened)	35	62	33
62	La		95	
	L _o			

	Str	oke	Screw shaft length			
Ball screw No.	Nigoria	Maximum	Sciew shart length			
	Nominal	(L _t —Nut length)	L _t	La	Lo	
W3202SA-1P-C5Z5	150	209	265	300	415	
W3203SA-1P-C5Z5	250	309	365	400	515	
W3204SA-1P-C5Z5	350	409	465	500	615	
W3205SA-1P-C5Z5	450	509	565	600	715	
W3206SA-1P-C5Z5	550	609	665	700	857	
W3207SA-1P-C5Z5	650	709	765	800	957	
W3209SA-1P-C5Z5	850	909	965	1000	1157	
W3211SA-1P-C5Z5	1050	1109	1165	1200	1357	
W3214SA-1P-C5Z5	1350	1409	1465	1500	1657	

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.
 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

C0.5

R0.3

Ė

⊥ 0.006 F →

M25×1.5

∕ 0.014 A

1 0.017 A

Shape II

Shape I

✓ 0.013 E

- ∕ 0.017 A

M25×1.5 / 26

140

51

<- ⊥ 0.006 E

-[# * * G

ÁĠ

Seals (two places)

⊥ 0.013 A

74

Lt (Hardened)

86

X-1

Unit: mm

Ball screw specifications 32×5/Right Shaft dia. x Lead / Direction of turn Preload / Ball recirculation | Z preload / Return tube 3.175/32.5 Ball dia. / Ball circle dia. Screw shaft root diameter 29.2 Effective turns of balls 2.5×2 Accuracy grade / Preload C5/Z 18500 Dynamic C_a Basic load rating (N) Static C_{0a} 56100 Preload (N) 1270

Dynamic friction torque, median,

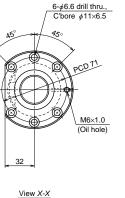
(N·cm)

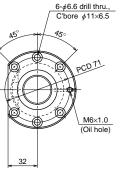
Spacer ball

Factory packed grease

Internal spatial volume of nut (cm3)

Standard volume of grease replenishing (cm²)	5			
Recommended support unit				
WBK25DF-31	(round)			

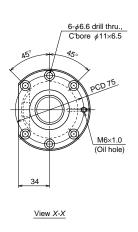

Unit: mm


23.5

None

Refer to Remarks 2.

ed	324
	324


	Str	oke	Caraco ala est la caralla			
Ball screw No.	NI and and	Maximum	Screw shaft length			
	Nominal	(L _t —Nut length)	L_{t}	La	Lo	
W3202SA-2Z-C5Z5	150	194	280	300	460	
W3203SA-2Z-C5Z5	250	294	380	400	560	
W3204SA-2Z-C5Z5	350	394	480	500	660	
W3205SA-2Z-C5Z5	450	494	580	600	760	
W3206SA-2Z-C5Z5	550	594	680	700	929	
W3207SA-2Z-C5Z5	650	694	780	800	1029	
W3209SA-2Z-C5Z5	850	894	980	1000	1229	
W3211SA-2Z-C5Z5	1050	1094	1180	1200	1429	
W3214SA-2Z-C5Z5	1350	1394	1480	1500	1729	

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
- 3. Contact NSK if permissible rotational speed is to be exceeded.

Left side	Lo	ad accura	ACM	Shaft run-		Permissible rotational speed N (min-1)		
shaft	Le			out **	Mass (kg)	Supporting	condition	
end	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed	
П	-0.007	0.023	0.018	0.040	3.5	2180	_	
П	-0.009	0.025	0.020	0.050	4.1	2180	_	
П	-0.012	0.027	0.020	0.060	4.7	2180	_	
П	-0.014	0.030	0.023	0.060	5.3	2180	_	
I	-0.016	0.035	0.025	0.075	6.1	2180	2180	
I	-0.019	0.035	0.025	0.090	6.7	2180	2180	
I	-0.024	0.040	0.027	0.090	7.9	2180	2180	
I	-0.028	0.046	0.030	0.120	9.0	2180	2180	
I	-0.036	0.054	0.035	0.150	10.8	2040	2180	

B323 B324

Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	32×6/Right			
Preload / Bal	I recirculation	P preload / Return tube			
Ball dia. / B	all circle dia.	3.969/32.5			
Screw shaft	root diameter	28.4			
Effective to	urns of balls	2.5×2			
Accuracy gr	ade / Preload	C5/Z			
Basic load rating	Dynamic C _a	15500			
(N)	Static C _{0a}	34700			
Prelo	ad (N)	780			
,	n torque, median, cm)	15.7			
Spac	er ball	Yes			
Factory pag	cked grease	Refer to Remarks 2.			
Internal spatial v	olume of nut (cm³)	9.5			
Standard volume of gr	rease replenishing (cm³)	4.8			

Recommended	support unit	For drive side	For opposite to drive side
WBK25-01	(square)	0	0
WBK25S-01	(square)		0
WBK25-11	(round)	0	0

Left side shaft	Lead accuracy			Shaft run- out ** Mass (kg)		Permissible rotatio Supporting	
end	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed
Ι	-0.009	0.025	0.020	0.050	3.8	2180	_
П	-0.014	0.030	0.023	0.060	5.0	2180	
I	-0.018	0.035	0.025	0.075	6.3	2180	2180
Ι	-0.023	0.040	0.027	0.090	7.4	2180	2180
I	-0.028	0.046	0.030	0.120	8.5	2180	2180
I	-0.035	0.054	0.035	0.150	10.2	2020	2180

Shape I M25x1.5 20 F 1.35 16.35 16.35	
<u> </u>	
62 L _a 95	
L ₀	

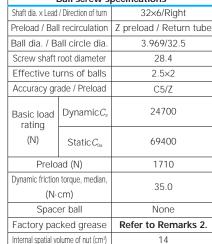
	Stroke		Screw shaft length		
Ball screw No.	Nominal	Maximum	Screw shart length		
	Nominai	(L _t —Nut length)	$L_{\rm t}$	L_{a}	L。
W3203SA-3P-C5Z6	250	302	365	400	515
W3205SA-3P-C5Z6	450	502	565	600	715
W3207SA-3P-C5Z6	650	702	765	800	957
W3209SA-3P-C5Z6	850	902	965	1000	1157
W3211SA-3P-C5Z6	1050	1102	1165	1200	1357
W3214SA-3P-C5Z6	1350	1402	1465	1500	1657

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
3. Contact NSK if permissible rotational speed is to be exceeded.

B325 B326

Left side shaft end \coprod \blacksquare


View X-X

6-*ϕ*6.6 drill thru., C'bore *ϕ*11×6.5

(Oil hole)

Standard volume of grease replenishing (cm³)

Recommended supp	ort unit
WBK25DF-31	(round)

Unit: mm

7

Lead accuracy		CCUracy Shaft run-		l	Permissible rotational speed N (min-1)		
Le	au accura	icy	out **	Mass	Supporting condition		
T	$e_{\scriptscriptstyle \mathrm{p}}$	υu	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed	
-0.009	0.025	0.020	0.050	4.5	2180	_	
-0.014	0.030	0.023	0.060	5.6	2180	_	
-0.019	0.035	0.025	0.090	7.0	2180	2180	
-0.024	0.040	0.027	0.090	8.1	2180	2180	
-0.028	0.046	0.030	0.120	9.3	2180	2180	
-0.036	0.054	0.035	0.150	11.0	2000	2180	

Shape II C1 R0.3 max. 10017 A C0.5 Shape I C1 R0.3 R0.3	L ₀ 16.35 CO.5 R	G	C0.5	7 0.013 E
<u> </u>	L _t (Hardened)	20	89	51
89	L _a		140	
-	L _o			*

	Stroke		Screw shaft length		
Ball screw No.	Nominal	Maximum	Screw Shart length		igtii
	Nominal	(L _t —Nut length)	L_{t}	L_{a}	Lo
W3203SA-4Z-C5Z6	250	281	380	400	560
W3205SA-4Z-C5Z6	450	481	580	600	760
W3207SA-4Z-C5Z6	650	681	780	800	1029
W3209SA-4Z-C5Z6	850	881	980	1000	1229
W3211SA-4Z-C5Z6	1050	1081	1180	1200	1429
W3214SA-4Z-C5Z6	1350	1381	1480	1500	1729

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

View X-X

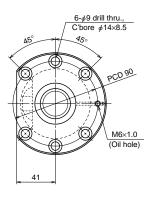
 $6-\phi 9$ drill thru., C'bore *ϕ*14×8.5

Ball screw specifications				
Shaft dia. x Lead	/ Direction of turn	32×8/Right		
Preload / Bal	I recirculation	Z preload / Return tube		
Ball dia. / Ba	all circle dia.	4.762/32.5		
Screw shaft	root diameter	27.5		
Effective tu	irns of balls	2.5×1		
Accuracy gra	ade / Preload	C5/Z		
Basic load rating	Dynamic C _a	17500		
(N)	Static C _{0a}	41000		
Prelo	ad (N)	1320		
1	torque, median, cm)	31.0		
Space	er ball	None		
Factory pag	ked grease	Refer to Remarks 2.		
Internal spatial vo	olume of nut (cm³)	13		
Standard volume of gr	ease replenishing (cm ³)	6.5		

Recommended support	unit
WBK25DF-31	(round)

Unit: mm

Left side shaft	Lead accuracy		out ** wass		Permissible rotational speed N (min-1) Supporting condition		
end	Т	$e_{\scriptscriptstyle p}$	υu	<i>11</i>	(kg)	Fixed - Simple support	
П	-0.009	0.025	0.020	0.050	4.7	2180	_
П	-0.014	0.030	0.023	0.060	5.8	2180	_
I	-0.019	0.035	0.025	0.090	7.2	2180	2180
I	-0.024	0.040	0.027	0.090	8.3	2180	2180
I	-0.036	0.054	0.035	0.150	11.1	1920	2180


| Shape II C1 R0.3 max. 10.017 A C0.5 Shape I C2 R0.3 L ₀ 16.35 C0.5 C0.5 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 |
|---|--|---|
| <u> </u> | $L_{\rm t}$ (Hardened) | 20 89 51 |
| 89 | La | 140 |
| | L _o | |

	Stro	oke	Screw shaft length		
Ball screw No.	Naminal	Maximum	3016	Screw shart length	
	Nominal	(L _t —Nut length)	L_{t}	La	Lo
W3203SA-5Z-C5Z8	250	298	380	400	560
W3205SA-5Z-C5Z8	450	498	580	600	760
W3207SA-5Z-C5Z8	650	698	780	800	1029
W3209SA-5Z-C5Z8	850	898	980	1000	1229
W3214SA-5Z-C5Z8	1350	1398	1480	1500	1729

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

View X-X

Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	32×10/Right			
Preload / Bal	I recirculation	Z preload / Return tube			
Ball dia. / Ba	all circle dia.	6.35/33			
Screw shaft	root diameter	26.4			
Effective to	urns of balls	2.5×1			
Accuracy gra	ade / Preload	C5/Z			
Basic load rating (N)	Dynamic C _a	25500			
	Static C _{0a}	54000			
Prelo	ad (N)	1960			
1	torque, median, cm)	54.0			
Space	er ball	None			
Factory pag	cked grease	Refer to Remarks 2.			
Internal spatial vo	olume of nut (cm³)	22			
Standard volume of gr	ease replenishing (cm³)	11			

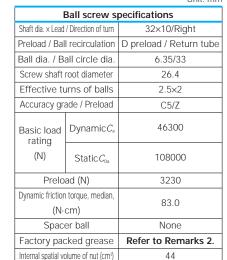
Recommended support unit					
VBK25DF-31	(round)				

Left side shaft	Lead accuracy		Shaft run- out **	Mass	Permissible rotational speed N (min-1) Supporting condition		
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.009	0.025	0.020	0.050	5.5	2180	_
П	-0.012	0.027	0.020	0.060	6.0	2180	_
П	-0.014	0.030	0.023	0.060	6.6	2180	_
I	-0.016	0.035	0.025	0.075	7.4	2180	2180
I	-0.019	0.035	0.025	0.090	7.9	2180	2180
I	-0.024	0.040	0.027	0.090	9.0	2180	2180
I	-0.028	0.046	0.030	0.120	10.1	2180	2180
I	-0.036	0.054	0.035	0.150	11.7	1860	2180
I	-0.043	0.065	0.040	0.200	13.3	1280	1820

| Shape II Column 13 E |
|---|------|
| <u> </u> | |
| 89 L _a 140 L _o | |

	Str	oke	Screw shaft length			
Ball screw No.	Nominal	Maximum	3016	w shart length		
	INOITIIITAI	(L _t —Nut length)	L_{t}	L_a	Lo	
W3203SA-6Z-C5Z10	250	280	380	400	560	
W3204SA-3Z-C5Z10	350	380	480	500	660	
W3205SA-6Z-C5Z10	450	480	580	600	760	
W3206SA-3Z-C5Z10	550	580	680	700	929	
W3207SA-6Z-C5Z10	650	680	780	800	1029	
W3209SA-6Z-C5Z10	850	880	980	1000	1229	
W3211SA-5Z-C5Z10	1050	1080	1180	1200	1429	
W3214SA-6Z-C5Z10	1350	1380	1480	1500	1729	
W3217SA-1Z-C5Z10	1650	1680	1780	1800	2029	

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.


Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

View X-X

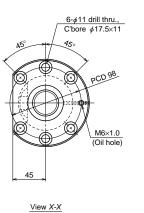
 $6-\phi 9$ drill thru.,

Recommended supp	ort unit
WBK25DFD-31	(round)

Standard volume of grease replenishing (cm3)

22

ם
22
33


							Unit: mm	
Left side Lea	Lead accuracy			Shaft run-		Permissible rotational speed N (min-1)		
			out **	Mass	Supporting condition			
end	T	$e_{\scriptscriptstyle p}$	υu	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed	
П	-0.009	0.025	0.020	0.050	7.5	2180	_	
П	-0.012	0.027	0.020	0.060	8.1	2180	_	
П	-0.014	0.030	0.023	0.060	8.6	2180	_	
I	-0.016	0.035	0.025	0.075	9.5	2180	2180	
I	-0.019	0.035	0.025	0.090	10.0	2180	2180	
I	-0.024	0.040	0.027	0.120	11.1	2180	2180	
I	-0.028	0.046	0.030	0.120	12.2	2180	2180	
I	-0.036	0.054	0.035	0.150	13.8	1980	2180	
I	-0.043	0.065	0.040	0.200	15.4	1350	1910	

Shape II C1 C1 R0. May 10,017 A C1 C1 C1 R0. R0. R0. R0. R0. R0. R0. R0	91 6 78 15 X-1		C0.5 C0.5 M25×1.5 26 M25×1.5 26	-0013 ≠20h6	0.013 E
⊥[0.006 <i>F</i>]	L₁ (Hardened)		104	51	
<u> 104</u>	L _a	-1-	155	-	
	Lo			->	

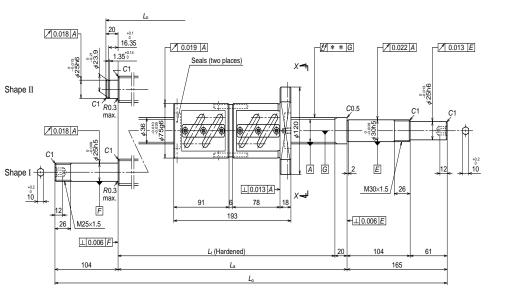
	Str	oke	Screw shaft length			
Ball screw No.	Manainal	Maximum	Screw shart length			
	Nominal	(L _t —Nut length)	L_{t}	L_a	L_{\circ}	
W3203SA-7D-C5Z10	150	190	380	400	575	
W3204SA-4D-C5Z10	250	290	480	500	675	
W3205SA-7D-C5Z10	350	390	580	600	775	
W3206SA-4D-C5Z10	450	490	680	700	959	
W3207SA-7D-C5Z10	550	590	780	800	1059	
W3209SA-7D-C5Z10	750	790	980	1000	1259	
W3211SA-6D-C5Z10	950	990	1180	1200	1459	
W3214SA-7D-C5Z10	1250	1290	1480	1500	1759	
W3217SA-2D-C5Z10	1550	1590	1780	1800	2059	

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
- 3. Contact NSK if permissible rotational speed is to be exceeded.

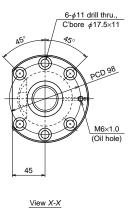
ı	Ball screw specifications				
Shaft dia. x Lead	/ Direction of turn	36×10/Right			
Preload / Bal	I recirculation	Z preload / Return tube			
Ball dia. / Ball circle dia.		6.35/37			
Screw shaft root diameter		30.4			
Effective turns of balls		2.5×1			
Accuracy gra	ade / Preload	C5/Z			
Basic load rating	Dynamic C _a	27200			
(N)	Static C _{0a}	61300			
Prelo	ad (N)	2060			
,	torque, median, cm)	59.0			
Space	er ball	None			
Factory pag	ked grease	Refer to Remarks 2.			
Internal spatial vo	olume of nut (cm³)	32			
Standard volume of gr	ease replenishing (cm³)	16			

Recommended su	ipport unit	For drive side	For opposite to drive side
WBK30DF-31	(round)	0	
WBK25DF-31	(round)		0


Left side	Le	Lead accuracy		Shaft run- out **	Mass	Permissible rotatio	
shaft						Supporting	condition
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>Lt</i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.012	0.027	0.020	0.040	7.4	1940	_
П	-0.016	0.035	0.025	0.050	8.8	1940	
I	-0.024	0.040	0.027	0.065	11.1	1940	1940
I	-0.033	0.054	0.035	0.100	13.9	1940	1940
I	-0.043	0.065	0.040	0.130	16.6	1480	1940

Shape II C1 R0.3 max. 10.018 A Superscript A R0.3 max. 12 A R0.3 max. 12 A R0.3 max. 12 A R0.3 max. 12 A R0.3 max.	L ₀ 16.35 16.35 35.6 H	Seals (two places) X 10.013 A 85 18 X	A G	C0.5 (0.022) C0.5 (0.022) 2 E M30×1.5 26	A 0.013 E
⊥[0.006 F]→		Lt (Hardened)	20	89	61
89		La	7.	150	
		Lo		•	

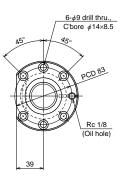
	Str	oke	Screw shaft length			
Ball screw No.	Nominal	Maximum	Screw shart length			
W2/04CA 17 0F710	INOMINAL	(L _t —Nut length)	$L_{\rm t}$	L_a	Lo	
W3604SA-1Z-C5Z10	350	377	480	500	670	
W3606SA-1Z-C5Z10	550	577	680	700	870	
W3609SA-1Z-C5Z10	850	877	980	1000	1239	
W3613SA-1Z-C5Z10	1250	1277	1380	1400	1639	
W3617SA-1Z-C5Z10	1650	1677	1780	1800	2039	


Remarks
 1. We recommend NSK support unit. Refer to Page B433 for details.
 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
 3. Contact NSK if permissible rotational speed is to be exceeded.

NSK

	Str	oke	Screw shaft length		
Ball screw No.	Nigoria	Maximum			
	Nominal	(L _t —Nut length)	$L_{\rm t}$	La	Lo
W3604SA-2D-C5Z10	250	287	480	500	685
W3606SA-2D-C5Z10	450	487	680	700	885
W3609SA-2D-C5Z10	750	787	980	1000	1269
W3613SA-2D-C5Z10	1150	1187	1380	1400	1669
W3617SA-2D-C5Z10	1550	1587	1780	1800	2069

- Remarks
 1. We recommend NSK support unit. Refer to Page B433 for details.
 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
 3. Contact NSK if permissible rotational speed is to be exceeded.



		Unit: mm
E	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	36×10/Right
Preload / Bal	I recirculation	D preload / Return tube
Ball dia. / Ball circle dia.		6.35/37
Screw shaft root diameter		30.4
Effective turns of balls		2.5×2
Accuracy grade / Preload		C5/Z
Basic load rating	Dynamic C _a	49300
(N)	Static C _{0a}	123000
Prelo	ad (N)	3430
1	torque, median, cm)	93.0
Space	er ball	None
Factory pag	ked grease	Refer to Remarks 2.
Internal spatial vo	olume of nut (cm³)	64
Standard volume of gr	ease replenishing (cm³)	27

Recommended support unit	For drive side	For opposite to drive side
WBK30DFD-31 (round)	0	
WBK25DFD-31 (round)		0

Unit: mm

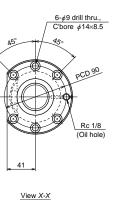
Left side shaft	Le	Lead accuracy		Shaft run- out **	Mass	Permissible rotatio Supporting	condition
end	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>Lt</i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.012	0.027	0.020	0.040	9.3	1940	_
П	-0.016	0.035	0.025	0.050	10.7	1940	_
I	-0.024	0.040	0.027	0.080	13.1	1940	1940
I	-0.033	0.054	0.035	0.100	15.9	1940	1940
I	-0.043	0.065	0.040	0.130	18.6	1540	1940

View X-X

Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	40×5/Right			
Preload / Bal	I recirculation	Z preload / Return tube			
Ball dia. / B	all circle dia.	3.175/40.5			
Screw shaft	root diameter	37.2			
Effective to	urns of balls	2.5×2			
Accuracy gr	ade / Preload	C5/Z			
Basic load rating	Dynamic C _a	20200			
(N)	Static C _{0a}	70600			
Prelo	ad (N)	1420			
,	torque, median, cm)	29.5			
Spac	er ball	None			
Factory pag	ked grease	Refer to Remarks 2.			
Internal spatial v	olume of nut (cm³)	14			
Standard volume of gr	ease replenishing (cm³)	7			

Recommended support unit		
VBK30DF-31 (round)		

Unit: mm


Left side shaft	Lead accuracy		Shaft run- out **	Mass	Permissible rotation Supporting		
end	Т	$e_{\scriptscriptstyle p}$	υu	<i>∐ ∐</i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.009	0.025	0.020	0.035	6.3	1750	_
П	-0.014	0.030	0.023	0.040	8.1	1750	_
I	-0.019	0.035	0.025	0.065	10.3	1750	1750
I	-0.024	0.040	0.027	0.065	12.2	1750	1750
I	-0.028	0.046	0.030	0.080	14.0	1750	1750
I	-0.038	0.054	0.035	0.100	17.7	1750	1750

(10.018 A) C1 Shape I	1.5	0.019 A	Seals (two places) X 1 10.013 A 15 89	// * * [0]	24	A 0.013 E
			Lt (Hardened)	2	0 89	61
. 89			La		150	
ľ			Lo			1

	Stroke		Screw shaft length			
Ball screw No.	Nominal	Maximum	Sciew shart length			
	inominai	(L _t —Nut length)	L_{t}	L_a	Lo	
W4003SA-1Z-C5Z5	250	291	380	400	572	
W4005SA-1Z-C5Z5	450	491	580	600	772	
W4007SA-1Z-C5Z5	650	691	780	800	1039	
W4009SA-1Z-C5Z5	850	891	980	1000	1239	
W4011SA-1Z-C5Z5	1050	1091	1180	1200	1439	
W4015SA-1Z-C5Z5	1450	1491	1580	1600	1839	

Remarks
 1. We recommend NSK support unit. Refer to Page B433 for details.
 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
 3. Contact NSK if permissible rotational speed is to be exceeded.

	Ball screw s	pecifications		
Shaft dia. x Lead	/ Direction of turn	40×8/Right		
Preload / Ball recirculation		Z preload / Return tube		
Ball dia. / B	all circle dia.	4.762/40.5		
Screw shaft	root diameter	35.5		
Effective to	urns of balls	2.5×2		
Accuracy gra	ade / Preload	C5/Z		
Basic load rating (N)	Dynamic C _a	34900		
	Static C _{0a}	103000		
Prelo	ad (N)	2450		
Dynamic friction torque, median, (N·cm)		64.0		
Space	er ball	None		
Factory packed grease		Refer to Remarks 2.		
Internal spatial vo	olume of nut (cm³)	27		
Standard volume of gr	rease replenishing (cm³)	14		

Recommended support unit				
VBK30DF-31	(round)			

Left side shaft	Lead accuracy		Shaft run- out **	Mass	Permissible rotatio Supporting		
end	Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle \mathrm{u}}$	<i>11</i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.009	0.025	0.020	0.035	7.4	1750	_
П	-0.014	0.030	0.023	0.040	9.2	1750	_
I	-0.019	0.035	0.025	0.065	11.3	1750	1750
I	-0.024	0.040	0.027	0.065	13.1	1750	1750
I	-0.028	0.046	0.030	0.080	14.9	1750	1750
I	-0.038	0.054	0.035	0.100	18.5	1750	1750

Shape II	L ₀ 17.75 17.75 17.75 17.75 17.75 17.75 18.85 18.85 18.85 18.85 19.	# * G	C1 2 E M30×1.5 26	-0013 ∳25h6	0.013 E
<u> </u>	$L_{\rm t}$ (Hardened)	20	89	61	
89		•	150	-	

	Stroke		Screw shaft length			
Ball screw No.	Nominal	Maximum	3616	Sciew sharriength		
		(L _t —Nut length)	L_{t}	La	Lo	
W4003SA-2Z-C5Z8	200	250	380	400	572	
W4005SA-2Z-C5Z8	400	450	580	600	772	
W4007SA-2Z-C5Z8	600	650	780	800	1039	
W4009SA-2Z-C5Z8	800	850	980	1000	1239	
W4011SA-2Z-C5Z8	1000	1050	1180	1200	1439	
W4015SA-2Z-C5Z8	1400	1450	1580	1600	1839	

Remarks
 1. We recommend NSK support unit. Refer to Page B433 for details.
 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
 3. Contact NSK if permissible rotational speed is to be exceeded.

✓ 0.025 A

Seals (two places)

⊥ 0.015 A

103

L (Hardened)

* G

À

√0.022 A

M30×1.5 / 26

61

150

◆ ⊥ 0.006 E

✓ 0.018 A

∕ 0.018 A

26 M30×1.5

⊥ 0.006 F

Shape II

√ 0.013 E

ı	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	40×10/Right
Preload / Ball recirculation		Z preload / Return tube
Ball dia. / B	all circle dia.	6.35/41
Screw shaft	root diameter	34.4
Effective to	urns of balls	2.5×1
Accuracy gra	ade / Preload	C5/Z
Basic load rating (N)	Dynamic C _a	28600
	Static C _{0a}	68600
Prelo	ad (N)	2160
,	torque, median, cm)	64.0
Space	er ball	None
Factory pag	cked grease	Refer to Remarks 2.
Internal spatial vo	olume of nut (cm³)	30
Standard volume of gr	ease replenishing (cm³)	15

Recommended support unit				
WBK30DF-31	(round)			

Permissible rotational speed N (min-1)

Fixed - Simple support

1750

1750

1750

1750

1750

1750

1750

1750

1670

930

Unit: mm

Supporting condition					
ple support	Fixed - Fixed	B			
50	_	344			
50	_				
50	_				
50	1750				
50	1750				
50	1750				
50	1750				
50	1750				

1750

1320

6-φ11 drill thru., C'bore φ17.5×11	
45°	
PCD 102	
Rc 1/8 (Oil hole)	
(Oli Hole)	
View X-X	

Lead accuracy

 e_{n}

0.027

0.030

0.035

0.035

0.040

0.046

0.054

0.054

0.065

0.077

Shaft run-

out **

tt

0.040

0.040

0.050

0.065

0.065

0.080

0.100

0.100

0.130

0.170

 $\upsilon_{\shortparallel}$

0.020

0.023

0.025

0.025

0.027

0.030

0.035

0.035

0.040

0.046

Mass

(kg)

8.7

9.6

10.4

11.7

13.4

15.1

16.9

18.6

20.3

25.5

	Str	Stroke		Screw shaft length			
Ball screw No.	Manainal	Maximum	Screw shart length				
	Nominal	(L _t —Nut length)	L_{t}	La	Lo		
W4004SA-1Z-C5Z10	350	377	480	500	672		
W4005SA-3Z-C5Z10	450	477	580	600	772		
W4006SA-1Z-C5Z10	550	577	680	700	872		
W4007SA-3Z-C5Z10	650	677	780	800	1039		
W4009SA-3Z-C5Z10	850	877	980	1000	1239		
W4011SA-3Z-C5Z10	1050	1077	1180	1200	1439		
W4013SA-1Z-C5Z10	1250	1277	1380	1400	1639		
W4015SA-3Z-C5Z10	1450	1477	1580	1600	1839		
W4017SA-1Z-C5Z10	1650	1677	1780	1800	2039		
W4023SA-1Z-C5Z10	2250	2277	2380	2400	2639		

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

B343 B344

Left side

shaft

end

 \prod

 \blacksquare

 \blacksquare

Ι

-0.012

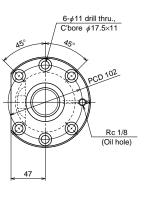
-0.014

-0.016

-0.019

-0.024

-0.028


-0.033

-0.038

-0.043

-0.057

View X-X

Ball screw specifications			
Shaft dia. x Lead	/ Direction of turn	40×10/Right	
Preload / Bal	I recirculation	D preload / Return tube	
Ball dia. / B	all circle dia.	6.35/41	
Screw shaft	root diameter	34.4	
Effective to	urns of balls	2.5×2	
Accuracy gra	ade / Preload	C5/Z	
Basic load rating (N)	Dynamic C _a	52000	
	Static C _{0a}	137000	
Prelo	ad (N)	3630	
Dynamic friction torque, median, (N·cm)		108	
Space	er ball	None	
Factory pag	cked grease	Refer to Remarks 2.	
Internal spatial vo	olume of nut (cm³)	59	
Standard volume of grease replenishing (cm ³)		30	

Recommended suppo	rt unit
WBK30DFD-31	(round)

Unit: mm

							Offit: Iffiff
Left side	CIT SIDE Dad accliract		Shaft run-	N. 4	Permissible rotational speed N (min-1)		
shaft	Le			out **		Mass Supporting condition	
end	T	$e_{\scriptscriptstyle p}$	υu	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.012	0.027	0.020	0.040	11.0	1750	_
П	-0.014	0.030	0.023	0.040	11.9	1750	_
П	-0.016	0.035	0.025	0.050	12.7	1750	_
I	-0.019	0.035	0.025	0.065	14.1	1750	1750
I	-0.024	0.040	0.027	0.080	15.8	1750	1750
I	-0.028	0.046	0.030	0.080	17.5	1750	1750
I	-0.033	0.054	0.035	0.100	19.3	1750	1750
I	-0.038	0.054	0.035	0.100	21.0	1750	1750
I	-0.043	0.065	0.040	0.130	22.7	1750	1750
I	-0.057	0.077	0.046	0.170	27.9	960	1370

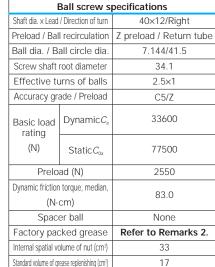
Shape II C1 Shape I	C1 R0.3 max. 0.018 A C1 R0.3 max. R0.3 max. F 26 M30×1.5	L ₂ 17.7.5 15.5 ^{3.44} 17.7.5 15.5 ^{3.44} 17.7.5 15.5 ^{3.44} 17.7.5 15.5 ^{3.44} 17.7.5 17.0.022 17.7.5 17.0.022 17.7.5 17.7.5 17.0.022 17.7.5 17.	0.013 E
	⊥ 0.006 F >	L ₁ (Hardened) 20 104	61
	104	L _o 165	

	Stroke		Screw shaft length			
Ball screw No.	Nominal	Maximum	Screw shart length			
	Nominal	(L _t —Nut length)	$L_{\rm t}$	La	Lo	
W4004SA-2D-C5Z10	250	287	480	500	687	
W4005SA-4D-C5Z10	350	387	580	600	787	
W4006SA-2D-C5Z10	450	487	680	700	887	
W4007SA-4D-C5Z10	550	587	780	800	1069	
W4009SA-4D-C5Z10	750	787	980	1000	1269	
W4011SA-4D-C5Z10	950	987	1180	1200	1469	
W4013SA-2D-C5Z10	1150	1187	1380	1400	1669	
W4015SA-4D-C5Z10	1350	1387	1580	1600	1869	
W4017SA-2D-C5Z10	1550	1587	1780	1800	2069	
W4023SA-2D-C5Z10	2150	2187	2380	2400	2669	

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.


View X-X

C'bore \$17.5×11

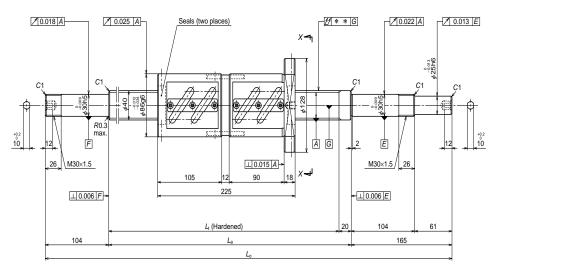
Rc 1/8

(Oil hole)

Recommended suppor	t unit
WBK30DF-31	(round)

Unit: mm

Lead accuracy		21/	Shaft run-		Permissible rotatio	nal speed N (min-1)	
L	eau accurac	<i>-</i> y	out **	Mass	Supporting condition		
Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>\</i>	(kg)	Fixed - Simple support	Fixed - Fixed	
-0.016	0.035	0.025	0.050	11.6	1750	1750	
-0.024	0.040	0.027	0.065	14.2	1750	1750	
-0.033	0.054	0.035	0.100	17.7	1750	1750	
-0.043	0.065	0.040	0.130	21.2	1670	1750	
-0.060	0.077	0.046	0.170	27.2	850	1220	


10 12	C1 803 R0.3 max. F 0.006 F	Seals (two places) X Q Q Q Q Q Q Q Q Q Q Q Q	* * G	C1 2 E M30×1.5 26	-0013 ¢ 25h6	0.013 E
		Lt (Hardened)	20	89	61	
	89	<u> </u>	<u> </u>	150		
L _o						

	Str	oke	Screw shaft length			
Ball screw No.	Naminal	Maximum				
	Nominal	(L _t —Nut length)	L_{t}	La	Lo	
W4006SA-3Z-C5Z12	500	563	680	700	939	
W4009SA-5Z-C5Z12	800	863	980	1000	1239	
W4013SA-3Z-C5Z12	1200	1263	1380	1400	1639	
W4017SA-3Z-C5Z12	1600	1663	1780	1800	2039	
W4024SA-1Z-C5Z12	2300	2363	2480	2500	2739	

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

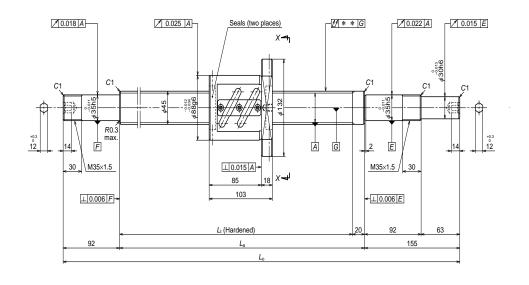
	Str	oke	Screw shaft length			
Ball screw No.	Nicostani	Maximum				
	Nominal	(L _t —Nut length)	L_{t}	La	Lo	
W4006SA-4D-C5Z12	400	455	680	700	969	
W4009SA-6D-C5Z12	700	755	980	1000	1269	
W4013SA-4D-C5Z12	1100	1155	1380	1400	1669	
W4017SA-4D-C5Z12	1500	1555	1780	1800	2069	
W4024SA-2D-C5Z12	2200	2255	2480	2500	2769	

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

_	6-\(\phi\)11 drill thru., C'bore \(\phi\)17.5×11
45°	450
	PCD 106
	Rc 1/8 (Oil hole)
48	

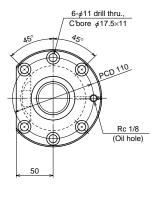

View X-X

Unit: mr						
I	Ball screw s	pecifications				
Shaft dia. x Lead	/ Direction of turn	40×12/Right				
Preload / Bal	I recirculation	D preload / Return tube				
Ball dia. / Ba	all circle dia.	7.144/41.5				
Screw shaft	root diameter	34.1				
Effective to	urns of balls	2.5×2				
Accuracy gra	ade / Preload	C5/Z				
Basic load rating	Dynamic C _a	61000				
(N)	Static C _{0a}	155000				
Prelo	ad (N)	4310				
,	torque, median, cm)	137				
Space	er ball	None				
Factory pag	cked grease	Refer to Remarks 2.				
Internal spatial vo	olume of nut (cm³)	76				
Standard volume of gr	ease replenishing (cm³)	38				

Recommended support unit	
VBK30DFD-31	(round)

Unit: mm

Lead accuracy		y Out Ividos		Permissible rotational speed N (min-1) Supporting condition		
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
-0.016	0.035	0.025	0.050	14.8	1750	1750
-0.024	0.040	0.027	0.080	17.4	1750	1750
-0.033	0.054	0.035	0.100	20.9	1750	1750
-0.043	0.065	0.040	0.130	24.3	1750	1750
-0.060	0.077	0.046	0.170	30.4	880	1260



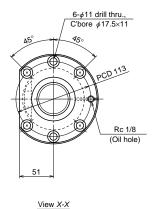
	Str	oke	Scrow shaft langth			
Ball screw No.	Nicostani	Maximum	Screw shaft length			
	Nominal	(L _t —Nut length)	L_{t}	La	Lo	
W4506SA-1Z-C5Z10	550	577	680	700	947	
W4509SA-1Z-C5Z10	850	877	980	1000	1247	
W4513SA-1Z-C5Z10	1250	1277	1380	1400	1647	
W4517SA-1Z-C5Z10	1650	1677	1780	1800	2047	
W4524SA-1Z-C5Z10	2350	2377	2480	2500	2747	

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

View X-X


		Unit: mm
I	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	45×10/Right
Preload / Bal	I recirculation	Z preload / Return tube
Ball dia. / B	all circle dia.	6.35/46
Screw shaft	root diameter	39.4
Effective to	urns of balls	2.5×1
Accuracy gra	ade / Preload	C5/Z
Basic load rating	Dynamic C _a	29900
(N)	Static C _{0a}	77300
Prelo	ad (N)	2260
,	n torque, median, cm)	69.0
Spac	er ball	None
Factory pag	cked grease	Refer to Remarks 2.
Internal spatial vo	olume of nut (cm³)	33
Standard volume of gr	rease replenishing (cm³)	17

Recommended suppor	t unit
WBK35DF-31	(round)

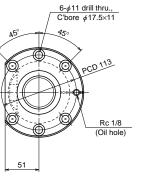
Unit: mm

Lead accuracy		out 1.1.dee		Permissible rotational speed N (min-1) Supporting condition		
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>\</i>	(kg)	Fixed - Simple support	Fixed - Fixed
-0.016	0.035	0.025	0.050	13.4	1550	1550
-0.024	0.040	0.027	0.065	16.7	1550	1550
-0.033	0.054	0.035	0.100	21.2	1550	1550
-0.043	0.065	0.040	0.130	25.6	1550	1550
-0.060	0.077	0.046	0.170	33.4	980	1400

	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	50×10/Right
Preload / Bal	I recirculation	Z preload / Return tube
Ball dia. / Ba	all circle dia.	6.35/51
Screw shaft	root diameter	44.4
Effective to	irns of balls	2.5×1
Accuracy gra	ade / Preload	C5/Z
Basic load rating	Dynamic C _a	31800
(N)	Static C _{0a}	87400
Prelo	ad (N)	2450
*	torque, median, cm)	79.0
Space	er ball	None
Factory packed grease		Refer to Remarks 2.
Internal spatial vo	olume of nut (cm³)	37
Standard volume of gr	ease replenishing (cm³)	19

Recommended support	unit
WBK40DF-31	(round)

Lead accuracy		Shaft run- out ** Mass		Permissible rotatio			
				(1, 01)	Supporting	Condition	
T	$e_{\scriptscriptstyle p}$	υu		(kg)	Fixed - Simple support	Fixed - Fixed	
-0.014	0.030	0.023	0.050	14.8	1400	1400	
-0.019	0.035	0.025	0.065	17.6	1400	1400	
-0.024	0.040	0.027	0.080	20.3	1400	1400	
-0.028	0.046	0.030	0.080	23.1	1400	1400	
-0.036	0.054	0.035	0.100	27.3	1400	1400	
-0.048	0.065	0.040	0.130	34.2	1400	1400	
-0.062	0.093	0.054	0.170	42.5	1020	1400	


C1 133 18 18 30	C1 R0.3 max.	0.025 A	Seals (two places) X 10.015 A 18 103	# * *	C1	0.006 E	် နှ35h6	C1 (14)
			L _t (Hardened)	,	20	92	78	
	92		La			170)	
*			Lo					

	Str	oke	Screw shaft length			
Ball screw No.	Naminal	Maximum				
	Nominal	(L _t —Nut length)	L_{t}	La	Lo	
W5005SA-1Z-C5Z10	450	477	580	600	862	
W5007SA-1Z-C5Z10	650	677	780	800	1062	
W5009SA-1Z-C5Z10	850	877	980	1000	1262	
W5011SA-1Z-C5Z10	1050	1077	1180	1200	1462	
W5014SA-1Z-C5Z10	1350	1377	1480	1500	1762	
W5019SA-1Z-C5Z10	1850	1877	1980	2000	2262	
W5025SA-1Z-C5Z10	2450	2477	2580	2600	2862	

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.
 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

$6-\phi 11$ drill thru.,	Ball screw specification					
C'bore ¢17.5×11	Shaft dia. x Lead	/ Direction of turn	50×10/Right			
5° 45°	Preload / Bal	I recirculation	Z preload / Return to			
	Ball dia. / B	all circle dia.	6.35/51			
PCD 113	Screw shaft	root diameter	44.4			
	Effective turns of balls		2.5×2			
	Accuracy grade / Preload		C5/Z			
Rc 1/8 (Oil hole)	Basic load rating	Dynamic C_a	57700			
	(N)	Static C _{0a}	175000			
51	Preload (N)		4020			
	Dynamic friction torque, median,		137			
View X-X	(N·	cm)	137			
	Spacer ball		None			
	Factory pag	cked grease	Refer to Remarks			
	Internal spatial volume of nut (cm³)		59			

Recommended support unit			
WBK40DFD-31	(round)		

Standard volume of grease replenishing (cm²)

Unit: mm

30

1	oad accura	21/	Shaft run-		Permissible rotatio	nal speed N (min-1)
	Lead accuracy		out **	Mass (kg)	Supporting	g condition
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
-0.014	0.030	0.023	0.050	16.8	1400	1400
-0.019	0.035	0.025	0.065	19.6	1400	1400
-0.024	0.040	0.027	0.080	22.3	1400	1400
-0.028	0.046	0.030	0.080	25.1	1400	1400
-0.036	0.054	0.035	0.100	29.3	1400	1400
-0.048	0.065	0.040	0.130	36.2	1400	1400
-0.062	0.093	0.054	0.170	44.6	1040	1400

C1	0.018 A C1 E 92 R0.3 max. 30 M40×1.5	0.025 A		X 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	G	C1	9498 C1	0.015 E
			L _t (Hardened)		20	107	78	
	107	•	La 185					
	l-		Lo					

	Str	oke	Screw shaft length			
Ball screw No.	Nominal	Maximum				
	INOMINAL	(L _t —Nut length)	$L_{\rm t}$	La	Lo	
W5005SA-2Z-C5Z10	350	417	580	600	892	
W5007SA-2Z-C5Z10	550	617	780	800	1092	
W5009SA-2Z-C5Z10	750	817	980	1000	1292	
W5011SA-2Z-C5Z10	950	1017	1180	1200	1492	
W5014SA-2Z-C5Z10	1250	1317	1480	1500	1792	
W5019SA-2Z-C5Z10	1750	1817	1980	2000	2292	
W5025SA-2Z-C5Z10	2350	2417	2580	2600	2892	

Remarks 1. We recommend NSK support unit. Refer to Page B433 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

B-3-2.3 Finished Shaft End Ball Screws Made of Stainless Steel KA Type

♦ Ball screw sizes are arranged in the order of the page number.

The table begins with the smallest shaft diameter ball screw, and proceeds to larger sizes. If ball screws have the same shaft diameter, those with smaller leads appear first. Page numbers of shaft diameter and lead combinations are shown in Table 1.

♦ Dimension tables

The dimension tables show shapes/sizes as well as specification factors of each shaft diameter/ lead combination. Tables also contain data as follows:

Stroke

Nominal stroke : A reference for your use.

Maximum stroke: The stroke limit that the nut can move. The figure is obtained by subtracting the nut length (plus some allowance) from the screw threaded length (L_i) .

Lead accuracy

Lead accuracy is C3 and C5 grades.

- T: Travel compensation;
- e_n: Tolerance on specified travel;
- ນ..: Travel variation

See "Technical Description: Lead error" (Page B41) for details of the codes.

Permissible rotational speed

: Limited by the relative peripheral speed between screw shaft and nut.

Critical speed: Limited by the natural frequency of a ball screw shaft. Critical speed depends on the supporting

condition of screw shaft.

The lower of the two criteria, d·n and Critical Speed, will determine the overall Permissible Rotational Speed of the ball screw. For details, see "Technical Description: Permissible rotational speed" (Page B51).

d•n

Seal of the ball screw, ball recirculating deflector, and end cap are made of synthetic resin. Consult NSK when using the ball screws under extreme environments or special environments, or using special lubricant or oil.

durability.

♦ Other

For special environments, refer to Pages B74 and D2. Refer to Pages B71 and D13 for lubricants.

A martensitic stainless steel is used. A special

heat treatment technology provides the ball

groove section with sufficient hardness which

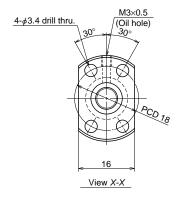
produces high load carrying capacity and

Note: For details of standard stock products, contack NSK.

Table 1 Combinations of screw shaft diameter and lead

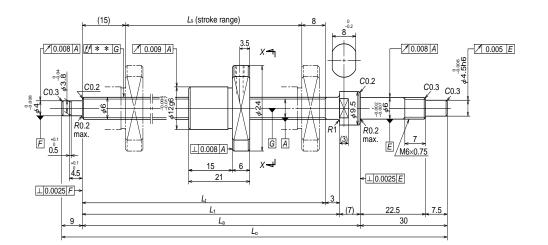
Lead (mm) Screw shaft diameter (mm)	1	2
6	B359	
8	B361	B363
10		B365
12		B369
15		
16		B379
20		

4	5	10	20
B367			
	B371	B373	
		B375	B377
			B381


B357 B358

Stainless ø6×1

Unit: mm


Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	6×1/Right			
Preload / Bal	I recirculation	P preload / Deflector			
Ball dia. / B	all circle dia.	0.800/6.2			
Screw shaft	root diameter	5.2			
Effective to	urns of balls	1×3			
Accuracy gr	ade / Preload	C3/Z			
Basic load rating	Dynamic C _a	470			
(N)	Static C _{0a}	680			
Axia	l play	0			
Prelo	ad (N)	147			
Dynamic friction torque,		1.3 or less			
(N·	cm)	1.3 01 1688			
Spac	er ball	None			

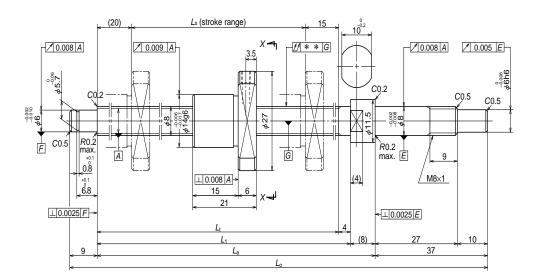
Factory packed grease Refer to the remarks 1. below.

Unit: mm

	L	and accura	21/	Shaft run-		Permissible rotational speed N (min-1)	
		Lead accuracy		out ** Mass		Supporting condition	
Т		$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	В
0		0.010	0.008	0.025	0.06	3000	36

	Stro	Stroke		Thread length			
Ball screw No.	Nieustaal	D. 4 1	- mread length				
	Nominal	Maximum	$L_{\rm t}$	L_1	La	L_{\circ}	
W0601KA-3PY-C3Z1	100	102	125	128	135	174	

Remarks 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

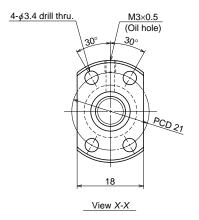

Refer to Page D13 for details.

NSK Clean Grease LG2 is recommended.

2. Nut does not have a seal.

3. Contact NSK if permissible rotational speed is to be exceeded.

B359


	Stroke		Thread length			
Ball screw No.	Nicostani	N 4 - 1 - 1 - 1 - 1 - 1	Inread length			
	Nominal	Maximum	$L_{\rm t}$	L_1	La	Lo
W0802KA-1PY-C3Z1	150	155	190	194	202	248

Remarks 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

Refer to Page D13 for details.

NSK Clean Grease LG2 is recommended.

- 2. Nut does not have a seal.
- 3. Contact NSK if permissible rotational speed is to be exceeded.

Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	8×1/Right			
Preload / Bal	I recirculation	P preload / Deflector			
Ball dia. / B	all circle dia.	0.800/8.2			
Screw shaft	root diameter	7.2			
Effective to	urns of balls	1×3			
Accuracy gr	ade / Preload	C3/Z			
Basic load rating	Dynamic C_a	545			
(N)	Static C _{0a}	955			
Axia	l play	0			
Prelo	ad (N)	29.4			
Dynamic friction torque, (N·cm)		1.8 or less			
Spac	er ball	None			
Factory page	cked grease	Refer to the remarks 1. below.			

Clean suppo	rt unit	For drive side	For opposite of drive side
WBK08-01C	(square)	0	
WBK08-11C	(round)	0	
WBK08S-01C	(square)		0

Unit: mm

Lead accuracy		ouron.			Permissible rotational speed N (min-1)	
		_y	out **	Mass	Supporting condition	
T	$e_{\scriptscriptstyle p}$	υu		(kg)	Fixed - Simple support	36,
0	0.010	0.008	0.035	0.12	3000	

View X-X

M3×0.5 (Oil hole)

 $4-\phi 3.4$ drill thru.

)	τ	a	Ш	ור	le	S	S	Ø	ö	X	_
								:	1.		

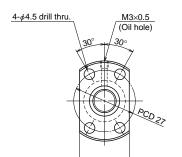
	Ball screw s	pecifications		
Shaft dia. x Lead	/ Direction of turn	8×2/Right		
Preload / Bal	I recirculation	P preload / Deflector		
Ball dia. / B	all circle dia.	1.200/8.3		
Screw shaft	root diameter	6.9		
Effective to	urns of balls	1×3		
Accuracy gr	ade / Preload	C3/Z		
Basic load rating	Dynamic C_a	1080		
(N)	Static C _{0a}	1630		
Axia	l play	0		
Prelo	ad (N)	49.0		
Dynamic fri	ction torque,	2.0 or less		
(N·	cm)	2.0 01 1633		
Spac	er ball	None		
Factory page	cked grease	Refer to the remarks 1. below.		
Internal spatial volume of nut (cm³)		0.34		

Clean suppo	ort unit	For drive side	For opposite of drive side
WBK08-01C	(square)	0	
WBK08-11C	(round)	0	
WBK08S-01C	(square)		0

0.17

Standard volume of grease replenishing (cm²)

Unit: mm


Lead accuracy		Shaft run-	Mass	Permissible rotational speed N (min-1)		
		out **		Supporting condition		
	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	
	0.010	0.008	0.035	0.13	3000	

(0.008 A) (0.008 A)	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u>S</u>	CO.2 CO.5	0.005 E
10.0025 F	10.008 A 6 22 6 28	X-41 (4)	<u>/M8×1</u> ⊥ 0.0025 <i>E</i>	
	L;	4		
9		(8)	27	10
< * * 		L _o *	·	
1-				1

Ball screw No.	Stro	oke	Thread length			
	Nicostani	D 4 1				
	Nominal	Maximum	\mathcal{L}_{t}	L_1	La	L _o
W0802KA-5PY-C3Z2	150	154	190	194	202	248

Remarks 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.
Refer to Page D13 for details.
NSK Clean Grease LG2 is recommended.

2. Contact NSK if permissible rotational speed is to be exceeded.

Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	10×2/Right			
Preload / Bal	I recirculation	P preload / Deflector			
Ball dia. / B	all circle dia.	1.200/10.3			
Screw shaft	root diameter	8.9			
Effective to	urns of balls	1×3			
Accuracy gr	ade / Preload	C3/Z			
Basic load rating	Dynamic C _a	1210			
(N)	Static C _{0a}	2110			
Axia	l play	0			
Prelo	ad (N)	58.8			
,	ction torque, cm)	0.10 – 2.5			
Spacer ball		None			
Factory page	cked grease	Refer to the remarks 1. below.			
Internal spatial v	olume of nut (cm³)	0.44			
Standard volume of gr	rease replenishing (cm³)	0.22			

Clean suppo	ort unit	For drive side	For opposite of drive side
WBK08-01C	(square)	0	
WBK08-11C	(round)	0	
WBK08S-01C	(square)		0

Unit: mm

L	ead accurad	СУ	out ** Mass Supporting col		Permissible rotational speed N (min-1) Supporting condition
T	$e_{\!\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$			Fixed - Simple support
0	0.012	0.008	0.030	0.22	3000

(33)	Ls (stroke range)	14 10		
C0.5 R0.2 C0.8 C0.8 C0.8 C0.8 C0.8 C0.8 C0.8 C0.8	(two places) — X — X — X — X — X — X — X — X — X —	A G (Width of flats) (6) 4	0.2	0.005 E

	Stroke		Thread length				
Ball screw No.	Niemelani			I iliead length			
	Nominal	Maximum	$L_{\rm t}$	L_1	La	L_{\circ}	
W1002KA-3PY-C3Z2	200	203	250	254	262	308	

Remarks 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

Refer to Page D13 for details.

NSK Clean Grease LG2 is recommended.

2. Contact NSK if permissible rotational speed is to be exceeded.

M6×1.0 (Oil hole)

> 4-φ4.5 drill thru., C'bore 8×4

Stainless ø10×4

0.5 - 3.9

None

0.8

0.4

Ball screw specifications						
Shaft dia. x Lead	/ Direction of turn	10×4/Right				
Preload / Bal	I recirculation	P preload / Return tube				
Ball dia. / B	all circle dia.	2.000/10.3				
Screw shaft	root diameter	8.2				
Effective to	urns of balls	2.5×1				
Accuracy gra	ade / Preload	C3/Z				
Basic load rating	Dynamic C _a	2250				
(N) Static C_{0a}		3290				
Axia	l play	0				
Prelo	ad (N)	98.1				

Dynamic friction torque,

(N·cm) Spacer ball

Internal spatial volume of nut (cm3)

Standard volume of grease replenishing (cm³)

Clean suppo	ort unit	For drive side	For opposite of drive side
WBK10-01C	(square)	0	
WBK10-11C	(round)	0	
WRK10S-01C	(cause)		

Factory packed grease Refer to the remarks 1. below.

Unit: mm

	and accurac	21.4	Shaft run-		Permissible rotational speed N (min-1)			
L	ead accurad	<i>-</i> y	l out	out **	out **	out **	Mass	Supporting condition
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support			
0	0.010	0.008	0.030	0.29	3000			
0	0.013	0.008	0.050	0.39	3000			

(37)	Ls (stroke range)	13		
(0.007 A) (0.010	Seals 5	M**G	(0.010 A C C C C C C C C C	0.005 E
<u> </u>	L ₁	5_(10),	<u> </u>	
10	L _a	→<(10/;	45	
 	L _o		-	

	Stroke		Thread length			
Ball screw No.	Nicostani		Thread length			
	Nominal Maximum		\mathcal{L}_{t}	L_1	La	Lo
W1001KA-3P-C3Z4	100	110	160	165	175	230
W1003KA-3P-C3Z4	300	310	360	365	375	430

Remarks 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

NSK Clean Grease LG2 is recommended.

2. Contact NSK if permissible rotational speed is to be exceeded.

B367 B368 ∕ 0.010 A

Ls (stroke range)

(two places) X

11 * * G

Seals

23

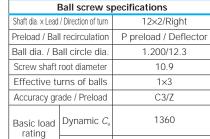
29

✓ 0.007 A

_10.

45

15


⊥ 0.003 E

R0.2

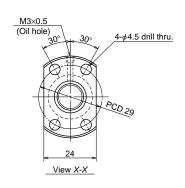
(Width of flats) (7) 5

(10)

- ✓ 0.005 E

rating (N) 2680 Static Co. 0 Axial play

98.1 Preload (N) Dynamic friction torque, 0.4 - 3.4(N·cm) Spacer ball None


Factory packed grease

Internal spatial volume of nut (cm3) 0.53 0.27 Standard volume of grease replenishing (cm3)

Clean support unit For drive side For opposite of drive side WBK10-01C (square) WBK10-11C (round) \circ WBK10S-01C (square)

Unit: mm

Refer to the remarks 1. below.

	Stroke		Thread length			
Ball screw No.	Nicostani		Till ead lerigtii			
	Nominal	Maximum	$L_{\rm t}$	L_1	La	L_{\circ}
W1201KA-3PY-C3Z2	100	109	160	165	175	230
W1203KA-1PY-C3Z2	250	259	310	315	325	380

Remarks 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

NSK Clean Grease LG2 is recommended.

2. Contact NSK if permissible rotational speed is to be exceeded.

L	ead accurad	су	Shaft run- out **	Mass	Permissible rotational speed N (min-1) Supporting condition
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle \rm u}$		(kg)	Fixed - Simple support
0	0.010	0.008	0.030	0.24	3000
0	0.012	0.008	0.040	0.36	3000

√ 0.007 A

⊥ 0.003 F

10

4-φ4.5 drill thru.,

M6×1.0 (Oil hole)

	I	Ball screw s	pecifications		
	Shaft dia. x Lead / Direction of turn		12×5/Right		
	Preload / Bal	I recirculation	P preload / Return tube		
	Ball dia. / B	all circle dia.	2.381/12.3		
	Screw shaft	root diameter	9.8		
	Effective to	urns of balls	2.5×1		
	Accuracy gr	ade / Preload	C3/Z		
	Basic load rating	Dynamic C_a	3070		
	(N)	Static C _{0a}	4670		
	Axia	l play	0		
	Prelo	ad (N)	98.1		
	Dynamic fri	ction torque,	1.0 – 4.4		
	(N·cm) Spacer ball		1.0 - 4.4		
			None		
	Factory page	cked grease	Refer to the remarks 1. below.		
	Internal spatial v	olume of nut (cm³)	1.2		

Clean suppo	rt unit	For drive side	For opposite of drive side
WBK10-01C	(square)	0	
WBK10-11C	(round)	0	
WBK10S-01C	(square)		0

Standard volume of grease replenishing (cm²)

Unit: mm

0.6

Lead accuracy			Shaft run- out ** Mass		Permissible rotational speed N (min-1) Supporting condition	
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	
0	0.012	0.008	0.040	0.47	3000	
0	0.016	0.012	0.065	0.66	3000	

(40)	Ls (stroke range)	12 - 025 -025 12 12 1	
00.2	0.010 A Seals 5 X 4 W * (two places) 5 X 4 A G L: L: L: L: L: L: L: L: L: L: L: L: L:		05 E

	Stroke		Thread length			
Ball screw No.	Nicostani		Triread lerigiti			
	Nominal Maximum		\mathcal{L}_{t}	L_1	La	Lo
W1202KA-3P-C3Z5	200	208	260	265	275	330
W1205KA-1P-C3Z5	450	458	510	515	525	580

Remarks 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

NSK Clean Grease LG2 is recommended.

2. Contact NSK if permissible rotational speed is to be exceeded.

B371

M6×1.0 (Oil hole)

4-φ4.5 drill thru.,

Stainless ø12×10

Unit: mm

	Ball screw s	pecifications	
Shaft dia. x Lead / Direction of turn		12×10/Right	
Preload / Ball recirculation		P preload / Return tube	
Ball dia. / Ball circle dia.		2.381/12.5	
Screw shaft	root diameter	10.0	
Effective to	urns of balls	2.5×1	
Accuracy gr	ade / Preload	C5/Z	
Basic load rating	Dynamic C_a	3070	
(N)	Static C _{0a}	4790	
Axia	l play	0	
Prelo	ad (N)	98.1	
Dynamic fri	ction torque,	1.0 – 4.9	
(N·	cm)	1.0 – 4.9	
Spac	er ball	None	
Factory page	cked grease	Refer to the remarks 1. below.	
Internal spatial v	olume of nut (cm³)	1.4	
Standard volume of gr	rease replenishing (cm³)	0.7	

Clean suppo	rt unit	For drive side	For opposite of drive side
WBK10-01C	(square)	0	
WBK10-11C	(round)	0	
WBK10S-01C	(square)		0

Load accuracy			Shaft run-		Permissible rotational speed N (min-1)
Lead accuracy		out	Mass	Supporting condition	
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
0	0.023	0.018	0.050	0.56	3000
0	0.030	0.023	0.075	0.72	3000

(44)	Ls (stroke range)		13 0 -0.25		
	Seals /(two places)	X-4	# * G 12	70.015 A	0.008 E 9 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
89 0 CO.2	0,000	9	<u> </u>	C0.2 C0.5	C0.5
C0.5 R0.2 max.			* 	R0.2 max. 10	
7.90	<u>□ 0.010 A</u> = 40 - 50	10 X-J	(Width of flats) (7)	M10×1	
⊥0.003 F →	<u> </u>	→	> <u>5</u>	<u>-⊥0.003</u> E	
10	L ₁ L _a		(10)	30 15	→
ļ-		Lo			→

	Stroke		Thread length			
Ball screw No.	Niemeinel	N danisan ma	Triread lerigiti			
	Nominal	Maximum	$L_{\rm t}$	L_1	La	L_{\circ}
W1203KA-3P-C5Z10	250	253	310	315	325	380
W1205KA-3P-C5Z10	450	453	510	515	525	580

Remarks 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

NSK Clean Grease LG2 is recommended.

2. Contact NSK if permissible rotational speed is to be exceeded.

M6×1.0 (Oil hole) $4-\phi 5.5$ drill thru.,

C'bore \$\phi 9.5 \times 5.5

Ball screw specifications				
Shaft dia. x Lead	/ Direction of turn	15×10/Right		
Preload / Bal	I recirculation	P preload / Return tube		
Ball dia. / B	all circle dia.	3.175/15.5		
Screw shaft	root diameter	12.2		
Effective to	urns of balls	2.5×1		
Accuracy gr	ade / Preload	C5/Z		
Basic load rating	Dynamic C_a	5780		
(N)	Static C _{0a}	9430		
Axia	l play	0		
Prelo	ad (N)	147		
Dynamic fri	ction torque,	1.5 – 7.9		
(N·	cm)	1.5 – 7.9		
Spac	er ball	None		
Factory page	cked grease	Refer to the remarks 1. below.		

Clean suppor	rt unit	For drive side	For opposite of drive side
WBK12-01C	(square)	0	
WBK12-11C	(round)	0	
WBK12S-01C	(square)		0

Internal spatial volume of nut (cm3)

Standard volume of grease replenishing (cm³)

Unit: mm

2.3 1.4

Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)	
		out ** Mass	Supporting condition		
T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
0	0.027	0.020	0.050	0.99	3000
0	0.035	0.025	0.065	1.2	3000
0	0.046	0.030	0.110	1.7	1610

12 10 10 10 10 10 10 10

	Str	oke	Thread length			
Ball screw No.	Nominal	Maximum				
	Nominai	Maximum	$L_{\rm t}$	La	L _o	
W1504KA-3P-C5Z10	400	427	489	504	561	
W1506KA-3P-C5Z10	600	627	689	704	761	
W1510KA-1P-C5Z10	1000	1027	1089	1104	1161	

Remarks 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

NSK Clean Grease LG2 is recommended.

2. Contact NSK if permissible rotational speed is to be exceeded.

M6×1.0 (Oil hole)

View X-X

4-φ5.5 drill thru.

Stainless ø15×20

Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	15×20/Right			
Preload / Bal	I recirculation	P preload / End cap			
Ball dia. / B	all circle dia.	3.175/15.5			
Screw shaft	root diameter	12.2			
Effective to	urns of balls	1.7×1			
Accuracy gr	ade / Preload	C5/Z			
Basic load rating Dynamic C _a		4150			
(N)	Static C _{0a}	6450			
Axia	l play	0			
Prelo	ad (N)	147			
Dynamic fri	ction torque,	1.5 – 7.9			
(N·	cm)	1.5 – 7.9			
Spac	er ball	None			
Factory page	cked grease	Refer to the remarks 1. below.			
Internal spatial v	olume of nut (cm³)	1.9			

Clean support u	For drive side	For opposite of drive side	
WBK12-01C (sq	juare)	0	
WBK12-11C (rd	ound)	0	
WBK12S-01C (sq	uare)		0

Standard volume of grease replenishing (cm3)

Unit: mm

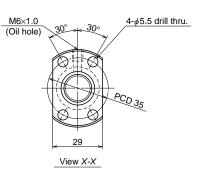
1.0

Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)	
		I out	Mass	Supporting condition	
T	$e_{\scriptscriptstyle P}$	$\upsilon_{\scriptscriptstyle \mathrm{u}}$			Fixed - Simple support
0	0.027	0.020	0.050	1.0	3000
0	0.035	0.025	0.065	1.3	3000
0	0.046	0.030	0.110	1.8	1610

(34)	Ls (stroke	range)	28		
(20.014 A A A A A A A A A	(1 0.015 A) (2 0.015 A) (3 0.015 A) (4 0.011 A) (4 45 L)	A G		(0.014 A (0.014 A (0.014 A (0.004 E (0.004 E (0.004 E	0.005 E 940 0.05 C0.5
< 12 →		La I		45	
l -		Lo			>

	Stro	oke	Thread length			
Ball screw No.	Niemsinal	N A a i a a a	Triread lerigiti			
	Nominal	Maximum	$L_{\rm t}$	La	Lo	
W1504KA-7PG-C5Z20	400	424	486	504	561	
W1506KA-7PG-C5Z20	600	624	686	704	761	
W1510KA-3PG-C5Z20	1000	1024	1086	1104	1161	

Remarks 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.


NSK Clean Grease LG2 is recommended.

2. Contact NSK if permissible rotational speed is to be exceeded.

B377 B378

Stainless ø16×2

crew specifications								

	Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	16×2/Right				
Preload / Bal	Il recirculation	P preload / Deflector				
Ball dia. / B	all circle dia.	1.588/16.4				
Screw shaft	root diameter	14.6				
Effective to	urns of balls	1×4				
Accuracy gr	ade / Preload	C3/Z				
Basic load rating	Dynamic C_a	2870				
(N)	Static C _{0a}	6250				
Axia	l play	0				
Prelo	ad (N)	147				
,	ction torque, cm)	0.5 – 4.9				
Spac	er ball	None				
Factory page	cked grease	Refer to the remarks 1. below				
Internal spatial v	olume of nut (cm³)	1.6				

Clean suppo	ort unit	For drive side	For opposite of drive side
WBK12-01C	(square)	0	
WBK12-11C	(round)	0	
WBK12S-01C	(square)		0

Unit: mm

	and accura	21/		Shaft run-		Permissible rotational speed N (min-1)
L	Lead accuracy		out **	Mass	Supporting condition	
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle \rm u}$		(kg)	Fixed - Simple support	
0	0.010	0.008	0.020	0.46	3000	
0	0.013	0.010	0.035	0.75	3000	

(39)	L _s (stroke range)	13 12 -0.25
C0.5 R0.2 max. _{0.14} 1.15	9 88 8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C0.2 C0.5 C0.5 C0.5 R0.2 M12.1 L0.003 E
	L _o	· · · · · · · · · · · · · · · · · · ·

	Str	oke	Thread length			
Ball screw No.	Niemeinel	N. A. a. a. i. a. a. a. a. a.				
	Nominal	Maximum	$L_{\rm t}$	La	Lo	
W1601KA-3PY-C3Z2	100	137	189	204	261	
W1603KA-1PY-C3Z2	300	337	389	404	461	

Remarks 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

NSK Clean Grease LG2 is recommended.

2. Contact NSK if permissible rotational speed is to be exceeded.

B379

B380

M6×1.0 (Oil hole)

View X-X

4-φ6.6 drill thru., C'bore φ11×6.5

I	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	20×20/Right
Preload / Bal	I recirculation	P preload / Return tube
Ball dia. / B	all circle dia.	3.969/21
Screw shaft	root diameter	16.9
Effective to	urns of balls	1.5×1
Accuracy gr	ade / Preload	C5/Z
Basic load Dynamic Carating		5760
(N)	Static C _{0a}	9370
Axia	l play	0
Prelo	ad (N)	196
Dynamic fri	ction torque,	2.0 – 11.8
(N·	cm)	2.0 - 11.0
Spac	er ball	None
Factory page	cked grease	Refer to the remarks 1. below.
Internal spatial w	olume of nut (cm³)	4.2

Clean suppo	ort unit	For drive side	For opposite of drive side
WBK15-01C	(square)	0	
WBK15-11C	(round)	0	
WBK15S-01C	(square)		0

Standard volume of grease replenishing (cm3)

2.1

					01110.111111
1	Load accuracy				Permissible rotational speed N (min-1)
L	Lead accuracy		out **	Mass	Supporting condition
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>f_f</i> (kg)		Fixed - Simple support
0	0.030	0.023	0.050	2.0	3000
0	0.035	0.025	0.085	2.5	3000
0	0.046	0.030	0.110	3.4	2160

(61)	Ls (stroke range)	315 3 0	
C0.5 RO.2 max: 13	Seals 8 X (two places) 13 X 15 C 16 C 16 C 16 C 16 C 16 C 16 C 16 C	0.00	R0.2 15 M15×1

	Str	oke	Thread length				
Ball screw No.							
	Nominal	Maximum	L_{t}	La	Lo		
W2005KA-3P-C5Z20	400	434	510	535	608		
W2007KA-3P-C5Z20	600	634	710	735	808		
W2011KA-3P-C5Z20	1000	1034	1110	1135	1208		

Remarks 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

NSK Clean Grease LG2 is recommended.

2. Contact NSK if permissible rotational speed is to be exceeded.

B381

B-3-2.4 Blank Shaft End MS Type, FS Type, SS Type

Ball screw sizes are arranged in order of the page number.

The dimension table begins with the smallest shaft diameter of each MS, FS and SS type ball screws, and proceed to larger sizes. If ball screws have the same shaft diameter, those with smaller leads appear first. Page numbers of shaft diameter and lead combinations are shown in the Table 1.

♦ Dimension tables

Lead(mm)

The dimension tables show shapes/sizes as well as specification factors of each shaft diameter/lead combination. Tables also contain data as follows:

Table 1 Cambinations of screw shaft diameter and lead

Lead accuracy

Lead accuracy is C3 and C5 grades.

T: Travel compensation;

 e_{p} : Tolerance of specified travel;

υ...: Travel variation

See "Technical description: Lead accuracy" (Page B41) for details of the codes.

Permissible rotational speed

d • n: Limited by the relative peripheral speed between the screw shaft and the nut.

Critical speed: Limited by the natural frequency of a ball screw shaft.

Critical speed depends on the supporting condition of screw shaft.

shaft diameter(mm)	1	1.5	2	2.5	4	5	6
4	B385						
6	B385						
8	B385	B387	B387				
10			B387	B389	B393		
12			B389	B389		B393	
14						B395	
15							
16			B391	B391		B399	
20					B405	B405	
25					B407	B407	B407
23					D407	B409	B407
28						B411	B411
20						B413	B413
						B415	B415
32						B417	B417
						B419	5417
36							
40						B421	
45							
50							

Criterion of maximum rotational speed

: 3000 min⁻¹

The lower of the two criteria, d·n and Critical Speed, will determine the overall Permissible Rotational Speed of the ball screw. For details, see "Technical description: Permissible rotational speed" (Page B51).

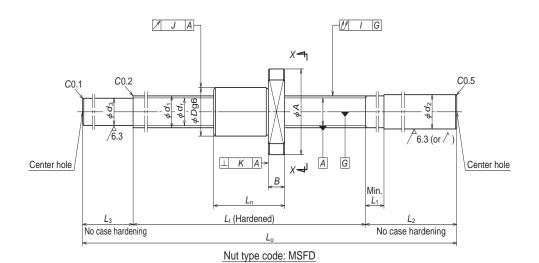
♦ Shaft end processing

MS, FS, and SS types require shaft end processing to your specification. An exclusive support unit (Page B433) is available to design the shaft end support section. See "Configuration of shaft end" (Page B27 and following pages) when using a support unit. See "Technical

Description: Shaft end processing" (Page B83) for procedures of shaft end processing and precautions.

♦ Other

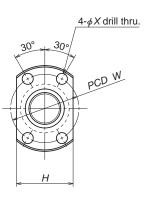
Seal of the ball screw, ball recirculating deflector and end cap are made of synthetic resin. Consult NSK when using the ball screws under extreme environments or special environments, or using special lubricant or oil.


For special environments, refer to Pages B74 and D2. Refer to Pages B71 and D13 for lubricants.

Note: For details of standard stock products, contack NSK.

8	10	12	16	20	25	32	40	50
	B393							
B395	D393							
D373	B395			B397				
	D373		B399	B377		B397		
	B399			B399			B397	
	B409			D 401	D 401			D 401
	B411			B401	B401			B401
	B419							
B417	B421				B403	B403		
	B423							
	B421							
	B423							
	B425	B425						
B425	B427	B427						
	B429	5 .2.						
	B431							
	B429							
	B431							

B383 B384



Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d ₁	Lead 1	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root dia. <i>d</i> ,	Effective ball turns	(1	•	Axial play Max.	Outside dia.		ut Tlange <i>H</i>	е <i>В</i>
W0400MS-1Y-C3T1	68	4	1	0.8	4.2	3.2	2	315	370	0.005	10	20	14	3
W0601MS-1Y-C3T1	110	6	1	0.8	6.2	5.2	3	575	925	0.005	12	24	16	3.5
W0801MS-1Y-C3T1 W0802MS-1Y-C3T1	94 174	8	1	0.8	8.2	7.2	3	670	1290	0.005	14	27	18	4

- Remarks: 1. NSK support unit is recommended. Refer to Page B433 for details.

 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

 Refer to Page D13 for details.
 - 3. Nut does not have a seal.
 - 4. Permissible rotational speed is determined by a d-n value and a critical speed. See page B383 and B51.

View X-X

dii	mensio	ns	Sc	rew s	haf	t dir	nen:	sion	S	Lea	ad acc	uracy	F	Run ou	ıt	Mass	Permissible rotational	
Overall length L _n	Bolt W	hole X	Threaded length $L_{\rm t}$	Shaft of d ₂	end, L₁	right L ₂	Shaft e	nd, left L ₃	Overall length $L_{\rm o}$	Т	Deviation $e_{\scriptscriptstyle m p}$	Variation $oldsymbol{v}_{u}$	Shaft straightness I	Nut O.D. eccentricity	Flange perpendicularity K	(kg)	speed N(min ⁻¹)	В
12	15	2.9	80	6.0	4	40	3.3	10	130	0	0.008	0.008	0.030	0.009	0.008	0.026	3000	386
15	18	3.4	125	8.0	4	50	5.3	15	190	0	0.010	0.008	0.030	0.009	0.008	0.063	3000	
16	21	3.4	110 190	10.2	4	60	7.3	25	195 275	0	0.010	0.008	0.030	0.009	0.008	0.11	3000	

No case hardening

C0.1

Center hole

/ J A

C0.5

Center hole

^ 6.3(or /)

No case hardening

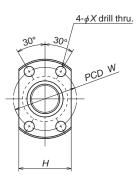
	Nut	type	code:	MSFD
--	-----	------	-------	------

Seals (two places)

⊥ K A →

Lt (Hardened)

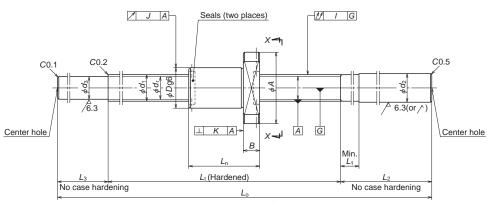
-<u></u>₫ I G


Min.

A G

Ball screw No.	Stroke Max.	Screw shaft dia.	Lead	aia.	Ball circle dia.	Root dia.	ball	Basic loa (N Dynamic		Axial play	Outside dia.	Nı	ut Flange	9
	L_{t} - L_{n}	$d_{\scriptscriptstyle 1}$	1	$D_{\rm w}$	d _m	d_{r}	turns	$C_{\rm a}$	C_{0a}	Max.	D	Α	Н	В
W0801MS-2Y-C3T1.5	88	8	1.5	1.0	8.3	7.0	3	1080	1980	0.005	15	28	19	4
W0802MS-2Y-C3T1.5	168	0	1.5	1.0	0.5	7.0)	1000	1 700	0.003	13	20	1 7	4
W0801MS-3Y-C3T2	84	8	2	1.2	8.3	6.9	2	1220	2210	0.005	16	29	20	4
W0802MS-3Y-C3T2	164	0		1.2	0.5	0.7)	1320	2210	0.003	10	27	20	4
W1001MS-1Y-C3T2	122	10	2	1.2	10.3	8.9	2	1400	2050	0.005	18	35	22	5
W1002MS-1Y-C3T2	222	10	2	1.2	10.3	0.9	٥	1490	2000	0.005	10	33	22	J

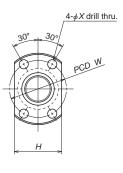
- Remarks: 1. NSK support unit is recommended. Refer to Page B433 for details.


 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
 - 3. Permissible rotational speed is determined by a d-n value and a critical speed. See page B383 and B51.

View X-X

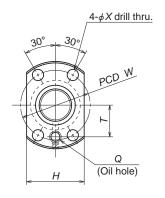
dim	ensio	ns	5	Screw	sha	ft dii	mensi	ons		Le	ad acc	curacy	F	Run ou	ıt	Mass	Permissible rotational
Overall length	Bolt	hole	Threaded length	Shaft 6	end, r	ight	Shaft end	d, left	Overall length		Deviation	Variation	Shaft strainhtness	Nut O.D. eccentricity	Flange Inemendicularity	(kg)	speed
Ln	W	Χ	Ĺ	d ₂	L ₁	L_2	$d_{\scriptscriptstyle 3}$	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	υu	I	J	K		N(min-1)
22	22	3.4	110	10.2	4	60	7.2	25	195	n	0.010	0.008	0.030	0.009	0 008	0.12	3000
22	22	3.4	190	10.2	Ť	00	1.2	23	275		0.010	0.000	0.050	0.009	0.000	0.15	3000
26	23	3.4	110	10.2	4	60	7.0	25	195	n	0.010	0 000	0.030	0 000	0.008	0.12	3000
20	23	3.4	190	10.2	4	00	7.0	25	275	0	0.010	0.000	0.050	0.009	0.000	0.15	3000
28	27	4.5	150	12.2	4	70	9.0	30	250	n	0.010	0.008	0.035	0 000	0.008	0.22	3000
20	21	4.5	250	12.2	4	70	7.0	30	350	U	0.012	0.006	0.050	0.009	0.006	0.17	3000

ø10×2.5, ø12×2, ø12×2.5



Nut	type	code:	MSF	D

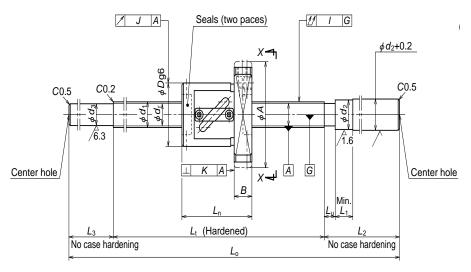
Ball screw No.	Stroke Max.	Screw shaft dia.	Lead	ala.	Ball circle dia.	Root dia.	ball		ad rating V) Static	Axial play	Outside dia.		Nut Flange	Э
	L_{t} - L_{n}	d_1	Ι	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	turns	$C_{\rm a}$	C_{0a}	Max.	D	Α	Н	В
W1001MS-2Y-C3T2.5	118	10	2.5	1.588	10.4	8.6	3	2130	3640	0.005	19	36	23	5
W1002MS-2Y-C3T2.5	218	10	2.5	1.300	10.4	0.0)	2130	3040	0.003	19	30	23	5
W1202MS-1Y-C3T2	182	10	2	1 200	100	10.9	3	1660	2620	0.005	20	37	24	5
W1203MS-1Y-C3T2	282	12	2	1.200	12.3	10.9	3	1000	3020	0.005	20	3/	24	Э
W1202MS-2Y-C3T2.5	178	10	2.5	1 500	10.4	10 /	3	2260	1510	0.005	21	20	2.5	Е
W1203MS-2Y-C3T2.5	278	12	2.5	1.588	12.4	10.6	3	2300	4540	0.005	21	38	25	5


Remarks: 1. NSK support unit is recommended. Refer to Page B433 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
- 3. Permissible rotational speed is determined by a d·n value and a critical speed. See page B383 and B51.

View X-X

	ensio	ns	5	Screw	sha	ft di	mensi	ons		Le	ad acc	uracy	R	un ou	t	Mass	Permissible rotational
Overall length	Bolt	hole	Threaded length	Shaft (end, r	ight	Shaft en	d, left	Overall		Deviation	Variation	Shaft straightness	Nut O.D.	Flange	(kg)	speed
Ln	W	Χ	$L_{\rm t}$	d ₂	L_1	L_2	$d_{\scriptscriptstyle 3}$	L_3	length $L_{\rm o}$	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K	. 0.	N(min ⁻¹)
32	28	4.5	150	12.2	4	70	8.7	30	250	0	0.010	0.008	0.035	0.010	0.008	0.23	3000
32	20	7	250	12.2	4	7	0.7	30	350	0	0.012	0.000	0.050	0.010	0.000	0.28	3000
28	29	4.5	210	14.2	5	80	11.0	35	325	Λ	0.012	0.008	0.050	0.010	0.008	0.36	3000
20	27	4.5	310	14.2	J	00	11.0	33	425	U	0.012	0.000	0.060	0.010	0.000	0.44	3000
32	30	4.5	210	14.2	5	80	10.7	35	325	0	0.012	0.008	0.050	0.010	0.008	0.37	3000
32	30	4.5	310	14.2	5	00	10.7	33	425	U	0.012	0.000	0.060	0.010	0.000	0.45	3000

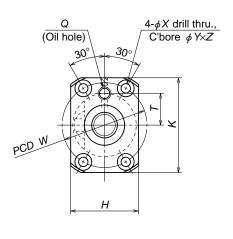

View X-X

		Seals (two places)	U I G	
Center hole	C0.2 6.3	X T	6.3 (or/)	Co.5 Center hole
	<u>L₃</u>	$L_{\rm t}$ (Hardened)	L ₂	
	No case hardening	Lo	No case hardening	
		Nut type code: MSFD		

Ball screw No.	Stroke Max. L _t -L _n		Lead	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> ,	Effective hall	1)	ad rating V) Static C _{oa}	Axial play Max.	Outside dia.	F A	lang H	Nut e B	Overall length	Bolt W	
W1602MS-1Y-C3T2	210	16	2	1.588	14 1	114	4	2510	0.450	0.005	25	44	29	10	40	35	5.5
W1604MS-1Y-C3T2	360	10	2	1.300	10.4	14.0	4	3310	0430	0.005	23	44	29	10	40	33	5.0
W1602MS-2Y-C3T2.5	206	14	2 -	1 500	1 4 1	114	4	2510	0.450	0.005	25	11	29	10	1.1	2 -	
W1604MS-2Y-C3T2.5	356	16	2.5	1.588	10.4	14.0	4	3510	8450	0.005	25	44	29	10	44	35	5.5

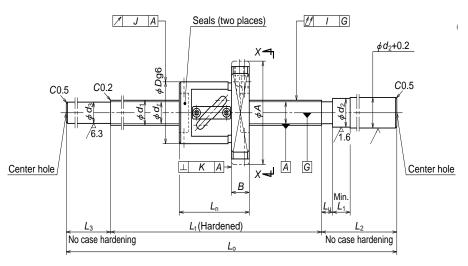
- Remarks: 1. NSK support unit is recommended. Refer to Page B433 for details.
 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
 3. Permissible rotational speed is determined by a d·n value and a critical speed. See page B383 and B51.

dimens	sions		ew s						Le	ad acc	uracy	F	Run ou	t	Mass	Permissible rotational	Internal spatial volume of nut	1 3	
Oil h	ole T	Threaded length $L_{\rm t}$	Shaft d ₂	end, L₁	right L ₂	Shaft e	nd, left L ₃	Overall length $L_{ m o}$	Т	Deviation $e_{\scriptscriptstyle m p}$	Variation $\upsilon_{\scriptscriptstyle \mathrm{u}}$	Shaft straightness I	Nut O.D. eccentricity 	Flange perpendicularity <i>K</i>	(kg)	speed N(min ⁻¹)	(cm³)	replenishing (cm³)	В
M6×1	16	250 400	16.2	30	100	14.7	40	390 540	0	0.012	0.008	0.035	0.010	0.008	0.71	3000	1.5	0.8	392
M6×1	16	250 400	16.2	30	100	14.7	40	390 540	0	0.012	0.008	0.035	0.010	0.008	0.73 0.95	3000	1.5	0.8	



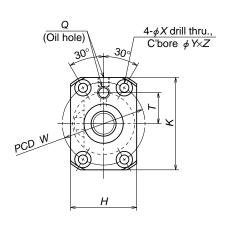
Nut type code: SFT, LSFT

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d_1	Lead <i>1</i>	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> _r	Turns	(r Dynamic	ad rating N) Static Coa	Axial	Outside dia.	A	Flar <i>H</i>	_	N B	ut Overall length L _n	В <i>W</i>	olt	hol Y	-
W1001FS-1-C3T4	126																			
W1002FS-1-C3T4	226	10	4	2.000	10.3	8.2	2.5×1	2740	4450	0.005	26	46	28	42	10	34	36	4.5	8	4.5
W1003FS-1-C3T4	326																			
W1201FS-1-C3T5	110																			
W1202FS-1-C3T5	210	12	5	2.381	12.3	9.8	2.5×1	3760	6310	0.005	30	50	32	45	10	40	40	4.5	8	4.5
W1204FS-1-C3T5	410																			
W1202FS-2-C5T10	200	12	10	2 201	125	10.0	2 5 1	2750	6490	0.005	30	50	27	15	10	50	10	15	Ω	15
W1204FS-2-C5T10	400	12	10	2.301	12.5	10.0	2.581	3730	0400	0.005	30	50	32	43	10	50	40	4.3	O	4.5

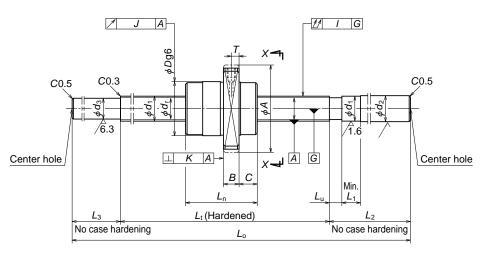

Remarks: 1. NSK support unit is recommended. Refer to Page B433 for details.

- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
- 3. Permissible rotational speed is determined by a d-n value and a critical speed. See page B383 and B51.

View X-X

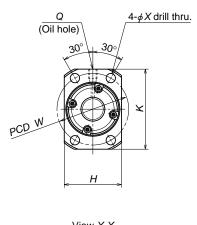

dimen	sions		cr∈	ew.	sha	aft (dime	ensi		Le	ad acc	uracy		Run ou		IVIdSS	IULALIUIIAI	Internal spatial volume of nut	oi grouse
Oil h	ole	Threaded length	Sha	ft er	nd, r	ight	Shaft en	d, left	Overall length		Deviation	Variation	Shaft strainhtness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	(cm³)	replenishing
Q	T	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	Lu	L_1	L_2	d ₃	L_3	Lo	Τ	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N(min ⁻¹)	(0111)	(cm³)
		160							265		0.010	0.008	0.030			0.34			
$M6 \times 1$	14	260	14	5	40	70	8.2	35	365	0	0.012	0.008	0.040	0.010	0.008	0.39	3000	0.86	0.43
		360							465		0.013	0.010	0.050			0.45			
		150							255		0.010	0.008	0.030			0.44			
M6×1	15	250	14	5	40	70	9.8	35	355	0	0.012	0.008	0.040	0.010	0.008	0.52	3000	1.2	0.6
		450							555		0.015	0.010	0.065			0.67			
M6×1	15	250	14	0	10	70	10.0	2 5	355	0	0.023	0.018	0.050	0.012	0.010	0.57	3000	1.4	0.7
IVIOXI	13	450	14	0	40	70	10.0	33	555	U	0.027	0.020	0.075	0.012	0.010	0.74	3000	1.4	0.7

Nut type code: SFT, LSFT


Ball screw No.	Stroke Max.	Screw shaft dia.	Lead ,	-	circle dia.	Root dia.	Turns	1)	ad rating V) Static	Axial	Outside dia.	ı	Flar	nge	N	ut Overall length	В	olt	hol	le
	$L_{t}-L_{n}$	d_1	1	D_{w}	$d_{\rm m}$	d_{r}	Circuits	$C_{\rm a}$	C_{0a}	· V i ca / ti	D	Α	Н	Κ	В	Ln	W	X	Y	Z
W1403FS-1-C3T5	310	1.4	_	0 175	115	11 0	0.51	/700	11700	0.005	2.4	F 7	2.4	Ε0	11	40	4.5		0.5	гг
W1406FS-1-C3T5	560	14	5	3.175	14.5	11.2	2.5×1	0/90	11700	0.005	34	5/	34	50	11	40	45	ე.ე	9.5	ວ.ວ
W1405FS-1-C5T8	454	1 /	0	2 175	115	11 1	2 5.4	/ 700	11700	0.005	2.4		2.4	۲,	11	47	4.5	- г	0 5	
W1408FS-1-C5T8	754	14	8	3.175	14.5	11.2	2.5×1	0/90	11700	0.005	34	57	34	50	11	40	45	ე.ე	9.5	5.5
W1504FS-1-C5T10	349																			
W1506FS-1-C5T10	549	15	10	2 175	100	12.2	2.5×1	7070	12000	0.005	21	E 7	24	ΕΛ	11	E 1	10		0 E	c c
W1509FS-1-C5T10	849	15	10	3.1/5	0.5	12.2	1 X C. S	7070	12000	0.005	34	37	34	00	11	01	45	0.5	9.5	0.5
W1511FS-1-C5T10	1049																			

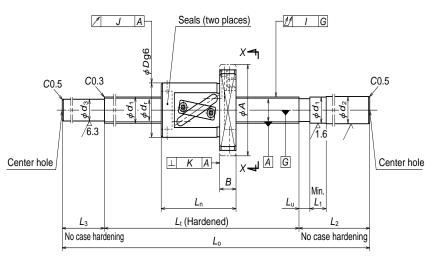
- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
- 3. Permissible rotational speed is determined by a d-n value and a critical speed. See page B383 and B51.

View X-X


(dimens	ions	Sc	rev	N S	haf	t di	men	sio	ns	Le	ad acc	uracy	F	Run ou	ıt	Mass	Permissible rotational	Internal spatial volume of nut	Standard volume of grease
-	Oil ho	ole	Threaded length	Sha	ıft er	nd, r	ight	Shaft en	d, left	Overall length		Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	(cm³)	replenishing
	Q	Τ	$L_{\rm t}$	d_2	Lu	L_1	L_2	$d_{\scriptscriptstyle 3}$	L ₃	Lo	Τ	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle \sf u}$	Ĭ	J	K		N(min ⁻¹)	(CIII)	(cm³)
	M6×1	17	350	15	5	10	100	11.2	40	490	0	0.013	0.010	0.035	0.012	0.008	0.78	3000	2.0	1.0
	IVIOXI	17	600	13	Э	40	100	11.2	40	740	U	0.016	0.012	0.055	0.012	0.006	1.0	3000	2.0	1.0
	M6×1	17	500	15	8	10	100	11.2	10	640	٥	0.027	0.020	0.065	0.015	0.011	1.0	3000	2.0	1.0
	IVIOXI	17	800	13	0	40	100	11.2	40	940	U	0.035	0.025	0.085	0.015	0.011	1.3	3000	2.0	1.0
			400							570		0.025	0.020	0.050			1.0			
	M6×1	17	600	15	8	10	120	12.2	 	770	0	0.030	0.023	0.065	0.015	0.011	1.3	3000	2.3	1.2
	IVIOXI	17	900	13	0	40	120	12.2	30	1070	U	0.040	0.027	0.110	0.015	0.011	1.7	3000	2.3	1.2
			1100							1270		0.046	0.030	0.150			1.9			

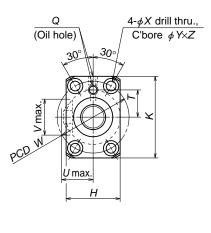
Nut type code: USFC

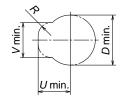
Ball screw No.	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	circle	Root dia.	Effective ball turns Turns	Basic loa	ad rating V)	Axial play					Nut				
Dali Sciew No.	١,,	ا ا	,	_	dia.	-1	×	Dynamic	Static	Max.	Outside dia.		FI	anç	ge		Overall length	Bolt	hole
	$L_{t}-L_{n}$	d_1	1	D_w	$d_{\rm m}$	d_{r}	Circuits	$C_{\rm a}$	C_{0a}	IVIUX.	D	Α	Н	Κ	В	С	Lo	W	X
W1504FS-2G-C5T20	355																		
W1506FS-2G-C5T20	555	15	20	3.175	1	12.2	1.7×1	5070	0720	0.005	2.4		27	ΓΛ.	10	11	4.5	4.5	
W1509FS-2G-C5T20	855	1 15	20	3.175	10.0	12.2	1./XI	3070	0/30	0.005	34	20	30	50	10		45	45	ე.ე I
W1511FS-2G-C5T20	1055																		
W1609FS-2GX-C5T32	866	16	32	2 175	14 75	12.4	0.7×2	4000	6600	0.005	2.4		24	ΕΛ	10	10 E	24	15	5.5
W1613FS-1GX-C5T32	1266	10	32	3.173	10.73	13.4	U.7XZ	4000	0070	0.005	34	00	30	00	10	0.01	34	40	0.0
W2011FS-1GX-C5T40	1059	20	40	2 175	20.75	17 /	0.7×2	4490	8640	0.005	20	20	40	E 2	10	11	11	10	15 5
W2017FS-1GX-C5T40	1659	20	40	3.173	20.73	17.4	U.7XZ	4470	0040	0.005	30	00	40	32	10	1 1	41	40	ე.ე


- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
- 3. Permissible rotational speed is determined by a d-n value and a critical speed. See page B383 and B51.

View X-X

|--|

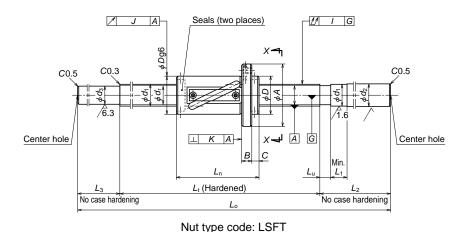

dimen:	sions			N S	haf	t di	men	sio			ad acc			Run ou		Mass	rotational	Internal spatial volume of nut	Standard volume of grease
Oil h	ole	Threaded length	Sha	ift ei	nd, r	ight	Shaft en	d, left	Overall length	Travel com- pensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	(cm³)	replenishing
Q	T	L_{t}	d_2	Lu	L_1	L_2	$d_{\scriptscriptstyle 3}$	L_3	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	Ĭ	J	K		N(min-1)	(0111)	(cm³)
		400							570		0.025	0.020	0.050			1.0			
M6×1	 	600	15.7	12	10	120	12.2	E0	770	٥	0.030	0.023	0.065	0.015	0.011	1.3	3000	1.9	1.0
IVIOXI)	900	10.2	13	40	120	12.2	30	1070	U	0.040	0.027	0.110	0.013	0.011	1.7	3000	1.9	1.0
		1100							1270		0.046	0.030	0.150			2.0			
M6×1	5	900	14.1	10	10	150	13.4	40	1110	0	0.040	0.027	0.110	0.015	0.011	1.9	3000	2.0	1.0
IVIOXI)	1300	10.2	19	40	130	13.4	00	1510	U	0.054	0.035	0.150	0.015	0.011	2.5	3000	2.0	1.0
M6×1	_	1100	ากา	22	40	150	17.4	00	1330	0	0.046	0.030	0.150	0.015	0.011	3.5	3000	2.7	1.4
IVIOXI	5	1700	20.2	22	00	100	17.4	00	1930	U	0.065	0.040	0.200	0.015	0.011	4.9	3000	2.7	1.4



Nut type code: SFT, LSFT

Dall carayy No	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective ball burns Turns	1)	۷) ڏ	Axial					Ν	ut				
Ball screw No.			1		dia.	,	X	Dynamic	Static	play Max.	Outside dia.	- 1	Flar	nge	,	Overall length	В	olt	hc	le
	L_{t} - L_{n}	d_1	I	D_w	$d_{\rm m}$	d_{r}	Circuits	$C_{\rm a}$	C_{0a}	iviax.	D	Α	Н	Κ	В	Ln	W	Χ	Υ	Ζ
W1605FS-1-C3T5	458	16	5	3.175	16.5	12.2	2 5 > 1	7330	13500	0.005	40	63	4 0	55	11	12	51	5 5	0 5	5 5
W1609FS-1-C3T5	858	10	5	3.173	10.5	13.2	2.581	7330	13300	0.003	40	03	40	55	11	42	51	5.5	7.5	5.5
W1606FS-1-C5T16	544	16	16	2 175	14 75	12.4	1 5./1	1710	0110	0.005	2.4	c 7	2.4	ΕΛ	10	E 4	1 E		0 E	E E
W1611FS-1-C5T16	1044	10	10	3.173	10.75	13.4	1.3X1	4/10	0110	0.005	34	37	34	50	12	00	40	0.0	9.0	5.5
W2009FS-1-C5T10	846	20	10	3.969	21	1/ 0	2 5.41	10000	21700	0.005	1/	7.1	1/	//	10	ГΛ	го	, ,	11	/ F
W2013FS-1-C5T10	1246	20	10	3.909	21	10.9	2.5X1	10900	21700	0.005	40	/4	40	00	13	54	59	0.0	11	0.5
W2010FS-1-C5T20	937	20	20	3.969	21	14.0	1 5./1	7040	12700	0.005	14	71	14	44	12	42	ΕO	4 4	11	4 5
W2015FS-1-C5T20	1437	20	20	3.909	Z I	10.9	1 XC.1	7040	12/00	0.005	40	/4	40	00	13	03	59	0.0	11	0.5

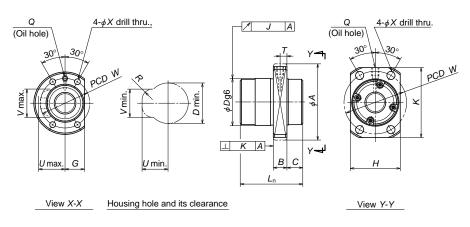
- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
- 3. Permissible rotational speed is determined by a d-n value and a critical speed. See page B383 and B51.



Housing hole and its clearance (Only applicable to shaft dia. ϕ 16×lead 16)

View X-X

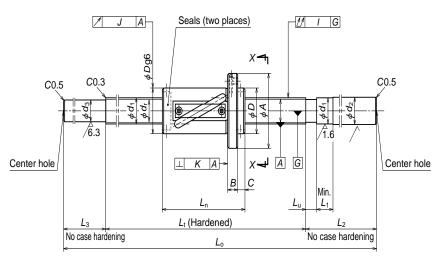
	din	ner	nsions		S	crew	ı sh	aft	dir	nens	sior	ıs	Le	ad acc	uracy	R	un oı		Mass	Permissible rotational	Internal spatial volume of nut	Standard volume of grease
Proje	ecting	tube	Oil ho	ole	Threaded length	Shaf	t en	d, riç	ght	Shaft en	d, left	Overall length		Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed N(min ⁻¹)	(cm³)	replenishing
U	V	R	Q	T	Ľ,	d_2	L	L_1	$\overline{L_2}$	d ₃	L ₃	Ľ	T	$e_{\scriptscriptstyle p}$	υu	Ĭ	J	Κ		ixfitilli,)	(6111)	(cm³)
			M6×1	17	500	16.2	5	40	150	13.2	60	710	n	0.015	0.010	0.055	0.012	0.008	1.4	2000	2.6	1.3
			IVIOXI	17	900	10.2	5	40	150	13.2	00	1110	0	0.021	0.015	0.095	0.012	0.000	1.9	3000	2.0	1.5
10	20	8	M6×1	17	600	16.2	10	40	150	13.4	60	810	n	0.030	0.023	0.085	0.015	0.011	1.5	2000	2.1	1.1
19	20	0	IVIOXI	17	1100	10.2	10	40	100	13.4	00	1310	0	0.046	0.030	0.150	0.015	0.011	2.3	3000	2.1	1.1
			N 1 6 × 1	24	900	20.2	10	40	1 [(14 0	00	1130		0.040	0.027	0.110	0.015	0.011	3.2		17	2.4
			M6×1	24	1300	20.2	10	00	130	16.9	00	1530	U	0.054	0.035	0.150	0.015	0.011	4.1	3000	4.7	2.4
			M6×1	24	1000	20.2	12	40	1 [()	14 0	00	1230	_	0.040	0.027	0.110	0.015	0.011	3.6	0000	4.2	2.1
	_	_	IVIOXI	24	1500	20.2	13	υU	130	16.9	00	1730	U	0.054	0.035	0.200	0.013	0.011	4.8	3000	4.2	∠. I



(Medium · high helix · ultra high helix lead: End cap type)

Ball screw No.	Stroke Max. Lt-Ln	Screw shaft dia. d ₁	Lead <i>1</i>	Ball dia.	Ball circle dia. d _m	Root	Turns	(f Dynamic		Axial		Outside dia.	Α	G		Nut		C	Overall length	Bolt W	
W2513FS-1-C5T20	1254	25	20	47/2	2/ 25	21.2	2 5.4		22000	0.005	LCET	11		_	,,	- 1	12	0	0/		
W2521FS-1-C5T20	2054	25	20	4.702	20.20	21.3	2.5x1	15700	32800	0.005	L3F1	44	/ 1	23	_		12	8	90	5/	6.8
W2513FS-2-C5T25	1260	25	25	4.762	24.25	21.2	1 5./1	10100	19100	0.005	LCET	11	71	22			10	10	00	E 7	6.6
W2521FS-2-C5T25	2060	20	20	4.702	20.20	21.3	1.3X1	10100	19100	0.005	LOFI	44	/ 1	23	_	_	12	10	90) /	0.0
W2515FS-1GX-C5T50	1450	25	50	3.969	26	21.9	0.7x2	6700	13500	0.005	IICEU	16	70		Δ.	63	12	12	50	ĽΩ	6.6
W2521FS-3GX-C5T50	2100	25	50	3.909	20	21.9	0.782	0700	13300	0.005	USFU	40	70		40	03	12	13	30	00	0.0

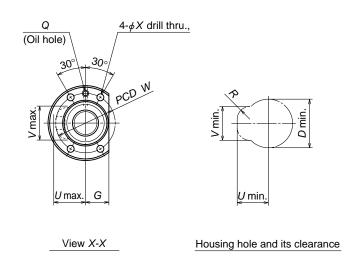
Remarks: 1. NSK support unit is recommended. Refer to Page B433 for details.


- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
- 3. Permissible rotational speed is determined by a d-n value and a critical speed. See page B383 and B51.

Nut type code: USFC

nit:	

	din	ner	nsions		S	crev	v sl	haf	t dir	nen	sior	ns	Le	ad acc	uracy	R	un oı	ut		Permissible rotational	Internal spatial volume of nut	Standard volume
Proje	ecting	tube R	Oil ho	ole T	Threaded length	Sha	ft er	nd, r	ight /	Shaft e	nd, left	Overall length	Т	Deviation e.	Variation $\upsilon_{\shortparallel}$	Shaft straightness T	Nut O.D. eccentricity	Flange	(kg)	speed N(min ⁻¹)	(cm³)	of grease replenishing (cm ³)
21			Q	,	1350	0E 0	∠ u	70	200	24.2	100	1650	^	-р	_	0.120	0.015	0.011	6.8	0000	10	(0
31	35	12	M6×1	_	2150	25.2	13	/0	200	21.3	100	2450	0	0.077	0.046	0.160	0.015	0.011	9.8	2800	12	6.0
32	34	12	M6×1		1350	25.2	15	70	200	21.3	100	1650	Λ	0.054	0.035	0.120	0.015	0.011	6.8	2800	10	5.0
32	34	12	IVIOXI		2150	23.2	10	70	200	21.3	100	2450	U	0.077	0.046	0.160	0.013	0.011	9.8	2000	10	5.0
			M6×1	6	1500	25.2	26	70	200	21.9	100	1800	0	0.054	0.035	0.120	0.015	0.011	7.3	2800	5.3	2.7
			1010/1	U	2150	20.2	20	70	200	21.7	100	2450	U	0.077	0.046	0.160	0.013	0.011	9.8	2000	5.5	۷.1


(Medium · high helix lead: Tube type)

Nut type code: LSFT

Ball screw No.	Stroke Max.		Lead	Ball dia.	Ball circle	Root	Effective ball turns Turns	/ / / / /	ad rating V)	Axial				Ν	ut			
Dall Sciew No.	, ,	d ₁	,	' '	dia.	.,	X	Dynamic	Static	play Max.	Outside dia.		Flai	nge		Overall length	Bolt	hole
	L_{t} - L_{n}	u_1	1	D_{w}	$d_{\rm m}$	d_{r}	Circuits	$C_{\rm a}$	C_{0a}	TVIGA.	D	Α	G	В	С	Ln	W	Χ
W3217FS-1-C5T25	1583	32	25	1740	22.25	20.2	2.5×1	17000	41000	0.005	E1	85	26	15	10	117	47	0
W3227FS-1-C5T25	2583	32	20	4.702	33.23	20.3	Z.3X1	17900	41000	0.003	01	00	20	13	10	117	07	9
W3217FS-2-C5T32	1591	22	22	1740	22.25	20.2	1.5×1	11500	24000	0.005	E 1	0E	26	15	10	100	47	0
W3227FS-2-C5T32	2591	32	32	4.702	33.25	28.3	1.5X1	11500	24800	0.005	21	85	20	15	12	109	0/	9

Remarks: 1. NSK support unit is recommended. Refer to Page B433 for details.

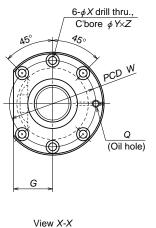
- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
- 3. Permissible rotational speed is determined by a d-n value and a critical speed. See page B383 and B51.

d	ime	nsic	ns	So	crev	/ sł	naft	din	nen:	sion	S	Lea	ad acc	uracy	R	un ol	ut	Mass	Permissible rotational	Internal spatial volume of nut	Standard volume
Proje <i>U</i>	ecting t	tube <i>R</i>	Oil hole	Threaded length L _t	Sha d ₂	ft er Lu	nd, r L₁	ight L ₂	7	nd, left	Overall length L_o	Travel com- pensation	Deviation $e_{\scriptscriptstyle m p}$	Variation $\upsilon_{\scriptscriptstyle \mathrm{u}}$	Shaft straightness I	Nut O.D. eccentricity	Flange perpendicularity K	(kg)	speed N(min ⁻¹)	(cm³)	of grease replenishing (cm³)
34	42	12	M6×1	1700 2700	32.3	15	70	250	28.3	120	2070 3070	0	0.065 0.093		0.160 0.210	IN N19	0.013	13.8 20.0	2180	17	8.5
34	42	12	M6×1	1700 2700	32.3	19	70	250	28.3	120	2070 3070	10			0.160 0.210	0.019	0.013	13.9 20.0	2180	15	7.5

No case hardening

Center hole

/ J A


Center hole

<u>-</u>1∕1 I G

/1.6

Min. L₁

No case hardening

Nut type code: PFT

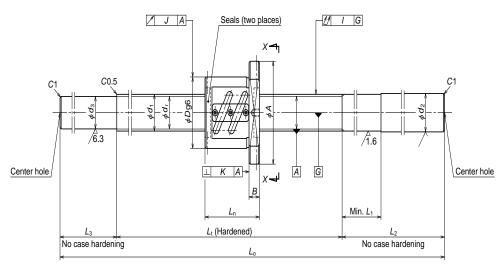
 \bot K A

Lt (Hardened)

Seals (two places)

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. \mathcal{O}_1	Lead 1	Ball dia.	Ball circle dia. d _m	Root dia.	lurns	(N Dynamic	ad rating N) Static C _{0a}	(NI)	Dynamic friction torque, median (N·cm)	Outside dia	FI A	anç G	Nut ge B	Overall length L _n	Bolt W	
W2003SS-1P-C5Z4	251																	
W2005SS-1P-C5Z4	451	20	4	2.381	20.3	17.8	2.5×2	5420	10700	290	3.9	40	63	24	11	49	51	5.5
W2008SS-1P-C5Z4	751																	
W2003SS-2P-C5Z5	244																	
W2005SS-2P-C5Z5	444	20	_	2 175	20.5	17.0	2 52	0.410	17100	490	7.0	4.4	/ 7	2/	11	г/	гг	
W2007SS-1P-C5Z5	644	20	5	3.1/5	20.5	17.2	2.5×2	9410	17100	490	7.8	44	0/	26		26	25	5.5
W2010SS-1P-C5Z5	944																	

Remarks: 1. NSK support unit is recommended. Refer to Page B433 for details.

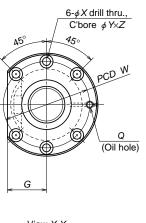

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
- 3. Permissible rotational speed is determined by a d-n value and a critical speed. See page B383 and B51.

dir	ner	nsions	Scr	ew	sha	aft d	lime	ensio	ons	Lead	d accu	ıracy	F	Run ou	ıt		Permissible rotational	spatial	Standard volume	
Bolt	hole	Oil hole	Threaded length	Shaft	end	, right	Shaft e	end, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	эрсси	volume of nut	of grease replenishing	
Y	Ζ	Q	L_{t}	d_2	L_1	L ₂	d_3	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N(min ⁻¹)	(cm³)	(cm ³)	B
			300			150		_	450	-0.007	0.023	0.018	0.055			1.5				4(
9.5	5.5	M6×1	500	20.2	40	150	17.8	50	700	-0.012	0.027	0.020	0.085	0.015	0.011	2.0	3000	2.7	1.4	
			800			200		100	1100	-0.019	0.035	0.025	0.140			2.9				
			300			150		_	450	-0.007	0.023	0.018	0.055			1.6				
٥.			500	20.0	40	150	17.0	50	700	-0.012	0.027	0.020	0.085	0.015	0.011	2.2	2000		0.0	
9.5	5.5	M6×1	700	20.2	40	200	17.2	100	1000	-0.017	0.035	0.025	0.110	0.015	0.011	2.8	3000	4.3	2.2	

100 | 1300 | -0.024 | 0.040 | 0.027 | 0.180

Unit: mm

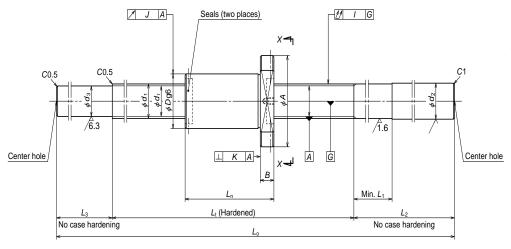
3.5



Nut type code: PFT

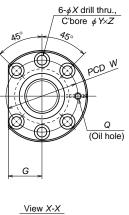
Ball screw No.	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	circle	Root	Effective ball turns Turns		ad rating V)	Preload	Dynamic friction torque,				Nut			
Duli Sciew No.	L_{t} - L_{n}	d ₁	1	D _w	$d_{\rm m}$	d _r	× Circuits	Dynamic C _a	Static C_{0a}	(N)	median (N·cm)	Outside dia. D	FI A	anç G	је <i>В</i>	Overall length	Bolt W	hole X
W2503SS-1P-C5Z4	252																	
W2506SS-1P-C5Z4	552	25	4	2.381	25.3	22.8	2.5×2	6020	13600	290	4.9	46	69	26	11	48	57	5.5
W2510SS-1P-C5Z4	952																	
W2503SS-2P-C5Z5	245																	
W2505SS-1P-C5Z5	445	25	5	3.175	25.5	22.2	2 5,/2	10400	21000	540	8.8	ΕO	72	20	11	55	61	5.5
W2508SS-1P-C5Z5	745	25)	3.173	20.0	22.2	2.3XZ	10400	21900	340	0.0	100	13	20		33	01	0.0
W2512SS-1P-C5Z5	1145																	
W2504SS-1P-C5Z6	338																	
W2508SS-2P-C5Z6	738	25	6	3.969	25.5	21.4	2.5×2	14100	26800	690	13.8	53	76	29	11	62	64	5.5
W2512SS-2P-C5Z6	1138																	

- Remarks: 1. NSK support unit is recommended. Refer to Page B433 for details.


 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
 - 3. Permissible rotational speed is determined by a d-n value and a critical speed. See page B383 and B51.

View X-X

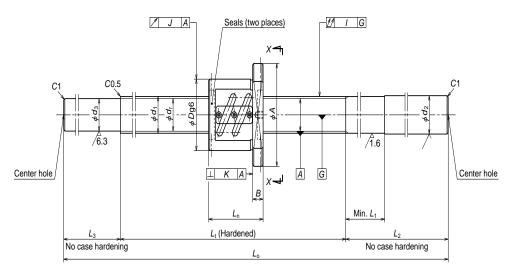
din	ner	sions	Scr	ew	sha	aft d	lime	nsic	ns	Lead	d accu	ıracy	F	Run ou	ıt	Mass	Permissible rotational	spatial	Standard volume
Bolt	-	Oil hole	Threaded length	Shaft d ₂	end,	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation $e_{\scriptscriptstyle \! D}$	Variation v	Shaft straightness T	Nut O.D. eccentricity	Flange perpendicularity <i>K</i>	(kg)	speed N(min ⁻¹)	volume of nut (cm³)	of grease replenishing (cm³)
_	_	Q	300	G ₂	<u>-1</u>	150	_	<u></u> 3	450	-0.007		u u	0.040	J	N.	2.2			(2)
9.5	5 5.5 M6×1	600	25.2	40	200	22.8	100	900	-0.014	0.030	0.023	0.075	0.015	0.011	3.8	2800	3.2	1.6	
			1000			200		100	1300	-0.024	0.040	0.027	0.120			5.2			
			300			200		_	500	-0.007	0.023	0.018	0.040			2.5			
0.5	5 5.5 M6×1	500	25.2	40	200	22.2	50	750	-0.012	0.027	0.020	0.060	0.015	0 011	3.4	2800	5.2	2.6	
9.0	5.5	IVIOXI	800	23.2	40	250	22.2	100	1150	-0.019	0.035	0.025	0.090	0.013	0.011	4.8	2000	3.2	2.0
			1200			300		100	1600	-0.029	0.046	0.030	0.120			6.3			
			400			200		_	600	-0.010	0.025	0.020	0.050			3.0			
9.5	5.5	M6×1	800	25.2	40	250	21.4	100	1150	-0.019	0.035	0.025	0.090	0.019	0.013	4.8	2800	7.0	3.5
9.5 5.5 M		1200			300		100	1600	-0.029	0.046	0.030	0.120			6.3				


Nut type code: ZFD

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d_1	Lead	Ball dia.	Ball circle dia. d _m	did.	Turns	(n Dynamic	ad rating N) Static Coa	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.	FI A	anç G	Nut ge	lo	Bolt W	hole
W2502SS-1ZY-C5Z5	184							- a	oa						_	-11		
W2504SS-3ZY-C5Z5	334																	
W2506SS-2ZY-C5Z5	534	25	5	3.175	25.75	22.4	1×3	9790	22900	740	13.8	40	63	24	11	66	51	5.5
W2509SS-1ZY-C5Z5	834																	
W2512SS-3ZY-C5Z5	1134																	
W2504SS-4ZY-C5Z10	312																	
W2506SS-3ZY-C5Z10	512																	
W2508SS-3ZY-C5Z10	712	25	10	4.762	26.25	21.3	1×2	11400	21400	880	21.5	42	69	26	15	88	55	6.6
W2511SS-1ZY-C5Z10	1012																	
W2515SS-2ZY-C5Z10	1412																	

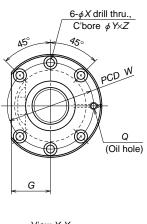
Remarks: 1. NSK support unit is recommended. Refer to Page B433 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

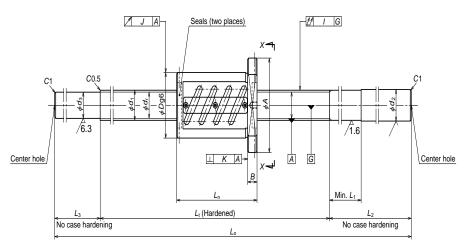

3. Permissible rotational speed is determined by a d·n value and a critical speed. See page B383 and B51.

iew	X-X	

	L	Init:	mm
--	---	-------	----


dir	ner	nsions		ew					ns	Lead	d accu	ıracy	F	Run ou	ıt	Mass	Permissible rotational	Internal spatial	Standard volume
_		Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	specu	volume of nut	of grease replenishing
Υ	Z	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	L_1	L_2	$d_{\scriptscriptstyle 3}$	L_3	L_{\circ}	T	$e_{\scriptscriptstyle p}$	υu	I	J	K		N(min ⁻¹)	(cm³)	(cm³)
			250			200		_	450	-0.005	0.023	0.018	0.040			2.1			
	5.5 M6×1	400			200		50	650	-0.009	0.025	0.020	0.060			2.8				
9.5	5 5.5 M6×1	600	25.2	40	250	22.4	100	950	-0.013	0.030	0.023	0.075	0.015	0.011	3.9	2800	5.4	2.7	
	5 5.5 M6×1	900			250		100	1250	-0.021	0.040	0.027	0.090			4.9				
		1200			300		100	1600	-0.028	0.046	0.030	0.120			6.2				
		400			200		50	650	-0.008	0.025	0.020	0.060			3.0				
		600			250		100	950	-0.012	0.030	0.023	0.075			4.1				
11	1 6.5 M6×1		800	25.2	60	250	21.3	100	1150	-0.017	0.035	0.025	0.090	0.015	0.011	4.8	2800	9.0	4.5
		1100			300		100	1500	-0.024	0.046	0.030	0.120			6.0				
		1500			300		100	1900	-0.034	0.054	0.035	0.150			7.4				

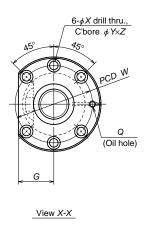
Nut type code: PFT


		1																
Ball screw No.	Stroke Max.	Screw shaft dia	Lead	Ball dia.	Ball circle	Root dia.	Effective ball turns Turns	Basic loa (1	ad rating V)	Preload	Dynamic friction torque,				Nut	t		
Dall Sciew No.			,		dia.			Dynamic	Static	(NI)	median	Outside dia	FI	anç	gе	Overall length	Bolt	hole
	L_{t} - L_{n}	shaft dia. d ₁ 25 28	1	$D_{\rm w}$	$d_{\rm m}$	d_r	Circuits	$C_{\rm a}$	C_{0a}	(14)	(N·cm)	D	Α	G	В	L	W	$\overline{}$
W2504SS-2P-C5Z10	319															Ü		
W2507SS-1P-C5Z10	619	25	10	4.762	25.5	20.5	1 5./2	11600	10000	590	13.8	20	85	22	15	01	71	6.6
W2510SS-2P-C5Z10	919	25	10	4.702	25.5	20.5	1.582	11000	19000	390	13.0	30	00	32	13	01	/ 1	0.0
W2515SS-1P-C5Z10	1419	25																
W2804SS-1P-C5Z5	344																	
W2806SS-1P-C5Z5	544		5	3.175	28.5	25.2	2 5 2	11000	24400	540	9.8	55	85	31	12	56	60	6.6
W2808SS-1P-C5Z5	744	20)	3.173	20.0	25.2	2.582	11000	24400	340	9.0	33	00	31	12	30	09	0.0
W2812SS-1P-C5Z5	1144																	
W2804SS-3P-C5Z6	337																	
W2806SS-3P-C5Z6	537	28	6	3.175	28.5	25.2	2 5 > 2	11000	24400	540	10.8	55	85	21	12	63	60	6.6
W2808SS-3P-C5Z6	737] 20	U	3.173	20.0	25.2	2.382	11000	24400	340	10.0	33	00	JI	12	03	09	0.0
W2812SS-3P-C5Z6	1137																	

- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
- 3. Permissible rotational speed is determined by a d-n value and a critical speed. See page B383 and B51.

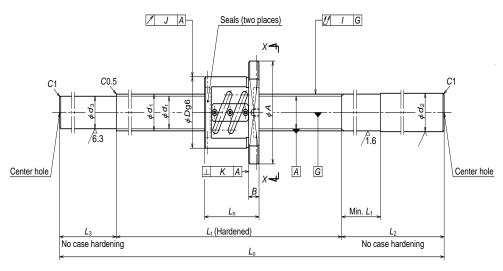
View X-X

dir	ner	nsions	Scr	ew	sha	aft d	lime	nsic	ons	Lead	d accu	ıracy	F	lun ou	ıt	Mass	Permissible rotational	spatial	Standard volume
_		Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	3pccu	volume of nut	of grease replenishing
Y	Z	Q	$L_{\rm t}$	d_2	L_1	L_2	$d_{\scriptscriptstyle 3}$	L_3	L_{\circ}	T	$e_{\scriptscriptstyle p}$	υu	I	J	K		N(min ⁻¹)	(cm³)	(cm³)
			400			200		50	650	-0.010	0.025	0.020	0.060			3.8			
11	6.5	M6×1	700	25.2	60	250	20.5	100	1050	-0.017	0.035	0.025	0.090	0.019	0.013	5.1	2800	9.7	4.9
11	0.5	IVIOXI	1000	23.2	00	250	20.5	100	1350	-0.024	0.040	0.027	0.120	0.017	0.013	6.1	2000	7.1	4.7
			1500			300		100	1900	-0.036	0.054	0.035	0.150			8.0			
			400			200		_	600	-0.010	0.025	0.020	0.050			3.7			
11	6.5	M6×1	600	28.2	10	250	25.2	100	950	-0.014	0.030	0.023	0.075	0.019	0.013	5.2	2500	6.1	3.1
1 1	0.0	IVIOXI	800	20.2	40	250	20.2	100	1150	-0.019	0.035	0.025	0.090	0.019	0.013	6.1	2500	0.1	3.1
			1200			300		100	1600	-0.029	0.046	0.030	0.120			8.1			
			400			200		_	600	-0.010	0.025	0.020	0.050			3.8			
11	/ [NA/ v.1	600	20.2	10	250	25.2	100	950	-0.014	0.030	0.023	0.075	0.010	0.012	5.3	2500	/ 1	2.1
	6.5	M6×1	800	28.2	40	250	25.2	100	1150	-0.019	0.035	0.025	0.090	0.019	0.013	6.2	2500	6.1	3.1
			1200			300		100	1600	-0.029	0.046	0.030	0.120			8.2			



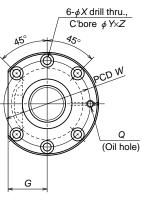
Nut type code: ZFT

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d_1	Lead 1	Ball dia.	Ball circle dia. d _m	Root	Turns	(n Dynamic	ad rating V) Static C _{0a}	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.	FI A	anç G	Nut ge B	Overall length L _n	Bolt W	
W2804SS-2Z-C5Z5	314																	
W2806SS-2Z-C5Z5	514	28	5	2 175	20 E	25.2	2 5,/2	17400	10000	1225	21.5	55	85	21	12	04	60	6.6
W2808SS-2Z-C5Z5	714	20	5	3.173	20.5	25.2	2.082	17400	40000	1223	21.5	33	00	31	12	00	09	0.0
W2812SS-2Z-C5Z5	1114																	
W2804SS-4Z-C5Z6	301																	
W2806SS-4Z-C5Z6	501	28	6	2 175	20 5	25.2	2 5 > 2	17400	10000	1225	22.5	55	85	31	12	00	60	6.6
W2808SS-4Z-C5Z6	701	20	O	3.173	20.5	25.2	Z.3XZ	17400	40000	1223	22.3	55	00	ادا	12	79	09	0.0
W2812SS-4Z-C5Z6	1101																	

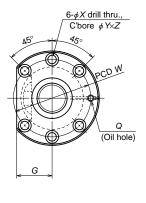

Remarks: 1. NSK support unit is recommended. Refer to Page B433 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
- 3. Permissible rotational speed is determined by a d-n value and a critical speed. See page B383 and B51.

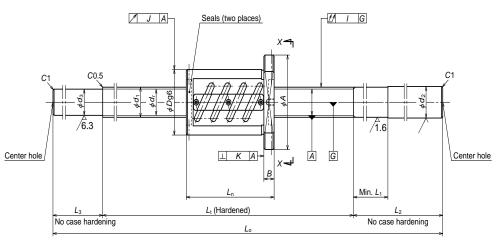
dir	ner	nsions		ew					ns	Lead	d accu	ıracy	F	Run ou	ıt	Mass	Permissible rotational	Internal spatial	Standard volume	
Bolt	hole	Oil hole	Threaded length	Shaft	end	, right	Shaft e	end, left	Overall length	Travel compensation	Deviation	Variation	Shaft	Nut O.D. eccentricity	Flange nomendicularity	(kg)	specu	volume of nut	of grease replenishing	
Y	Z	Q	$L_{\rm t}$	d_2	L_1	L ₂	$d_{\scriptscriptstyle 3}$	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	υu	I	J	K		N(min ⁻¹)	(cm³)	(cm³)	E
			400			200		_	600	-0.010	0.025	0.020	0.050			4.7				4
111	, ,	N 47 1	600	20.2	10	250	25.2	100	950	-0.014	0.030	0.023	0.075	0.010	0.010	5.5	مرم	0.0	4.7	ı
111	0.5	M6×1	800	28.2	40	250	25.2	100	1150	-0.019	0.035	0.025	0.090	0.019	0.013	6.4	2500	9.2	4.6	
			1200			300		100	1600	-0.029	0.046	0.030	0.120			8.4				Γ
			400			200		_	600	-0.010	0.025	0.020	0.050			4.2				-
11	4 5	M6×1	600	28.2	10	250	25.2	100	950	-0.014	0.030	0.023	0.075	0.010	0.013	5.7	2500	9.5	4.0	
''	0.0	IVIOXI	800	20.2	40	250	23.2	100	1150	-0.019	0.035	0.025	0.090	0.019	0.013	6.6	2500	9.5	4.8	
			1200			300		100	1600	-0.029	0.046	0.030	0.120			8.6				



Nut type code: PFT


Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d_1	Lead 1	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> ,	Effective ball turns Turns X Circuits	Dynamic	۷)	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut lang		Overall length
W3204SS-1P-C5Z5	344															
W3206SS-1P-C5Z5	544															
W3208SS-1P-C5Z5	744	32	5	3.175	32.5	29.2	2.5×2	11600	28000	590	10.8	58	85	32	12	56
W3212SS-1P-C5Z5	1144															
W3215SS-1P-C5Z5	1444															
W3206SS-3P-C5Z6	537															
W3210SS-1P-C5Z6	937	32	6	3.969	32.5	28.4	2.5×2	15500	34700	780	15.6	62	89	34	12	63
W3215SS-3P-C5Z6	1437															

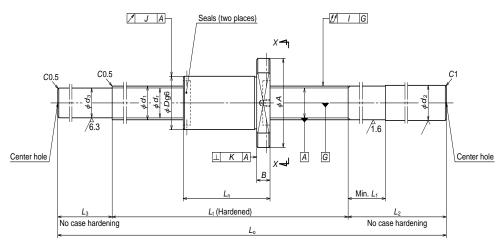
- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
- 3. Permissible rotational speed is determined by a d-n value and a critical speed. See page B383 and B51.



View X-X

	dim	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns		accu	,		lun ol		Mass	Permissible rotational	spatial	volume
	3olt	hole	9	Oil hole	Threaded length	Shaft	end,	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	volume of nut	of grease replenishing
W	Χ	Υ	Ζ	Q	$L_{\rm t}$	d_2	L_1	L ₂	$d_{\scriptscriptstyle 3}$	L ₃	Ľ	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min ⁻¹)	(cm³)	(cm³)
					400			200		50	650	-0.010	0.025	0.020	0.060			4.8			
					600			250		100	950	-0.014	0.030	0.023	0.075			6.5			
71	6.6	11	6.5	M6×1	800	32.3	40	250	29.2	100	1150	-0.019	0.035	0.025	0.090	0.019	0.013	7.7	2180	6.9	3.5
					1200			300		100	1600	-0.029	0.046	0.030	0.120			10.3			
					1500			300		100	1900	-0.036	0.054	0.035	0.150			12.1			
					600			250			950	-0.014	0.030	0.023	0.075			6.7			
75	6.6	11	6.5	M6×1	1000	32.3	40	300	28.4	100	1400	-0.024	0.040	0.027	0.120	0.019	0.013	9.2	2180	9.4	4.7
					1500			300			1900	-0.036	0.054	0.035	0.150			12.1			

View X-X

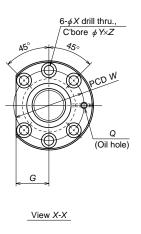

Nut type code: ZFT

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d_1	Lead 1	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> ,	Effective ball turns Turns × Circuits	Dynamic	۷)	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut lang		Overall length Ln
W3204SS-2Z-C5Z5	314															
W3206SS-2Z-C5Z5	514															
W3208SS-2Z-C5Z5	714	32	5	3.175	32.5	29.2	2.5×2	18500	56100	1270	22.5	58	85	32	12	86
W3212SS-2Z-C5Z5	1114															
W3215SS-2Z-C5Z5	1414															
W3206SS-4Z-C5Z6	501															
W3210SS-2Z-C5Z6	901	32	6	3.969	32.5	28.4	2.5×2	24700	69400	1720	34.5	62	89	34	12	99
W3215SS-4Z-C5Z6	1401															
W3206SS-5Z-C5Z8	518															
W3210SS-3Z-C5Z8	918	32	8	4.762	32.5	27.5	2.5×1	17500	41000	1320	30.5	66	100	38	15	82
W3215SS-5Z-C5Z8	1418															

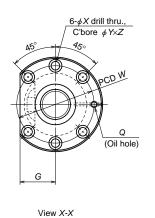
Remarks: 1. NSK support unit is recommended. Refer to Page B433 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
- 3. Permissible rotational speed is determined by a d-n value and a critical speed. See page B383 and B51.

	dim	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	un ol	ut	Mass	Permissible rotational	spatial	Standard volume
	3olt	hole	Э	Oil hole	Threaded length	Shaft	end,	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	volume of nut	of grease replenishing
W	X	Y	Ζ	Q	$L_{\rm t}$	d_2	L_1	L ₂	$d_{\scriptscriptstyle 3}$	L_3	Ľ	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min ⁻¹)	(cm³)	(cm³)
					400			200		50	650	-0.010	0.025	0.020	0.060			5.1			
					600			250		100	950	-0.014	0.030	0.023	0.075			6.9			
71	6.6	11	6.5	M6×1	800	32.3	40	250	29.2	100	1150	-0.019	0.035	0.025	0.090	0.019	0.013	8.0	2180	10	5.0
					1200			300		100	1600	-0.029	0.046	0.030	0.120			10.1			
					1500			300		100	1900	-0.036	0.054	0.035	0.150			12.4			
					600			250			950	-0.014	0.030	0.023	0.075			7.1			
75	6.6	11	6.5	M6×1	1000	32.3	40	300	28.4	100	1400	-0.024	0.040	0.027	0.120	0.019	0.013	9.7	2180	15	7.5
					1500			300			1900	-0.036	0.054	0.035	0.150			12.6]		
					600			250			950	-0.014	0.030	0.023	0.075			7.3			
82	9	14	8.5	M6×1	1000	32.3	50	300	27.5	100	1400	-0.024	0.040	0.027	0.120	0.019	0.013	9.8	2180	7.9	4.0
					1500			300			1900	-0.036	0.054	0.035	0.150			12.6			



Nut type code: ZFD


Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. \mathcal{O}_1	Lead 1	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> _r	Turns	Dynamic		Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut lang		Overall length
W3204SS-3ZY-C5Z5	323															
W3206SS-6ZY-C5Z5	523															
W3209SS-1ZY-C5Z5	823	32	5	3.175	32.75	29.4	4	14200	40700	1080	19.6	48	75	29	12	77
W3212SS-3ZY-C5Z5	1123															
W3216SS-1ZY-C5Z5	1523															
W3205SS-3ZY-C5Z10	380															
W3207SS-3ZY-C5Z10	580															
W3210SS-6ZY-C5Z10	880	32	10	6.35	33.75	27.1	3	25900	52800	1860	49.0	54	88	34	15	120
W3214SS-3ZY-C5Z10	1280															
W3218SS-3ZY-C5Z10	1680															

Remarks: 1. NSK support unit is recommended. Refer to Page B433 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
- 3. Permissible rotational speed is determined by a d-n value and a critical speed. See page B383 and B51.

	dim	nens	sion			rew	sh	aft c	lime				accu			lun ol		Mass	Permissible rotational	spatial	Standard volume	
E	3olt	hole	9	Oil hole	Threaded length	Shaft	end,	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	volume of nut	of grease replenishing	
W	Χ	Y	Ζ	Q	$L_{\rm t}$	d_2	L_1	L_2	$d_{\scriptscriptstyle 3}$	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm³)		
					400			200		50	650	-0.009	0.025	0.020	0.060			4.6				42
					600			250		100	950	-0.013	0.030	0.023	0.075			6.4				H
61	6.6	11	6.5	M6×1	900	32.3	40	250	29.4	100	1250	-0.021	0.040	0.027	0.090	0.015	0.011	8.1	2180	22	11	
					1200			300		100	1600	-0.028	0.046	0.030	0.120			10.2				
					1600			300		100	2000	-0.037	0.054	0.035	0.150			12.6				
					500			250		100	850	-0.010	0.027	0.020	0.075			6.2				
					700			250		100	1050	-0.015	0.035	0.025	0.090			7.3				
70	9	14	8.5	M6×1	1000	32.3	60	300	27.1	100	1400	-0.022	0.040	0.027	0.120	0.019	0.013	9.3	2180	23	12	
					1400			350		120	1870	-0.032	0.054	0.035	0.150			11.9	1			
					1800			350		120	2270	-0.041	0.065	0.040	0.200			14.1				

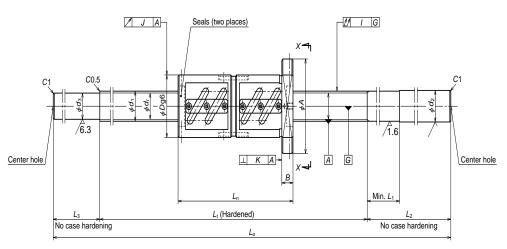
Center hole	C0.5 6.3	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	X - 1	ϕd_2	Center hole
No.	L ₃ case hardening	L _t (Hardened)	No ca	L ₂ se hardening	
- NO	oase nardening	Lo	- No ca	> narucilling	

Nut type code: ZFT

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d ₁	Lead 1	Ball dia.	Ball circle dia. d _m	dia.	Turns	Dynamic	۷)	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.	FI A	Nu lang <i>G</i>		Overall length
W3205SS-1Z-C5Z10	400							u	ou							
W3207SS-1Z-C5Z10	600	1														
W3210SS-4Z-C5Z10	900	32	10	6.350	33	26.4	2.5×1	25500	54000	1960	50	74	108	41	15	100
W3214SS-1Z-C5Z10	1300															
W3218SS-1Z-C5Z10	1700															
W3607SS-1Z-C5Z10	597															
W3612SS-1Z-C5Z10	1097	36	10	6.350	37	30.4	2.5×1	27200	61300	2060	56	75	120	45	18	103
W3620SS-1Z-C5Z10	1897															
W4006SS-1Z-C5Z5	511															
W4010SS-1Z-C5Z5	911	40	5	3.175	40.5	37.2	2.5×2	20200	70600	1420	28.5	67	101	39	15	89
W4016SS-1Z-C5Z5	1511															

UI	nı	τ:	m	1	7

	din	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	lun ot	ut	Macc	Permissible rotational	Internal spatial	Standard volume
E	3olt	hole)	Oil hole	Threaded length	Shaft	end,	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	volume of nut	of grease replenishing
W	X	Y	Ζ	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	L_1	L_2	$d_{\scriptscriptstyle 3}$	L_3	L _o	T	$e_{\scriptscriptstyle p}$	υu	Ĭ	J	K		N (min ⁻¹)		(cm³)
					500			250		100	850	-0.012	0.027	0.020	0.075			7.5			
					700			250		100	1050	-0.017	0.035	0.025	0.090			8.5			
90	9	14	8.5	M6×1	1000	32.3	60	300	26.4	100	1400	-0.024	0.040	0.027	0.120	0.019	0.013	10.5	2180	22	11
					1400			350		120	1870	-0.034	0.054	0.035	0.150			13.1			
					1800			350		120	2270	-0.043	0.065	0.040	0.200			15.2			
					700			300		100	1100	-0.017	0.035	0.025	0.065			10.9			
98	11	17.5	11	M6×1	1200	36.3	60	350	30.4	120	1670	-0.029	0.046	0.030	0.100	0.019	0.013	14.9	1940	27	14
					2000			350		120	2470	-0.048	0.065	0.040	0.130			20.4			
					600			300			1000	-0.014	0.030	0.023	0.050			11.1			
83	9	14	8.5	Rc1/8	1000	40.3	50	300	37.2	100	1400	-0.024	0.040	0.027	0.080	0.019	0.013	14.8	1750	14	7.0
					1600			350			2050	-0.038	0.054	0.035	0.130			20.8			

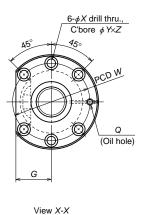

B421 B422

Remarks: 1. NSK support unit is recommended. Refer to Page B433 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

Refer to Page D13 for details.

^{3.} Permissible rotational speed is determined by a d-n value and a critical speed. See page B383 and B51.



Nut type code: DFT

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. \mathcal{O}_1	Lead 1	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> _r	Effective ball turns Turns × Circuits			Preload (N)		Outside dia.	F	Nu lang		Overall length
W3205SS-2D-C5Z10	310							a	- 08							-11
W3207SS-2D-C5Z10	510															
W3210SS-5D-C5Z10	810	32	10	6.350	33	26.4	2.5×2	46300	108000	3240	83	74	108	41	15	190
W3214SS-2D-C5Z10	1210															
W3218SS-2D-C5Z10	1610															
W3607SS-2D-C5Z10	507															
W3612SS-2D-C5Z10	1007	36	10	6.350	37	30.4	2.5×2	49300	123000	3430	93	75	120	45	18	193
W3620SS-2D-C5Z10	1807															

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

3. Permissible rotational speed is determined by a d-n value and a critical speed. See page B383 and B51.

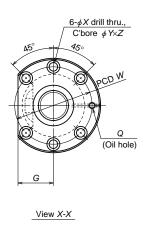
Unit: mm

	dim	nens	sion							nsio			accu			lun ol		Mass	Permissible rotational	spatial	volume	
E	3olt	hole	9	Oil hole	Threaded length	Shaft	end	right	Shaft 6	end, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	volume of nut	of grease reolenishina	
W	Χ	Y	Ζ	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	L_1	L_2	d ₃	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min ⁻¹)	(cm³)	(cm³)	В
					500			250		100	850	-0.012	0.027	0.020	0.075			9.5				42
					700			250		100	1050	-0.017	0.035	0.025	0.090			10.6				
90	9	14	8.5	M6×1	1000	32.3	60	300	26.4	100	1400	-0.024	0.040	0.027	0.120	0.019	0.013	12.5	2180	57	29	
					1400			350		120	1870	-0.034	0.054	0.035	0.150			15.1				
					1800			350		120	2270	-0.043	0.065	0.040	0.200			17.2				
					700			300		100	1100	-0.017	0.035	0.025	0.065			12.8				
98	11	17.5	11	M6×1	1200	36.3	60	350	30.4	120	1670	-0.029	0.046	0.030	0.100	0.019	0.013	16.8	1940	67	34	
					2000			350		120	2470	-0.048	0.065	0.040	0.130			22.3				

C1	C0.5 6.3	Seals (two places) X A B L A G	Center hole
	L ₃	L _t (Hardened)	L ₂
	No case hardening	L _o	No case hardening

Nut type code: ZFT

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d_1	Lead 1	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> _r	Turns	Dynamic	۷)	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut lang		Overall length
W4007SS-1Z-C5Z8	570															
W4012SS-1Z-C5Z8	1070	40	8	4.762	40.5	35.5	2.5×2	34900	103000	2450	64	74	108	41	15	130
W4018SS-1Z-C5Z8	1670															
W4007SS-2Z-C5Z10	597															
W4010SS-2Z-C5Z10	897															
W4014SS-1Z-C5Z10	1297	40	10	6.350	41	34.4	2.5×1	28600	68600	2160	64	82	124	47	18	103
W4018SS-2Z-C5Z10	1697															
W4024SS-1Z-C5Z10	2297															
W4010SS-4Z-C5Z12	883															
W4016SS-2Z-C5Z12	1483	40	12	7.144	41.5	34.1	2.5×1	33600	77500	2550	83	86	128	48	18	117
W4025SS-1Z-C5Z12	2383															


Remarks: 1. NSK support unit is recommended. Refer to Page B433 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

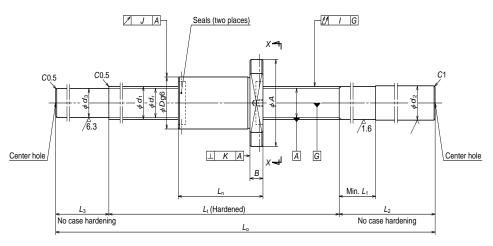
 Refer to Page D13 for details
- 3. Permissible rotational speed is determined by a d·n value and a critical speed. See page B383 and B51.

	din	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	lun ol	ut	Mass	Permissible rotational	Internal spatial	Standard volume	
Е	3olt	hole	9	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	volume of nut	of grease replenishing	
W	Χ	Υ	Ζ	Q	$L_{\rm t}$	d_2	L_1	L_2	$d_{\scriptscriptstyle 3}$	L ₃	Ľ	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min ⁻¹)	(cm³)	(cm³)	E
					700			300		100	1100	-0.017	0.035	0.025	0.065			13.0				4
90	9	14	8.5	Rc1/8	1200	40.3	50	350	35.5	100	1650	-0.029	0.046	0.030	0.100	0.019	0.013	18.0	1750	27	14	H
					1800			350		120	2270	-0.043	0.065	0.040	0.130			23.5				
					700			300		100	1100	-0.017	0.035	0.025	0.065			13.3				
					1000			300		100	1400	-0.024	0.040	0.027	0.080			15.9				
102	11	17.5	11	Rc1/8	1400	40.3	60	350	34.4	120	1870	-0.034	0.054	0.035	0.100	0.025	0.015	20.0	1750	30	15	
					1800			350		120	2270	-0.043	0.065	0.040	0.130			23.4				
					2400			400		150	2950	-0.058	0.077	0.046	0.170			29.4				
					1000			300		100	1400	-0.024	0.040	0.027	0.080			16.7				
106	11	17.5	11	Rc1/8	1600	40.3	70	350	34.1	150	2100	-0.038	0.054	0.035	0.130	0.025	0.015	22.9	1750	35	18	
					2500			400		150	3050	-0.060	0.077	0.046	0.170			31.1				

B425 B426

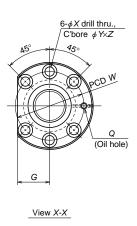
C1 C0.5 6.3		71.6 A G Min. L ₁	C1
<u>L₃</u>	L _t (Hardened)	L ₂	
No case hardening	Lo	No case hardening	

Nut type code: DFT


Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d_1	Lead <i>1</i>	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> _r	Effective ball turns Turns × Circuits	(N Dynamic	ad rating N) Static Coa	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut lang		Overall length
W4007SS-3D-C5Z10	507							- a	- 0a							<u>-n</u>
W4010SS-3D-C5Z10	807															
W4014SS-2D-C5Z10	1207	40	10	6.350	41	34.4	2.5×2	52000	137000	3630	108	82	124	47	18	193
W4018SS-3D-C5Z10	1607															
W4024SS-2D-C5Z10	2207															
W4010SS-5D-C5Z12	775															
W4016SS-3D-C5Z12	1375	40	12	7.144	41.5	34.1	2.5×2	61000	155000	4310	138	86	128	48	18	225
W4025SS-2D-C5Z12	2275															

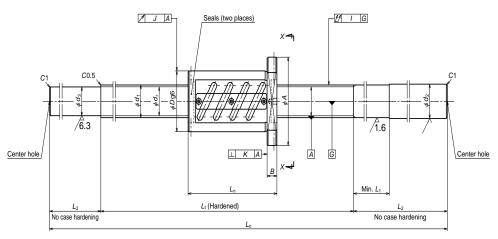
- Remarks: 1. NSK support unit is recommended. Refer to Page B433 for details.

 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.
 - 3. Permissible rotational speed is determined by a d-n value and a critical speed. See page B383 and B51.


	din	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	lun ol			Permissible rotational	spatial	volume
		hole	9	Oil hole	Threaded length	Shaft	end,	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	volume of nut	of grease replenishing
W	X	Y	Ζ	Q	$L_{\rm t}$	d_2	L_1	L_2	$d_{\scriptscriptstyle 3}$	L_3	L_{\circ}	T	$e_{\scriptscriptstyle p}$	$\nu_{\scriptscriptstyle u}$	Ι	J	K		N (min ⁻¹)	(cm ²)	(cm ³)
					700			300		100	1100	-0.017	0.035	0.025	0.065			15.5			
					1000			300		100	1400	-0.024	0.040	0.027	0.080			18.1			
102	11	17.5	11	Rc1/8	1400	40.3	60	350	34.4	120	1870	-0.034	0.054	0.035	0.100	0.025	0.015	22.2	1750	74	37
					1800			350		120	2270	-0.043	0.065	0.040	0.130			25.6			
					2400			400		150	2950	-0.058	0.077	0.046	0.170			31.6			
					1000			300		100	1400	-0.024	0.040	0.027	0.080			19.7			
106	11	17.5	11	Rc1/8	1600	40.3	70	350	34.1	150	2100	-0.038	0.054	0.035	0.130	0.025	0.015	25.8	1750	93	47
					2500			400		150	3050	-0.060	0.077	0.046	0.170			34.0			

B427 B428

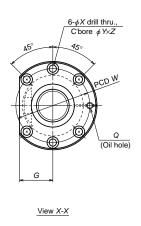
Nut type code: ZFD


Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d ₁	Lead <i>1</i>	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> _r	Effective ball turns	Basic loa (N Dynamic C _a		Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut lang		Overall length L _n
W4007SS-4ZY-C5Z10	557															
W4010SS-6ZY-C5Z10	857															
W4014SS-3ZY-C5Z10	1257	40	10	6.350	41.75	35.1	4	38400	93300	2840	83	62	104	40	18	143
W4018SS-4ZY-C5Z10	1657															
W4024SS-3ZY-C5Z10	2257															
W5007SS-1ZY-C5Z10	557															
W5010SS-3ZY-C5Z10	857															
W5015SS-3ZY-C5Z10	1357	50	10	6.350	51.75	45.1	4	43600	122000	3240	108	72	114	44	18	143
W5020SS-3ZY-C5Z10	1857															
W5026SS-3ZY-C5Z10	2457															

	din	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	lun ol	ut		Permissible rotational	spatial	Standard volume	
	3olt	hole)	Oil hole	Threaded length	Shaft	end,	right	Shaft e	end, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity		(kg)	speed	volume of nut	replenishing	
W	X	Y	Ζ	Q	$L_{\rm t}$	d_2	L_1	L_2	d_3	L ₃	Ľ	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min ⁻¹)	(cm ³)	(cm³)	В
					700			300		100	1100	-0.015	0.035	0.025	0.065			12.1				430
					1000			300		100	1400	-0.022	0.040	0.027	0.080			14.7				
82	11	17.5	11	Rc1/8	1400	40.3	60	350	35.1	120	1870	-0.032	0.054	0.035	0.100	0.019	0.013	18.9	1750	32	16	
					1800			350		120	2270	-0.041	0.065	0.040	0.130			22.5				
					2400			400		150	2950	-0.056	0.077	0.046	0.170			28.5				
					700			300		100	1100	-0.015	0.035	0.025	0.065			18.3				
					1000			300		100	1400	-0.022	0.040	0.027	0.080			22.5				
92	11	17.5	11	Rc1/8	1500	50.3	60	400	45.1	150	2050	-0.034	0.054	0.035	0.130	0.019	0.013	31.8	1400	39	20	
					2000			400		150	2550	-0.046	0.065	0.040	0.170			38.9				
					2600			500		200	3300	-0.060	0.093	0.054	0.220			49.5				

<sup>Remarks: 1. NSK support unit is recommended. Refer to Page B433 for details.
2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.
Refer to Page D13 for details.</sup>

^{3.} Permissible rotational speed is determined by a d-n value and a critical speed. See page B383 and B51.



Nut type code: ZFT

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. \mathcal{O}_1	Lead <i>1</i>	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> ,	Turns	Basic loa (N Dynamic C _a	.,	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut lang		Overall length
W4510SS-1Z-C5Z10	897															
W4516SS-1Z-C5Z10	1497	45	10	6.350	46	39.4	2.5×1	29900	77300	2260	69	88	132	50	18	103
W4525SS-1Z-C5Z10	2397															
W5010SS-1Z-C5Z10	897															
W5015SS-1Z-C5Z10	1397	50	10	6.350	51	44.4	2.5×1	31800	87400	2450	78	93	135	51	18	103
W5020SS-1Z-C5Z10	1897] 30	10	0.330	31	44.4	2.381	31000	07400	2430	/0	93	133	31	10	103
W5026SS-1Z-C5Z10	2497															
W5010SS-2Z-C5Z10	837															
W5015SS-2Z-C5Z10	1337	50	10	6.350	51	44.4	2.5×2	57700	175000	4020	138	93	135	51	18	163
W5020SS-2Z-C5Z10	1837	30	10	0.330	51	44.4	Z.3XZ	37700	173000	4020	130	73	133	01	10	103
W5026SS-2Z-C5Z10	2437															

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. Refer to Page D13 for details.

3. Permissible rotational speed is determined by a d-n value and a critical speed. See page B383 and B51.

	din	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	lun ol	ut	Mass	Permissible rotational	spatial		
	3olt	hole)	Oil hole	Threaded length	Shaft	end,	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	volume of nut	of grease replenishing	g
W	Χ	Υ	Ζ	Q	$L_{\rm t}$	d_2	L_1	L_2	d_3	L_3	Ľ _o	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	Ĭ	J	K		N (min ⁻¹)	(cm³)	(cm³)	
					1000			300		100	1400	-0.024	0.040	0.027	0.080			19.7				1
110	11	17.5	11	Rc1/8	1600	45.3	60	400	39.4	150	2150	-0.038	0.054	0.035	0.130	0.025	0.015	28.1	1550	34	17	ı
					2500			450		150	3100	-0.060	0.077	0.046	0.170			38.8				
					1000			300		100	1400	-0.024	0.040	0.027	0.080			23.8				
113	11	17.5	11	Rc1/8	1500	50.3	40	400	44.4	150	2050	-0.036	0.054	0.035	0.130	0.025	0.015	32.9	1400	37	19	
113	11	17.5	11	INC 170	2000	30.3	00	400	44.4	150	2550	-0.048	0.065	0.040	0.170	0.023	0.013	39.8	1400	37	17	
					2600			450		150	3200	-0.062	0.093	0.054	0.220			48.9				
					1000			300		100	1400	-0.024	0.040	0.027	0.080			25.5				
113	11	17.5	11	Rc1/8	1500	50.3	40	400	44.4	150	2050	-0.036	0.054	0.035	0.130	0.025	0.015	34.6	1400	59	30	
113	11	17.5	11	KC 1/0	2000	50.5	00	400	44.4	150	2550	-0.048	0.065	0.040	0.170	0.023	0.015	41.5	1400	39	30	
					2600			450		150	3200	-0.062	0.093	0.054	0.220			50.7				

NSK

B-3-2.5 Accessories

Accessories to use with ball screw are available in stock.

Table 1 Support unit categories

Application		Shape	Support side	Bearing in use	Bearing bore Bearing seat diameter	Page
		WBK**-01*	Fixed support	Angular contact	φ6- φ25	B439 -
Small equipment, light load	Square	WBK**S-01*	Simple support	Deep groove	φ6- φ25	B443 -
		WBK**SF-01	side	Deep groove ball bearing	φ 12, φ 15 (Exclusive for VFA Type)	B446

1 Classification

Ball screw support units are classified into categories by their shape (Table 1). Select the type that is appropriate for you to use.

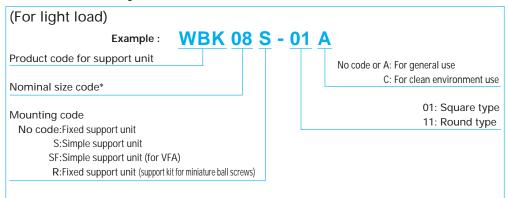
Application		Shape	Support side	Bearing in use	Bearing bore Bearing seat diameter	Page
Small equipment, light load	Round	WBK**R-11 (Support kit) WBK**-11*	Fixed support side	Deep groove ball bearing (arranged to have angular contact) Angular contact ball bearing	φ4, φ6 (Exclusive for RMA and RMS Type) φ6 - φ25	B445
Machine tools, heavy load	Round	WBK**DF*-31	Fixed support	Thrust angular contact ball bearing	φ17 – φ 40	B451 -

2 Features

- ●Short delivery time: Standardized items in stock
- Bearings and seal

On the fixed support side, the angular contact ball bearing is used. It has great rigidity and low friction torque which match the rigidity of the ball screw. The thrust angular contact ball bearing with high precision and great rigidity is another choice for the fixed support side.

An oil seal is installed on fixed support side used with an angular contact ball bearing. The seal may have fine clearance.


A deep-groove ball bearing with a shield on both sides is used on the simple support side.

●Lock nut is provided.

A lock nut of fine grade finish is provided to fix the bearing with high precision.

B433

3 Reference number coding

^{*} In case of simple support unit, be careful that 12 or less size codes do not represent internal bores of bearing. Please refer to the dimensional table for internal bore of bearing.

(For heavy load) Example: WBK 25 DF - 31 Product code for support unit Nominal size code (internal bore of bearing) Bearing combination code DF: Face to face duplex combination DFD: Face to face triplex combination DFF: Face to face quadruplex combination

(1) Support Units for Light Load and Small Equipment

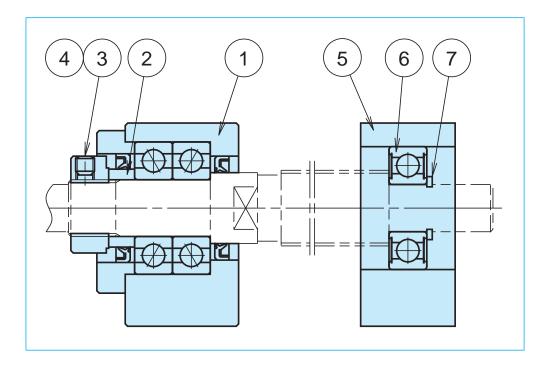
Support units for light load and small equipment provide both fixed and support side bearing assemblies to support screw shafts. They provide all required parts such as bearing locknuts so that you can mount them directly to NSK standard ball screws, of which shaft ends are machined.

Please refer to the dimensions listed on the dimension table for configuration of standard screw shaft ends for NSK standard ball screws with blank shaft ends. For transporting ball screws, you require optional spacers when mounting fixed support side support units.

1Features

Prompt delivery

All support units are standard stocked items.


Best selection of bearings for your application

General use support units for fixed support side are equipped with highly rigid angular contact ball bearings that have been assembled with proper preload, and packed with the appropriate volume of grease. On the other hand, clean support units for fixed support side uses low dust emission grease, and low torque special bearings. Sealed deep groove ball bearings are used for simple support side units for both general and clean environment use.

• Accessories

Support units provide everything necessary for mounting ball screws to machines. (Please refer to the table below.)

* Do not disassemble fixed support side units as they are equipped with bearings and oil seals.

Antirust treatment

The table on the right shows the surface treatment for the bearing housing, and material of small parts.

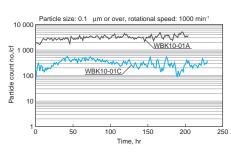
Fi	xed support side	Simple support side				
Part no.	Name of parts	Part no.	Name of parts			
1	Bearing housing	5	Bearing housing			
2	Spacer	6	Bearing			
3	Locknut	7	Snap ring			
(4)	Set screw					
4	with set piece					

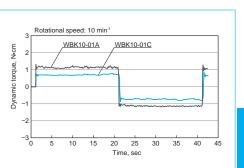
	General support unit
Bearings and grease	Angular contact ball bearings, PS2
Surface treatment	Black oxide
Screws and snap rings	Standard material

6 Features of Clean Support Unit

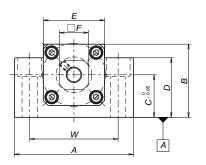
Outstanding low dust emission
Clean support unit uses "NSK clean grease
LG2" which has a proven feature of low
dust emission. It reduces dust emission to
1/10 of general support units.

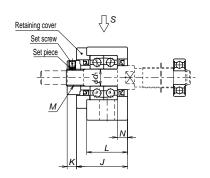
Low torque


It features low torque characteristics because of special bearings. (50% lower than general support unit.)

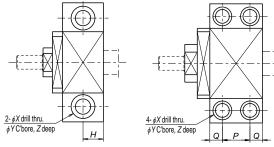

High antirust specification

Low temperature chrome plating is applied to bearing housings, retaining plates, locknuts and spacers to improve antirust properties. Moreover, bolts and snap rings are made of stainless steel.


The table below shows the surface treatment of the bearing housing and material of small parts.


	Clean support unit
Bearing • grease	Special bearings, LG2
Surface treatment	Low temperature chrome plating
Set screw and snap ring material	Stainless steel

Support Units for Light Load and Small Equipment



Fixed support side support unit (square type)

Reference no.	Use	$d_{\scriptscriptstyle 1}$	Α	В	С	D	Ε	F	L	J	К
WBK06-01A*	General	6	42	25	13	20	18	12	20	20	5.5
WBK08-01A*	General		52	32	17	26	25		23	23	7
WBK08-01B	Low type	8	62	31	15.5	31	_	14	21.5	25.5	4.5
WBK08-01C*	Clean environment		52	32	17	26	25		23	23	7
WBK10-01A	General			43	25	35	36				
WBK10-01B	Low type	10	70	38	20	38	_	17	24	30	5.5
WBK10-01C	Clean environment			43	25	35	36				
WBK12-01A	General			43	25	35	36				
WBK12-01B	Low type	12	70	38	20	38	_	19	24	30	5.5
WBK12-01C	Clean environment			43	25	35	36				
WBK15-01A	General			50	30	40	41				
WBK15-01B	Low type	15	80	42	22	42	_	22	25	31	12
WBK15-01C	Clean environment			50	30	40	41				
WBK17-01A	General	17	86	64	39	55	50	24	35	44	7
WBK20-01	General	20	95	58	30	45	56	30	42	52	10
WBK25-01	General	25	105	68	35	25	66	36	48	61	13

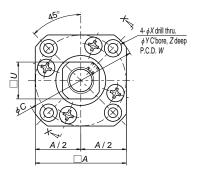
Notes: 1. Use datum face A for mounting to the machine base.

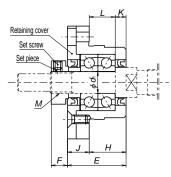
- 2. Tighten the set screw after the locknut has been adjusted and tightened.
- 3. The brass pad (set piece), provided with the unit, is inserted into locknut set screw hole, then set screw is inserted and tightened over it.
- 4. A deep groove ball bearing and a snap ring are attached.
- *There are no seals for the retaining cover side of WBK06-01A, WBK08-01A, and WBK08-01C.

_	
4	
	1
4- φX drill thru. φY C'bore, Z deep	\bigcirc
φ r C bole, z deep	Q P Q

View S (WBK06 - 15)

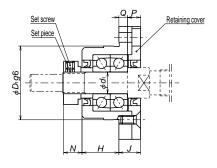
View S (WBK17 - 25)


Reference no.	Tightening torque (reference) [N · cm]		
Reference no.	Locknut	Set screw		
WBK06-**	190	69 (M3)		
WBK08-**	230	69 (M3)		
WBK10-**	280	147 (M4)		
WBK12-**	630	147 (M4)		
WBK15-**	790	147 (M4)		
WBK17-**	910	147 (M4)		
WBK20-**	1670	147 (M4)		
WBK25-**	2060	490 (M6)		


Units: mm

N		С	ounter l	oore dir	mensio	ns		Mass	Locknut screw	Attached bearing for support side	
	Н	Р	Q	W	X	Y	Z	(kg)	М	support side	
3.5	10	_	_	30	5.5	9.5	11	0.15	M6×0.75	_	
4	11.5	_	_	38	6.6	11	12	0.25		606ZZ	
3.5	11	_	_	46	9	14	18	0.3	M8×1	606ZZ	
4	11.5	_	_	38	6.6	11	12	0.25		606VV	
		_	_				11	0.5		608ZZ	
6	12	_	_	52	52 9		19	0.45	M10×1	608ZZ	
		_	_				11	0.5		608VV	
		_	_				11	0.5		6000ZZ	
6	12	_		52	9	14	19	0.4	M12×1	6000ZZ	
		_	_				11	0.5		6000VV	
		_	_				15	0.7		6002ZZ	
5	12.5	_	_	60	11	17	23	0.6	M15×1	6002ZZ	
		_	_				15	0.7		6002VV	
7	_	19	8	68	9	14	11	1.3	M17×1	6203ZZ	
10	_	22	10	75	11	17	15	1.4	M20×1	6204ZZ	
14	_	30	9	85	11	_	_	1.9	M25×1.5	6205ZZ	

B439 B440

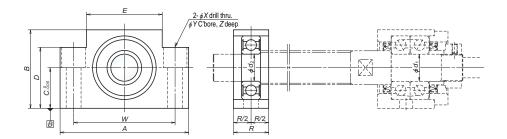

View X-X (Example 1)

Fixed support side support unit (round type)

Reference no.	Use	$d_{\scriptscriptstyle 1}$	Α	С	D_1	Ε	Н	L	К	F	N
WBK06-11*	General	6	28	35	22	20	13	9.5	3.5	5.5	6.5
WBK08-11*	General		35	43	28	23	14	10	4	7	8
WBK08-11B	Low type	8	42	52	34	25.5	15.5	12	3.5	4.5	7
WBK08-11C*	Clean environment		35	43	28	23	14	10	4	7	8
WBK10-11	General	10	42	52	34	27	17	12	5	7.5	8.5
WBK10-11C	Clean environment				34	21	17	12			
WBK12-11	General	12	44	54	36	27	17	12	5	7.5	8.5
WBK12-11C	Clean environment	12	44	34	30	27	17	12			8.5
WBK15-11	General	15	52	63	40	32	17	11		12	1.4
WBK15-11C	Clean environment	15	32	03	40	32	17	11	6	12	14
WBK20-11	General	20	68	85	57	52	30	20	10	10	14
WBK25-11	General	25	79	98	63	57	30	20	10	13	20

Notes: 1. Tighten the set screw after the locknut has been adjusted and tightened.

- 2. The brass pad (set piece), provided with the unit, is inserted into locknut set screw hole, then set screw is inserted and tightened over it.
- 3. A deep groove ball bearing and a snap ring are attached.
 *There are no seals for the retaining cover side of WBK06-01A, WBK08-01A, and WBK08-01C.


View	X - X	(Example	2)
VIEW	V-V	(Example	۷)

Reference no.	Tightening torque (reference) [N · cm]							
Reference no.	Locknut	Set screw						
WBK06-**	190	69 (M3)						
WBK08-**	230	69 (M3)						
WBK10-**	280	147 (M4)						
WBK12-**	630	147 (M4)						
WBK15-**	790	147 (M4)						
WBK17-**	910	147 (M4)						
WBK20-**	1670	147 (M4)						
WBK25-**	2060	490 (M6)						

Units: mm

U	U P Q		Co	ounter	bore di	mensio	ns	Mass	Locknut screw	Attached bearing for support side		
			J	W	X	Y	Ζ	(kg)	М	20/2/2000		
12	4.5	2.5	7	28	2.9	5.5	3.5	0.1	M6×0.75	_		
	5		9	35	3.4	6.5	4	0.15		606ZZ		
14	6	4	10	42	4.5	8	4	0.2	M8×1	608ZZ		
	5		9	35	3.4	6.5	4	0.15		606VV		
17	6	4	10	42	4.5	8	4	0.2	M10×1	608ZZ	В	
17	0	4	10	42	4.5	O	4	0.2	IVITOXT	608VV	44	
19	6	4	10	44	4.5	8	4	0.25	M12×1	6000ZZ		
	0	4	10	44	4.5	O	4	0.25	IVITZXT	6000VV		
22	8	7	15	50	5.5	9.5	6	0.4	M15×1	6002ZZ		
22	0	/	15	30	5.5	7.5	0	0.4	IVITOXT	6002VV		
30	14	8	22	70	6.6	11	10	1.1	M20×1	6204ZZ		
36	17	10	27	80	9	15	13	1.5	M25×1.5	6205ZZ		

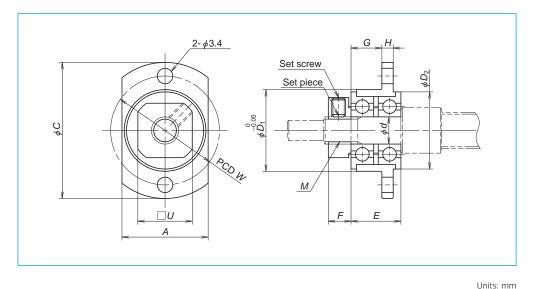
B441 B442

Simple support side support unit (square type)

Units: mm

Reference no.	Use	$d_{\scriptscriptstyle 2}$	A	В	С	D	E	R	Counter bore dimensions				Mass
									W	Χ	Y	Z	(kg)
WBK08S-01	General		52	32	17	26	25	15	38	6.6	11	12	0.15
WBK08S-01B	Low type	6	62	31	15.5	31	_	16	46	9	14	18	0.2
WBK08S-01C	Clean environment		52	32	17	26	25	15	38	6.6	11	12	0.15
WBK10S-01	General	. 8	70	43	25	35	36	20	52	9	14	11	0.4
WBK10S-01C	Clean environment	0	70	0 43	25	33	30	20	52	,	14	''	0.4
WBK12S-01	General		70	43	25	35	36			9	14	11	0.35
WBK12S-01B	Low type	10		38	20	38	_	20	52			19	0.4
WBK12S-01C	Clean environment			43	25	35	36					11	0.35
WBK15S-01	General			50	30	40	41					11	0.45
WBK15S-01B	Low type	15	80	42	22	42	_	20	60	9	14	23	0.4
WBK15S-01C	Clean environment			50	30	40	41					11	0.45
WBK17S-01	General	17	86	64	39	55	50	23	68	9	14	11	0.8
WBK20S-01	General	20	95	58	30	45	56	26	75	11	17	15	0.8
WBK25S-01	General	25	105	68	35	25	66	30	85	11	_	_	0.9

Notes: 1. Use datum face B for mounting to the machine base.

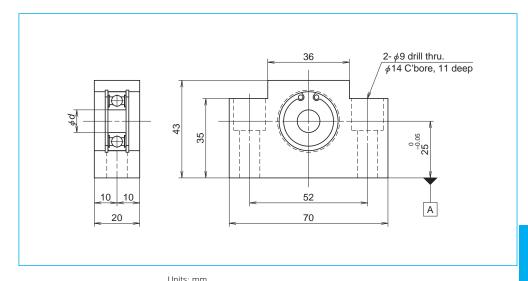

Specifications of support unit

	Fixed s	support side si	upport unit			Simple support side support unit				
Reference no.	Use	Axia Basic dynamic load rating <i>Ca</i> [N]	al direction Load limit [N]	Stiffness [N / μm]	Maximum starting torque [N · cm]	Reference no.	Bearing reference no.	Radial direction Basic dynamic load rating C [N]		
WBK06-01A	General	2670	1040	28	0.49	_	_	_		
WBK06-11	General	2670	1040	28	0.49	_	_	_		
WBK08-01A	General	4400	1450	49	0.88	WBK08S-01	606ZZ	2260		
WBK08-01B	Low type	6600	2730	94	1.9	WBK08S-01B	606ZZ	2260		
WBK08-01C	Clean environment	3100	1100	36	0.52	WBK08S-01C	606VV	2260		
WBK08-11	General	4400	1450	49	0.88	WBK08S-01	606ZZ	2260		
WBK08-11B	Low type	6600	2730	94	1.9	_	606ZZ	2260		
WBK08-11C	Clean environment	3100	1100	36	0.52	WBK08S-01C	606VV	2260		
WBK10-01A	General	6600	2730	94	1.9	WBK10S-01	608ZZ	3300		
WBK10-01B	Low type	6600	2730	94	1.9	_	608ZZ	3300		
WBK10-01C	Clean environment	4250	1364	50	1.1	WBK10S-01C	608VV	3300		
WBK10-11	General	6600	2730	94	1.9	WBK10S-01	608ZZ	3300		
WBK10-11C	Clean environment	4250	1364	50	1.1	WBK10S-01C	608VV	3300		
WBK12-01A	General	7100	3040	104	2.1	WBK12S-01	6000ZZ	4550		
WBK12-01B	Low type	7100	3040	104	2.1	WBK12S-01B	6000ZZ	4550		
WBK12-01C	Clean environment	4700	2443	57	1.2	WBK12S-01C	6000VV	4550		
WBK12-11	General	7100	3040	104	2.1	WBK12S-01	6000ZZ	4550		
WBK12-11C	Clean environment	4700	2443	57	1.2	WBK12S-01C	6000VV	4550		
WBK15-01A	General	7600	3380	113	2.4	WBK15S-01	6002ZZ	5600		
WBK15-01B	Low type	7600	3380	113	2.4	WBK15S-01B	6002ZZ	5600		
WBK15-01C	Clean environment	5100	2757	63	1.3	WBK15S-01C	6002VV	5600		
WBK15-11	General	7600	3380	113	2.4	WBK15S-01	6002ZZ	5600		
WBK15-11C	Clean environment	5100	2757	63	1.3	WBK15S-01C	6002VV	5600		
WBK17-01A	General	13400	5800	120	3.5	WBK17S-01	6203ZZ	9550		
WBK20-01	General	17900	8240	155	6.2	WBK20S-01	6204ZZ	12800		
WBK20-11	General	17900	8240	155	6.2	WBK20S-01	6204ZZ	12800		
WBK25-01	General	20200	10000	192	7.2	WBK25S-01	6205ZZ	14000		
WBK25-11	General	20200	10000	192	7.2	WBK25S-01	6205ZZ	14000		
WBK04R-11	General	615	490	6.5	0.59	_	_	_		
WBK06R-11	General	1280	930	9	0.59	_	_	_		

Support kits for ball screws for transfer equipment

Support kits are for the RMS type ball screw.

However, please use support units for general use in case of RMA1002 or larger rolled ball screws.


Reference no.	Α	С	d	<i>D</i> ₁	D_2	Ε	F	G	Н	W	U	М
WBK04R-11	14	25	4	13	12.5	9	5	5	2.5	19	10	M4×0.5
WBK06R-11	19	30	6	18	17	11	5	6.8	2.5	24	12	M6×0.75

Reference no.	Applicable ball screw	Locknut tightening torque (reference) [N·cm]	Set screw tightening torque (reference) [N·cm]
WBK04R-11	RMA0601	100	38 (M2.5)
WBK06R-11	RMA0801 RMA0801.5 RMA0802	190	69 (M3)

Notes

- 1. Oscillate bearings slowly so that they fall into a place to make run-out of mounting face minimal, and then tighten a locknut.
- 2. A support kit is put on a provisional shaft (bolt) for shipping.
- 3. When securing support unit on the shaft, insert the set piece (brass pad) that is provided with the support unit into the lock nut screw hole, and then tighten the set screw.

Simple support side support units for VFA type ball screws

		Offits: Iffiff
Reference no.	d	Applicable ball screw
WBK12SF-01	12	VFA1210
WBK15SF-01	15	VFA1510
WBK 135F-01	15	VFA1520

Notes:

- 1. Use datum face A for mounting to the machine base.
- This type of simple side support unit is made exclusively for NSK VFA ball screws. This unit supports the outer diameter of the screw shaft.

Spacer

The shaft requires an optional spacer on the journal where the ball thread is cut through the bearing shoulder. This is common for R series for transportation ball screw shaft, when mounting the support unit for fixed support side.

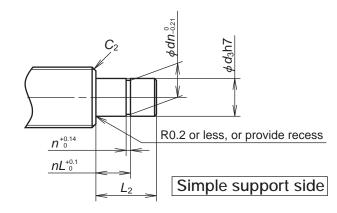
A		1
ф <i>D</i> h9		ρφ
6		V
<u> </u>		
	< B >	

				Units: mm
Reference no.	Internal	Outside	Width	Applicable
	diameter, d	diameter, D	В	support unit
WBK06K	6	9.5	5.0	WBK06-**
WBK08K	8	11.5	5.5	WBK08-**
WBK10K	10	14.5	5.5	WBK10-**
WBK12K	12	15.0	5.6	WBK12-**
WBK15K	15	19.5	10.0	WBK15-**
WBK17K	17	24.4	7.0	WBK17-**
WBK20K	20	25.5	11.0	WBK20-**
WBK25K	25	32.0	14.0	WBK25-**

Halta: manage

Screw shaft end configuration

Dimensions of the shaft end configurations for the light load and small equipment support units, are shown in the table below. When using a spacer


for a ball screw for transportation, add the width of the spacer (B from table of spacer dimensions on page B446) to the L_1 dimension below.

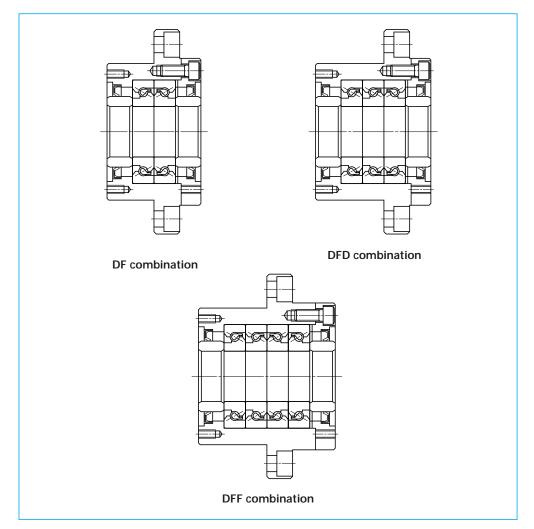
Radius marked with * above is 0.15 or less for WBK04R-11 and WBK06R-11.

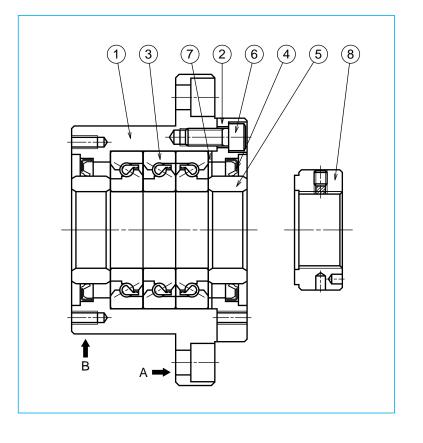
- 11	Inits:	m	m
U	iiiito.	111	111

Fixed support side									
Reference no.	Bearing	j journal	Locknut thread Sealing part				Chamfer		
Reference no.	<i>d</i> ₁	L ₁	m ₁	mL ₁	d_2	N	C ₁		
WBK06- * *	6	22.5	M6×0.75	7	9.5	3.5	0.2		
WBK08- * *	8	27	M8×1	9	11.5	4	0.2		
WBK10- * *	10	30	M10×1	10	14	6	0.2		
WBK12- * *	12	30	M12×1	10	15	6	0.2		
WBK15- * *	15	40	M15×1	15	19.5	5	0.3		
WBK17- * *	17	46	M17×1	17	24	7	0.3		
WBK20- * *	20	53	M20×1	16	25	10	0.3		
WBK25- * *	25	62	M25×1.5	20	32	14	0.5		
WBK04R-11	4	15	M4×0.5	7.5	_	_	0.3		
WBK06R-11	6	17	M6×0.75	7.5	_	_	0.3		

Units: mm

Simple support side										
Reference no.	Bearing	journal	Snap ring groove Chai							
Reference no.	$d_{\scriptscriptstyle 3}$	L_2	n	dn	nL	C_2				
	_	_	_	_	_	_				
WBK08S- * *	6	9	0.8	5.7	6.8	0.2				
WBK10S- * *	8	10	0.9	7.6	7.9	0.2				
WBK12S- * *	10	22	1.15	9.6	9.15	0.5				
WBK15S- * *	15	25	1.15	14.3	10.15	0.5				
WBK17S-**	17	16	1.15	16.2	13.15	0.5				
WBK20S- * *	20	19	1.35	19	15.35	0.5				
WBK25S- * *	25	20	1.35	23.9	16.35	0.5				

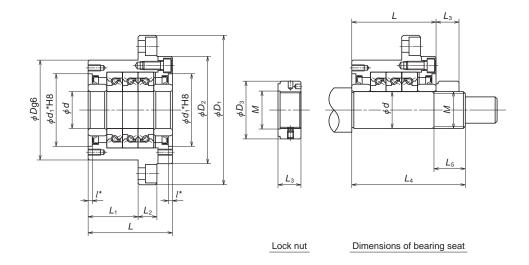

B447 B448


(2) Dimensions of support unit for ball screws for heavy-load/machine tools

Support units for heavy-load/machine tools use a thrust angular contact ball bearing (TAC Series) with high rigidity and accuracy. The thrust angular contact ball bearing has very

suitable functions and structure as a ball screw support bearing.

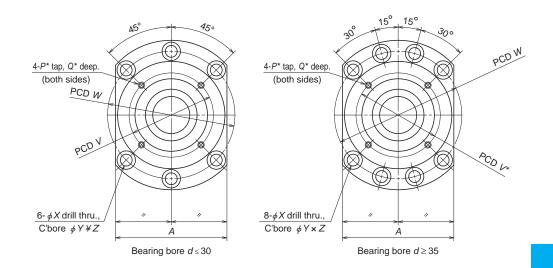
There are three combinations as shown below.


Parts list

Part number	Part name	Quantity
1	Housing	1
2	Retaining cover	1
3	High accuracy thrust angular contact ball bearing	One set
4	Dust seal	2
5	Collar	2
6	Preload bolt	6 or 8
7	Shim	One set
8	Lock nut	1

Remarks

- 1. Mount sections \boldsymbol{A} and \boldsymbol{B} to the machine base.
- 2. NSK support units are precisely preloaded and adjusted. Components ①, ②, ③, ④, ⑥, ⑦ are assembled into a unit. Do not disassemble.
- 3. Grease is packed into the bearings.
- 4. Lock nut ® is exclusively prepared for ball screw. The end face of the nut is in strict control being precisely perpendicular to the V thread. Secure the lock nut using the set screw. Lock nut is also available as an accessory (See page B453). Refer to Page B457 as well for high-precision thrust angular contact ball bearing (TAC Series).



Support unit		Support unit															
	d	D	D_1	D_2	L	L_1	L_2	Α	W	Χ	Y	Ζ	d_1^*	I*	V*	P*	Q*
WBK 17DF-31	17	70	106	72	60	32	15	80	88	9	14	8.5	45	3	58	M5	10
WBK 20DF-31	20	70	106	72	60	32	15	80	88	9	14	8.5	45	3	58	M5	10
WBK 25DF-31 WBK 25DFD-31	25	85	130	90	66 81	33 48	18	100	110	11	17.5	11	57	4	70	M6	12
WBK 30DF-31 WBK 30DFD-31	30	85	130	90	66 81	33 48	18	100	110	11	17.5	11	57	4	70	M6	12
WBK 35DF-31 WBK 35DFD-31 WBK 35DFF-31	35	95	142	102	66 81 96	33 48 48	18	106	121	11	17.5	11	69	4	80	M6	12
WBK 40DF-31 WBK 40DFD-31 WBK 40DFF-31	40	95	142	102	66 81 96	33 48 48	18	106	121	11	17.5	11	69	4	80	M6	12

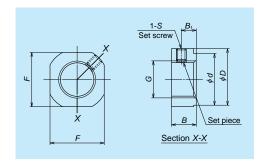
Remarks 1. Rigidity

- Values in the Table are theoretical values obtained from the elastic deformation between the groove and the balls.
- 2. Starting torque
- Starting torque indicates torque due to the preload of the bearing. It does not include seal torque.
- 3. The tolerance of the shaft bearing seat
 - We recommend h5 class of the fits tolerance.

Unit: mm

iit. 1111111	OTIL										
	Bearing seat for unit		Mass	Lock nut Ma		Lock	Maximum Starting torque	Axial rigidity	Preload	Permissible axial load	Basic dynamic load rating
Ls	L ₄	d	$1 \cdot \text{cm}$) M D_3 L_3 (kg) C		(N · cm)	(N/μm)	(N)	(N)	C _a (N)		
23	81	17	1.9	18	37	M17×1	19	750	2150	26600	21900
23	81	20	1.9	18	40	M20×1	19	750	2150	26600	21900
. 26	89	25	3.1	20	45	M25×1.5	29	1000	3150	40500	28500
1 20	104	25	3.4	20	45	IVIZ5X1.5	39	1470	4300	81500	46500
. 26	30 89 20		3.0	20	50	M30×1.5	30	1030	3350	43000	29200
1 20	104	30	3.3	20	50	1VI3UX 1.5	40	1520	4500	86000	47500
	92		3.4				34	1180	3800	50000	31000
7 30	107	35	4.3	22	55	M35×1.5	45	1710	5200	100000	50500
2	122		5.0				59	2350	7650	100000	50500
	92		3.6				36	1230	3900	52000	31500
7 30	107	40	4.2	22	60	M40×1.5	47	1810	5300	104000	51500
)	122		4.7				61	2400	7850	104000	51500

Remarks 4. Dimensions with * (asterisk) mark


*Pilot diameter and tapped screws marked with "asterisk *" are used for seal unit installation for NSK standard hollow shaft ball screws. They also can be used for dust cover and damper installation.

5. Grease is packed into the bearing. It is not necessary to apply grease before use.

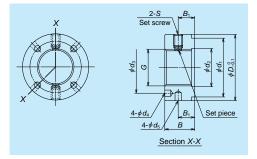
In addition to the support units, NSK has other components for the ball screw as shown below. (3) Lock nuts

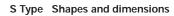
Ball screw support bearing must be installed

with minimum inclination. NSK lock nuts exclusive for ball screw help to reduce this inclination.

A Type Shapes and dimensions

A Type lock nuts


A Type lock nuts


Lock nut reference number	G	D	F	В	d
WBK06L-01	M6×0.75	14.5	12	5	10
WBK08L-01	M8×1	17	14	6.5	13
WBK10L-01	M10×1	20	17	8	16
WBK12L-01	M12×1	22	19	8	17
WBK15L-01	M15×1	25	22	10	21
WBK17L-01	M17×1	29	24	13	24
WBK20L-01	M20×1	35	30	13	26
WBK25L-01	M25×1.5	42	36	16	34

Remarks: Insert a set piece (brass pad) and tighten the securing set screw.

S Type lock nuts

Lock nut reference number	ck nut reference number G		В	d ₁	d ₂	$d_{\scriptscriptstyle 3}$
WBK17L-31	7L-31 M17×1 37		18	30	18	27
WBK20L-31	M20×1	40	18	30	21	30
WBK25L-31	M25×1.5	45	20	40	26	35
WBK30L-31	M30×1.5	50	20	40	31	40
WBK35L-31	M35×1.5	55	22	50	36	45
WBK40L-31	M40×1.5	60	22	50	41	50

S Type lock nuts

Unit: mm

B_1	S	Tightening torque (N · cm) (for reference)	Set screw tightening torque (reference) [N - cm]
2.75	M3, with brass made set piece	190	69 (M3)
4	M3, with brass made set piece	230	69 (M3)
5	M4, with brass made set piece	280	147 (M4)
5	M4, with brass made set piece	630	147 (M4)
6	M4, with brass made set piece	790	147 (M4)
8	M4, with brass made set piece	910	147 (M4)
8	M4, with brass made set piece	1670	147 (M4)
10	M6, with brass made set piece	2060	490 (M6)

Unit: mm

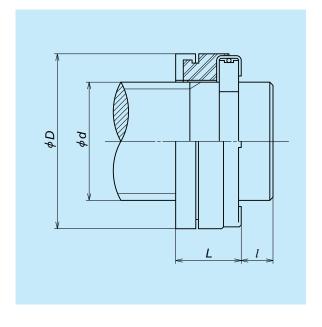
d_4	$d_{\scriptscriptstyle 5}$	B ₁	S	Tightening torque (N · cm) (for reference)	Set screw tightening torque (reference) [N - cm]
4.3	4	10	M6	4100	490 (M6)
4.3	4	10	M6	4500	490 (M6)
4.3	4	11	M6	8500	490 (M6)
4.3	5	11	M6	10100	490 (M6)
4.3	5	12	M6	13800	490 (M6)
4.3	5	12	M6	15500	490 (M6)

(4) Grease unit

NSK has numerous grease types that are exclusive for ball screw lubrication. They come in bellows-shaped tubes, that can be attached

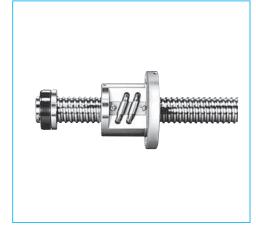
to a grease gun quickly. For details of grease types, refer to Page D13 or for grease pump and nozzles, refer to Page D20.

NSK greases


Lubricant greases

Name	Use	Base oil viscosity mm²/s (40°C)
NSK Grease AS2	For heavy load	130
NSK Grease PS2	High-speed, light load	15
NSK Grease LR3	High-speed, medium load	30
NSK Grease LG2	Clean environment	30
NSK Grease LGU	Clean environment	100

(5) Travel stopper (by order)


A travel stopper is installed in some cases to prevent the nut from overrunning due to the malfunction of the safety system of the equipment or by human error. NSK has several types of series of shock-absorbing travel stoppers. Please request NSK for installation.

The travel stopper is not sold as a single item since it does not have a general use. Also, a travel stopper cannot be used for end cap type recirculation system, because the stopper would come directly into contact with the ball recirculating portion.

				Unit: mm
stopper No.	Applicable shaft dia.	Outer dia.	Length	Shaft end width (Min.)
	d	D	L	1
BSR 20	20	32	16	5
BSR 25	25	38	16	5
BSR 32	32	46	20	6
BSR 40	40	60	22	6
BSR 50	50	72	24	7
BSR 63	63	85	25	7

Remarks: This stopper is patented by NSK Ltd.

Shock-absorbing travel stopper

Thrust Angular Contact Ball Bearing for Ball Screw

(1) Features

This is highly rigid and accurate ball screw support bearing often used for the machine tool driving mechanism.

- 1 High axial rigidity
- Uses many balls, and set high contact angle at 60 degrees.
- 2 Small friction torque
- Friction torque is smaller than that of tapered or cylindrical roller bearing. This contributes to accurate rotation by a small driving power.
- 3 Axial play is pre-adjusted
- Combination bearings are already adjusted to a suitable preload. Universal combination bearing (SU) furnishes certain preload for all combinations (DB, DF, and other).
- Simple mounting structure
- A duplex combination of bearings can receive axial and radial loads. Therefore, the installation structure is simpler than when both a thrust bearing and a radial bearing are used.
- ⑤ Easy handling
- Inner and outer rings are inseparable, and are easy to handle.
- 6 Superb polyamide resin retainer
- Uses polyamide resin retainer which is superb to friction and furnishes high precision rotations.

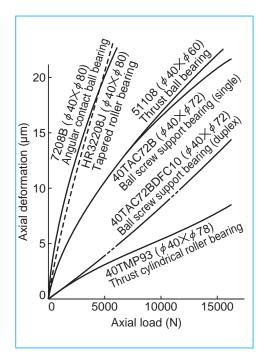


Fig. 1 Axial rigidity of various bearings

Table 2 Comparison with other types of bearings

Bearing type	Bearing rigidity (See Fig. 1)	Starting torque	Preload adjustment	Installation structure
Thrust angular contact ball bearing for NSK precision ball screw support unit	High	Low	Not required	Simple
Combined angular contact ball bearing	Low	Low	Not required	Simple
Combination of tapered roller bearings	Low	High	Complicated	Simple
Thrust ball bearing and radial bearing	High	Low	Complicated	Complicated
Thrust cylindrical roller bearing and radial bearing	Extremely high	Extremely high	Complicated	Complicated

Note: Consult NSK when you use these bearings other than the purpose of ball screw support.

(2) Composition of reference number

30 TAC 62 B DF C10 PN7A Bearing bore (mm) Accuracy Bearing model code Axial play code Combination code Bearing outside diameter (mm) Internal design code

Remark: As "30 TAC 62 B," any part of the first half of the reference number is referred to as "nominal size" in this catalog.

B457 B458

(3) Bearing combinations

Generally, a set uses more than two pieces (referred to as 'two rows') of bearings and, thus the preload is applied.

There are two types of combination:

Bearing combination

Bearings are adjusted as a single combined set. Since the bearing alignment is pre-set, there is no interchangeability;

Universal combination bearing (SU)

A combination of independent bearings, which is manufactured as a single bearing. Bearings are randomly-matched to obtain required preload by more than one of randomly picked up bearings.

① Bearing combination

- Figure 2 shows examples of combinations. There is "V" mark on the outside surface of the bearing to avoid misarrangement. A complete letter "V" should be formed when all bearings align correctly to form a set.
- DF combination which easily absorbs misalignment with the ball screw nut is used in general.

mbination outside surface d

 Unlike the above case, marks on the bearing outside surface do not form a letter "V." The tip of the "V" on each bearing simply indicates the direction to which axial load can be applied.

2 Universal combination bearing (SU)

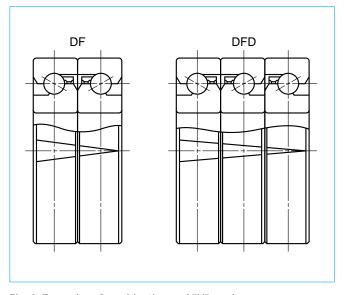


Fig. 2 Examples of combination and "V" mark

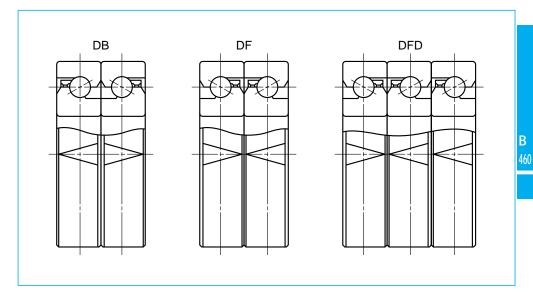


Fig. 3 Example of universal combination (SU) and "V" mark

(4) Preload, rigidity, and starting torque

The table 3 shows preload, rigidity (spring modulus), and starting torque with grease lubrication. (The starting torque should be 1.4 times higher when oil is used as a lubricant.) Consult NSK for the bearing combinations not included in the Table below.

(5) Accuracy

1 Accuracy grades

Table 3 Preload, rigidity, and starting torque

		Duplex com	bination DF		Triplex comb	oination DFD
Reference number	Axial play code	Preload (N)	Rigidity (N/µm)	Starting torque (N · m)	Axial play code	Preload (N)
15TAC 47B	C10	2150	750	0.14	C10	2950
17TAC 47B	C10	2150	750	0.14	C10	2950
20TAC 47B	C10	2150	750	0.14	C10	2950
25TAC 62B	C10	3150	1000	0.23	C10	4300
30TAC 62B	C10	3350	1030	0.24	C10	4500
35TAC 72B	C10	3800	1180	0.28	C10	5200
40TAC 72B	C10	3900	1230	0.28	C10	5300
40TAC 90B	C10	5000	1320	0.48	C10	6750
45TAC 75B	C10	4100	1270	0.29	C10	5600
45TAC 100B	C10	5900	1520	0.58	C10	8050
50TAC 100B	C10	6100	1570	0.60	C10	8250
55TAC 100B	C10	6100	1570	0.60	C10	8250
55TAC 120B	C10	6650	1810	0.64	C10	9100
60TAC 120B	C10	6650	1810	0.64	C10	9100

Table 4 Tolerance: thrust angular contact ball bearing for ball screw support

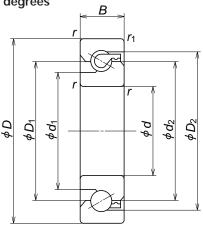
					_							Unit: µm
Nominal		Tolerance of bore			Tol	erance of	outside d	iameter		e of inner width	Axial run out of inner or outer ring	
bearing outside d	bore or liameter	Accuracy grade			Accuracy grade			Accurac	y grade	Accuracy grade		
(mr		PN7A PN7		PN7B		PN7	PN7A PN7B		1		17A 17B	PN7A PN7B
over	or less	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	Maximum
10	18	0	-4	0	-4	-	-	-	-	0	-80	2.5
18	30	0	-5	0	-4	-	-	-	-	0	-120	2.5
30	50	0	-6	0	-4	0	-6	0	-4	0	-120	2.5
50	80	0	-7	0	-5	0	-7	0	-5	0	-150	2.5
80	120	0	-8	0	-6	0	-8	0	-6	0	-200	2.5

Remarks: The tolerance of the outer ring width is the same as that of the inner ring width of the same bearing.

② Fits

Table 5 shows recommended values of the tolerance of shaft and housing bore.

			Quadruplet combination DFF							
Rigidity (N/µm)	Starting torque (N · m)	Axial play code	Preload (N)	Rigidity (N/µm)	Starting torque (N · m)					
1080	0.20	C10	4300	1470	0.29					
1080	0.20	C10	4300	1470	0.29					
1080	0.20	C10	4300	1470	0.29					
1470	0.31	C10	6250	1960	0.46					
1520	0.33	C10	6650	2010	0.49					
1710	0.37	C10	7650	2350	0.55					
1810	0.38	C10	7850	2400	0.57					
1960	0.65	C10	10300	2650	0.96					
1910	0.40	C10	8250	2550	0.59					
2210	0.78	C10	11800	3000	1.16					
2300	0.80	C10	12300	3100	1.18					
2300	0.80	C10	12300	3100	1.18					
2650	0.86	C10	13200	3550	1.27					
2650	0.86	C10	13200	3550	1.27					


Table 5 Tolerance of shaft bearing seat and housing bore Unit: µm

Size of shaft bor (mr	e	bearin	e of shaft ig seat i5	Tolerance of housing hole H6					
over	or less	upper	lower	upper	lower				
10	18	0	-8	-	-				
18	30	0	-9	-	-				
30	50	0	-11	+16	0				
50	80	0	-13	+19	0				
80	120	0	-15	+22	0				

B461 B462

TACB

Nominal contact angle 60 degrees

speed	tational speed in ⁻¹)	Permissible rot		Dimensions (mm)			External dimensions (mm)				
orication B	Oil lubricatio	Grease lubrication	D_2	D_1	$d_{\scriptscriptstyle 2}$	d ₁	Γ ₁ Min.	<i>r</i> Min.	В	D	d
00 1 00 2	8000	6000	39.6	34	34	27.2	0.6	1	15	47	15
	8000	6000	39.6	34	34	27.2	0.6	1	15	47	17
	8000	6000	39.6	34	34	27.2	0.6	1	15	47	20
	6000	4500	50.7	45	45	37	0.6	1	15	62	25
00 3	5600 5000 4800 4000	4300 3600 3600 3000	53.2 60.7 62.7 77.2	47 55 57 68	47 55 57 68	39.5 47 49 57	0.6 0.6 0.6 0.6	1 1 1	15 15 15 20	62 72 72 90	30 35 40 40
00 45	4300	3200	67.7	62	62	54	0.6	1	15	75	45
	3600	2600	84.2	75	75	64	0.6	1	20	100	45
	3400	2600	87.7	79	79	67.5	0.6	1	20	100	50
00 55	3400	2600	87.7	79	79	67.5	0.6	1	20	100	55
	3000	2200	102.2	93	93	82	0.6	1	20	120	55
	3000	2200	102.2	93	93	82	0.6	1	20	120	60

Note: (1) Values are based on a standard preload (C10).

Dynamic equivalent load P_a =

Bearing configurat		Duplex			Triplex		Quadruplet			
Combination Number of the row that	code	DF	DT	DFD		DTD	DFT	DFF	DFT	
Number of the row that receives, e=2.17	axial load	One row	Two rows	One row	Two rows	Three rows	One row	Two rows	Three rows	
F₃/F,≤e	Χ	1.9	1	1.43	2.33	-	1.17	2.33	2.53	
I all Lac	Y	0.54	Í	0.77	0.35		0.89	0.35	0.26	
$F_a/F_r > e$	Χ	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
1 a/1 r/ C	Y	1	1	1	1	1	1	1	1	

Basic	dynamic load ratir	ng <i>C</i> a	Р	ermissible axial load	t	Mass
One row	Two rows	Three rows	One row	Two rows	Three rows	(kg) (Reference)
sustaining load	sustaining load	sustaining load	sustains load	sustain load	sustain load	
DF	DT, DFD, DFF	DTD, DFT	DF	DT, DFD, DFF	DTD, DFT	
(N)	(N)	(N)	(N)	(N)	(N)	
21900	35500	47500	26600	53000	79500	0.144
21900	35500	47500	26600	53000	79500	0.144
21900	35500	47500	26600	53000	79500	0.135
28500	46500	61500	40500	81500	122000	0.252
29200	47500	63000	43000	86000	129000	0.224
31000	50500	67000	50000	100000	150000	0.310
31500	51500	68500	52000	104000	157000	0.275
59000	95500	127000	89500	179000	269000	0.674
33000	53500	71000	57000	114000	170000	0.270
61500	100000	133000	99000	198000	298000	0.842
63000	102000	136000	104000	208000	310000	0.778
63000	102000	136000	104000	208000	310000	0.714
67500	109000	145000	123000	246000	370000	1.23
67500	109000	145000	123000	246000	370000	1.16

^{* &}quot;Row" means the quantity of bearings that receive axial load.
"Two rows" means two bearings are receiving axial load.

End Deflector Type B467
Tube Type B473
Deflector Type B507
End Cap Type B521

B-3-3 Dimension Table and Reference Number of Standard Nut Ball Screws

B465 B466

B-3-3.1 End Deflector Type Ball Screw

NSK has a patent for this product.

1. Features

Silent and high quality of sound

The average noise level is reduced by more than 6 dB compared with our conventional products. At low-speed rotation, the ball screws are nearly silent, while the lowest noise level is achieved at high-speed rotation.

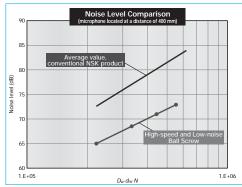


Fig. 1 Comparison of noise level

High-speed operation

Realizes at d·n 180000 outstanding for ball screws and far surpassing the 100000 d·n performance of conventional return tube type products. For high lead ball screws, high-speed operation at over 200m/min is also possible.

Compact

The external diameter of the ball nut is 30% smaller than our conventional models. Compact configurations are possible for low-profile XY tables as well as for other devices and equipment.

Grease fitting provided as standard equipment

The ball screws with shaft diameters of less than Ø25 are standardly equipped with a grease fitting (M5 \times 0.8). Lubrication ports are provided in 2 places to facilitate maintenance. The ball screws can be easily connected to an integrated lubrication system.

2. Specifications

(1) Recirculation system

Fig. 2 shows the structure of the end-deflector recirculation system.

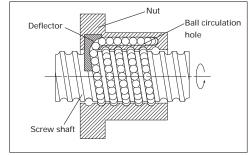


Fig. 2 Structure of end-deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	C0, C1, C2, C3, C5, Ct7
Axial play	Z, 0 mm (Preload); T, 0.005 mm or less
Axiai piay	S, 0.020 mm or less; N, 0.050 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d·n value : 180000 or less
Standard of rotational speed: 5000 min⁻¹
Note: Please also review the critical speed.

See "Technical Description: Permissible rotational speed" (Page B51) for details.

(4) Seal

Compact, thin plastic seal is available. Nut outside diameter is compact compare with the return tube recirculation system.

(5) Option

Optional NSK K1 lubrication unit, molded from resin and impregnated with lubrication oil, supplies fresh oil onto ball rolling surfaces, ensuring long-term, maintenance-free operation. Please contact NSK when using NSK K1.

3. Design precautions

When designing the shaft end of a ball screw which diameter is 25 mm or less, or 32 mm or over, and the lead is the same as its shaft diameter, one end of the screw must meet either one of the following conditions. If not, we

cannot install the ball nut on the screw shaft.

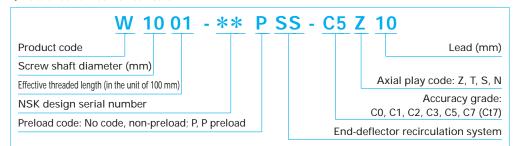
- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

For general precautions regarding ball screws, refer to "Design Precautions" (Page B84) and "Handling Precautions" (Page B103).

4. Product categories

End deflector type has a model as follows.

Table 2 End-deflector type ball screw product categories


Nut model	Shape	Flang shape	Nut shape	Preload system
BSS		Circular Ⅱ, Ⅲ	Circular	Non-preload, Slight axial play P preload (light preload)

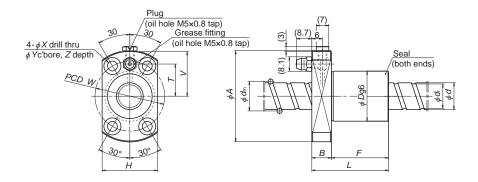
5. Example of model number in dimension tables

A structure of "Model number" and "Reference number for ball screw" are as follows.

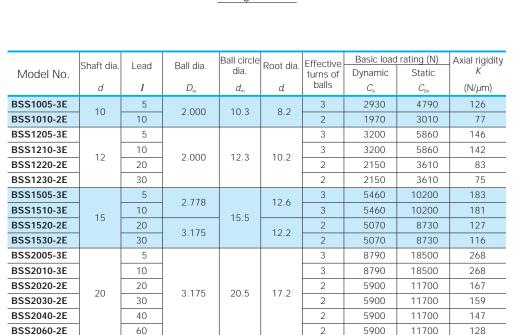
BSS2505-3E

BSS2510-4E

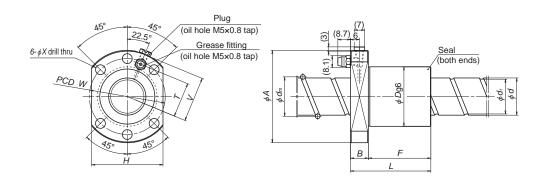
BSS2520-2E


BSS2525-2E

BSS2530-2E


BSS2550-2E

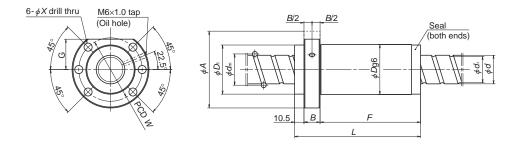
3.175

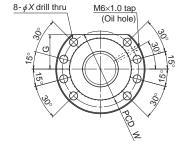

Flange TYPE I

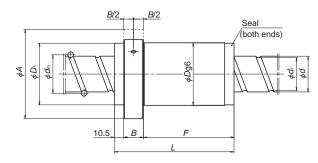
Note: The axial rigidity in the table above is a theoretical value derived from elastic displacement between screw grooves and balls when axial load is applied to a ball nut for which preload is set at 3% of the basic dynamic load rating (*C_u*). For ball screws with shaft diameters less than Ø25, the standard Compact FA PSS can be available.

25.5

22.2




Flange TYPE I


Unit: mm

Nut entire	Nut	Flange	Flange	Nut			Flange Bolt ho		t hole Bolt hole dimension			Oil hole				
length	diameter	diameter	width	length				PCD				distance				
L	D	Α	В	F	Н	V	TYPE	W	X	Y	Ζ	Τ				
29	23	43	11	18	26	21	I	33	4.5	8	4.5	14				
32	23	43	- ' '	21	20	21	_	33	7.5		4.5	1.4				
30				19						8	4.5					
43	24	44	11	32	27	21.5	I	34	4.5			14.5				
50	'			39		21.0	1		1.0		1.0	11.0				
70				59												
30	28	51		19	31	25		39				18				
43	20		J1	11	32	01	20	I		5.5	9.5	5.5	10			
51	32	55		40	33	27	•	43	0.0	7.0	0.0	20				
71	02	00		60		27		10				20				
31								18								
45			13	32	38	30.5	I	49	6.6	11	6.5					
54	36	62		41								23.5				
74	30	02	13	61	30	30.3	1	77		' '	0.5	25.5				
92				79												
129				116												
32				20												
56				44												
54	40	62	12	42	48	30.5	П	51	6.6			23.5				
63	40	02	12	51	40	30.3	п	31	0.0			23.3				
74			62	62												
114				102												

Flange TYPE **II**

	Shaft dia.	1	Ball dia.	Ball circle	Root dia.	Effective	Basic load	rating (N)	Axial rigidity
Model No.	Shart dia.	Lead	Ball dia.	dia.	Root dia.	turns of	Dynamic	Static	K
TVIOGCI TVO.	d	1	$D_{\scriptscriptstyle \!\!\!\!W}$	d _m	d,	balls	$C_{\rm a}$	C_{0a}	(N/μm)
BSS3205-4E		5	3.175	32.5	29.2	4	14200	41400	534
BSS3210-6E	1	10				6	43300	111000	865
BSS3212-5E		12			07.0	5	36700	90800	716
BSS3216-5E	32	16	5.556	33		5	36700	90800	716
BSS3220-5E		20	5.556	33	27.2	5	36700	90800	708
BSS3232-2E		32				2	15300	32400	261
BSS3264-2E]	64				2	15300	32400	232
BSS3605-3E		5	3.175	36.5	33.2	3	11400	34100	433
BSS3610-6E		10				6	55200	142000	970
BSS3612-6E	36	12	/ 25	27	30.4	6	55200	142000	967
BSS3616-6E		16	6.35	37		6	55200	142000	961
BSS3620-6E		20				6	55200	142000	959
BSS4010-5E		10				5	49300	130000	875
BSS4012-5E		12				5	49300	130000	873
BSS4016-5E		16				5	49300	130000	875
BSS4020-5E	1 40	20	/ 25	41	34.4	5	49300	130000	868
BSS4025-4E	40	25	6.35	41	34.4	4	40100	103000	686
BSS4030-3E		30				3	30600	74000	505
BSS4040-2E		40				2	20600	46600	319
BSS4080-2E		80				2	20600	46600	286
BSS4510-5E		10				5	51400	146000	961
BSS4512-5E		12				5	51400	146000	959
BSS4516-5E	45	16	6.35	46	39.4	5	51400	146000	955
BSS4520-5E	45	20	0.33	40	39.4	5	51400	146000	950
BSS4525-5E		25				5	51400	146000	954
BSS4530-4E		30				4	41800	116000	752
BSS5010-4E		10				4	44600	129000	836
BSS5012-4E		12				4	44600	129000	944
BSS5016-4E		16				4	44600	129000	832
BSS5020-4E	50	20	6.35	51	44.4	4	44600	129000	837
BSS5025-4E	50	25	0.33	31	44.4	4	44600	129000	828
BSS5030-4E		30				4	44600	129000	821
BSS5050-2E		50				2	22800	58300	383
BSS50100-2E		100				2	22800	58300	342

Note: The axial rigidity in the table above is a theoretical value derived from elastic displacement between screw grooves and balls when axial load is applied to a ball nut for which preload is set at 3% of the basic dynamic load rating (C_a).

Flange TYPE IV

Unit: mm

Nut entire length	Nut diameter	Seal section diameter	Flange diameter	Flange width	Nut length	Notched flange	Flange	Bolt hole PCD	Bolt hole dimension
L	D	D_1	Α	В	F	G	TYPE	W	X
55 104 103 122 141 94	56	55	86	12 18	32.5 75.5 74.5 93.5 112.5 65.5	34	Ш	71	9
153					124.5				
50 109 120 143 166	65	64	95	22	27.5 76.5 87.5 110.5 133.5	36	IV	80	9
99 108 127 146 145 134 110	70	69	100	22	66.5 75.5 94.5 113.5 112.5 101.5 77.5 151.5	38.5	IV	85	9
99 108 127 146 170 164	75	74	110	22	66.5 75.5 94.5 113.5 137.5 131.5	43	IV	93	11
89 96 111 126 145 164 130 224	82	81	118	22	56.5 63.5 78.5 93.5 112.5 131.5 97.5	46	IV	100	11

B471 B472

(medium preload)

(heavy preload)

B-3-3.2 Return Tube Type Ball Screw

1. Features

Return tube type is standard recirculation system for ball screws. It has various combinations of shaft dia, and lead.

2. Specifications

(1) Recirculation system

The structure of return tube recirculation system is shown below.

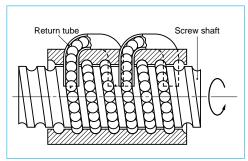


Fig.1 Structure of return tube recirculation system

Table 1 Accuracy grade and axial play

Accuracy grade	SFT, PFT, ZFT, DFT:
Axial play	Z, 0 mm (Preload); T, 0.005 mm or less S, 0.020 mm or less; N, 0.050 mm or less

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are shown in Table 1. Please consult NSK for other grades.

(3) Allowable d·n value and the criterion of maximum rotational speed

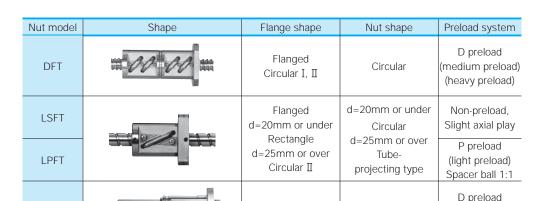
Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below. Basic measure must be taken for the high speed ball screws respectively.

Allowable d·n value:

Standard specification ; 70000 or less High-speed specification; 100000 or less Standard of rotational speed : 3000 min⁻¹

Note: Please also review the critical speed. Refer to "Technical Description: Permissible rotational speed" (Page B51) for details.

(4) Other specifications


Please consult NSK for other specifications not listed in the dimension tables.

3. Product categories

There are four different preloaded systems with several models. Since the leads are in the range from 1/2 to the same length of the shaft diameter (medium-high helix lead), LSFT, LPFT, LDFT Type ball screws are suitable for high-speed operation.

Table 2 Return tube type ball screws product categories

Nut mo	Shape	Flange shape	Nut shape	Preload system
SFT		Flanged d=16mm or under	Cirolo dio	Non-preload, Slight axial play
PFT		Rectangle d=20mm or over Circular I, II	Circle dia.	P preload (light preload) Spacer ball 1:1
ZFT	1000	Flanged Circular I, II	Circle dia.	Z preload (medium preload)

Flanged

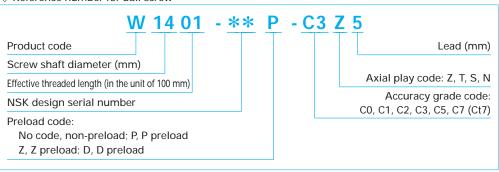
Circular II

Circular

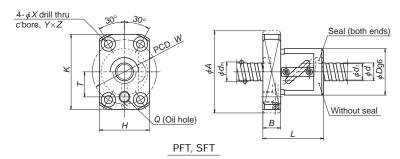
4. Example of model number in dimension tables

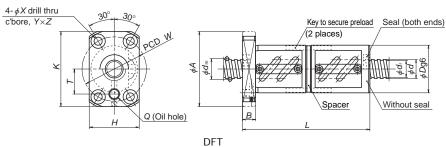
A structure of "Model number" and "Reference number for ball screw" are as follows.

♦ Model number

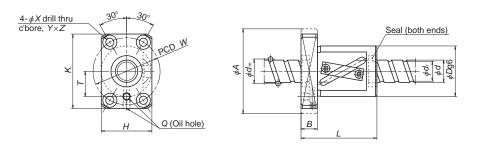

LDFT

SFT 14 05 - 2.5


Nut model:
SFT, PFT, ZFT, DFT
LSFT, LPFT, LDFT
Screw shaft diameter (mm)


Note: In case of Z preload, the number here is twice as large as the effective turns of balls.

♦ Reference number for ball screw



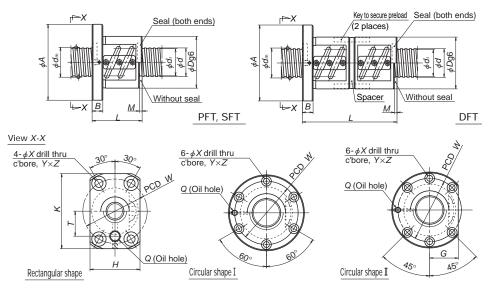
	Model No.	Preload	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	Basic load Dynamic	rating (N) Static	Axial rigidity <i>K</i>
		system	d	1	$D_{\rm w}$	d _m	d_{r}	× Circuits	$C_{\rm a}$	C_{0a}	(N/ <i>µ</i> m)
*	PFT 1004-2.5 SFT 1004-2.5	P Clearance	10	4	2.000	10.3	8.2	2.5×1	1730 2740	2230 4450	76 90
	PFT 1204-2.5 PFT 1204-3 SFT 1204-2.5	P P Clearance Clearance		4	2.381	12.3	9.8	2.5×1 1.5×2 2.5×1	2370 2770 3760	3160 3790 6310	89 106 106
*	SFT 1204-3 PFT 1205-2.5 PFT 1205-3 SFT 1205-2.5	P P Clearance	12	5	2.381	12.3	9.8	1.5×2 2.5×1 1.5×2 2.5×1	4390 2370 2770 3760	7580 3160 3790 6310	126 89 106 106
*	SFT 1205-3 LPFT 1210-2.5 LSFT 1210-2.5	Clearance P Clearance		10	2.381	12.5	10.0	1.5×2 2.5×1	4390 2360 3750	7580 3240 6480	126 90 110
*	PFT 1405-2.5 SFT 1405-2.5 PFT 1405-5 SFT 1405-5	P Clearance P Clearance	14	5	3.175	14.5	11.2	2.5×1 2.5×1 2.5×2 2.5×2	4280 6790 7770 12300	5840 11700 11700 23400	116 140 225 274
*	LPFT 1408-2.5 LSFT 1408-2.5	P Clearance		8	3.175	14.5	11.2	2.5×1	4280 6790	5840 11700	120 140
*	LPFT 1510-2.5 LSFT 1510-2.5	P Clearance	15	10	3.175	15.5	12.2	2.5×1	4450 7070	6380 12800	127 150
	PFT 1604-3 SFT 1604-2.5 DFT 1604-2.5 PFT 1604-5 SFT 1604-3 DFT 1604-3	P Clearance D P Clearance D	16	4	2.381	16.3	13.8	1.5×2 2.5×1 2.5×1 2.5×2 1.5×2 1.5×2	3170 4300 4300 4920 5040 5040	5150 8530 8530 8530 10300 10300	135 134 263 215 160 315

Remarks: 1. Nut flange for shaft diameter 16 mm or smaller comes in rectangular shape.

- 2. Seals are equipped as a standard for LSFT and LPFT of shaft diameter 12 mm or smaller. The outside dimensions are the same as those of without seals.
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

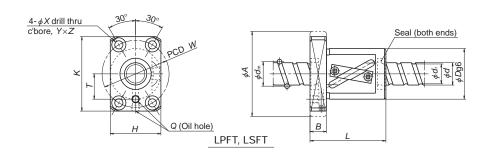
LPFT, LSFT

Unit: mm


					Il nut dimens							
Nut entire length		Flanged diameter	Flanged width B	Rectangle flar	nged diameter K	Bolt h	ole dime	ension Z	Bolt hole PCD W	Oil hole length	Oil hole	
L	D	Α	В	П	Λ	Χ	Υ	Z	VV	I	Q	
34	26	46	10	28	42	4.5	8	4.5	36	14	M6×1	
38 44 38 44	30	50	10	32	45	4.5	8	4.5	40	15	M6×1	
40 48 40 48	30	50	10	32	45	4.5	8	4.5	40	15	M6×1	
50	30	50	10	32	45	4.5	8	4.5	40	15	M6×1	
40 40 55 55	34	57	11	34	50	5.5	9.5	5.5	45	17	M6×1	
46	34	57	11	34	50	5.5	9.5	5.5	45	17	M6×1	
51	34	57	11	34	50	5.5	9.5	5.5	45	17	M6×1	
45 38 70 50 45 85	34 34 36 34 34 36	57	11	34 34 36 34 34 36	50	5.5	9.5	5.5	45	17	M6×1	

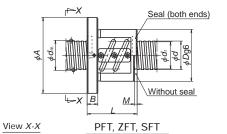
Remarks 4. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.

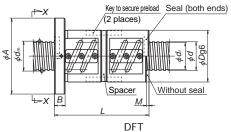
- 5. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 6. The models marked with * are in FA type of standard ball screw with finished shaft end.
- 7. Preload system: P, Oversize ball preload; D, Double nut preload (Refer to Page B5)

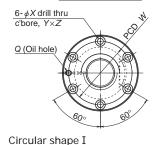

B475 B476

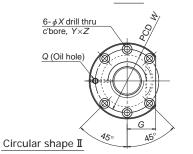
'	Model No.	Preload	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	Basic load Dynamic	rating (N) Static	Axial rigidity <i>K</i>
	iviouei ivo.	system	d	1	$D_{\rm w}$	d _m	d _r	× Circuits	C _a	C_{0a}	(N/μm)
	PFT 1605-3 SFT 1605-2.5 DFT 1605-2.5 PFT 1605-5 SFT 1605-3 DFT 1605-3 SFT 1605-5	P Clearance D P Clearance D Clearance	14	5	3.175	16.5	13.2	1.5×2 2.5×1 2.5×1 2.5×2 1.5×2 1.5×2 2.5×2	5400 7330 7330 8380 8570 8570 13300	8100 13500 13500 13500 16200 16200 27000	158 158 311 258 188 370 307
*	DFT 1605-5 PFT 1606-2.5 SFT 1606-2.5 DFT 1606-2.5 SFT 1606-3 DFT 1606-3 LPFT 1616-1.5	P Clearance D Clearance D	16	6	3.175	16.5	13.2	2.5×2 2.5×1 2.5×1 2.5×1 1.5×2 1.5×2 1.5×1	13300 4620 7330 7330 8570 8570 3600	27000 6750 13500 13500 16200 16200 5410	603 133 158 311 188 370 110
*	LSFT 1616-1.5 SFT 2004-2.5 DFT 2004-2.5 PFT 2004-5 SFT 2004-5 DFT 2004-5	Clearance D P Clearance D Clearance D		4	2.381	20.3	17.8	1.5×1 2.5×1 2.5×1 2.5×2 2.5×2 2.5×2 2.5×2	4710 4740 4740 5420 8600 8600	8110 10700 10700 10700 21500 21500	100 160 315 260 309 608
*	PFT 2005-3 SFT 2005-2.5 DFT 2005-2.5 PFT 2005-3 SFT 2005-3 SFT 2005-3 SFT 2005-5 DFT 2005-5	P Clearance D P Clearance D Clearance	20	5	3.175	20.5	17.2	1.5×2 2.5×1 2.5×1 2.5×2 1.5×2 1.5×2 2.5×2 2.5×2	6060 8230 8230 9410 9620 9620 14900 14900	10300 17100 17100 17100 20600 20600 34300 34300	191 190 376 311 227 446 370 726

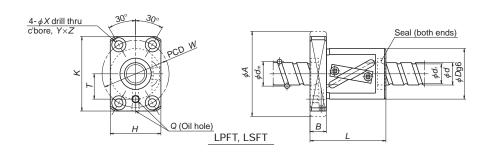
- Remarks: 1. Nut flange for shaft diameter 16 mm or smaller comes in rectangular shape. It comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.
 - 2. If there is no seal for PFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
 - 3. Seals are equipped as a standard for LSFT and LPFT of shaft diameter 12 mm or smaller. The outside dimensions are the same as those of without seals.
 - 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.


Unit: mm


						nut dime							
Nut entire length	diameter	diameter	width	Notched flange			Seal dimension			ension	Bolt hole PCD	Oil hole length	Oil hole
Ĺ	D	Α	В	G	Н	Κ	M	X	Y	Z	W	Ť	Q
52 42 77 57 52 97 57	40	63	11	I	40	55	_	5.5	9.5	5.5	51	20	M6×1
44 44 86 56 110	40	63	11	_	40	55	_	5.5	9.5	5.5	51	20	M6×1
56 56	40	63	12	_	40	55	_	5.5	9.5	5.5	51	17	M6×1
37 69 49 49 93	40	63	11	24	_	_	3	5.5	9.5	5.5	51	_	M6×1
52 41 76 56 52 97 56 106	44	67	11	26	_	_	3	5.5	9.5	5.5	55	_	M6×1


- Remarks 5. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.
 - 6. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
 - 7. The models marked with * are in FA or SA type of standard ball screw with finished shaft end.
 - 8. Preload system: P, Oversize ball preload; D, Double nut preload (Refer to Page B5)


B477 B478

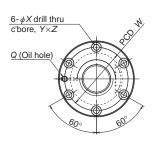


			Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial
	Model No.	Preload system	Shart dia.	Leau	Dali Gia.	dia.	Noot dia.	Turns ×	Dynamic	Static	rigidity <i>K</i>
		,	d	1	D_w	d _m	d _r	Circuits	$C_{\rm a}$	C_{0a}	(N/ <i>µ</i> m)
	PFT 2006-2.5	Р						2.5×1	6900	10500	164
	PFT 2006-3	P						1.5×2	8080	12700	195
	SFT 2006-2.5	Clearance		6	3.969	20.5	16.4	2.5×1	11000	21100	195
	DFT 2006-2.5	D		-				2.5×1	11000	21100	384
	SFT 2006-3	Clearance						1.5×2	12800 12800	25300	232
	DFT 2006-3 PFT 2008-2.5	D P	-					1.5×2 2.5×1	6900	25300 10500	456 164
	SFT 2008-2.5	Clearance						2.5×1 2.5×1	11000	21100	195
	DFT 2008-2.5	D	20	8	3.969	20.5	16.4	2.5×1	11000	21100	384
	SFT 2008-3	Clearance	20	O	3.707	20.5	10.4	1.5×2	12800	25300	232
	DFT 2008-3							1.5×2	12800	25300	456
*	LPFT 2010-2.5	D P	1	10	3.969	21.0	16.9	2.5×1	6800	10800	169
	LSFT 2010-2.5	Clearance		10	3.909	21.0	10.9	2.5×1	10900	21700	202
	LPFT 2016-2.5	Р] [16	3.969	21.0	16.9	2.5×1	6880	10800	169
	LSFT 2016-2.5	Clearance]	10	3.707	21.0	10.7	2.5×1	10900	21700	202
*	LPFT 2020-1.5	P		20	3.969	21.0	16.9	1.5×1	5370	8450	137
	LSFT 2020-1.5	Clearance			01707	2110	1017	1.5×1	7040	12700	127
	SFT 2504-2.5 ZFT 2504-5	Clearance						2.5×1	5270	13600	193 379
*	PFT 2504-5	Z P		4	2.381	25.3	22.8	2.5×1 2.5×2	5270 6020	13600 13600	319
*	SFT 2504-5	Clearance		4	2.301	25.5	22.0	2.5×2 2.5×2	9560	27200	374
	ZFT 2504-10	Z						2.5×2	9560	27200	735
	PFT 2505-3	P	1					1.5×2	6730	12800	223
	SFT 2505-2.5	Clearance	25					2.5×1	9130	21900	231
	ZFT 2505-5	Z						2.5×1	9130	21900	454
*	PFT 2505-5	Р		5	3.175	25.5	22.2	2.5×2	10400	21900	372
	SFT 2505-3	Clearance		5	3.173	25.5	22.2	1.5×2	10700	25700	271
	DFT 2505-3	D						1.5×2	10700	25700	532
	SFT 2505-5	Clearance						2.5×2	16600	43700	447
	ZFT 2505-10	Z						2.5×2	16600	43700	876

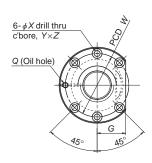
^{2.} If there is no seal for PFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".

Unit: mm

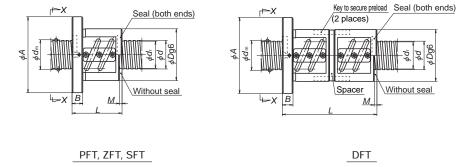
					Ball	I nut dim	nensions						
Nut entire length	Nut diameter D	Flanged diameter A	Flanged width B	Notched flange <i>G</i>	Rectangle flar	nged diameter <i>K</i>	Seal dimension M	Bolt ho	ole dim	ension Z	Bolt hole PCD W	Oil hole length	Oil hole
44 56 44 86 56	48	71	11	27	_	_	3	5.5	9.5	5.5	59	_	M6×1
54 54 102 64 120	48	75	13	28	_	_	5	6.6	11	6.5	61	_	M6×1
54 54	46	74	13		46	66	_	6.6	11	6.5	59	24	M6×1
72 72	46	74	13		46	66	_	6.6	11	6.5	59	24	M6×1
63 63	46	74	13	_	46	66	_	6.6	11	6.5	59	24	M6×1
36 48 48 48 72	46	69	11	26	_	_	3	5.5	9.5	5.5	57	_	M6×1
52 40 55 55 52 102 55 85	50	73	11	28	_	_	3	5.5	9.5	5.5	61	_	M6×1


Remarks 5. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_n) with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.

- 6. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. The models marked with * are in FA or SA type of standard ball screw with finished shaft end.
- 8. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (Refer to Page B5)


Seals are equipped as a standard for LSFT and LPFT of shaft diameter 12 mm or smaller. The outside dimensions are the same as those of without seals.

^{4.} The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.


View X-X

Circular shape I

	Model No.	Preload	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	Basic load Dynamic	rating (N) Static	Axial rigidity
	MOUGH NO.	system		,			.,	×	,		K
			d	1	$D_{\rm w}$	d _m	d_{r}	Circuits	$C_{\rm a}$	C_{0a}	(N/μm)
	PFT 2506-3	Р						1.5×2	9070	16100	235
	SFT 2506-2.5	Clearance						2.5×1	12300	26800	235
	ZFT 2506-5	Z						2.5×1	12300	26800	462
*	PFT 2506-5	Р		6	3.969	25.5	21.4	2.5×2	14100	26800	383
	SFT 2506-3	Clearance		O	3.909	25.5	21.4	1.5×2	14400	32100	280
	DFT 2506-3	D						1.5×2	14400	32100	551
	SFT 2506-5	Clearance						2.5×2	22300	53500	456
	ZFT 2506-10	Z						2.5×2	22300	53500	896
	PFT 2508-2.5	Р						2.5×1	9940	16000	203
	PFT 2508-3	Р						1.5×2	11600	19000	234
	SFT 2508-2.5	Clearance		8	4740	25.5	20 E	2.5×1	15800	32000	242
	ZFT 2508-5	Z	25	Ö	4.762	25.5	20.5	2.5×1	15800	32000	476
	SFT 2508-3	Clearance						1.5×2	18500	38100	286
	DFT 2508-3	D						1.5×2	18500	38100	562
	PFT 2510-2.5	Р						2.5×1	9940	16000	203
	ZFT 2510-3	Z						1.5×1	10200	19000	291
	PFT 2510-3	Р						1.5×2	11600	19000	234
	SFT 2510-2.5	Clearance						2.5×1	15800	32000	242
	DFT 2510-2.5	D		10	4.762	25.5	20.5	2.5×1	15800	32000	475
	SFT 2510-3	Clearance						1.5×2	18500	38100	286
	DFT 2510-3	D						1.5×2	18500	38100	562
	SFT 2510-3.5	Clearance						3.5×1	21100	44200	330
	DFT 2510-3.5	D						3.5×1	21100	44200	649

Remarks: 1. Nut flange for shaft diameter 16 mm or smaller comes in rectangular shape. It comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

- 2. If there is no seal for PFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

TVUL CITLIIC	Ivat.	i langea	i lai igca	rvotoricu	Jocai	DUIL	Hole ullrici	131011	DOILTIOIC	Oil hole	
length L	diameter D	diameter A	wiďth <i>B</i>	flange <i>G</i>	dimension <i>M</i>	X	Y	Z	PCD W	Q	
56 44 62 62 56 110 62 98	53	76	11	29	3	5.5	9.5	5.5	64	M6×1	E 4
56 69 56 80 69 133	58	85	13	32	5	6.6	11	6.5	71	M6×1	
67 81											

Ball nut dimensions Seal

Bolt hole dimension

11

6.5

6.6

Remarks 4. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.

8

- 5. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 6. The models marked with * are in SA type of standard ball screw with finished shaft end.

32

7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (Refer to Page B5)

Unit: mm

Oil hole

Bolt hole

71

M6×1

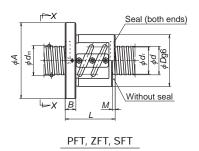
B481 B482

Nut entire

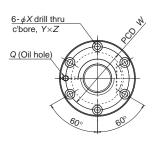
81 67 127

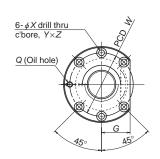
Nut

58

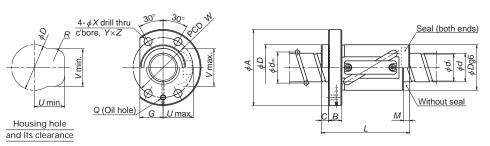

85

15

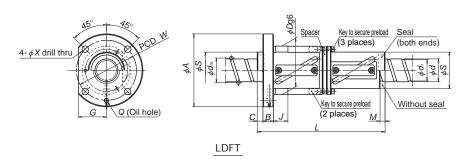

Flanged


Flanged Notched

View X-X


Circular shape I

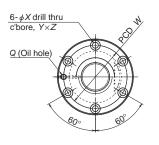
Circular shape I


		Preload	Shaft	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls Turns			Axial rigidity	Nut entire
	Model No.		dia.			dia.			Dynamic	Static	K	
		system	d	1	D _w	$d_{\rm m}$	d,	Circuito	C _a	C_{0a}		length
			u	1	$\nu_{\rm w}$	u _m	Ŭ _r	Circuits	-		(N/μm)	L
	LPFT 2516-2.5	Р						2.5×1	9900	16400	210	84
	LPFT 2516-3	Р						1.5×2	11600	19100	247	100
	LSFT 2516-2.5	Clearance		16	4.762	26.25	21.3	2.5×1	15700	32800	250	84
	LDFT 2516-2.5	D		10	4.702	20.25	21.3	2.5×1	15700	32800	490	152
	LSFT 2516-3	Clearance						1.5×2	18400	38200	295	100
	LDFT 2516-3	D						1.5×2	18400	38200	577	181
*	LPFT 2520-2.5	Р						2.5×1	9900	16400	210	96
	LPFT 2520-3	Р	25					1.5×2	11600	19100	247	116
	LSFT 2520-2.5	Clearance		20	47/0	27.25	21.2	2.5×1	15700	32800	250	96
	LDFT 2520-2.5	D		20	4.762	26.25	21.3	2.5×1	15700	32800	490	177
	LSFT 2520-3	Clearance						1.5×2	18400	38200	295	116
	LDFT 2520-3	D						1.5×2	18400	38200	577	217
*	LPFT 2525-1.5	Р							6380	9540	127	90
	LDFT 2525-1.5	D		25	4.762	26.25	21.3	1.5×1	10100	19100	308	166
	LSFT 2525-1.5	Clearance							10100	19100	157	90
	SFT 2805-2.5	Clearance						2.5×1	9600	24400	252	41
	ZFT 2805-5	Z						2.5×1	9600	24400	495	56
	PFT 2805-5	Р	28	5	3.175	28.5	25.2	2.5×2	11000	24400	410	56
	SFT 2805-5	Clearance						2.5×2	17400	48800	487	56
*	ZFT 2805-10	Z						2.5×2	17400	48800	959	86
			1		I		1					1

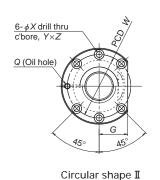
Remarks: 1. Nut flange for shaft diameter 16 mm or smaller comes in rectangular shape. It comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

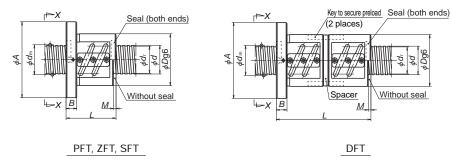
- 2. If there is no seal for PFT, ZFT, and SFT, the nut length "L" is shortened by dimension "M".
- If there is no seal for LSFT and LDFT of shaft diameter 25 mm or larger, the nut length "L" is shortened by dimension "M" and "C"
- 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

LPFT, LSFT


Unit: mm

						Ball	nut dir	nensic	ns						
Nut dia	ameter	Flanged	Flanged	Notched	Tube p	rojectir	ng type	Seal dir	nension	Diameter	Bolt ho	ole dim	ension	Bolt hole	Oil hole
		diameter	width	flange			J - J			g6				PCD	Oii noie
D	S	Α	В	G	U	V	R	M	С	J	X	Y	Z	W	Q
44	_	71		23	31	35	12			_				57	
44	_	71		23	31	35	12			_				57	
44	_	71	12	23	31	35	12	6	8	_	6.6			57	M6×1
62	44	89	12	34	l —	_	_	0	0	18	0.0	_	_	75	IVIOXI
44	_	71		23	31	35	12			_				57	
62	44	89		34	_	_	_			18				75	
44	_	71		23	31	35	12			_				57	
44	_	71		23	31	35	12			_				57	
44	_	71	12	23	31	35	12	7	8	_	6.6			57	M6×1
62	44	89	12	34	—	—	_	'	0	18	0.0			75	IVIOXI
44	_	71		23	31	35	12			_				57	
62	44	89		34	_	_	_			18				75	
44	_	71		23	32	34	12			_				57	
62	44	89	12	34		_		10	10	18	6.6	—	—	75	M6×1
44	_	71		23	32	34	12			_				57	
		0.5	4.0								١	١	, _		
55	_	85	12	31	—	—	-	3	—	_	6.6	11	6.5	69	M6×1


Remarks 5. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.


- 6. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. The models marked with * are in FA and SA type of standard ball screw with finished shaft end.
- 8. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (Refer to Page B5)

View X-X

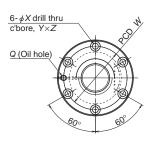
Circular shape I

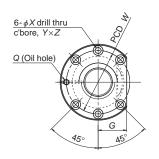
		Unit: mm

Without seal

	Madal Na	Preload	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	Basic load	rating (N) Static	Axial rigidity
	Model No.	system	d	1	$D_{\rm w}$	d _m	d _r	× Circuits	C _a	C_{0a}	κ (N/μm)
*	PFT 2806-3 SFT 2806-2.5 ZFT 2806-5 PFT 2806-5 SFT 2806-3 DFT 2806-3 SFT 2806-5 ZFT 2806-10	P Clearance Z P Clearance D Clearance Z	28	6	3.175	28.5	25.2	1.5×2 2.5×1 2.5×1 2.5×2 1.5×2 1.5×2 2.5×2 2.5×2	7080 9600 9600 11000 11200 11200 17400 17400	14600 24400 24400 24400 29300 29300 48800 48800	252 252 495 410 300 590 487 959
	PFT 2810-2.5 ZFT 2810-3 PFT 2810-3 SFT 2810-2.5 DFT 2810-2.5 SFT 2810-3 DFT 2810-3	P Z P Clearance D Clearance D		10	4.762	28.5	23.5	2.5×1 1.5×1 1.5×2 2.5×1 2.5×1 1.5×2 1.5×2	10500 10800 12300 16700 16700 19500	18000 21500 21500 36100 36100 43000 43000	220 320 265 265 522 314 618
	SFT 3204-2.5 ZFT 3204-5 PFT 3204-5 SFT 3204-5 ZFT 3204-10	Clearance Z P Clearance Z		4	2.381	32.3	29.8	2.5×1 2.5×1 2.5×2 2.5×2 2.5×2	5800 5800 6630 10500 10500	17500 17500 17500 35100 35100	234 461 382 454 892
*	PFT 3205-3 SFT 3205-2.5 ZFT 3205-5 PFT 3205-5 SFT 3205-3 DFT 3205-7.5 SFT 3205-10 SFT 3205-7.5 SFT 3205-7.5	P Clearance Z P Clearance D P Clearance Z Clearance Z Clearance D	32	5	3.175	32.5	29.2	1.5×2 2.5×1 2.5×1 2.5×2 1.5×2 1.5×2 2.5×3 2.5×2 2.5×3 2.5×3 2.5×3	7490 10200 10200 11600 11900 11900 16500 18500 18500 26200 26200	16800 28000 28000 28000 33600 33600 42100 56100 56100 84100 84100	281 281 552 455 333 655 672 543 1070 799 1572

Remarks:	1. Nut flange for shaft diameter 16 mm or smaller comes in rectangular shape. It comes in circular shape I and circular
	shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

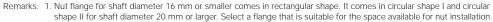

- 2. If there is no seal for PFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

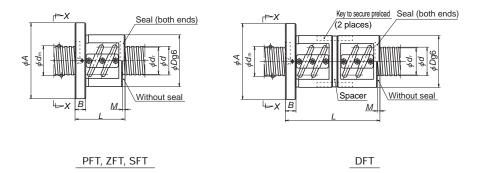

				Ball	nut dimens	sions				
Nut entire length L	Nut diameter D	Flanged diameter A	Flanged width B	Notched flange G	Seal dimension M		hole dimer	nsion Z	Bolt hole PCD W	Oil hole
57 45 63 63 57 111 63 99	55	85	12	31	3	6.6	11	6.5	69	M6×1
68 82 82 68 128 82 152	60	94	15	36	7	9	14	8.5	76	M6×1
37 49 49 49 73 53	54	81	12	31	3	6.6	11	6.5	67	M6×1
53 41 56 56 53 103 71 56 86 71	58	85	12	32	3	6.6	11	6.5	71	M6×1

Remarks 4. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.

- 5. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 6. The models marked with * are in SA type of standard ball screw with finished shaft end.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (Refer to Page B5)

View X-X



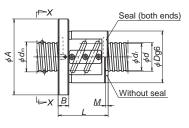

Circular shape I

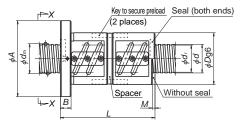
Circular shape I

	Madal Na	Preload	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	Basic load Dynamic	rating (N) Static	Axial rigidity
	Model No.	system	d	1	D_{w}	$d_{\rm m}$	d,	× Circuits	C _a	C_{0a}	κ (N/μm)
*	PFT 3206-3 SFT 3206-2.5 ZFT 3206-5 PFT 3206-5 SFT 3206-3 DFT 3206-3 SFT 3206-5 ZFT 3206-10	P Clearance Z P Clearance D Clearance Z	u	6	3.969	32.5	28.4	1.5×2 2.5×1 2.5×1 2.5×2 1.5×2 1.5×2 2.5×2 2.5×2	10000 13600 13600 15500 15900 15900 24700 24700	20600 34700 34700 34700 41200 41200 69400 69400	285 287 563 468 339 666 555
	PFT 3208-3 SFT 3208-2.5 ZFT 3208-5 PFT 3208-5 SFT 3208-3 ZFT 3208-6 SFT 3208-5 DFT 3208-5	P Clearance Z P Clearance Z Clearance D		8	4.762	32.5	27.5	1.5×2 2.5×1 2.5×1 2.5×2 1.5×2 1.5×2 2.5×2 2.5×2	12900 17500 17500 20000 20400 20400 31700 31700	24800 41000 41000 41000 49500 49500 82000 82000	294 292 573 470 349 686 565 1110
*	PFT 3210-2.5 ZFT 3210-3 PFT 3210-3 SFT 3210-2.5 ZFT 3210-5 PFT 3210-5 SFT 3210-3 SFT 3210-3.5 DFT 3210-3.5 DFT 3210-3.5 DFT 3210-3.5 DFT 3210-5 DFT 3210-5	P Z P Clearance Z P Clearance D Clearance D Clearance D Clearance D Clearance D	32	10	6.35	33.0	26.4	2.5×1 1.5×1 1.5×2 2.5×1 2.5×1 2.5×2 1.5×2 1.5×2 3.5×1 3.5×1 2.5×2 2.5×2	16100 16400 18800 25500 25500 29200 29900 29900 34100 34100 46300 46300	27000 32400 32400 54000 54000 64800 64800 77000 77000 108000 108000	255 365 303 302 594 494 360 707 422 829 585 1150
	PFT 3212-2.5 ZFT 3212-3 PFT 3212-3 SFT 3212-2.5 DFT 3212-2.5 DFT 3212-3 DFT 3212-3	P Z P Clearance D Clearance D		12	6.35	33.0	26.4	2.5×1 1.5×1 1.5×2 2.5×1 2.5×1 1.5×2 1.5×2	16100 16400 18800 25500 25500 29900 29900	27000 32400 32400 54000 54000 64800 64800	255 365 303 302 603 360 707

- 2. If there is no seal for PFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

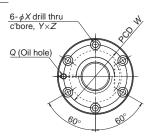
Unit: mm

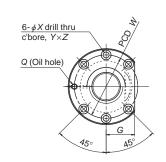

				Ball	nut dimens	ions				
Nut entire length L	Nut diameter D	Flanged diameter A	Flanged width B	Notched flange G	Seal dimension M		hole dimer	nsion Z	Bolt hole PCD W	Oil hole
57 45 63 63 57 111 63 99	62	89	12	34	3	6.6	11	6.5	75	M6×1
71 58 82 82 71 111 82	66	100	15	38	5	9	14	8.5	82	M6×1
70 87 87 70 100 100 87 167 80 150 100	74	108	15	41	7	9	14	8.5	90	M6×1
81 97 97 81 153 97 181	74	108	18	41	9	9	14	8.5	90	M6×1


Remarks 4. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_n) with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.

- 5. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 6. The models marked with * are in SA type of standard ball screw with finished shaft end.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (Refer to Page B5)

B487 B488

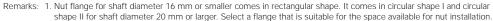


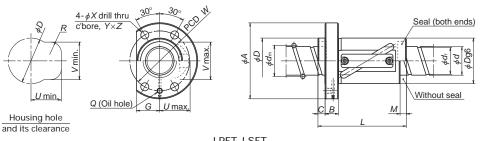


DFT

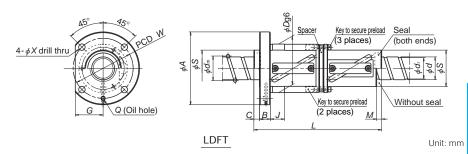
PFT, ZFT, SFT

View X-X



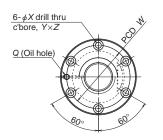

Circular shape I

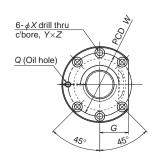
Circular shape I


	Model No.	Preload system	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns ×	Basic load Dynamic	Static	Axial rigidity <i>K</i>	Nut entire length
			d	1	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	$C_{\rm a}$	$C_{\scriptscriptstyle \mathrm{0a}}$	$(N/\mu m)$	Ĺ
	LPFT 3220-2.5	Р						2.5×1	11300	20900	251	99
	LPFT 3220-3	Р						1.5×2	13200	24800	297	119
	LSFT 3220-2.5	Clearance		20	4.762	33.25	28.3	2.5×1	17900	41800	300	99
	LDFT 3220-2.5	D						2.5×1	17900	41800	604	179
	LSFT 3220-3	Clearance						1.5×2	21000	49600	360	119
	LDFT 3220-3	D						1.5×2	21000	49600	708	219
*	LPFT 3225-2.5	Р						2.5×1	11300	20900	251	117
	LPFT 3225-3	Р	32					1.5×2	13200	24800	297	142
	LSFT 3225-2.5	Clearance		25	4.762	33.25	28.3	2.5×1	17900	41800	300	117
	LDFT 3225-2.5	D						2.5×1	17900	41800	604	218
	LSFT 3225-3	Clearance						1.5×2	21000	49600	360	142
	LDFT 3225-3	D						1.5×2	21000	49600	708	268
*	LPFT 3232-1.5	Р							7280	12400	161	109
		Clearance		32	4.762	33.25	28.3	1.5×1	11500	24800	190	109
	LDFT 3232-1.5	D							11500	24800	376	205
	ZFT 3605-5	Z						2.5×1	10700	31700	607	59
	PFT 3605-5	Р						2.5×2	12200	31700	504	59
	PFT 3605-7.5	P						2.5×3	17300	47500	740	74
	SFT 3605-5	Clearance	36	5	3.175	36.5	33.2	2.5×2	19400	63300	597	59
	ZFT 3605-10	_ Z						2.5×2	19400	63300	1170	89
	SFT 3605-7.5	Clearance						2.5×3	27500	95000	878	74
	DFT 3605-7.5	D						2.5×3	27500	95000	1730	139

- 2. If there is no seal for PFT, ZFT, and SFT, the nut length "L" is shortened by dimension "M".
- 3. If there is no seal for LSFT and LDFT of shaft diameter 25 mm or larger, the nut length "L" is shortened by dimension "M" and "C"
- 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

LPFT, LSFT

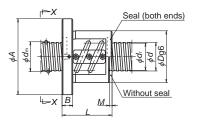


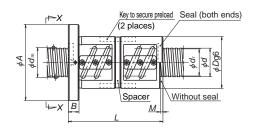

	Ball nut dimensions Nut diameter Flanged Flanged Notched Tube projecting type Seal dimension Diameter Bolt hole dimension Bolt hole Oil hole														
Nut dia	ameter	Flanged diameter	Flanged width	Notched	Tube p	rojectir	g type	Seal din	nension	Diameter	Bolt h	ole dim	ension	Bolt hole PCD	Oil hole
D	S	diameter A	B	flange G	U	V	R	М	С	g6 J	X	Y	Z	W	Q
51 51 51 68 51 68	— — 51 — 51	85 85 85 102 85 102	15	26 26 26 39 26 39	34 34 34 — 34 —	42 42 42 — 42 —	12 12 12 — 12 —	7	8	 20 20	9	_	_	67 67 67 84 67 84	M6×1
51 51 51 68 51 68	— — 51 — 51	85 85 85 102 85 102	15	26 26 26 39 26 39	34 34 34 — 34 —	42 42 42 — 42 —	12 12 12 — 12 —	10	10	 20 20	9	_	_	67 67 67 84 67 84	M6×1
51 51 68	— — 51	85 85 102	15	26 26 39	34 34 —	42 42 —	12 12 —	13	12	_ _ 20	9	_	_	67 67 84	M6×1
65	_	100	15	38	_	_	_	3	_	_	9	14	8.5	82	M6×1

Remarks 5. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_n) with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.

- 6. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. The models marked with * are in FA type of standard ball screw with finished shaft end.
- 8. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (Refer to Page B5)

View X-X


Circular shape I


Circular shape I

		Shaft dia.	Lood	Doll dia	Ball circle	Doot die	Effective turns of balls	Basic load	rating (N)	Axial
Model No.	Preload	Shart dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
	system	d	1	$D_{\rm w}$	d _m	d,	× Circuits	C _a	C_{0a}	<i>Κ</i> (N/μm)
ZFT 3606-5	Z						2.5×1	14600	39300	625
PFT 3606-5	Р						2.5×2	16700	39300	518
PFT 3606-7.5	Р						2.5×3	23700	58900	763
SFT 3606-5	Clearance		6	3.969	36.5	32.4	2.5×2	26500	78500	615
ZFT 3606-10	Z						2.5×2	26500	78500	1210
SFT 3606-7.5	Clearance						2.5×3	37600	118000	905
DFT 3606-7.5	D	4					2.5×3	37600	118000	1780
PFT 3610-2.5	P	2,					2.5×1	17100	30600	278
ZFT 3610-3	Z	36					1.5×1	17500	36800	404
PFT 3610-3	P						1.5×2	20000	36800	327
SFT 3610-2.5 ZFT 3610-5	Clearance		10	6.35	37.0	30.4	2.5×1 2.5×1	27200 27200	61300	334 657
PFT 3610-5	Z P		10	0.33	37.0	30.4	2.5×1 2.5×2	31100	61300 61300	537
SFT 3610-3	Clearance						1.5×2	31800	73500	397
DFT 3610-3	D						1.5×2	31800	73500	781
SFT 3610-5	Clearance						2.5×2	49300	123000	647
DFT 3610-5	D						2.5×2	49300	123000	1270
PFT 4005-3	P						1.5×2	8210	21200	337
SFT 4005-2.5	Clearance						2.5×1	11100	35300	336
ZFT 4005-5	Z						2.5×1	11100	35300	661
PFT 4005-5	Р						2.5×2	12700	35300	548
SFT 4005-3	Clearance						1.5×2	13000	42400	399
DFT 4005-3	D		5	3.175	40.5	37.2	1.5×2	13000	42400	785
PFT 4005-7.5	Р						2.5×3	18100	53000	806
SFT 4005-5	Clearance						2.5×2	20200	70600	649
k ZFT 4005-10	Z						2.5×2	20200	70600	1280
SFT 4005-7.5	Clearance	40					2.5×3	28700	106000	956
DFT 4005-7.5	D						2.5×3	28700	106000	1870
ZFT 4006-5	Z						2.5×1	15200	43800	679
PFT 4006-5	Р						2.5×2	17400	43800	564
SFT 4006-3	Clearance						1.5×2	17800	52600	411
DFT 4006-3	D P		,	2.040	40 E	26.4	1.5×2	17800	52600	807
PFT 4006-7.5			6	3.969	40.5	36.4	2.5×3	24600	65700	827
SFT 4006-5 ZFT 4006-10	Clearance Z						2.5×2 2.5×2	27600 27600	87600	668 1320
SFT 4006-10	Clearance						2.5×2 2.5×3	39100	87600 131000	984
DFT 4006-7.5	D						2.5×3	39100	131000	1940
DI I 4000-7.3							2.000	37100	131000	1740

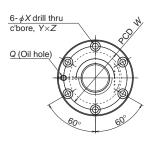
Remarks: 1. Nut flange for shaft diameter 16 mm or smaller comes in rectangular shape. It comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

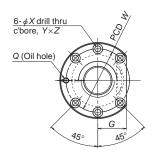
- 2. If there is no seal for PFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

PFT, ZFT, SFT

DFT

Unit: mm

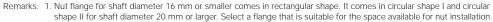

B492

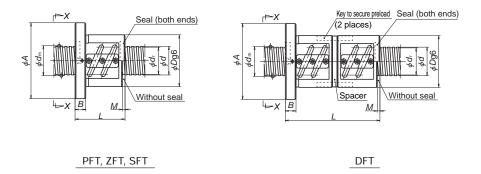

				D.11						
Nut entire	Nut	Flanged	Flanged	Notched	nut dimens Seal		hole dimer	nolon	Bolt hole	
length	diameter	diameter	width	flange	dimension	BUIL	noie dimer	151011	PCD	Oil hole
L	D	A	В	G	М	X	Y	Z	W	Q
66 66 84 66 102 84	65	100	15	38	3	9	14	8.5	82	M6×1
73 90 90 73 103 103 90 170 103 193	75	120	18	45	7	11	17.5	11	98	M6×1
56 44 59 59 56 106 74 59 89 74	67	101	15	39	3	9	14	8.5	83	Rc1/8
66 66 60 114 84 66 102 84 162	70	104	15	40	3	9	14	8.5	86	Rc1/8

Remarks 4. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.

- 5. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 6. The models marked with * are in SA type of standard ball screw with finished shaft end.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (Refer to Page B5)

View X-X

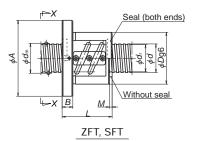


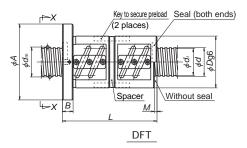

Circular shape I

Circular shape I

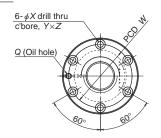
		Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial
Model No.	Preload system	Shart dia.	Leau	Dali Gia.	dia.	TKOOT GIA.	Turns ×	Dynamic	Static	rigidity <i>K</i>
	System	d	1	$D_{\scriptscriptstyle m w}$	d _m	d,	Circuits	$C_{\rm a}$	$C_{\scriptscriptstyle 0a}$	Λ (N/μm)
PFT 4008-3	Р						1.5×2	14200	31300	352
SFT 4008-2.5	Clearance						2.5×1	19200	51600	349
ZFT 4008-5	Z						2.5×1	19200	51600	687
PFT 4008-5	Р		8	4.762	40.5	35.5	2.5×2	22000	51600	570
SFT 4008-3	Clearance						1.5×2	22500	62600	418
DFT 4008-3	D						1.5×2	22500	62600	822
SFT 4008-5	Clearance						2.5×2	34900	103000	675
ZFT 4008-10	Z P						2.5×2	34900	103000	1330
PFT 4010-2.5 PFT 4010-3	P						2.5×1 1.5×2	18000 21100	34300 41100	307 366
SFT 4010-3	Clearance						2.5×1	28600	68600	365
ZFT 4010-2.5	Z						2.5×1	28600	68600	717
PFT 4010-5	P						2.5×1 2.5×2	32800	68600	595
SFT 4010-3	Clearance		10	6.35	41	34.4	1.5×2	33500	82300	434
ZFT 4010-6	Z	40	10	0.00		01.1	1.5×2	33500	82300	854
ZFT 4010-7	7	10					3.5×1	38300	96000	988
SFT 4010-3.5	Clearance						3.5×1	38300	96000	503
SFT 4010-5	Clearance						2.5×2	52000	137000	706
k DFT 4010-5	D						2.5×2	52000	137000	1390
PFT 4012-2.5	Р						2.5×1	21200	38800	310
SFT 4012-2.5	Clearance						2.5×1	33600	77500	373
ZFT 4012-5	Z		12	7.144	41.5	34.1	2.5×1	33600	77500	733
PFT 4012-5	Р		12	7.144	41.5	34.1	2.5×2	38400	77500	600
SFT 4012-5	Clearance						2.5×2	61000	155000	722
k DFT 4012-5	D						2.5×2	61000	155000	1420
ZFT 4016-3	Z						1.5×1	21700	46500	451
SFT 4016-2.5	Clearance						2.5×1	33600	77500	373
DFT 4016-2.5	D		16	7.144	41.5	34.1	2.5×1	33600	77500	733
SFT 4016-3	Clearance						1.5×2	39300	93100	440
DFT 4016-3	D						1.5×2	39300	93100	872

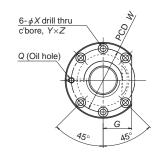
- 2. If there is no seal for PFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.


Unit: mm

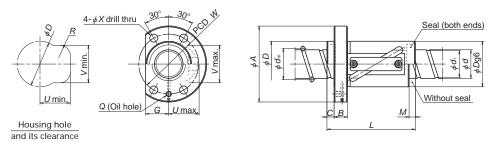

	Ball nut dimensions											
Nut entire length L	Nut diameter D	Flanged diameter A	Flanged width B	Notched flange G	Seal dimension M		hole dimer	nsion Z	Bolt hole PCD W	Oil hole		
71 58 82 82 71 135 82	74	108	15	41	5	9	14	8.5	90	Rc1/8		
73 90 73 103 103 90 140 123 83 103 193	82	124	18	47	7	11	17.5	11	102	Rc1/8		
81 81 117 117 117 225	86	128	18	48	9	11	17.5	11	106	Rc1/8		
118 102 182 118 214	86	128	22	48	14	11	17.5	11	106	Rc1/8		

Remarks 4. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_n) with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.

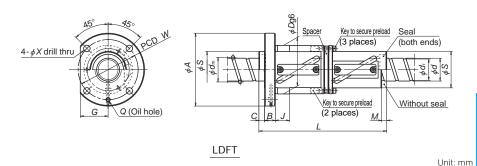

- 5. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 6. The models marked with * are in SA type of standard ball screw with finished shaft end.
- 7. Preload system: P. Oversize ball preload; Z. Offset preload; D. Double nut preload (Refer to Page B5)



View X-X


Circular shape I

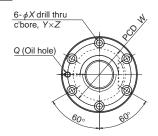
Circular shape I

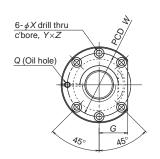

		Shaft	Lead	Ball dia.	Ball	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial	
Model No.	Preload	dia.	Leau	Dali Gia.	circle dia.	Noot dia.	Turns	Dynamic	Static	rigidity	Nut entire
	system	d	1	D _w	dia. d _m	d,	X Circuits	C _a	C_{0a}	<i>Κ</i> (N/μm)	length
		u.	-	- W	um	G _f		-		, , ,	L
LPFT 4025-2.5	Р						2.5×1	18000	35000	315	123
LPFT 4025-3	Р						1.5×2	21000	41200	347	148
LSFT 4025-2.5	Clearance		25	6.35	41.75	35.1	2.5×1	28500	70000	375	123
LDFT 4025-2.5	D		25	0.33	41.73	33.1	2.5×1	28500	70000	737	223
LSFT 4025-3	Clearance						1.5×2	33400	82400	444	148
LDFT 4025-3	D	40					1.5×2	33400	82400	873	273
LPFT 4032-2.5	Р	40						18000	35000	315	146
LSFT 4032-2.5	Clearance		32	6.35	41.75	35.1	2.5×1	28500	70000	375	146
LDFT 4032-2.5	D							28500	70000	737	274
LPFT 4040-1.5	P							11600	20600	199	133
LSFT 4040-1.5	Clearance		40	6.35	41.75	35.1	1.5×1	18400	41200	237	133
LDFT 4040-1.5	D							18400	41200	465	253
ZFT 4510-5	Z						2.5×1	29900	77300	784	103
SFT 4510-5	Clearance						2.5×2	54200	155000	772	103
DFT 4510-5	D		10	6.35	46.0	39.4	2.5×2	54200	155000	1520	193
SFT 4510-7.5	Clearance						2.5×3	76800	232000	1140	133
DFT 4510-7.5	D	45					2.5×3	76800	232000	2230	253
SFT 4512-2.5	Clearance						2.5×1	35400	88500	412	83
ZFT 4512-5	Z		10	7 1 1 1	44 E	20.1	2.5×1	35400	88500	811	119
SFT 4512-5	Clearance		12	7.144	46.5	39.1	2.5×2	64200	177000	798	119
DFT 4512-5	D						2.5×2	64200	177000	1570	227

Remarks: 1. Nut flange for shaft diameter 16 mm or smaller comes in rectangular shape. It comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

- 2. If there is no seal for PFT, ZFT, and SFT, the nut length "L" is shortened by dimension "M".
- 3. If there is no seal for LSFT and LDFT of shaft diameter 25 mm or larger, the nut length "L" is shortened by dimension
- 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

LPFT, LSFT

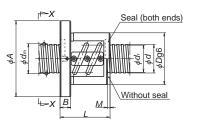


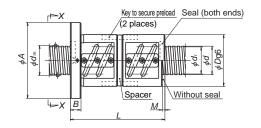

								nensio							
Nut dia	ameter	Flanged	Flanged	Notched	Tube p	rojectir	ig type	Seal din	nension	Diameter	Bolt h	ole dim	ension		Oil hole
		diameter	width	flange						g6				PCD	
D	S	Α	В	G	U	V	R	M	С	J	X	Y	Z	W	Q
64	_	106		33	42	52	15			_				84	
64	_	106		33	42	52	15			_				84	
64	_	106	18	33	42	52	15	10	10	_	11	l	l	84	Rc1/8
84	64	126	10	48	—	—	—	10	10	22	' '	_	_	104	1101/0
64	_	106		33	42	52	15							84	
84	64	126		48	_	_	_			22				104	
64	_	106		33	42	52	15			_				84	
64		106	18	33	42	52	15	13	12	_	11	—	—	84	Rc1/8
84	64	126		48						22				104	
64	_	106	10	33	42	52	15	1,	1.4	_				84	D . 1 /0
64		106	18	33	42	52	15	16	14		11	-	-	84	Rc1/8
84	64	126		48		_	_			22				104	
0.0		122	10	F0				7			11	17 -	11	110	D=1/0
88	_	132	18	50	_	_	_	7	_	_	11	17.5	11	110	Rc1/8
90	_	132	18	50	_	_	_	8	_	_	11	17.5	11	110	Rc1/8

Remarks 5. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.

- 6. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (Refer to Page B5)

View X-X


Circular shape I


Circular shape I

						Ball circle		Effective turns of balls	Basic load	rating (N)	Axial
Mod	del No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity <i>K</i>
		system	d	1	$D_{\scriptscriptstyle m w}$	d _m	d,	× Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	Λ (N/μm)
SFT 50		Clearance						1.5×2	14200	52500	472
ZFT 50		Z		5	3.175	50.5	47.2	1.5×2	14200	52500	930
SFT 50		Clearance		3	3.173	30.3	77.2	1.5×3	20200	78800	696
ZFT 50		Z						1.5×3	20200	78800	1360
SFT 50		Clearance						1.5×2	19500	65100	486
DFT 50		D						1.5×2	19500	65100	956
SFT 50		Clearance		6	3.969	50.5	46.4	2.5×2	30300	109000	794
ZFT 50		Z		-				2.5×2	30300	109000	1562
SFT 50		Clearance						2.5×3	42900	164000	1170
DFT 50		D	 					2.5×3	42900	164000	2300
SFT 50		Clearance D						1.5×2	25000	77400	496
DFT 50		_						1.5×2	25000 38700	77400 131000	975 815
SFT 50 ZFT 50		Clearance 7		8	4.762	50.5	45.5	2.5×2 2.5×2	38700	131000	1600
SFT 50		Clearance						2.5×2 2.5×3	54900	197000	1200
DFT 50		D						2.5×3	54900	197000	2350
SFT 50		Clearance	 					2.5×1	31800	87400	440
ZFT 50		7						2.5×1	31800	87400	866
SFT 50		Clearance						1.5×2	37200	103000	517
DFT 50		D	50					1.5×2	37200	103000	1010
ZFT 50		7		10	6.35	51.0	44.4	3.5×1	42500	122000	1190
SFT 50		Clearance						2.5×2	57700	175000	853
* ZFT 50	10-10	Z						2.5×2	57700	175000	1677
SFT 50	10-7.5	Clearance						2.5×3	81800	262000	1250
DFT 50	10-7.5	D						2.5×3	81800	262000	2460
SFT 50	12-2.5	Clearance] [2.5×1	42800	107000	449
ZFT 50		Z		12	7.938	51.5	43.2	2.5×1	42800	107000	883
SFT 50		Clearance		12	7.730	31.3	43.2	2.5×2	77600	214000	869
DFT 50		D] [2.5×2	77600	214000	1710
SFT 50		Clearance						2.5×1	42800	107000	449
ZFT 50		Z		16	7.938	51.5	43.2	2.5×1	42800	107000	883
SFT 50		Clearance		.0	,.,,,	51.5	15.2	2.5×2	77600	214000	869
DFT 50		D						2.5×2	77600	214000	1710
ZFT 50		Z						1.5×1	27600	64300	542
SFT 50		Clearance		20	7 000		40.0	2.5×1	42800	107000	449
DFT 50		D		20	7.938	51.5	43.2	2.5×1	42800	107000	883
SFT 50		Clearance						1.5×2	50000	129000	534
DFT 50	20-3	D						1.5×2	50000	129000	1050

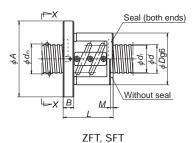
Remarks: 1. Nut flange for shaft diameter 16 mm or smaller comes in rectangular shape. It comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

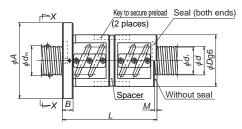
- 2. If there is no seal for PFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

ZFT, SFT

DFT

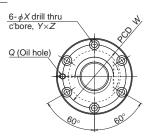
Unit: mm

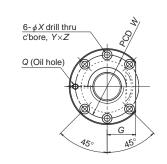

	ı	ı			nut dimens					
Nut entire length	Nut diameter	Flanged diameter	Flanged width	Notched flange	Seal dimension	Bolt	hole dimer	nsion	Bolt hole PCD	Oil hole
Ľ	D	A	B	G	M	Χ	Y	Ζ	W	Q
58 83 68 103 62	80	114	15	43	3	9	14	8.5	96	Rc1/8
116 68 104 86 164	84	118	15	45	3	9	14	8.5	100	Rc1/8
74 138 85 133 109 205	87	129	18	49	5	11	17.5	11	107	Rc1/8
73 103 90 170 123 103 163 133	93	135	18	51	7	11	17.5	11	113	Rc1/8
253 87 123 123 231	100	146	22	55	8	14	20	13	122	Rc1/8
104 152 152 280	100	146	22	55	14	14	20	13	122	Rc1/8
147 127 227 147 267	100	146	28	55	17	14	20	13	122	Rc1/8


Remarks 4. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C) with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.

- 5. The models marked with * are in SA type of standard ball screw with finished shaft end.
- 6. Preload system: Z, Offset preload; D, Double nut preload (Refer to Page B5)

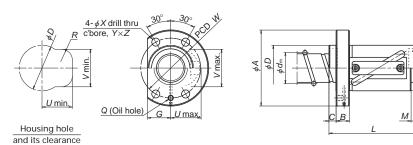
Seal (both ends)


Without seal

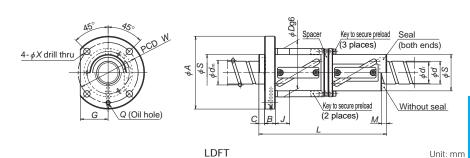


DFT

View X-X

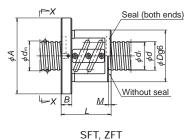


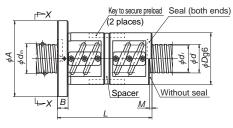
Circular shape I


Circular shape I

		Shaft	1	Dall alla	Ball	Dank dia	Effective turns of balls	Basic load	rating (N)	Axial	
Model No.	Preload	dia.	Lead	Ball dia.	circle	Root dia.	Turns	Dynamic	Static	rigidity	Nut entire
Model No.	system		_	_	dia.		×	'		Κ	length
	-	d	1	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	$C_{\rm a}$	C_{0a}	$(N/\mu m)$	Ľ
LPFT 5025-2.5	Р						2.5×1	26900	54700	388	129
LPFT 5025-3	Р						1.5×2	31400	66500	450	154
LSFT 5025-2.5	Clearance		25	7.938	52.25	44	2.5×1	42700	109000	462	129
LDFT 5025-2.5	D		25	7.938	52.25	44	2.5×1	42700	109000	905	229
LSFT 5025-3	Clearance						1.5×2	49900	133000	547	154
LDFT 5025-3	D						1.5×2	49900	133000	1070	279
LPFT 5032-2.5	Р						2.5×1	26900	54700	388	151
LPFT 5032-3	Р						1.5×2	31400	66500	450	183
LSFT 5032-2.5	Clearance	50	32	7.938	52.25	44	2.5×1	42700	109000	462	151
LDFT 5032-2.5	D	30	32	1.930	32.23	44	2.5×1	42700	109000	905	279
LSFT 5032-3	Clearance						1.5×2	49900	133000	547	183
LDFT 5032-3	D						1.5×2	49900	133000	1070	343
LPFT 5040-2.5	Р							26900	54700	388	178
LSFT 5040-2.5	Clearance		40	7.938	52.25	44	2.5×1	42700	109000	462	178
LDFT 5040-2.5	D							42700	109000	922	338
LPFT 5050-1.5	Р							17300	33200	245	161
LSFT 5050-1.5	Clearance		50	7.938	52.25	44	1.5×1	27500	66500	290	161
LDFT 5050-1.5	D							27500	66500	572	312
ZFT 5510-5	Z						2.5×1	32800	96100	929	103
SFT 5510-5	Clearance						2.5×2	59500	192000	916	103
ZFT 5510-10	Z	55	10	6.35	56.0	49.4	2.5×2	59500	192000	1800	163
DFT 5510-5	D	55	10	0.55	30.0	47.4	2.5×2	59500	192000	1800	193
SFT 5510-7.5	Clearance						2.5×3	84300	288000	1350	133
DFT 5510-7.5	D						2.5×3	84300	288000	2650	253

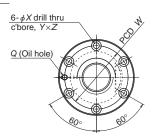
- Remarks: 1. Nut flange for shaft diameter 16 mm or smaller comes in rectangular shape. It comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.
 - 2. If there is no seal for PFT, ZFT, and SFT, the nut length "L" is shortened by dimension "M".
 - 3. If there is no seal for LSFT and LDFT of shaft diameter 25 mm or larger, the nut length "L" is shortened by dimension "M" and "C".
 - 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

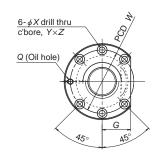

LPFT, LSFT



	Ball nut dimensions														
Nut dia		Flanged	Flanged	Notched	Tube p	rojectir	g type	Seal din	nension	Diameter	Bolt ho	ole dim	ension	Bolt hole	Oil hole
D	S	diameter <i>A</i>	width <i>B</i>	flange G	U	V	R	М	С	g6 ./	X	Y	7	PCD W	Q
80 80 80 106	— — — 80	126 126 126 152	22	41 41 41 56	52 52 52 —	64 64 64	19 19 19 —	11	11	 25	14	_	_	102 102 102 128	Rc1/8
80 106	80	126 152		41 56	52	64	19			 25				102 128	
80 80 80 106 80 106	— — 80 — 80	126 126 126 126 152 126 152	22	41 41 41 56 41 56	52 52 52 — 52 —	64 64 64 — 64	19 19 19 — 19	14	12		14	_	_	102 102 102 102 128 102 128	Rc1/8
80 80 106	— — 80	126 126 152	22	41 41 56	52 52 —	64 64 —	19 19 —	17	14	_ _ 25	14	_	_	102 102 128	Rc1/8
80 80 106	— — 80	126 126 152	22	41 41 56	52 52 —	64 64 —	19 19 —	21	16	_ _ 25	14	_	_	102 102 128	Rc1/8
102	_	144	18	54	_	_	_	7	_	_	11	17.5	11	122	Rc1/8

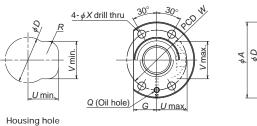
Remarks 5. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.


- 6. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (Refer to Page B5)

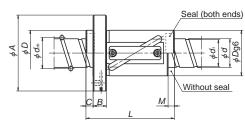


DFT

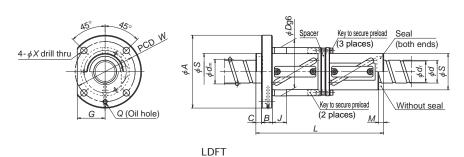
View X-X


Circular shape I

Circular shape I

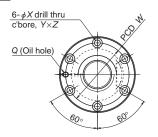

											_
		Shaft	Lond	Ball dia.	Ball	Root dia.		Basic load	I rating (N)		
Model No.	Preload	dia.	Lead	Ball dia.	circle	Root dia.	Turns	Dynamic	Static	rigidity	Nut entire
WIOGCI IVO.	system		,		dia.	.,	×	'		K	length
		d	1	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_r	Circuits	$C_{\rm a}$	C_{0a}	$(N/\mu m)$	L
SFT 6310-2.5	Clearance						2.5×1	34800	111000	528	77
ZFT 6310-5	Z						2.5×1	34800	111000	1038	107
SFT 6310-5	Clearance		10	6.35	64.0	57.4	2.5×2	63200	221000	1020	107
ZFT 6310-10	Z		10	0.33	04.0	37.4	2.5×2	63200	221000	2000	167
SFT 6310-7.5	Clearance						2.5×3	89500		1500	137
DFT 6310-7.5	D						2.5×3	89500	332000	2950	257
SFT 6320-2.5	Clearance						2.5×1	79500	228000	713	127
DFT 6320-2.5	D		20	9.525	65.0	55.2	2.5×1	79500	228000	1400	227
SFT 6320-5	Clearance		20	7.323	05.0	33.2	2.5×2		455000	1380	187
DFT 6320-5	D						2.5×2	144000	455000	2710	347
LPFT 6340-2.5	Р	63					2.5×1	30600	69500	466	178
LPFT 6340-3	P	03					1.5×2	35800	82500	551	218
LSFT 6340-2.5	Clearance		40	7.938	65.25	57	2.5×1	48500		560	178
LDFT 6340-2.5	D		40	7.730	05.25	37	2.5×1	48500		1100	339
LSFT 6340-3	Clearance						1.5×2	56800	165000	667	218
LDFT 6340-3	D						1.5×2	56800		1310	419
LPFT 6350-1.5	Р						1.5×1	19700	41200	285	161
LPFT 6350-2.5	Р						2.5×1	30600	69500	478	211
LSFT 6350-1.5	Clearance		50	7.938	65.25	57	1.5×1	31300	82500	346	161
LDFT 6350-1.5	D		30	1.730	05.25	37	1.5×1	31300	82500	678	311
LSFT 6350-2.5	Clearance						2.5×1	48500	139000	560	211
LDFT 6350-2.5	D						2.5×1	48500	139000	1120	411

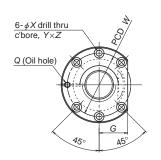
- Remarks: 1. Nut flange for shaft diameter 16 mm or smaller comes in rectangular shape. It comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.


 2. If there is no seal for PFT, ZFT, and SFT, the nut length "L" is shortened by dimension "M".
 - If there is no seal for LSFT and LDFT of shaft diameter 25 mm or larger, the nut length "L" is shortened by dimension "M" and "C".
 - 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

and its clearance

LPFT, LSFT

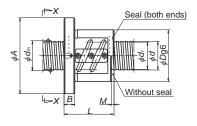

	Ball nut dimensions														
Nut dia	ameter	Flanged	Flanged	Notched	Tube p	rojectir	ng type	Seal din	nension	Diameter	Bolt ho	ole dim	ension	Bolt hole	Oil hole
		diameter	width	flange						g6				PCD	Oil Hole
D	S	A	В	G	U	V	R	M	С	J	X	Y	Z	W	Q
108	_	154	22	58	_	_	_	7	_	_	14	20	13	130	Rc1/8
122	_	180	28	69	_	_	_	17	_	_	18	26	17.5	150	Rc1/8
97 97 97 122 97 122	— — 97 — 97	144 144 144 168 144 168	22	49 49 49 62 49 62	58 58 58 — 58	77 77 77 — 77	19 19 19 — 19	15	14	 29 29	14		_	120 120 120 144 120 144	Rc1/8
97 97 97 122 97 122	— — 97 — 97	144 144 144 168 144 168	22	49 49 49 62 49 62	58 58 58 — 58	77 77 77 — 77	19 19 19 — 19	19	16	 29 29	14	_	_	120 120 120 144 120 144	Rc1/8

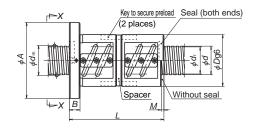

Remarks 5. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.

- 6. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (Refer to Page B5)

Unit: mm

View X-X


Circular shape I


Circular shape I

	Preload	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls Turns	Basic load		Axial rigidity
Model No.	system				dia.		X	Dynamic	Static	rigidity K
	System	d	1	$D_{\rm w}$	d _m	d _r	Circuits	$C_{\rm a}$	C_{0a}	(N/μm)
SFT 8010-5	Clearance						2.5×2	70500	282000	1240
DFT 8010-5	D		10	6.35	81.0	74.4	2.5×2	70500	282000	2430
SFT 8010-7.5	Clearance						2.5×3	99800	424000	1830
DFT 8010-7.5 SFT 8012-5	D Clearance						2.5×3 2.5×2	99800 96000	424000 350000	3590 1280
DFT 8012-5	D						2.5×2 2.5×2	96000	350000	2500
SFT 8012-3	Clearance		12	7.938	81.5	73.2	2.5×3	136000	526000	1880
DFT 8012-7.5	D						2.5×3	136000	526000	3690
SFT 8016-5	Clearance	80					2.5×2	162000	582000	1680
DFT 8016-5	D		1/	0.505	00.0	70.0	2.5×2	162000	582000	3300
SFT 8016-7.5	Clearance		16	9.525	82.0	72.2	2.5×3	230000	874000	2470
DFT 8016-7.5	D						2.5×3	230000	874000	4850
SFT 8020-5	Clearance						2.5×2	162000	582000	1680
DFT 8020-5	D		20	9.525	82.0	72.2	2.5×2	162000	582000	3300
SFT 8020-7.5	Clearance		20	7.525	02.0	12.2	2.5×3	230000	874000	2470
DFT 8020-7.5	D						2.5×3	230000	874000	4850
SFT 10012-5	Clearance						2.5×2	105000	441000	1530
DFT 10012-5	D		12	7.938	101.5	93.2	2.5×2	105000	441000	2990
SFT 10012-7.5	Clearance			/ / / / /		70.2	2.5×3	149000	662000	2250
DFT 10012-7.5	D						2.5×3	149000	662000	4400
SFT 10016-5 DFT 10016-5	Clearance						2.5×2	176000	737000	2010
SFT 10016-5	Clearanae	100	16	9.525	102	92.2	2.5×2 2.5×3	176000 250000	737000 1100000	3930 2950
DFT 10016-7.5	Clearance D						2.5×3 2.5×3	250000	1100000	5790
SFT 10016-7.5	Clearance	}					2.5×3 2.5×2	176000	737000	2010
DFT 10020-5	D						2.5×2	176000	737000	3930
SFT 10020-7.5	Clearance		20	9.525	102	92.2	2.5×3		1100000	2950
DFT 10020-7.5	D						2.5×3	250000	1100000	5780
SFT 12516-5	Clearance						2.5×2	195000	918000	2390
DFT 12516-5	D		1/	0.505	107	1170	2.5×2	195000	918000	4690
SFT 12516-7.5	Clearance		16	9.525	127	117.2	2.5×3	277000	1380000	3520
DFT 12516-7.5	D	125					2.5×3	277000	1380000	6890
SFT 12520-5	Clearance	125					2.5×2	195000	918000	2390
DFT 12520-5	D		20	9.525	127	117.2	2.5×2	195000	918000	4690
SFT 12520-7.5	Clearance		20	7.525	127	117.2	2.5×3	277000	1380000	3520
DFT 12520-7.5	D						2.5×3	277000	1380000	6890

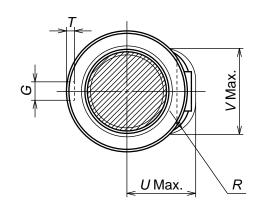
Remarks: 1. Nut flange for shaft diameter 16 mm or smaller comes in rectangular shape. It comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

- 2. If there is no seal for PFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

SFT

DFT

Unit: mm


Ball nut dimensions											
Nut entire length	Nut diameter	Flanged diameter	Flanged width	Notched flange	Seal dimension		hole dimer	nsion	Bolt hole PCD	Oil hole	
L	D	A	В	G	M	X	Y	Ζ	W	Q	
107 197 137 257	130	176	22	66	7	14	20	13	152	Rc1/8	
123 231 159 303	136	182	22	68	8	14	20	13	158	Rc1/8	
158 302 206 398	143	204	28	77	10	18	26	17.5	172	Rc1/8	
187 347 247 467	143	204	28	77	17	18	26	17.5	172	Rc1/8	
129 237 165 309	160	220	28	82	8	18	26	17.5	188	Rc1/8	
162 306 210 402	170	243	32	91	10	22	32	21.5	205	Rc1/8	
191 351 251 471	170	243	32	91	17	22	32	21.5	205	Rc1/8	
170 314 218 410	200	290	36	109	10	26	39	25.5	243	Rc1/8	
199 379 259 499	200	290	36	109	12	26	39	25.5	243	Rc1/8	

Remarks 4. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.

^{5.} Preload system: D; Double nut preload (Refer to Page B5)

Model No.	Axial play	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns		ad rating N)
Model No.	(Max.)	d	1	$D_{\rm w}$	d _m	d_{r}	× Circuits	Dynamic C_a	Static C _{0a}
GSCT14025-5 GSCT14025-7.5	0.25		25	15.875	143	126.0	2.5×2 2.5×3	272000 362000	1400000 2090000
GSCT14032-5 GSCT14032-7.5	0.35	140	32	22.225	144	121.0	2.5×2 2.5×3	428000 568000	1920000 2880000
GSCT14040-5 GSCT14040-7.5	0.35	140	40	22.225	144	121.0	2.5×2 2.5×3	428000 568000	1920000 2880000
GSCT14050-5 GSCT14050-7.5	0.40		50	25.4	145	119.0	2.5×2 2.5×3	518000 688000	2190000 3290000
GSCT16032-5 GSCT16032-7.5	0.35		32	22.225	164	141.0	2.5×2 2.5×3	458000 608000	2210000 3310000
GSCT16040-5 GSCT16040-7.5	0.35	160	40	22.225	164	141.0	2.5×2 2.5×3	458000 608000	2210000 3310000
GSCT16050-5 GSCT16050-7.5	0.40		50	25.4	165	139.0	2.5×2 2.5×3	544000 722000	2560000 3840000
GSCT20032-5 GSCT20032-7.5	0.35		32	22.225	204	181.0	2.5×2 2.5×3	509000 676000	2820000 4230000
GSCT20040-5 GSCT20040-7.5	0.35	200	40	22.225	204	181.0	2.5×2 2.5×3	509000 676000	2820000 4230000
GSCT20050-5 GSCT20050-7.5	0.40		50	25.4	205	179.0	2.5×2 2.5×3	604000 802000	3200000 4800000
GSCT25040-5 GSCT25040-7.5	0.40	250	40	25.4	255	229.0	2.5×2 2.5×3	662000 879000	4000000 6000000
GSCT25050-5 GSCT25050-7.5	0.51	250	50	31.75	256	223.0	2.5×2 2.5×3	825000 1100000	5000000 7500000

Unit: mm

							Offit. Hilli				
Nut dimensions											
Nut entire length	Nut diameter	Key din	nension	Tube	ension	Seal dimension					
L	D	G	Т	U	V	R	(MS)				
200 275	210			115	154	50	40				
252 348	220	32	11	135	163	60	48				
306 426	220	32	''	135	163	60	58				
377 527	225			141	167	70	70				
252 348	245			141	180	60	48				
306 426	245	36	12	141	180	60	58				
377 527	250			147	185	70	70				
252 348	295			162	216		48				
306 426	295	45	15	162	216	70	58				
377 527	300			168	221		70				
312 432	355	50	17	194	266	70	58				
385 535	370	30	17	206	274	90	70				

B505 B506

Remarks 1. Precision grade is equivalent to Ct10 grade of JIS B1192 (Refer to Page B41)
2. The entire nut length (L) is the size without seal. The size with a seal is longer by the size of "MS."

ÖÜC

HSK

B-3-3.3 Deflector Type Ball Screws

1. Features

Deflector type has the smallest nut compared to the other recirculation systems, and suitable for fine lead operation.

2. Specifications

(1) Recirculation system

It has a compact nut outside diameter, and suits for small lead driving. Fig.1 shows the structure of the deflector recirculation system.

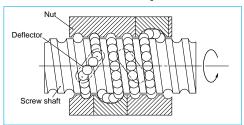


Fig. 1 Structure of deflector recirculation system

Table 1 Accuracy grade and axial play

Accuracy grade ()	
Accuracy grade C0, C1, C2, C3, C5, Ct7 (Ct7 is not included in DFD)	
Axial play Z, 0 mm (Preload); T, 0.005 mm or less	_
Axial play Z, 0 mm (Preload); T, 0.005 mm or less S, 0.020 mm or less; N, 0.050 mm or le	SS

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are shown in Table 1. Please consult NSK for other grades.

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below. Basic measure must be taken for the high speed ball screws respectively.

Allowable d·n value:

Standard specification; 84000 or less High-speed specification; 100000 or less Standard of rotational speed: 3000 min⁻¹ Note: Please also review the critical speed. Refer to "Technical Description: Permissible rotational speed" (Page B51) for details.

(4) Other specifications

Please consult NSK for other specifications not listed in the dimension tables.

Table 2 Deflector type ball screw product categories

Nut model	Shape	Flange shape	Preload system
MSFD		Flanged	Non-preload, Slight axial play
MPFD		Circular Ⅲ	P preload (light preload) no spacer ball
SFD		Screw shaft diameter of 16 mm or smaller : Flanged Screw shaft diameter of 20 mm or smaller : Rectangle CircularI, II	Non-preload, Slight axial play
ZFD		Flanged Circular I, II	Z preload (medium preload)
DFD		Flanged Circular I, II	D preload (medium preload) (heavy preload)

3. Product categories

There are four different preload systems (Table 2). Synthetic resin that shows superb characteristics against wear is used in the recirculation deflector for MSFD, MPFD, and has enhanced the smooth recirculation of balls.

NSK has a patent for this product.

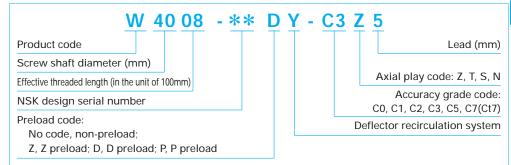
4. Design Precautions

When designing the screw shaft end, one end of the screw must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

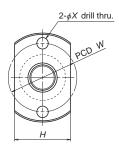
• Cut the ball groove through to the shaft end.

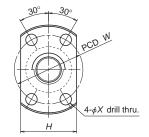
 The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

For general precautions regarding ball screws, refer to "Design Precautions" (Page B84) and "Handling Precautions" (Page B103).


5. Example of model number in dimension tables

A structure of "Model number" and "Reference number for ball screw" are as follows.

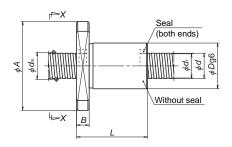

Note: In case of ZFD, the number here is twice as large as the effective turns of balls.



B507 B508

NSK

View X-X

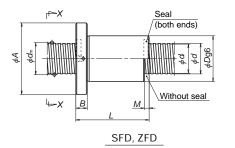

Lead *I* = 0.5 mm

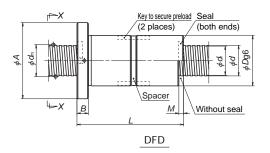
Lead l > 1mm

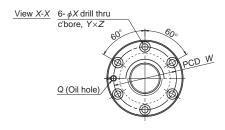
	N A a al a l N l a	Preload	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls Turns	Basic load Dynamic	rating (N) Static
	Model No.	system	d	1	$D_{\rm w}$	d _m	d,	× Circuits	C _a	C_{0a}
	MSFD 0400.5-3 MPFD 0400.5-3	Clearance P	4	0.5	0.400	4.1	3.6	1×3	170	280
*	MSFD 0401-2 MPFD 0401-2	Clearance P	4	1	0.800	4.2	3.2	1×2	315	370
	MSFD 0600.5-3 MPFD 0600.5-3	Clearance P		0.5	0.400	6.1	5.6	1×3	205	430
*	MSFD 0601-3 MPFD 0601-3	Clearance P	6	1	0.800	6.2	5.2	1×3	575	925
	MSFD 0602-3 MPFD 0602-3	Clearance P		2	0.800	6.2	5.2	1×3	575	925
	MSFD 0800.5-3 MPFD 0800.5-3	Clearance P		0.5	0.400	8.1	7.6	1×3	230	595
*	MSFD 0801-3 MPFD 0801-3	Clearance P	8	1	0.800	8.2	7.2	1×3	670	1290
*	MSFD 0801.5-3 MPFD 0801.5-3	Clearance P		1.5	1.000	8.3	7.0	1×3	1080	1980
*	MSFD 0802-3 MPFD 0802-3	Clearance P		2	1.200	8.3	6.9	1×3	1320	2210
	MSFD 1001-3 MPFD 1001-3	Clearance P		1	0.800	10.2	9.2	1×3	745	1660
*	MSFD 1002-3 MPFD 1002-3	Clearance P	10	2	1.200	10.3	8.9	1×3	1490	2850
*	MSFD 1002.5-3 MPFD 1002.5-3	Clearance P		2.5	1.588	10.4	8.6	1×3	2130	3640
	MSFD 1201-3 MPFD 1201-3	Clearance		1	0.800	12.2	11.2	1×3	795	1980
*	MSFD 1202-3 MPFD 1202-3	Clearance P	12	2	1.200	12.3	10.9	1×3	1660	3620
*	MSFD 1202.5-3 MPFD 1202.5-3	Clearance P		2.5	1.588	12.4	10.6	1×3	2360	4540
	MSFD 1203-3 MPFD 1203-3	Clearance		3	2.000	12.5	10.2	1×3	3120	5420
	MSFD 1402-3 MPFD 1402-3	Clearance	14	2	1.200	14.3	12.9	1×3	1780	4270
	MSFD 1403-3 MPFD 1403-3	Clearance P		3	2.000	14.5	12.2	1×3	3400	6490

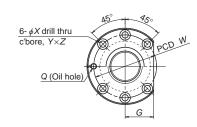
Remarks 1. If the shaft OD is less than 6 mm or the lead is less than 1 mm, a seal is not installed in the nut. (Refer to Page B72 for dust protection.)

- 2. Ball nuts with shaft diameters under 14 mm do not have oil holes.
- 3. Right turn screw is standard. Please consult NSK for left turn screw.

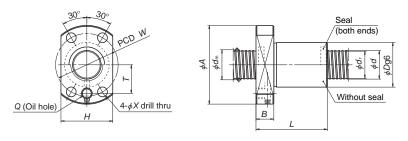

Unit: mm


Axial rigidity			Ва	all nut dimensio	ns		
K	Nut entire length	Nut diameter	Flanged diameter	Flanged width	Flanged dimension	Bolt hole dimension	Bolt hole PCD
(N/ <i>µ</i> m)	L	D D	A	B	H	X	W
30 47	13	10	22	3	11	3.4	16
22 34	12	10	20	3	14	2.9	15
42 66	13	12	24	3	13	3.4	18
49 76	15	12	24	3.5	16	3.4	18
49 76	17	13	25	4	17	3.4	19
54 85	13	14	27	3	15	3.4	21
64 99	16	14	27	4	18	3.4	21
76 117	22	15	28	4	19	3.4	22
73 113	26	16	29	4	20	3.4	23
77 120	16	16	29	4	20	3.4	23
91 138	28	18	35	5	22	4.5	27
90 140	32	19	36	5	23	4.5	28
88 137	16	18	31	4	22	3.4	25
108 168	28	20	37	5	24	4.5	29
107 167	32	21	38	5	25	4.5	30
107 166	36	22	39	5	26	4.5	31
122 191	29	22	41	6	26	5.5	32
127 196	37	24	43	6	28	5.5	34


Remarks 4. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.


- 5. The models marked with * are in MA type of standard ball screw with finished shaft end.
- 6. Preload system: P; Oversize ball preload (Refer to Page B5)

B509

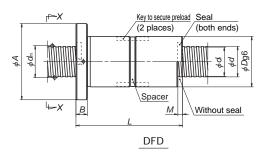


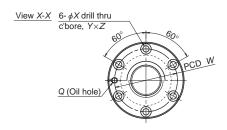
Circular shape I

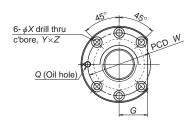
Circular shape I

		Danland	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	J \ /	Axial
	Model No.	Preload	oriare dia.	Loud	Dan ala.	dia.	rtoot dia.	Tullis	Dynamic	Static	rigidity
		system	d	1	D_{w}	d _m	d _r	× Circuits	$C_{\rm a}$	C_{0a}	<i>Κ</i> (N/ <i>μ</i> m)
	MSFD 1602-4	Clearance		2	1.588	16.4	14.6	1×4	3510	8450	185
*	MPFD 1602-4	Classes	16								288
14	MSFD 1602.5-4 MPFD 1602.5-4	Clearance		2.5	1.588	16.4	14.6	1×4	3510	8450	185 288
•	MSFD 2002-4	Clearance									225
	MPFD 2002-4	P		2	1.588	20.4	18.6	1×4	3910	10900	351
	SFD 2005-3	Clearance	1					1×3	8620	17500	196
	ZFD 2005-6	Z		5	3.175	20.75	17.4	1×3	8620	17500	382
	SFD 2005-4	Clearance	20	5	3.173	20.73	17.4	1×4	11000	23300	255
	DFD 2005-4	D] 20					1×4	11000	23300	509
	SFD 2006-3	Clearance						1×3	11100	20600	196
	ZFD 2006-6	Z		6	3.969	21	16.9	1×3	11100	20600	382
	SFD 2006-4	Clearance		U	3.707	-	10.7	1×4	14300	27500	255
	DFD 2006-4	D						1×4	14300	27500	498
	MSFD 2502-4	Clearance		2	1.588	25.4	23.6	1×4	4310	13900	273
	MPFD 2502-4	Р			1.500	25.4	25.0				425
	SFD 2505-3	Clearance						1×3	9790	22900	245
*	ZFD 2505-6	Z		5	3.175	25.75	22.4	1×3	9790	22900	480
	SFD 2505-4	Clearance		Ü	0.170	20.70	22.1	1×4	12500	30500	323
	DFD 2505-4	D						1×4	12500	30500	630
	SFD 2506-3	Clearance	25					1×3	12900	27300	245
	ZFD 2506-6	Z		6	3.969	26	21.9	1×3	12900	27300	470
	SFD 2506-4	Clearance						1×4	16500	36500	323
	DFD 2506-4	<u>D</u>						1×4	16500	36500	626
	ZFD 2510-4	Z		10	4.7/0	0/ 05	01.0	1×2	11400	21400	323
	SFD 2510-3	Clearance		10	4.762	26.25	21.3	1×3	16100	32000	245
	DFD 2510-3	D						1×3	16100	32000	479

- Remarks 1. It comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.
 - 2. If there is no seal for SFD, ZFD, and DFD, the nut length "L" is shortened by dimension "M". For MSFD and MPFD, the nut length is the same as those with seal.
 - 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw. Please consult NSK for MSFD, MPFD.

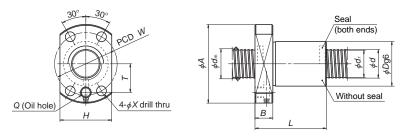

MSFD, MPFD


Unit: mm


					Ball nut dir	mensions						
Nut entire length L		Flanged diameter A	Flanged width B	Notch G	ned flange H	Seal dimension M		ole dim Y	ension 7	Bolt hole PCD W	Oil hole dimension T	Oil hole
40	25	44	10	_	29	_	5.5	_	_	35	16	M6×1
44	25	44	10	-	29	_	5.5	_	_	35	16	M6×1
40	30	49	10	_	34	_	5.5	_	_	40	18.5	M6×1
46 66 51 91	35 35 35 41	58 58 58 64	11	22.5 22.5 22.5 25	_	5	5.5	9.5	5.5	46 46 46 52	_	M6×1
52 76 60 108	35 35 35 42	58 58 58 65	11	22.5 22.5 22.5 25	_	6	5.5	9.5	5.5	46 46 46 53	_	M6×1
40	36	55	10	_	40	_	5.5	_	_	46	21.5	M6×1
46 66 51 91	40 40 40 46	63 63 63 69	11	24 24 24 26	_	5	5.5	9.5	5.5	51 51 51 57	_	M6×1
52 76 60 108	40 40 40 47	63 63 63 70	11	24 24 24 27	_	6	5.5	9.5	5.5	51 51 51 58	_	M6×1
88 80 140	42 42 47	69 69 74	15	26 26 28	_	10	6.6	11	6.5	55 55 60	_	M6×1

Remarks 4. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.

- 5. It is recommended to use with seal when shaft diameter is 16 mm or larger and have oil hole.
- 7. Preload system: Z, Offset preload; P, Oversize ball preload; D, Double nut preload (Refer to Page B5)


Circular shape I

Circular shape I

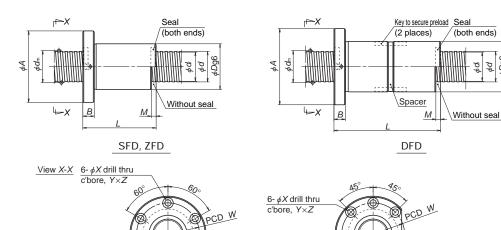
	Model No.	Preload	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	Basic load Dynamic	rating (N) Static	Axial rigidity
	MOGCI NO.	system	d	1			d,	×	C _a	C_{0a}	K
			и	I	$D_{\rm w}$	d _m	$u_{\rm r}$	Circuits	C _a	C _{0a}	(N/μm)
	MSFD 3202-6	Clearance		2	1.588	32.4	30.6	1×6	6790	27200	494
	MPFD 3202-6	Р			1.500	32.4	30.0	1/0	0770	27200	769
	SFD 3205-3	Clearance						1×3	11100	30500	304
	ZFD 3205-6	Z						1×3	11100	30500	598
	SFD 3205-4	Clearance		5	3.175	32.75	29.4	1×4	14200	40700	409
*	ZFD 3205-8	Z		3	3.173	32.73	29.4	1×4	14200	40700	784
	SFD 3205-6	Clearance						1×6	20200	61000	588
	DFD 3205-6	D						1×6	20200	61000	1160
	SFD 3206-3	Clearance						1×3	15000	37500	314
	ZFD 3206-6	Z						1×3	15000	37500	608
	SFD 3206-4	Clearance	32	6	3.969	33	28.9	1×4	19200	49900	412
	ZFD 3206-8	Z	32	U	3.707	33	20.7	1×4	19200	49900	804
	SFD 3206-6	Clearance						1×6	27200	74900	598
	DFD 3206-6	D						1×6	27200	74900	1190
	SFD 3208-3	Clearance						1×3	18300	41800	304
	ZFD 3208-6	Z		8	4.762	33.25	28.3	1×3	18300	41800	588
	SFD 3208-4	Clearance		O	4.702	33.23	20.3	1×4	23500	55800	392
	ZFD 3208-8	Z						1×4	23500	55800	774
	SFD 3210-3	Clearance						1×3	25900	52800	300
*	ZFD 3210-6	Z		10	6.35	33.75	27.1	1×3	25900	52800	588
	SFD 3210-4	Clearance		10	0.33	33.73	21.1	1×4	33200	70300	392
	DFD 3210-4	D						1×4	33200	70300	773

Remarks 1. It comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

- 2. If there is no seal for SFD, ZFD, and DFD, the nut length "L" is shortened by dimension "M". For MSFD and MPFD, the nut length is the same as those with seal.
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw. Please consult NSK for MSFD, MPFD.

MSFD, MPFD

Unit: mm

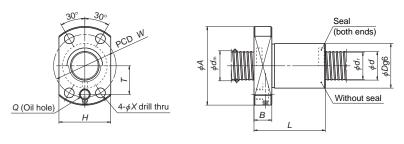

					Ball nut dir	nensions						
Nut entire		Flanged	Flanged	Notch	ned flange	Seal	Bolt ho	ole dim	ension	Bolt hole		Oil hole
length L	diameter D	diameter A	width <i>B</i>	G	Н	dimension <i>M</i>	X	Y	Z	PCD W	dimension T	Q
50	42	65	10	_	46	_	6.6	_	_	54	26.5	M6×1
47 67 52 77 62 112	48 48 48 48 48 53	75 75 75 75 75 75	12	29 29 29 29 29 29	_	5	6.6	11	6.5	61 61 61 61 61 66	_	M6×1
53 77 61 90 73 133	48 48 48 48 48 54	75 75 75 75 75 81	12	29 29 29 29 29 31	_	6	6.6	11	6.5	61 61 61 61 61 67	_	M6×1
67 99 76 116	50	84	15	32	_	8	9	14	8.5	66	_	M6×1
80 120 90 160	54	88	15	34	_	10	9	14	8.5	70	_	M6×1

Remarks 4. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.

- 5. It is recommended to use with seal when shaft diameter is 16 mm or larger and have oil hole.
- 6. The models marked with * are in SS type of standard ball screw with blank shaft end.
- 7. Preload system: Z, Offset preload; P, Oversize ball preload; D, Double nut preload (Refer to Page B5)

Q (Oil hole)

Circular shape I


Circular shape I

Q (Oil hole)

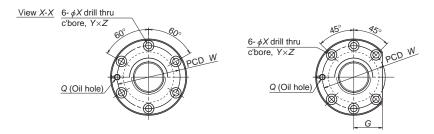
		Shaft dia.	Lead	Doll die	Ball circle	Doot die	Effective turns of balls	Basic load	rating (N)	Axial
Model No.	Preload	Shart dia.	Lead	Ball dia.	dia.	Root dia.		Dynamic	Static	rigidity
	system	d	1	$D_{\rm w}$	d _m	d,	× Circuits	$C_{\rm a}$	$C_{\scriptscriptstyle 0a}$	<i>Κ</i> (N/μm)
MSFD 4002-6 MPFD 4002-6	Clearance P		2	1.588	40.4	38.6	1×6	7380	33900	588 916
SFD 4005-4	Clearance						1×4	15800	52300	490
ZFD 4005-8	Z		5	3.175	40.75	37.4	1×4	15800	52300	960
SFD 4005-6	Clearance		5	3.173	40.75	37.4	1×6	22400	78400	725
ZFD 4005-12	Z						1×6	22400	78400	1410
SFD 4006-4	Clearance						1×4	21300	63500	490
ZFD 4006-8	Z		6	3.969	41.0	36.9	1×4	21300	63500	970
SFD 4006-6	Clearance	40		0.707	11.0	00.7	1×6	30100	95300	725
ZFD 4006-12							1×6	30100	95300	1431
SFD 4008-4	Clearance						1×4	27200	75200	500
ZFD 4008-8	_	Z 8 4.76	4.762	4.762 41.25	36.3	1×4	27200	75200	990	
SFD 4008-6	Clearance				20	00.0	1×6	38500	113000	735
DFD 4008-6	D						1×6	38500	113000	1460
SFD 4010-3	Clearance						1×3	30000	70000	372
ZFD 4010-6	Z		10	6.35	41.75	35.1	1×3	30000	70000	735
SFD 4010-4	Clearance		10	0.00	11.70	00.1	1×4	38400	93300	490
ZFD 4010-8	Z						1×4	38400	93300	970
SFD 5005-4	Clearance						1×4	17500	66800	593
ZFD 5005-8	Z		5	3.175	50.75	47.4	1×4	17500	66800	1170
SFD 5005-6	Clearance			3.170	55.76		1×6	24800	100000	872
ZFD 5005-12	Z	50					1×6	24800	100000	1720
SFD 5006-4	Clearance						1×4	23600	81700	598
ZFD 5006-8	Z		6	3.969	51.0	46.9	1×4	23600	81700	1190
SFD 5006-6	Clearance			3.707	31.0	70.7	1×6	33500	122000	892
ZFD 5006-12	Z						1×6	33500	122000	1750

Remarks 1. It comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

- 2. If there is no seal for SFD, ZFD, and DFD, the nut length "L" is shortened by dimension "M". For MSFD and MPFD, the nut length is the same as those with seal.
- The right turn screw is standard. "L" is added to the end of the model code for the left turn screw. Please consult NSK for MSFD. MPFD.

MSFD, MPFD

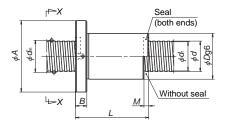
Unit: mm

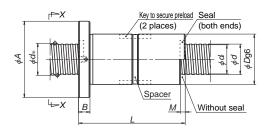

					Ball nut dir	nensions						
Nut entire length	diameter	diameter				Seal dimension		ole dim		Bolt hole PCD	dimension	
L	D	Α	В	G	Н	М	Χ	Y	Ζ	W	Τ	Q
50	51	74	10	_	55	_	6.6	_	_	63	31	M6×1
55 80 65 101	56	90	15	34		5	9	14	8.5	72		Rc1/8
64 93 76 118	56	90	15	34		6	9	14	8.5	72		Rc1/8
76 116 93 168	60 60 60 62	94 94 94 96	15	36 36 36 37	_	8	9	14	8.5	76 76 76 78	_	Rc1/8
83 123 93 143	62	104	18	40	1	10	11	17.5	11	82		Rc1/8
55 80 65 101	66	100	15	38	_	5	9	14	8.5	82	_	Rc1/8
64 93 76 118	66	100	15	38	_	6	9	14	8.5	82	_	Rc1/8

Remarks 4. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C), with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.

- 5. It is recommended to use with seal when shaft diameter is 16 mm or larger and have oil hole.
- 6. Preload system: Z, Offset preload; P, Oversize ball preload; D, Double nut preload (Refer to Page B5)

B515




Circular shape I

Circular shape I

					Ball circle		Effective turns of balls	Basic load	rating (N)	Axial
Model No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
TVIOGOTTVO.	system	d	1	$D_{\rm w}$	d _m	d _r	× Circuits	C _a	C_{0a}	<i>Κ</i> (N/ <i>μ</i> m)
SFD 5008-4	Clearance						1×4	29900	94800	598
ZFD 5008-8	Z		8	4.762	51.25	46.3	1×4	29900	94800	1180
SFD 5008-6	Clearance		O	4.702	31.23	40.3	1×6	42400	142000	887
DFD 5008-6	D						1×6	42400	142000	1740
SFD 5010-3	Clearance						1×3	34100	91600	461
ZFD 5010-6	Z						1×3	34100	91600	914
SFD 5010-4	Clearance		10	6.35	51.75	45.1	1×4	43600	122000	608
ZFD 5010-8	Z	50	10	0.55	31.73	45.1	1×4	43600	122000	1200
SFD 5010-6	Clearance	30					1×6	61800	183000	902
DFD 5010-6	D						1×6	61800	183000	1770
SFD 5012-3	Clearance						1×3	44800	109000	461
ZFD 5012-6	Z		12	7.938	52.25	44	1×3	44800	109000	906
SFD 5012-4	Clearance		12	7.730	32.23	44	1×4	57300	146000	608
DFD 5012-4	D						1×4	57300	146000	1200
SFD 5020-3	Clearance		20	7.938	52.25	44	1×3	44800	109000	461
DFD 5020-3	D		20	7.730	32.23	44	1×3	44800	109000	908
SFD 6306-4	Clearance						1×4	26100	104000	735
ZFD 6306-8	Z		6	3.969	64.0	59.9	1×4	26100	104000	1430
SFD 6306-6	Clearance		O				1×6	36900	157000	1180
ZFD 6306-12	Z						1×6	36900	157000	2110
SFD 6308-4	Clearance						1×4	33600	124000	745
ZFD 6308-8	Z		8	4.762	64.25	59.3	1×4	33600	124000	1460
SFD 6308-6	Clearance		O	4.702	04.23	37.3	1×6	47600	186000	1100
DFD 6308-6	D						1×6	47600	186000	2150
SFD 6310-4	Clearance						1×4	49700	163000	764
ZFD 6310-8	Z	63	10	6.35	64.75	58.1	1×4	49700	163000	1510
SFD 6310-6	Clearance		10	0.33	04.73	50.1	1×6	70500	244000	1130
DFD 6310-6	D Z						1×6	70500	244000	2210
ZFD 6312-6							1×3	50800	143000	1120
SFD 6312-4	Clearance						1×4	65100	191000	755
DFD 6312-4	D		12	7.938	65.25	57	1×4	65100	191000	1480
SFD 6312-6	Clearance						1×6	92200	286000	1110
DFD 6312-6	D						1×6	92200	286000	2180
SFD 6320-3	Clearance		20	9.525	65.75	56	1×3	83700	232000	735
DFD 6320-3	D		20	9.020	05.75	30	IXS	03/00	232000	1440

Remarks 1. It comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

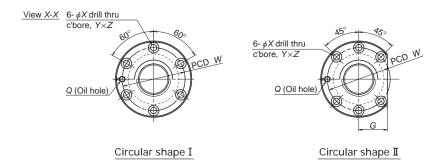
SFD, ZFD

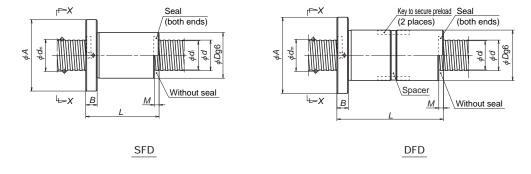
Unit: mm

										Unit: mm
				Ball	nut dimens	ions				
Nut entire length L	Nut diameter D	Flanged diameter A	Flanged width B	Notched flange G	Seal dimension M	Bolt X	hole dimer	nsion Z	Bolt hole PCD W	Oil hole
79 119 96 171	70 70 70 70 72	112 112 112 114	18	43 43 43 44	8	11	17.5	11	90 90 90 92	Rc1/8
83 123 93 143 114 205	72	114	18	44	10	11	17.5	11	92	Rc1/8
99 147 111 195	75	121	22	47	12	14	20	13	97	Rc1/8
146 253	75	121	28	47	20	14	20	13	97	Rc1/8
67 96 79 121	80	122	18	47	6	11	17.5	11	100	Rc1/8
79 119 96 175	82 82 82 85	124 124 124 127	18	47 47 47 48	8	11	17.5	11	102 102 102 105	Rc1/8
97 147 118 214	85	131	22	50	10	14	20	13	107	Rc1/8
147 111 195 136 248	90	136	22	52	12	14	20	13	112	Rc1/8
146 253	95	153	28	59	20	18	26	17.5	123	Rc1/8
D	4. The control	25, 5390 - 55, 16			Carlondar at			J. C P		

Remarks 4. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_n) with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.

B517


^{2.} If there is no seal for SFD, ZFD, and DFD, the nut length "L" is shortened by dimension "M". For MSFD and MPFD, the nut length is the same as those with seal.


^{3.} The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

^{5.} It is recommended to use with seal when shaft diameter is 16 mm or larger and have oil hole.

^{6.} Preload system: Z, Offset preload; D, Double nut preload (Refer to Page B5)

Model No.	Preload	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	Basic load	rating (N) Static	Axial rigidity
Wiodel No.	system	d	1	$D_{\rm w}$	d _m	d,	× Circuits	$C_{\rm a}$	C_{0a}	<i>Κ</i> (N/μm)
SFD 8010-4	Clearance						1×4	55100	209000	931
DFD 8010-4	D		10	6.35	81.75	75.1	1×4	55100	209000	1840
SFD 8010-6	Clearance		10	0.33	81.75	/5.1	1×6	78000	314000	1370
DFD 8010-6	D						1×6	78000	314000	2710
SFD 8012-4	Clearance						1×4	74000	254000	941
DFD 8012-4	D	90	12	7.938	82.25	74	1×4	74000	254000	1860
SFD 8012-6	Clearance	80	12	7.938	02.23	/ 4	1×6	105000	381000	1392
DFD 8012-6	D						1×6	105000	381000	2730
SFD 8020-3	Clearance				82.75		1×3	96600	313000	931
DFD 8020-3	D		20	9.525		73	1×3	96600	313000	1830
SFD 8020-4	Clearance		20	7.323	02.73	/3	1×4	124000	417000	1230
DFD 8020-4	D						1×4	124000	417000	2410
SFD 10010-6	Clearance		10	6.35	101.75	95.1	1×6	86200	401000	1670
DFD 10010-6	D		10	0.33	101.75	75.1	120	00200	401000	3270
SFD 10012-6	Clearance	100	12	7.938	102.25	94	1×6	117000	490000	1680
DFD 10012-6	D	100	12	7.750	102.23	74	1//0	117000	470000	3320
SFD 10020-4	Clearance		20	9.525	102.75	93	1×4	136000	526000	1470
DFD 10020-4	D		20	7.323	102.73	73	1/4	130000	320000	2890

Remarks 1. It comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

 If there is no seal for SFD, ZFD, and DFD, the nut length "L" is shortened by dimension "M". For MSFD and MPFD, the nut length is the same as those with seal.

3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

L II.	Paradi	l'idinged	i langea	Classica	l'accession	DOIL	HOIC GITTICI	131011	DOILTIOIC	Oil hole	
length	diameter D		width	flange	dimension M	V	V	7	PCD W	Q	
L	D	Α	В	G	IVI	X	Υ	Z	VV	Q	
97											
172	105	151	22	57	10	14	20	13	127	Rc1/8	
118	105	101	22	37	10	14	20	13	127	KC1/0	
214											
111											В
195	110	156	22	59	12	14	20	13	132	Rc1/8	EO
136	110	130	22	37	12	14	20	13	132	KC176	520
248											
146											
253	115	173	28	66	20	18	26	17.5	143	Rc1/8	
168	113	1/3	20	00	20	10	20	17.5	143	KC1/0	

Ball nut dimensions

Seal

Bolt hole dimension

20

26

32

14

18

22

13

17.5

21.5

Remarks 4. The axial rigidity in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C) with clearance, 10% with D preload, and 5% with P preload. Refer to "Technical description" (Page B41) if axial load differs from the conditions above, or when considering change in the deformation of the ball nut itself.

10

12

20

5. It is recommended to use with seal when shaft diameter is 16 mm or larger and have oil hole.

64

71

79

6. Preload system: D; Double nut preload (Refer to Page B5)

22

28

32

B519 B520

Nut entire

168 297 118

214 142

254 172

301

Nut

125

130

135

Flanged

171

188

205

Flanged Notched

Unit: mm

Oil hole

Rc1/8

Rc1/8

Rc1/8

Bolt hole

147

158

169

B-3-3.4 End Cap Type Ball Screw

1. Features

End cap recirculation system is suitable for high helix lead and multiple start threads.

Since the leads are 1 to 3 times larger than their screw shaft diameter, it makes them more suitable for high speed operation.

2. Specifications

(1) Recirculation system

The structure of end cap recirculation system is shown in Fig. 1.

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are shown in Table 1. Please consult NSK for other grades.

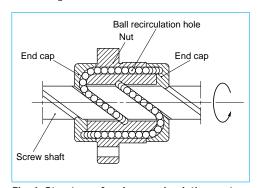


Fig. 1 Structure of end cap recirculation system

Table 1 Accuracy grade and axial play

Accuracy grade	LSFC, LPFC: C1, C2, C3, C5, Ct7 USFC, UPFC: C3, C5, Ct7 (Three times lead or over are C5, Ct7)
Axial play	Z, 0 mm (Preload); T, 0.005 mm or less, S, 0.020 mm or less; N, 0.050 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed.

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK for high-speed specification. Basic measure must be taken for the high speed ball screws respectively.

Allowable d·n value:

Standard specification; 80000 or less High-speed specification; 100000 or less Standard of rotational speed: 3000 min⁻¹ **Please also review the critical speed. Refer to "Technical Description: Permissible rotational speed" (Page B51) for details.

(4) Other specifications

Please consult NSK for other specifications not listed in the dimension tables.

3. Product categories

There are two different preload systems with several models (Table 2).

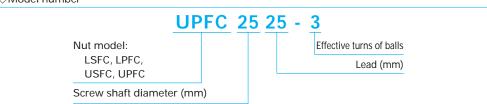
Table 2 End cap type ball screws product categories

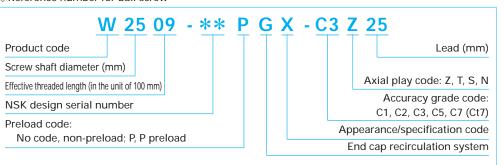
Nut model	Shape	Flange shape	Nut shape	Preload system
LSFC	annous and annous and	Flanged	Circular	Non-preload, Slight axial play
LPFC	10000	Circular II	Circular	P preload (light preload) no spacer ball
USFC		Flanged	Circular	Non-preload, Slight axial play
UPFC		Rectangular	Circular	P preload (light preload) no spacer ball

4. Design Precautions

When designing the screw shaft end, one end of the screw must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

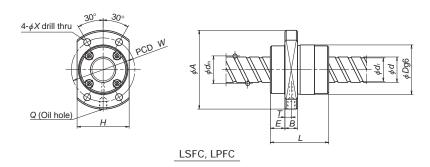
- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.


Special bearings which have higher-load carrying capacity are available.

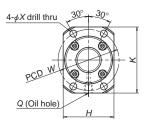

For general precautions regarding ball screws, refer to "Design Precautions" (Page B84) and "Handling Precautions" (Page B103).

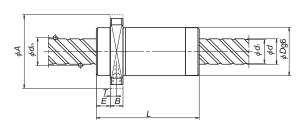
5. Example of model number in dimension tables

A structure of "Model number" and "Reference number for ball screw" are as follows.



B521 B522





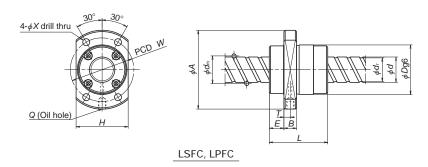
			Preload	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	Basic load		Axial rigidity K
	Mod	del No.	system				uia.		×	Dynamic	Static	
			- 9	d	1	$D_{\rm w}$	$d_{\scriptscriptstyle m}$	d_{r}	Circuits	$C_{\rm a}$	C_{0a}	(N/ <i>μ</i> m)
		1220-1.5 1220-1.5	Clearance P	12	20	2.381	12.5	9.9	1.7×1	2690	4420	66 103
*		1520-1.5 1520-1.5	Clearance P		20	3.175	15.5	12.2	1.7×1	5070	8730	97 151
		1540-1	Clearance	4.5					0.7×2	3860	6050	62
	UPFC	1540-1	Р	15	40	0 175	15.75	100	0.7×2	3860	6050	97
	USFC	1540-2	Clearance		40	3.175	15.75	12.2	0.7×4	7000	12100	121
	UPFC	1540-2	Р						0.7×4	7000	12100	188
		1616-3	Clearance						1.7×2	6380	12500	172
		1616-3	Р		16	2.778	16.65	13.7	1.7×2	6380	12500	268
		1616-6	Clearance		10	2.770	10.03	13.7	1.7×4	11600	25000	334
		1616-6	Р						1.7×4	11600	25000	520
.1.		1632-1	Clearance						0.7×2	4000	6690	74
*		1632-1	Р						0.7×2	4000	6690	116
		1632-3	Clearance	16	32	3.175	16.75	13.4	1.7×2	8580	17000	176
		1632-3	Р		02	01170	10170		1.7×2	8580	17000	273
		1632-6	Clearance						1.7×4	15600	34100	340
		1632-6	Р						1.7×4	15600	34100	530
		1650-1	Clearance						0.7×2	4000	6690	65
		1650-1	Р		50	3.175	16.75	13.4	0.7×2	4000	6690	102
		1650-2	Clearance						0.7×4	7260	13400	126
		1650-2	P						0.7×4	7260	13400	197
		2020-3 2020-3	Clearance P						1.7×2	9620	21000	238 370
		2020-3	Clearance		20	3.175	20.75	17.4	1.7×2 1.7×4	9620 17500	21000 42000	462
		2020-6	P						1.7×4 1.7×4	17500	42000	718
		2040-1	Clearance						0.7×2	4490	8640	89
*		2040-1	P						0.7×2	4490	8640	138
		2040-3	Clearance	20					1.7×2	9620	21000	211
		2040-3	P		40	3.175	20.75	17.4	1.7×2	9620	21000	328
		2040-6	Clearance						1.7×4	17500	42000	409
		2040-6	P						1.7×4	17500	42000	636
		2060-1	Clearance						0.7×2	4490	8640	78
		2060-1	Р		60 3	3.175	20.75	17.4	0.7×2	4490	8640	121
		2060-2	Clearance						0.7×4	8140	17300	151
	UPFC	2060-2	Р						0.7×4	8140	17300	235

Remarks 1. For LSFC and USFC type ball screws, rigidities in the table are theoretical values obtained from the elastic deformation between the screw groove and the ball when the axial load is 30% of the basic dynamic load rating (C_s).

For LPFC and UPFC type, rigidities are theoretical values when the preload is 10% of the basic dynamic load rating (C_s) and an axial load is applied to it. Refer to the "Technical Description" (Page B41) if the preload differs from the conditions above, or when considering a change in the deformation of the ball nut itself.

USFC, UPFC

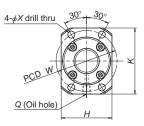
Unit: mm

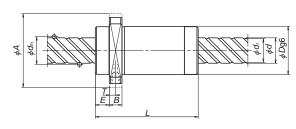

				Ball	nut dimens	sions				
Nut entire length L	Nut diameter D	Flanged diameter A	Flanged width B	Flanged o	limension K	End cap dimension E	Bolt hole dimension X	Bolt hole PCD W	Oil hole	Oil hole position T
44	26	44	10	28	40	9	4.5	35	M6×1	5
45	34	55	10	36	50	11	5.5	45	M6×1	5
40	32	53	10	33	48	12	5.5	43	M6×1	5
38	32	53	10	34	_	10	4.5	42	M6×1	5
34 34 66 66 66	34	55	10	36	50	10.5	5.5	45	M6×1	5
50	34	55	10	36	50	12	5.5	45	M6×1	5
46	39	62	10	41	_	11.5	5.5	50	M6×1	5
41 41 81 81 81 81	38	58	10	40	52	11	5.5	48	M6×1	5.5
58	38	58	10	40	52	12.3	5.5	48	M6×1	5

Remarks 2. The right turn screw is standard. Please consult NSK for left turn screw.

- 3. The models marked with * are in FA type of standard ball screw with finished shaft end.
- 4. Preload system: P; Oversize ball preload (Refer to Page B5)

B523 B524




		D I I	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial rigidity
	Model No.	Preload system	Sriai Caia.	Loud	Buil dia.	dia.	rtoot dia.	Turns ×	Dynamic	Static	K
		System	d	1	D_{w}	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	$C_{\rm a}$	C_{0a}	(N/ <i>µ</i> m)
	LSFC 2525-3	Clearance						1.7×2	14400	32800	293
	LPFC 2525-3			0.5	0.010	26.0	04.0	1.7×2	14400	32800	456
	LSFC 2525-6			25	3.969		21.9	1.7×4	26100	65600	568
	LPFC 2525-6	Р						1.7×4	26100	65600	883
	USFC 2550-1	Clearance						0.7×2	6700	13500	109
*	UPFC 2550-1	Р						0.7×2	6700	13500	170
	USFC 2550-3	Clearance	25	50	3.969	24.0	21.9	1.7×2	14400	32800	264
	UPFC 2550-3	Р	25	50	3.909	26.0	21.9	1.7×2	14400	32800	412
	USFC 2550-6	Clearance						1.7×4	26100	65600	512
	UPFC 2550-6	Р					1.7×4	26100	65600	796	
	USFC 2580-1	Clearance		80				0.7×2	6700	13500	94
	UPFC 2580-1	Р			3,969	26.0	21.9	0.7×2	6700	13500	147
	USFC 2580-2	Clearance					21.7	0.7×4	12200	27000	184
	UPFC 2580-2	Р						0.7×4	12200	27000	285
	LSFC 3232-3	Clearance		32 4.7	4.762	4.762 33.25		1.7×2	21000	51600	366
	LPFC 3232-3	Р					28.3	1.7×2	21000	51600	570
	LSFC 3232-6	Clearance					20.0	1.7×4	38100	103000	709
	LPFC 3232-6	Р						1.7×4	38100	103000	1104
	USFC 3264-1	Clearance	32					0.7×2	9800	20900	143
	UPFC 3264-1	Р	02					0.7×2	9800	20900	222
	USFC 3264-3	Clearance		64	4.762	33.25	28.3	1.7×2	21000	51600	329
	UPFC 3264-3	Р						1.7×2	21000	51600	512
	USFC 3264-6	Clearance						1.7×4	38100	103000	636
	UPFC 3264-6	Р						1.7×4	38100	103000	991
	LSFC 4040-3	Clearance						1.7×2	33500	86500	455
	LPFC 4040-3	Р	40	40	6.350	41.75	35.2	1.7×2	33500	86500	708
	LSFC 4040-6	Clearance						1.7×4	60800	173000	880
	LPFC 4040-6	-						1.7×4	60800	173000	1370
	LSFC 5050-3 LPFC 5050-3	Clearance					44.1	1.7×2	50000	135000	560
			50	50	7,938	52.25		1.7×2	50000	135000	871
	LSFC 5050-6	Clearance						1.7×4	90800	270000	1084
	LPFC 5050-6	Р						1.7×4	90800	270000	1688

Remarks

1. For LSFC and USFC type ball screws, rigidities in the table are theoretical values obtained from the elastic deformation between the screw groove and the ball when the axial load is 30% of the basic dynamic load rating (C_a).

For LPFC and UPFC type, rigidities are theoretical values when the preload is 10% of the basic dynamic load rating (C_a) and an axial load is applied to it. Refer to the "Technical Description" (Page B41) if the preload differs from the conditions above, or when considering a change in the deformation of the ball nut itself.

USFC, UPFC

Unit: mm

				Ball	nut dimens	ions				
Nut entire	Nut diameter	Flanged diameter	Flanged width	Flanged o		End cap	Bolt hole dimension	Bolt hole PCD	Oil hole	Oil hole
length <i>L</i>	diarneter D	diarneter A	widin B	Н	Κ	aimension <i>E</i>	aimension X	W PCD	Q	position <i>T</i>
55	47	74	12	49	_	13	6.6	60	M6×1	6
50 50 100 100 100 100	46	70	12	48	63	13	6.6	58	M6×1	7
75	46	70	12	48	63	14.5	6.6	58	M6×1	6
70	58	92	12	60	_	16	9	74	M6×1	5.5
62 62 126 126 126 126	58	92	12	60	82	15.5	9	74	M6×1	7.5
85	73	114	15	75	_	19.5	11	93	M6×1	6.5
107	90	135	20	92	_	21.5	14	112	M6×1	7

Remarks 2. The right turn screw is standard. Please consult NSK for left turn screw.

- 3. The models marked with * are in FA type of standard ball screw with finished shaft end.
- 4. Preload system: P; Oversize ball preload (Refer to Page B5)

B525 B526

C-1 Monocarrier™

1.	Featu	uresC1
2.	Class	sifications and SeriesC3
		onal Components ······C5
		ction of Monocarrier
		Procedures for Selecting
		Monocarrier ·······C6
	4.2.	
	4.3.	Maximum Speed ······C7
		Accuracy GradeC9
		Stroke and Ball Screw Lead C9
		Basic Load Rating C11
	4.7.	Estimation of Life Expectancy C13
		Example of Life Estimation C15
5.		ntenance
	5.1.	Maintenance Method C17
	5.2.	NSK K1™ Lubrication Unit ·· C18
6.	NSK (Clean Grease LG2 Specification ··· C19
7.	Chara	acteristics and Evaluation
	Meth	od
	7.1.	Positioning AccuracyC19
	7.2.	RepeatabilityC19
	7.3.	Running Parallelism C20
8.	Spec	cial SpecificationsC20
9.	Sens	or Specification
	9.1.	Proximity Switch ······C21
	9.2.	Photo Sensor ······C22

C-2 MCM Series

1.	MCM Series Reference Number
	Coding C2!
2	MCN/ Carias Dimensian Table of

- 3. MCM Series Option Part C37

C-3 MCH Series

- MCH Series Reference Number Coding ------C63
- 3. MCH Series Option Part ······· C71

Monoca rrier™

C1-C22

C23-C59

C61-C80

BLOCK

NSK

C-1 Monocarrier™

C-1-1 Features

NSK's Monocarrier is the culmination of technology and innovation in linear motion. This lightweight, compact single axis linear actuator integrates quality NSK ball screw, linear guide and support bearings into one unit.

4 Long term maintenance free

- Ouse of NSK K1 Lubrication Units and grease maintains a smooth lubricating performance for long periods in mechanical environments where lubrication is difficult to apply, where use of oil is not permitted because of hygienic issues, or where the mechanical equipment is subjected to frequent wash downs.
- ONSK K1 lubrication unit is available for food processing machines and medical equipment.
- OGrease for clean environments and for general machinery is available.

All -in-one structure

- The all-in-one structure integrates a ball screw, a linear guide and support bearings into a single unit to significantly reduce design and installation time.
- Multiple datum planes, the bottom and a lateral side of the rail, facilitate highly accurate installation.
- Olmmediate operation after installation and run-in is possible.
- OA wide selection of fine to high helix leads are available.

Superb antirust capability One temperature chrome plating is a standard feature for the bodies and sliders to control rusting in normal operating and storing environments. Fluoride low temperature chrome plating is optionally available for much higher rust prevention.

application.

Light weight type : MCM Series Rigid type : MCH Series

The design has minimal space requirements.

Built in support bearings

Linear guide (Ball groove)

Ball screw

A wide variety of leads, from fine leads to high helix leads, is available.

lider

A ball nut and a slider are integrated into one component.

Light weight, compact design

OAvailable in two different shapes of cross-section, depending on

MONOC

RRIER

C-1-2 Classification and Series

Table 2.1

	Light Weight	Beam Rigidity	Moment Rigidity
MCM Series	0	0	0
MCH Series	0	0	0

Accuracy	Long Stroke	Size Variation		
©	0	0		
©	0	0		

[MCM Series Cross-sections] MCM06 MCM02 MCM03 MCM08 (Lead1, 2mm) (Lead10, 12mm) MCM10 MCM05

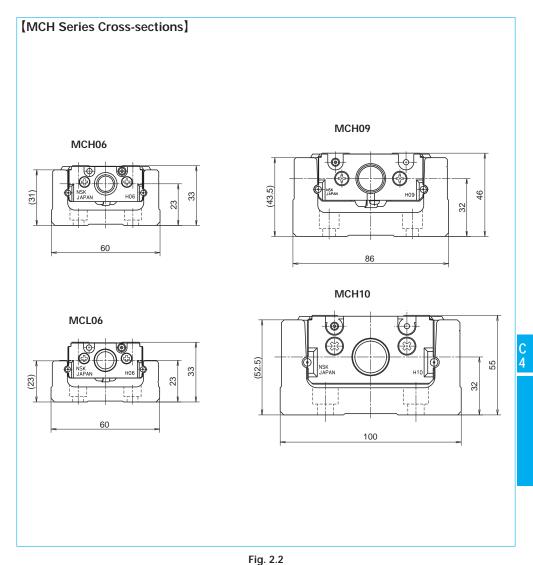


Fig. 2.1

MCM Series

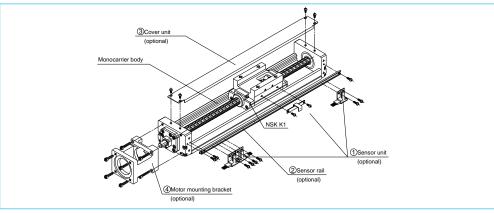


Fig. 3.1 Assembly Optional components for MCM10 (example)

- ① Sensor unit : Sensors, sensor mounting parts and a sensor dog are available in a set.
 - * When a sensor unit is used, the full cover unit cannot be used.
- 2 Sensor rail: Rail for sensor mounting is available.
- ③ Cover unit: Top cover or full cover (included top cover and side cover) is available.
- 4 Motor bracket for motor mounting: Available for a variety of models.

Note: We assemble optional components upon request.

MCH Series

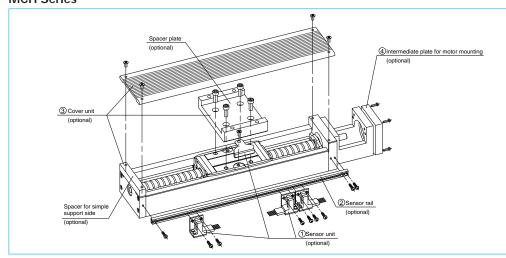


Fig. 3.2 Assembly Optional components for MCH10 (example)

- ① Sensor unit: Sensors, sensor mounting parts and a sensor dog are available in a set.
- 2 Sensor rail: Rail for sensor mounting is available.
- ③ Cover unit: Top cover (included spacer plate and spacer for simple support side) is available.
- 4 Intermediate plate for motor mounting: Available for a variety of models.

Note: We assemble optional components upon request.

C-1-4 Selection of Monocarrier C-1-4. 1 Procedures for Selecting Monocarrier

Select a reference type of Monocarrier based on stroke and rigidity (Refer to Fig. 4.2, 4.3).

Select a ball screw lead referring to "C-1-4.3 Maximum Speed" so that the rotational speed does not exceed the limit.

Study the loads to be applied to the linear guide and obtain the equivalent load (Fe) substituting them for equation ① or ② on Page C13. Obtain the mean effective load (Fm) substituting them for equation ③ on Page C14, then calculate the life.

Study the loads to be applied to the ball screw and support unit. Obtain the mean effective load (Fm) substituting them for equation ③ on Page C14, then calculate the life.

C-1-4. 2 Rigidity

Rigidity of rail

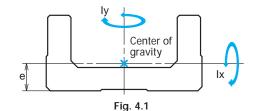


Table 4.1 Rigidity of rail

Nominal size	Geometrical moment of inertia ×10 ⁴ (mm ⁴)		Center of gravity (mm)	Mass (kg/ 100mm)
	lx	ly	е	W
MCM02	0.097	1.32	3.3	0.11
MCM03	0.30	3.3	4.5	0.18
MCM05	0.78	11.4	6.0	0.31
MCM06	2.14	26.1	7.0	0.57
MCM08	5.90	81.0	9.2	0.88
MCM10	15.6	219	12.2	1.52
MCH06	6.5	38.2	10.8	0.67
MCL06	2.58	29.6	7.8	0.56
MCH09	28.7	172	15.5	1.48
MCH10	54.0	307	18	1.93

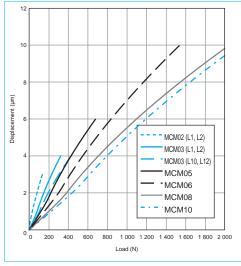


Fig. 4.2 MCM Series Rigidity in radial direction

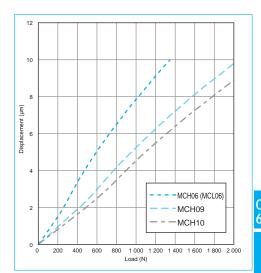


Fig. 4.3 MCH Series Rigidity in radial direction

NSK

C-1-4. 3 Maximum Speed

(1) Maximum Speed of MCM Series

Maximum speed of the Monocarrier is determined by the critical speed of the ball screw shaft and the $d \cdot n$ value. Do not exceed the maximum speeds on the table below.

Table 4.2

	Ball screw	stroke	Rail	Maximum
	lead	(mm)	length L2	speed
	leau		(mm)	(mm/s)
	_	50	100	
MCM02	1	100	150	50
Single		150	200	
slider		50	100	
Sildel	2	100	150	100
		150	200	
	1	50 100	115 190	50
	' '	150	240	1 50
		50	115	
	2	100	190	100
MCM03	-	150	240	100
Single		100	190	
slider	10	-	1 70	500
	10	250	340	500
		100	190	
	12	-		600
		250	340	
		50	180	
	5	_	_	250
		200	330	
MCM05		50	180	
Single	10	-	_	500
slider		600	730	
		300	430	
	20	-	_	1000
		600	730	
		60	280	
MCM05	10	-	-	500
Double		510	730	
slider		210	430	
Siluci	20			1000
		510	730	
	_	50	190	
	5	-		250
		500	640	
		50	190	F00
N 4 C N 4 O /	10	-	740	500
MCM06	10	600 700	740 840	490
Single slider	-	800	940	390
Siluei		300	440	390
		300	440	1000
	20	600	740	1000
	20	700	840	980
		800	940	770
		110	340	,,,
	5	-	-	250
		410	640	
		110	340	
MCM06	1 10	_	-	500
Double	10	610	840	555
slider		710	940	490
0		210	440	1.75
		-	-	1000
	20	610	840	

	Ball screw	stroke	Rail	Maximum	
	lead	(mm)	length L2	speed	
_	leau	` '	(mm)	(mm/s)	
		50	220		
	5			250	
		200	370		
		100	270		
MCM08	10	700	-	500	
Single	l	700	870	200	
slider		800 300	970 470	390	
		300	470	1000	
	20	700	870	1000	
		800	970	780	
		80	370	760	
	10	60	370	500	
MCM08	10	680	970	500	
Double		180	470		
slider	20	100	470	1000	
	20	680	970	1000	
		200	380		
		_	-	500	
	10	800	980	""	
	'	900	1080	440	
MCM10		1000	1180	360	
Single		300	480		
slider		-	_	1000	
	20	800	980		
		900	1080	880	
		1000	1180	720	
		70	380		
	10	-	-	500	
MCM10	'0	670	980		
Double		870	1180	440	
slider		170	480		
	20	. = .		1000	
	-0	670	980	000	
		870	1180	880	

Note: When operating the Monocarriers near the critical speed or exceeding the maximum speed in the table, please consult NSK.

(2) Maximum Speed of MCH Series

Maximum speed of the Monocarrier is determined by the critical speed of the ball screw shaft and the $d \cdot n$ value. Do not exceed the maximum speeds on the table below.

Table 4.3

	Ball screw lead	stroke (mm)	Rail length L ₂ (mm)	Maximum speed (mm/s)
MCH06	5	50 - 500	150 - 600	250
MCL06 Single slider	10	50 - 500	150 - 600	500
Slider	20	50 - 500	150 - 600	1000
	5	100 - 400	300 - 600	250
MCH06 Double slider	10	100 - 400	300 - 600	500
	20	100 - 400	300 - 600	1000
	5	200 - 600	340 - 740	250
		800	940	210
MCH09 Single slider	10	200 - 600	340 - 740	500
Siluei		800	940	410
	20	200 - 600	340 - 740	1000
		800	940	830
	5	150 - 650	440 - 940	250
MCH09 Double slider	10	150 - 650	440 - 940	500
	20	150 - 650	440 - 940	1000

Note: When operating the Monocarriers near the critical
speed or exceeding the maximum speed in the table
please consult NSK.

	Ball screw lead	stroke (mm)	Rail length L ₂ (mm)	Maximum speed (mm/s)
		400 - 800	580 - 980	500
	10	900	1080	440
		1000	1180	360
MOUL		1100	1280	300
		1200	1380	250
slider		400 - 800	580 - 980	1000
	20	900	1080	870
		1000	1180	720
		1100	1280	600
		1200	1380	510
		250 - 750	580 - 1080	500
MCH10 Single slider MCH10 Double slider	10	850	1180	480
NACI IAO		950	1280	390
		1050	1380	320
		250 - 750	580 - 1080	1000
	20	850	1180	950
		950	1280	780
		1050	1380	650

Note: When operating the Monocarriers near the critical speed or exceeding the maximum speed in the table, please consult NSK.

-

Note: When operating the Monocarriers near the critical speed or exceeding the maximum speed in the table, please consult NSK.

C-1-4. 4 Accuracy Grade
The accuracy grade of Monocarrier standard inventories is high grade (H), except for lead 1 and 2 of MCM02, and 03.

When you require strokes longer than 1200 mm, please consult NSK about the accuracy grade.

Table 4.4							(Unit : µm)			
Grade		High grade		Precision						
Stroke (mm)	Repeatability	Running Parallelism (vertical)	Backlash	Repeatability	Positioning accuracy	Running Parallelism (vertical)	Backlash			
- 200		14			20	8				
- 400		16	20 or less	5S ±3	25	10	3 or less			
- 600	±10	20			30	12				
- 700		23			30	15				
- 1000		23			35	15				
- 1200		30			40	20				

C-1-4. 5 Stroke and Ball Screw Lead

(1) MCM Series Standard Combinations of Stroke and Ball Screw Lead

Table 4.5 Single slider

(Omark, S	(○mark, Standard inventory; ☆mark, Short-term delivery) (Unit : mm)																
Nominal size	MCI	M02		MCI	M03		N	MCM05 MCM06			MCM08			MCI	V110		
lead stroke	1	2	1	2	10	12	5	10	20	5	10	20	5	10	20	10	20
50	0	0	0	0	☆	☆	0	0	☆	0	☆	☆	☆	☆			
100	0	0	0	0	0	0	0	0	☆	0	0	☆	☆	0	☆	☆	☆
150	0	0	☆	☆	☆	☆	☆	0	☆	☆	☆	☆	☆	☆	☆	☆	☆
200					0	☆	0	0	☆	0	0	☆	☆	0	☆	0	☆
250					☆	☆	☆	0	☆	☆	☆	☆	☆	☆	☆	☆	☆
300							☆	0	0	0	0	0	☆	0	0	0	0
400							☆	0	0	0	0	0	☆	0	0	0	0
500							☆	0	0	☆	0	0	☆	0	0	☆	☆
600							☆	0	0	☆	☆	☆	☆	0	☆	0	☆
700										☆	0	0	☆	☆	☆	☆	☆
800										☆	☆	☆	☆	☆	☆	0	☆
900																☆	☆
1000																☆	☆

Table 4.6 Double slider

lable	4.0	_	oui)IC	SIIC	ıcı						
(☆mark, Short-term delivery) (Unit : mm)												
Nominal size	MCI	M05	M	<u>ICM</u> ()6	MC	M08	MC	M10			
lead stroke	10	20	5	10	20	10	20	10	20			
60	☆											
70								☆				
80						☆						
110	☆		☆	☆								
160	☆											
170								☆	☆			
180						☆	☆					
210	$\stackrel{\wedge}{\sim}$	☆	☆	☆	☆							
270								☆	☆			
280						☆	☆					
310	☆	☆	☆	☆	☆							
370								☆	☆			
380						☆	☆					
410	☆	☆	☆	☆	☆							
470								☆	☆			
480						☆	☆					
510	☆	☆		☆	☆							
570								☆	☆			
580						☆	☆					
610				☆	☆							
670								☆	☆			
680						☆	☆					
710				☆	☆							
870								☆	☆			

Note: Please consult NSK about double slider of MCM 02 and 03.

(2) MCH Series Standard Combinations of Stroke and Ball Screw Lead

Table 4.7 Single slider

Omark, Standard inventory; ☆mark, Short-term delivery) (Unit:mm)											
Nominal size	N	лСН0	5	N	VCH0)	MCH10				
lead stroke	5	10	20	5	10	20	10	20			
50	0	0	☆								
100	0	0	☆	☆	☆	☆	☆	☆			
200	0	0	0	0	0	☆	☆	☆			
300	☆	0	0	0	0	☆	☆	☆			
400	☆	0	0	0	0	☆	0	0			
500	☆	0	0	☆	0	0	0	0			
600				☆	0	0	0	0			
700				☆	☆	☆	0	0			
800				☆	0	0	0	0			
900							☆	0			
1000							☆	0			
1100							☆	☆			
1200							☆	☆			

Table 4.8 Double slider

(☆mark, S	(☆mark, Short-term delivery) (Unit : mr											
Nominal size	N	лсно)6	N	1CH0	9	MC	H10				
lead stroke	5	10	20	5	10	20	10	20				
100	☆	☆										
150				☆	☆							
200	☆	☆										
250				☆	☆		☆	☆				
300	☆	☆										
350				☆	☆		☆	☆				
400		☆	☆									
450					☆	☆	☆	☆				
550							☆	☆				
650					☆	☆	☆	☆				
750								☆				
850								☆				
950								☆				
1050								☆				

Table 4.9 Limitations

	Nominal size	lead (mm)	slider	stroke (mm)
	MCM02	1, 2	Single	150
MCM series	B 40B 400	1, 2	Single	150
	MCM03	10, 12	Single	350
	NACNAOE	F 10 00	Single	900
	MCM05	5, 10, 20	Double	810
	N 4 C N 4 O /	F 10 00	Single	1000
	MCM06	5, 10, 20	Double	910
	N 4 C N 4 C O	F 10 00	Single	1000
	MCM08	5, 10, 20	Double	880
	N 4 C N 4 1 O	10 20	Single	1800
	MCM10	10, 20	Double	1670
	MOLIO	F 10 00	Single	600
	MCH06	5, 10, 20	Double	500
	MCLIOO	F 10 00	Single	1000
MCH series	MCH09	5, 10, 20	Double	850
	MOUTO	10.00	Single	1800
	MCH10	10, 20	Double	1650
	MCL06	5, 10, 20	Single	500

NS

C-1-4. 6 Basic Load Rating

(1) MCM Series Basic Load Rating

Table 4.10 Basic Load Rating

	Lead	Shaft dia	Ba	șic dynamic	load rating	(N)	Basic static lo	ad rating (N)	Support uni
Nominal size	l	d	Ball screw	Linear guide	Support unit	Rated running distance	Ball screw	Linear guide	Limit load
	(mm)	(mm)	$C_{\rm a}$	C	Ca	La (km)	C0a	<i>C</i> o	(N)
MCM02	1	φ 6	340 (High grade) 405 (Precision)	4910	615	1	555 (High grade) 615 (Precision)	2120	490
IVICIVIUZ	2	φο	340 (High grade) 405 (Precision)	3900	013	2	555 (High grade) 615 (Precision)	2120	490
	1	φ6	735	10900		1	1230	4900	
MCM03	2	φυ	735	8650	2670	2	1230	4700	1040
IVICIVIOS	10	φ8	1230	6250	2070	10	1690	6620	1040
	12	φυ	1230	5880		12	1070	0020	
	5		3760	15600		5	6310	10900	
MCM05	10	φ 12	2260	12400	4400	10	3780		1450
	20		2260	9850		20	3780		
	5	φ 16	7310	25200		5	13500		
MCM06	10	φ 15	7060	20000	6550	10	12700	17000	2730
	20	φισ	4560	15900		20	7750		
	5	φ 16	7310	30800		5	13500		
MCM08	10	φ 15	7060	24400	7100	10	12700	22800	3040
	20	φισ	4560	19400		20	7750		
MCM10	10	φ 20	10900	33500	7600	10	21700	29400	3380
IVICIVITO	20	Ψ 20	7060	26600	/300	20	12700	27400	3380

Notes:

Basic dynamic and static load ratings indicate the values for one slider.

Basic dynamic load rating of the linear guide is the load of perpendicular direction to the axis that allows 90% of a group of the same Monocarriers to operate "Rated running distance" in the table, that is equivalent to 1 million revolutions of the ball screw and the support unit, under the same condition without causing flaking by rolling contact fatigue.

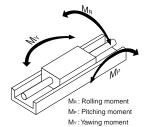
Basic dynamic load rating of the same Monocarriers to rotate 1 million revolutions under the same condition without causing flaking by rolling contact fatigue.

Basic dynamic load rating of the support unit is a constant load to axial direction that allows 90% of support units of the same group of Monocarriers to rotate 1 million revolutions under the same condition without causing flaking by rolling contact fatigue.

Basic dynamic load rating to a contact fatigue.

Basic dynamic load rating to a contact load to axial direction that allows 90% of support units of the same group of Monocarriers to rotate 1 million revolutions under the same condition without causing flaking by rolling contact fatigue.

Basic static load rating is a load that results in combined permanent deformations at the contact points of balls and ball grooves of respective parts is 0.01% of the diameter.


Table 4.11 Basic static moment load of linear guide

<u> </u>						
Nominal size	Lead	Slider	Basic static moment (N · m)			
NOTHINAI SIZE	(mm)	Silder	Rolling Mro	Pitching M _P o	Yawing Myo	
MCM02	1, 2		24	8	8	
MCM03	1, 2	Single	68	28	28	
IVICIVIOS	10, 12	-	92	51	51	
MCM05	5, 10, 20	Single	229	89	89	
MICIVIOS		Double	455	765	765	
MCM06	5, 10, 20	Single	415	174	174	
IVICIVIOU		Double	825	1220	1220	
MCM08	5, 10, 20	Single	770	300	300	
IVICIVIOO		Double	1540	2050	2050	
MCM10	10, 20	Single	1170	425	425	
IVICIVITO	10, 20	Double	2340	2940	2940	

Notes:

Basic static moment of double slider is a value when two sliders equipped with NSK K1 are butted against each other.

- The basic static moment is the value when a rolling contact pressure of balls exceeds 4000 N/mm²
- If you plan to apply extremely heavy load, please consult NSK for estimation of fatigue life.

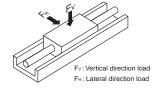


Fig. 4.4

(2) MCH Series Basic Load Rating

Table 4.12 Basic Load Rating

		Shaft dia	Basic dy	Basic dynamic load rating (N)			Basic static load	rating (N)	Support unit
Nominal size	l	d	Ball screw	Linear guide	Support unit	Rated running distance	Ball screw	Linear guide	Limit load
	(mm)	(mm)	C_{a}	C	Ca	L_a (km)	${\it C}$ 0a	C_0	(N)
	5		3000 (High grade) 3760 (Precision)	22800		5	5410 (High grade) 6310 (Precision)		
MCH06	10	φ 12	1930 (High grade)	18100	4400	10	3160 (High grade)	16300	1450
(MCL06)	20		2260 (Precision) 1930 (High grade)	14400	20	3780 (Precision) 3160 (High grade)			
			2260 (Precision)	11100		20	3780 (Precision)		
	5		6820 (High grade)	40600		5	13200 (High grade)		
			7100 (Precision)				13000 (Precision)		
MCH09	10	φ 15	5110 (High grade) 7060 (Precision)	32200	7100		9290 (High grade) 12700 (Precision)	30500	3040
	20		3290 (High grade) 4560 (Precision)	25500		20	5620 (High grade) 7750 (Precision)		
			8230 (High grade)				17100 (High grade)		
MCH10	10	, 20	10900 (Precision)	44600	74.00	10	21700 (Precision)	42000	2200
IVICHTU	20	φ 20	5300 (High grade) 7060 (Precision)	35400	7600 400	20	10300 (High grade) 12700 (Precision)	42000	3380

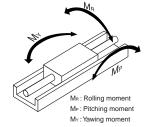

Notes: Basic dynamic and static load ratings indicate the values for one slider. Basic dynamic load rating of the linear guide is the load of perpendicular direction to the axis that allows 90% of a group of the same Monocarriers to operate "Rated running distance" in the table, that is equivalent to 1 million revolutions of the ball screw and the support unit, under the same condition without causing flaking by rolling contact fatigue. Basic dynamic load rating of the ball screw is a load to axial direction that allows 90% of ball screws of a group of the same Monocarriers to rotate 1 million revolutions under the same condition without causing flaking by rolling contact fatigue. Basic dynamic load rating of the support unit is constant load to axial direction that allows 90% of support units of the same group of Monocarriers to rotate 1 million revolutions under the same condition without causing flaking by rolling contact fatigue. Basic static load rating is a load that results in combined permanent deformations at the contact points of balls and ball grooves of respective parts is 0.01% of the diameter.

Table 4.13 Basic static moment load of linear guide

Nominal size	Slider	Basic static moment (N · m)				
NOTHINAI SIZE	Silder	Rolling Mro	Pitching MPO	Yawing Myo		
MCH06	Single	335	133	133		
(MCL06)	Double	770	730	730		
MCH09	Single	890	385	385		
WICT 107	Double	1780	2070	2070		
MCH10	Single	1460	610	610		
IVICITIO	Double	2920	3430	3430		

Notes: Basic static moment of double slider is a value when two sliders equipped with NSK K1 are butted against each other.

- The basic static moment is the value when a rolling contact pressure of balls exceeds 4000 N/mm²
- If you plan to apply extremely heavy load, please consult NSK for estimation of fatigue life.

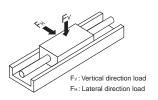


Fig. 4.5

C-1-4. 7 Estimation of Life Expectancy

(1) Life of Linear Guide

Study the load to be applied to the linear guide of Monocarrier (Fig. 4.6). The equivalent load (Fe) is determined by substituting the load for equation 1) (Eq.2): in case of the tightly coupled double slider type).

In case of the single slider

$$Fe = Y_H F_H + Y_V F_V + Y_R \mathcal{E}_R M_R + Y_P \mathcal{E}_P M_P + Y_V \mathcal{E}_V M_V \cdots \textcircled{1}$$

In case of the double slider

$$Fe = \frac{Y_{H}F_{H}}{2} + \frac{Y_{V}F_{V}}{2} + Y_{R}\varepsilon_{Rd}M_{R}$$
$$+ Y_{P}\varepsilon_{Pd}M_{P} + Y_{V}\varepsilon_{Vd}M_{V}...(2)$$

 $F_{\rm H}$: Lateral direction load acting on the slider (N)

 F_{v} : Vertical direction load acting on the slider (N)

 M_R : Rolling moment acting on the slider (N · m)

 M_P : Pitching moment acting on the slider (N·m)

 M_{Y} : Yawing moment acting on the slider (N · m)

: Dynamic equivalent coefficient to rolling moment

 $\epsilon_{\text{P}}, \epsilon_{\text{Pd}}$

: Dynamic equivalent coefficient to pitching moment

ε_y, ε_{yd}

: Dynamic equivalent coefficient to yawing moment Refer to Table 4.14 about Dynamic equivalent coefficient.

 Y_{H} , Y_{V} , Y_{R} , Y_{P} , Y_{Y}

: 1.0 or 0.5

At equations 1 and 2 for obtaining equivalent load Fe, among F_H , F_V , $\mathcal{E}_P M_P$, $\mathcal{E}_R M_R$, $\mathcal{E}_{Y}M_{Y}$, the maximum load is assumed to be 1.0, and others are to be 0.5.

Table 4.14 Dynamic equivalent coefficient

Nominal size	MCM02	MCI lead 1, 2	MO3 lead 10, 12	MCM05	MCM06	MCM08	MCM10	MCH06 MCL06	MCH09	MCH10
ε _R	95.2	79.4	79.4	52.6	45.5	32.5	27.8	48.3	34.5	28.6
E ,	174	113.9	84.2	81.3	65.1	48.8	45.2	75.1	47.9	41.0
ε,	174	113.9	84.2	81.3	65.1	48.8	45.2	75.1	47.9	41.0
$\epsilon_{_{\text{Rd}}}$	_	-	_	26.3	22.7	16.3	13.9	24.2	17.2	14.3
$\epsilon_{_{Pd}}$	_	-	_	10.4 (12.2)	9.7 (11.5)	7.6 (8.6)	7.1 (8.0)	11.4 (13.2)	8.11 (9.10)	6.98 (7.82)
$\epsilon_{_{\scriptscriptstyle{Yd}}}$	_	_	_	10.4 (12.2)	9.7 (11.5)	7.6 (8.6)	7.1 (8.0)	11.4 (13.2)	8.11 (9.10)	6.98 (7.82)

Note: Parenthesized figures are Dynamic equivalent coefficient in case of the Monocarrier without NSK K1.

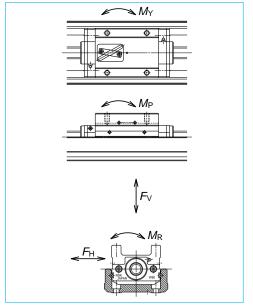


Fig. 4.6 Direction of load

In case when the load acting on the slider may fluctuate (In general, M_P , M_Y may fluctuate with the acceleration/deceleration of slider), the mean effective load is determined by Eq. 3.



Fig. 4.7 Stepwise Fluctuating Load

Travelling distance under the equivalent load Fe_1 : L_1 Travelling distance under the equivalent load Fe₂: L₂

Travelling distance under the equivalent load $Fe_n : L_n$

$$Fm = \sqrt[3]{\frac{1}{L} (Fe_1^3L_1 + Fe_2^3L_2 + \cdots Fe_n^3L_n) \cdots}$$

Fm: Mean effective load of fluctuating loads

L: Total travelling distance

The life of linear guide is calculated by Eq. 4

$$L = L_{\rm a} \times \left(\frac{C}{f_{\rm W} \cdot F_{\rm m}}\right)^3 \qquad \qquad \textcircled{4}$$

L: Life of linear guide (km)

Fm: Mean effective load acting on the linear guide (N)

C: Basic dynamic load rating of the linear guide (N)

L_a: Travelling distance (km)

 $f_{\rm w}$: Load factor (Refer to Table 4.15)

When the estimated life does not clear the required life, the life of the linear guide is to be calculated again after the following measures

1. Change from the single slider type to double slider type.

2. Use a larger size Monocarrier.

(2) Life of Ball Screw (Support unit)

The mean effective load is determined from the axial loads.

For calculation of the mean effective load, use Ea.3.

The life of ball screw is calculated by Eq. (5).

ℓ : Lead of ball screw (mm)

L: Life of ball screw (mm)

C_a: Basic dynamic load rating of the ball screw (N)

Fm: Mean effective load acting on the ball screw (N)

 f_{w} : Load factor (Refer to Table 4.15)

The life of a support unit is calculated by Eq. 5. If the life of ball screw / support unit does not clear the required life, use a larger size Monocarrier. After applying the calculations mentioned above, selection of the Monocarrier is completed.

Table 4.15 Values of load factor f_{w}

Operating conditions	Load factor f _w
At smooth operation with no mechanical shock	1.0 – 1.2
At normal operation	1.2 – 1.5
At operation with mechanical shock and vibrations	1.5 – 3.0

C-1-4. 8 Example of Life Estimation

This section offers an example how to estimate the life of Monocarrier based on the life of each component.

<<Example of calculation-1>>

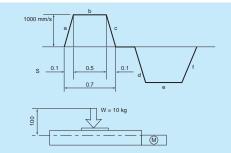


Fig. 4.8

1. Use condition

Stroke : 600 mm

Maximum Speed : 1000 mm/s

Load Mass : W = 10 kg

Acceleration : g = 9.8 m/s²

Setting Position : Horizontal

Operating Profile : See above figure

2. Selection of Nominal size (Interim Selection) Firstly, select a greater ball screw lead as the maximum speed is 1000 mm/s. The interim selection is MCM06060H20K00, a single slider specification MCM06 that has 600 mm stroke, as the stroke is 600 mm.

3. Calculation

3-1. Linear guide

3-1-1. Fatique life

Multiply the result of the Eq. ① by the dynamic equivalent coefficient (Table 4.14 single slider) to convert the load volume. From above operation profile.

i) Constant speed $Fe_1 = Y_v F_v = Y_v W_g = 1 \cdot 10 \cdot 9.8$ = 98 N

ii) Accelerating $Fe_2 = Y_V F_V + Y_P \varepsilon_P M_P = 0.5 \cdot 10^{-6}$

 $9.8 + 1 \cdot 65.1 \cdot 0.1 \cdot 100 = 700 \text{ N}$ $Fe_3 = Y_V F_V + Y_P \mathcal{E}_P M_P = 0.5 \cdot 10 \cdot$

iii) Decelerating $Fe_3 = Y_v F_v + Y_p \varepsilon_p M_p = 0.5 \cdot 10 \cdot 9.8 + 1 \cdot 65.1 \cdot 0.1 \cdot 100 = 700 \text{ N}$

Mean effective load Fm

$$Fm = \sqrt[3]{\frac{1}{L} \left(Fe_1^3 \cdot L_1 + Fe_2^3 \cdot L_2 + Fe_3^3 \cdot L_3 \right)}$$
$$= \sqrt[3]{\frac{1}{600} \left(98^3 \cdot 500 + 700^3 \cdot 50 + 700^3 \cdot 50 \right)}$$
$$= 387 \text{ N}$$

$$L = \left(\frac{C}{f_w \cdot F_m}\right)^3 \times L_a$$

$$= \left(\frac{15900}{1.2 \cdot 387}\right)^3 \times 20$$

$$= 8.02 \times 10^5 \text{ km}$$

3-1-2. Static safety factor; Divide the basic static load rating by the maximum load.

$$F_{\rm S} = \frac{C_{\rm o}}{Fe} = \frac{C_{\rm o}}{Fe_{\rm o}} = \frac{17000}{700} = 24.2$$

3-2. Ball screw

3-2-1. Fatigue life; Obtain the axial load of each stage of operation referring to the operation profile, then calculate the mean load.

By the process above,

i) Constant speed

 $Fe_1 = \mu \cdot W \cdot q = 0.01 \cdot 10 \cdot 9.8 = 0.98$

ii) Accelerating

 $Fe_2 = Fe_1 + W\alpha = 101 \text{ N}$

iii) Decelerating

 $Fe_2 = Fe_1 - W\alpha = 99 \text{ N}$

Axial mean effective load Fm

$$Fm = \sqrt[3]{\frac{1}{L} \left(Fe_1^3 \cdot L_1 + Fe_2^3 \cdot L_2 + Fe_3^3 \cdot L_3 \right)}$$

$$= \sqrt[3]{\frac{1}{600} \left(0.98^3 \cdot 500 + 101^3 \cdot 50 + 99^3 \cdot 50 \right)}$$

$$= 55 \text{ N}$$

$$L = \left(\frac{C_a}{f_w \cdot F_m} \right)^3 \times \ell \times 10^6$$

$$= \left(\frac{4560}{1.2 \cdot 55} \right)^3 \times 20 \times 10^6 \text{ (mm)}$$

$$= 6.5 \times 10^6 \text{ km}$$

3-2-2. Static safety factor; Divide the basic static load rating by the maximum axial load.

$$F_{\rm s} = \frac{C_{\rm 0a}}{Fe} = \frac{C_{\rm 0a}}{Fe_2} = \frac{7750}{101} = 76.7$$

3-2-3. Maximum rotational speed; According to the table of maximum speed on page C7, MCM06 with 20 mm lead and 600 mm stroke, is possible to operate under the maximum speed of 1000 mm/s.

3-3. Support unit

3-3-1. Fatigue life; Use the axial load Fm = 55 N, that is the result of above calculation 3-2-1.

$$L = \left(\frac{C_a}{fw \cdot Fm}\right)^3 \times \ell \times 10^6 = \left(\frac{6550}{1.2 \times 55}\right)^3 \times 20 \times 10^6 \text{ (mm)}$$
$$= 1.95 \times 10^7 \text{ km}$$

3-3-2. Static safety factor; Divide the limit load by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{Fe} = \frac{C_{\rm 0a}}{Fe_{\rm 2}} = \frac{2730}{101} = 27.0$$

3-4. Result

MCM06060H20K00	Linear guide	Ball screw	Support unit
Fation 1:6-	8.02×	6.5×	1.95 ×
Fatigue life	10⁵ km	10 ⁶ km	10 ⁷ km
Static safety factor	24.2	76.7	27.0

In this case, the linear guide has the shortest fatigue life of the components. Therefore, the linear guide fatigue life is used as the life of the Monocarrier. The interim selection of MCM06060H20K00, that is chosen based on the use conditions, satisfies the required life.

<<Example of calculation-2>>

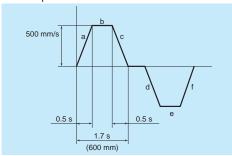


Fig. 4.9

1. Use condition

Stroke : 600 mm Maximum Speed : 500 mm/s Load Mass : W = 20 kg Acceleration : 9.8 m/s²

Acceleration : 9.8 m/s²
Setting Position : Vertical
Operating Profile : See above figure

Fig. 4.10 nterim Select

Selection of Nominal size (Interim Selection)Select a 10 mm lead ball screw as the maximum speed is 500 mm/s.

The interim selection is MCM08068H10D00 as a double slider specification of MCM08 has 680 mm stroke, and the setting position is vertical.

3. Calculation

3-1. Linear guide

3-1-1. Fatigue life; Multiply the result of the Eq. ② by the dynamic equivalent coefficient (Table 4.14. double slider) to convert the load volume. From operation profile (Fig. 4.9), the acceleration is 1 m/s².

i) Constant speed $Fe_1 = Y_P \times \varepsilon_{Pd} \times M_P + Y_V \times \varepsilon_{Vd} \times M_V$ = 1 · 7.6 · 20 · 9.8 · 0.15 + 0.5 · 7.6 · 20 · 9.8 · 0.1 = 298 N

ii) Accelerating $\begin{aligned} Fe_2 &= Y_{\text{P}} \times \epsilon_{\text{Pd}} \times M_{\text{P}} + Y_{\text{V}} \times \epsilon_{\text{Vd}} \times M_{\text{V}} \\ &= 1 \cdot 7.6 \cdot 20 \cdot (9.8 + 0.15) \cdot 0.15 \\ &+ 0.5 \cdot 7.6 \cdot 20 \cdot (9.8 + 1.0) \cdot 0.1 = \\ &329 \text{ N} \end{aligned}$

iii) Decelerating $\begin{array}{ll} Fe_3 = \ Y_P \times \epsilon_{Pd} \times M_P + \ Y_V \times \epsilon_{Vd} \times \\ M_V = 1 \cdot 7.6 \cdot 20 \cdot (9.8 - 1.0) \cdot \\ 0.15 + 0.5 \cdot 7.6 \cdot 20 \cdot (9.8 - 1.0) \cdot \\ 0.1 = 268 \ N \end{array}$

Mean effective load Fm

 $Fm = \sqrt[3]{\frac{1}{L} \left(Fe_1^3 \cdot L_1 + Fe_2^3 \cdot L_2 + Fe_3^3 \cdot L_3 \right)}$ $= \sqrt[3]{\frac{1}{600} \left(298^3 \cdot 350 + 329^3 \cdot 125 + 268^3 \cdot 125 \right)}$ = 300 N $L = L_a \times \left(\frac{C}{f \cdot F} \right)^3$

 $L = L_a \times \left(\frac{S}{f_w \cdot F_m} \right)$ $= 10 \times \left(\frac{24400}{1.2 \cdot 300} \right)^3$ $= 3.11 \times 10^6 \text{ km}$

3-1-2. Static safety factor; Divide the basic static load rating by the maximum load.

$$F_{\rm S} = \frac{C_{\rm o}}{Fe} = \frac{C_{\rm o}}{Fe_{\rm o}} = \frac{22800}{329} = 69.3$$

3-2. Ball screw

3-2-1. Fatigue life; Obtain the axial load of each stage of operation referring to the operation profile, then calculate the mean load.

i) Constant speed

 $Fe_1 = W \cdot g = 20 \cdot 9.8 = 196 \text{ N}$

ii) Accelerating

 $Fe_2 = Fe_1 + W \cdot \alpha = 196 + 20 \cdot 1 = 216 \text{ N}$

iii) Decelerating

 $Fe_3 = Fe_1 - W \cdot \alpha = 196 - 20 \cdot 1 = 176 \text{ N}$

3-2-2. Static safety factor; Divide the basic static load rating by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{Fe} = \frac{C_{\rm 0a}}{Fe_{\rm 2}} = \frac{12700}{216} = 58.7$$

C-1-5 Maintenance C-1-5.1 Maintenance Method

- 1. For standard Monocarrier, we pack grease in the slider, linear guides and ball screw.
- 2. Monocarriers are equipped with NSK K1 Lubrication Unit as a standard feature, therefore, you may use it for 5 years or 10 000 km depending on your application, whichever comes first, without maintenance. However replenishment of preceded grease may extend its life substantially.
- 3. The NSK K1 Lubrication Unit is ideal in environments where oily dust exists. However, the life may be shorter than described in Clause 2 above. In such a case, it requires increasing the frequency of replenishment.

3-3. Support unit

3-3-1. Fatigue life; Use the axial load Fm = 197 N, that is the result of above calculation 3-2-1.

$$L = \ell \times \left(\frac{C_a}{fw \cdot Fm}\right)^3 \times 10^6 = 10 \times \left(\frac{7100}{1.2 \times 197}\right)^3 \times 10^6$$
$$= 2.70 \times 10^5 \text{ km}$$

3-3-2. Static safety factor; Divide the limit load by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{Fe} = \frac{C_{\rm 0a}}{Fe_{\rm 2}} = \frac{3040}{216} = 14.0$$

3-4. Result

MCM08068H10D00	Linear guide	Ball screw	Support unit
Fatigue life	3.11×	2.66×	2.70×
Fatigue life	106 km	10⁵ km	10⁵ km
Static safety factor	69.3	58.7	14.0
Static safety factor	69.3	58.7	14.0

 A Nozzle for the NSK grease gun for MCH Monocarriers is available as an option.
 NSK reference number: NSK HGP NZ8

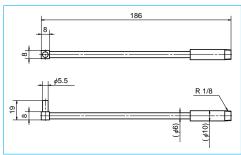


Fig. 5.1 NSK HGP NZ8

Precautions for handling

- 1. Please consult with NSK when the motor is coupled to the ball screw using a pulley because there is a restriction on allowable load to the end of ball screw shaft.
- 2. To extend high performance of NSK K1 lubrication unit, please observe the following.

1. Temperature range Ambient temperature: 50°C

Max. instantaneous temperature: 80°C

2. Use of chemicals
Never leave a Monocarrier in close proximity of grease

removing organic solvents such as hexane or thinner. Never immerse it in an antirust solvent that contains kerosene.

Note: Other oils, such as water-based and oil based cutting oil, and grease do not cause any problems.

C-1-5. 2 NSK K1[™] Lubricant Unit

NSK K1 lubrication unit exhibits outstanding features, confirmed by abundant experimental data, along with proven performance of linear guides and ball screws that are equipped with NSK K1.

(1) High-Speed Durability Test of Linear Guides without Lubricant

Results of high-speed durability testing of a linear guide without lubricant are shown in Fig. 5.2. While the linear guide cannot be operated without lubricant for even short periods without damage, the installation of the NSK K1 permits the linear guide to run over 25 000 km without any problem.

	Test piece: LH30AN (Preload Z1)
Conditions	Speed: 3.3 m/s
	Stroke: 1800 mm
No lubricant	All grease removed
NSK K1	All grease removed + NSK K1

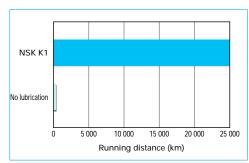


Fig. 5.2 Results of high-speed durability test of linear guides without lubricant

(2) High-Speed Durability Test of Ball Screws without Lubricant

Results of high-speed durability testing of ball screw without lubrication are shown in Fig.5.3. While the ball screw cannot be operated without a lubricant at 8.5 km without damage, the installation of the NSK K1 permits the ball screw to run over 21 000 km without any problem.

	Test piece: BS2020 (ball screw)
	Shaft diameter: 20 mm
Conditions	Lead: 20 mm
Conditions	Load: none
	Speed: 1.3 m/s (4 000 min ⁻¹)
	Stroke: 600 mm
No lubricant	All grease removed
NSK K1	All grease removed + NSK K1

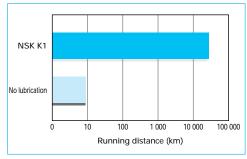


Fig. 5.3 Results of high-speed durability test of ball screws without lubricant

NSK K1 Lubrication Units for food processing and medical devices are available.

For safety equipment of food processing and medical care, NSK provides the Monocarrier equipped with special NSK K1 Lubrication Unit that is made of materials approved by the FDA. Dimensions are the same as the standard NSK K1 Lubrication Unit, and special handling care is not required.

18

C-1-6 NSK Clean Grease LG2 Specification

Features

This grease was developed by NSK to be exclusively used for linear guides and ball screws in clean rooms. Compared to the fluoride grease which are commonly used in clean rooms, LG2 has several advantages such as: higher in lubrication function, longer lubrication life, more stable torque (resistant to wear), and higher rust prevention. In dust generation, LG2 is more than equal to fluoride grease in keeping dust volume low. Since the base oil is not a special oil but a mineral oil, LG2 can be handled in the same manner as general grease.

Applications

LG2 is lubrication grease for rolling contact machine components such as linear guides and ball screws for processing equipment for semiconductors and LCD which require highly clean environment at normal pressure in normal temperatures. It cannot be used in a vacuum environment.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil + Synthetic hydrocarbon oil
Consistency	207
Dropping point	200°C
Volume of evaporation	1.40% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.8% (100°C, 24 hr)
Base oil kinematic Viscosity	30 mm ² /s (40°C)

C-1-7 Characteristics and Evaluation Method

C-1-7. 1 Positioning Accuracy

Perform successive positioning from the reference position in a specific direction. Measure the difference between the actual and desired travel distances for each point from the reference position. Repeat this measurement seven times to determine the average value. Measure such average value over the entire travel distance at the intervals specified for each model and take the maximum difference of the average values determined at respective positions as the measured value.

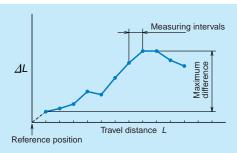


Fig. 7.1

C-1-7. 2 Repeatability

Repeat positioning at any point seven times from the same direction to measure the stopping position and determine one half of the maximum difference of readings. Repeat this measurement over the entire travel distance at the intervals specified for each model. Take the maximum difference of the determined values as the measured value. Express one half of the maximum difference with a plus-or-minus (±) sign.

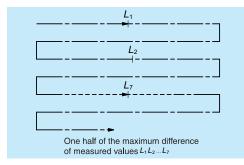


Fig. 7.2

C-1-7. 3 Running Parallelism (Vertical direction)

We specify the parallelism of slider to the datum bottom face of rail. An indicator is fixed on the slider making its stylus slightly touching on the rail bottom surface. The slider is moved in the axial direction for the checking. We define the total indicator reading as the running parallelism. During the checking, the rail is not fixed to the table base. Please be aware that, in general application, the rail is fixed to the machine base, and thus the wobbly rolling error will be added to the running parallelism.

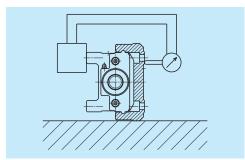


Fig. 7.3 Setting of indicator

C-1-8 Special Specifications

Please consult NSK if your requirement is not in the standard products.

(1) Surface Treatment

Fluoride low temperature chrome plating
 Note: Ball screw parts (including low temperature chrome plating.)

(2) Special Machining (Processing)

①Shaft end processing

- · Key way processing
- One flat or two flats processing
 ②Pin hole processing
- Slider
- Rail

Note: Due to interference with the internal construction, the position of pin hole is limited. Please consult NSK for the pin position.

(3) Motor Bracket and Intermediate Plate for Motor Mounting

- We provide motor mounting brackets and intermediate plates that are not listed in the catalog.
- We assemble motor upon request, if the motor is provided in advance.

Note: Motion check of the motor is unavailable.

(4) Reversed Motor Mount

The reversed motor mount is available. Please consult NSK.

Notes: 1) We don't check motor running condition.

Please refer to the bottom of page C77 to 79 for the configuration of reversed motor mounting of the MCH series.

(5) Right and Left Turn Thread

Right and left turn ball screw is available. Please consult NSK for available leads.

(6) Ball-Screw-Less Specification (Only Linear Guide Part)

A ball-screw-less rail part with the same cross section of standard Monocarriers is available for a driven linear guide. It will lessen a height adjustment work compared with a construction with two standard Monocarriers. Note: Height grinding adjustment of the two

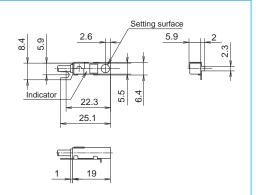
axes assembly is not available.

C-1-9 Sensor Specification C-1-9. 1 Proximity Switch

Use of OMRON E2S-W13, E2S-W14

Item	E2S-W13 type E2S-W14 type			
Setting surface	Front face			
Sensing distance	1.6 mm ±15%			
Setting distance	0 to 1.2 mm			
Differential travel	10% max. of sensing distance			
Detectable object type	Ferrous metal			
Standard sensing object	Iron,12 × 12 × 1 mm			
Response frequency	1 kHz min.			
Power supply voltage (operating voltage range)	12 to 24 VDC; ripple (pp), 10% max (10 to 30 VDC)			
Current consumption	13 mA max. at 24 VDC with no load			
Control output (Switching Capacity)	NPN open collector output, 50 mA max. (30 VDC max.)			
Control output (Residual voltage)	1.0 V max. with a load current of 50 mA and a cable length of 1 m			
Indicator	Operation indicator (orange)			
Operating status (with sensing object approaching)	NO (a-contact) NC (b-contact)			
Wire lead length	1000 mm			

Notes: 1) Do not make a wrong connection. 2) Please contact NSK for PNP output type.


Movement mode	Output type	Type	Time chart	Output circuit
NO	MDN	E2S-W13 type	Target object Ves No Output transistor (load) ON OFF ON OFF OFF ON OFF	brown +V
NC	NPN	E2S-W14 type	Target object Yes No Output transistor (load) ON OFF ON OFF	*(Maximum load current : 50 mA)

E2S-W13 (a-contact)

E2S-W14 (b-contact)

The external appearances are the same.

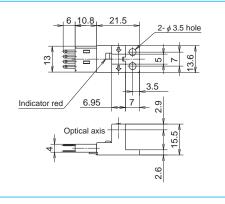
A connector is mounted to the sensor in the right figure.

C-1-9. 2 Photo Sensor

Use of OMRON EE-SX674

Item	EE-SX674 type
Slot width	5 mm
Standard reference object	Opaque, 2 × 0.8 mm
Differential distance	0.025 mm
Light source	GaAs infrared LED with a peak wavelength of 940 nm
Indicator(Without detecting object)	ON GaP red LED (peak emission wavelength, 690 nm)
Supply voltage	5 to 24 VDC ±10%; ripple (pp), 10% max.
Current consumption	35 mA max.
Control output	NPN open collector output models, At 5 to 24 VDC, 100 mA load current
Response frequency	1 kHz max. (3 kHz typ.)
Ambient illumination	Fluorescent light, 1 000 lx max.
Ambient temperature	Operating, -25°C to 55°C (-13°F to 131°F); Storage, -30°C to 80°C (-22°F to 176°F)
Ambient humidity	Operating, 5 to 85% RH; Storage, 5 to 95% RH
Connecting method	EE-1001/1006 Connectors, soldering terminals
Notes 1) De met meelle e come me en en	41

Notes: 1) Do not make a wrong connection.

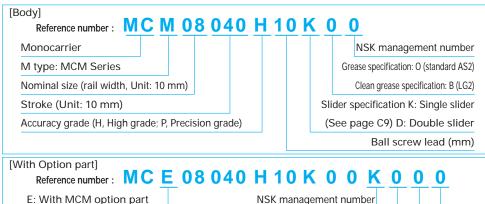

2) Please contact NSK for PNP output type.

Туре	Movement mode	Time chart	Connection terminal	Output circuit		
EE-SX674 type	Light-ON	Incident Interrupted Indicator ON (red) OFF Output ON transistor OFF Incident (relay) Releases Incident Inciden	When terminals L and ⊕ are short circuited	/Indicator red LED Load		
	Dark-ON	Incident Interrupted ON (red) OFF Output ON Utransistor OFF (relay) Releases Load 2 L	When terminals L and ⊕ are open circuited	Main circuit —IC(Control output) T5 to 24 V		

EE-SX674 (Sensor)

EE-1001 (Connector)

A connector is mounted to the sensor in the right figure.


1	MC	M Series Reference Number	C25
	Co	ding	
2	MC	M Series Dimension Table of	
	Sta	indard Products	
	MC	CM02	C26
	MC	CM03	C27
	MC	:M05	C29
	MC	CM06	C31
	MC	:M08	C33
	MC	:M10	C35
3	MC	M Series Option Part	
	3. 1	Sensor Unit	C37
	3. 2	Cover Unit	C41
	3. 3	Motor Bracket	C43

MCM Series

24

C-2 MCM Series

C-2-1 MCM Series Reference Number Coding

NSK management number Sensor unit

Cover unit

Motor bracket Note: Optional components are available separately.

Table 1 Sensor unit (See page C37)

Reference number code	Specification	Reference number
0	N/A	_
1	Proximity switch (b-contact 3 pieces)	MC – SRxx – 10
2	Proximity switch (a-contact 3 pieces)	MC – SRxx – 11
3	Proximity switch (a-contact 1 pieces, b-contact 2 pieces)	MC – SRxx – 12
4	Photo sensor 3 pieces	MC – SRxx – 13

xx: Reference number

Note: Sensor rail is not included in a sensor unit. If you require the rail, please request separately. (See page C38 to 40.)

Table 2 Cover unit (See page C41 – 42)

Reference number code	Specification	Reference number
0	N/A	_
1	With top cover	MC – CVxxxxx – 01 (02) *
2	Full cover	MC – CVxxxxx – 00

xxxxx: Reference number and stroke number

*: Monocarrier "-02" is only used for MCM03

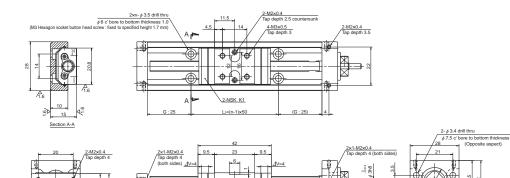

Note: When a sensor unit is used, the full cover unit cannot be used.

Table 3 The reference number of motor bracket (See page C43 - 58)

Reference			Reference number		
number code	MCM03	MCM05	MCM06	MCM08	MCM10
0	N/A	N/A	N/A	N/A	N/A
1	MC-BK03-146-00	MC-BK05-145-00	MC-BK06-145-00	MC-BK08-145-00	MC-BK10-170-00
2	MC-BK03-148-01	MC-BK05-146-00	MC-BK06-146-00	MC-BK08-146-00	MC-BK10-170-01
3	MC-BK03-231-00	MC-BK05-148-00	MC-BK06-148-00	MC-BK08-160-00	MC-BK10-190-00
4	_	MC-BK05-160-00	MC-BK06-160-00	MC-BK08-170-00	MC-BK10-270-00
5	_	MC-BK05-250-00	MC-BK06-170-00	MC-BK08-170-01	_
6	_	_	MC-BK06-170-01	MC-BK08-190-00	_
7	_	_	MC-BK06-250-00	MC-BK08-250-00	_
8	_	_	_	MC-BK08-270-00	_
C25					

C-2-2 MCM Series Dimension Table of Standard Products

MCM02

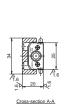
Dimension of MCM02 (Single slider)

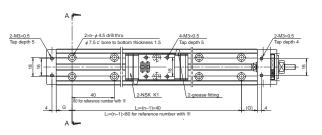
ΔV is thickness of NSK K1

Reference number	Nominal stroke (mm)	Stroke limit (mm)	Ball screw lead (mm)		y length (r		No. of mounting hole	Inertia × 10 ⁻⁷ (kg·m²)	Mass (kg)
	()	(******)	(******)	<i>L</i> 1	L2	L3	n	x 10 (kg)	(119)
MCM02005H01K			1						
MCM02005P01K	50	58		128.5	100	50	2	0.93	0.26
MCM02005H02K	30	36	2	120.5				0.73	
MCM02005P02K			2						
MCM02010H01K		00 108	1	178.5	150	100	3	1.36	0.32
MCM02010P01K	100								
MCM02010H02K	100		0						
MCM02010P02K			2						
MCM02015H01K			1						0.39
MCM02015P01K	150	150	ı	220 5	200	150	4	1.01	
MCM02015H02K		158	2	228.5	200		4	1.81	
MCM02015P02K			2						

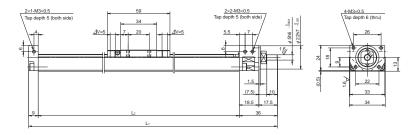
Note: Items not marked are available from standard stock.

Monocarrier dynamic	toro	ue specifica	tion (N · cm	
		High grade	Precision	
Ball screw lead (mm)	1	01 12	02 14	
(mm)	2	0.1 - 1.3	0.2 - 1.0	


- 1. Frictional resistance of NSK K1 is included in the dynamic torque in the table. 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.
- 4. Stroke limit = stroke + (4 [margin] × 2)


Basic load rating

Lead	Shaft dia		Basic dynamic	load rating (N)	Basic static lo	ad rating (N)		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C _a	C	$C_{\rm a}$	L_a (km)	C_{0a}	C_0	load IIIIII (N)
1		340 (High grade) 405 (Precision)	4910	(15	1	555 (High grade) 615 (Precision)		100
2	φ6	340 (High grade) 405 (Precision)	3900	615	2	555 (High grade) 615 (Precision)	2120	490


Basic static moment load of linear guide

Slider	Basic static moment load (N·m)						
	Rolling M _{RO}	Pitching M _{PO}	Yawing Myo				
Single	24	8	8				

Dimension of MCM03 (Single slider)

Reference number	Nominal stroke	Stroke limit(mm)	Ball screw lead	В	ody len	gth (mn	٦)	No. of mounting hole	Inertia	Mass
Reference number	(mm)	(K1 is not equipped)	(mm)	L ₁	L ₂	G	L ₃	n	× 10 ⁻⁵ (kg · m ²)	(kg)
*MCM03005P01K00	50	56	1	160	115	17.5	80	2	0.015	0.6
*MCM03005P02K00	50	(66)	2	160	115	17.5	00		0.016	0.0
MCM03010P01K00	100	131	1	235	190	15	160	5	0.021	0.7
MCM03010P02K00	100	(141)	2	233	170	15	160	3	0.022	0.7
☆ MCM03015P01K00	150	181	1	285	240	20	200	4	0.025	0.0
☆ MCM03015P02K00	150	(191)	2	200	240	240 20	200	0	0.026	0.8

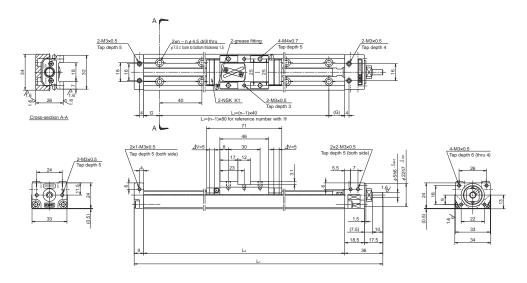
Notes: 1. Items not marked are available from standard stock.

- 2. Items marked with $\frac{1}{2}$ are designated as "quick delivery item" upon request.
- 3. Bolt hole pitch L₃ on the items marked with * is 80 mm.

Monocarrier dynamic to	rque specifi	cation (N · cm)
Ball screw lead	1	0.2 – 1.7
(mm)	2	0.2 - 1.7

- 1. Frictional resistance of NSK K1 is included in the dynamic torque in the table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.
- 4. Optional spacer is required, when using a cover unit, sensor unit or the both together in ball screw lead of 1 and 2 mm (See page C41).
- 5. Stroke limit = stroke + (3 [margin] × 2)

Basic load rating


Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	C	C _a	L_a (km)	C_{0a}	C ₀	load lillill (N)
1		735	10900		1			
2	φ6	735	8650	2670	2	1230	4900	1040

Basic static moment load of linear guide

Slider	Basic st	atic moment load	d (N · m)
Silder	Rolling M _{RO}	Pitching M _{PO}	Yawing Myo
Single	68	28	28

Accuracy grade: High grade (H)

Ball screw lead 10 and 12

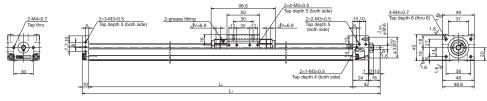
Dimension of MCM03 (Single slider)

∆V is thickness of NSK K1

Reference number	Nominal stroke	, , , ,		Body length (mm)			n)	No. of mounting hole	Inertia	Mass
received number	(mm)	(K1 is not equipped)	(mm)	L ₁	L ₂	G	L ₃	n	× 10 ⁻⁵ (kg · m ²)	(kg)
☆※MCM03005H10K00	50	69	10	185	140	30	80	2	0.080	0.6
☆ ※ MCM03005H12K00	50	(79)	12						0.097	0.0
MCM03010H10K00	100	119	10	235	190	15	160	5	0.092	0.7
MCM03010H12K00	100	(129)	12	233	170	15	100	,	0.109	0.7
☆ MCM03015H10K00	150	169	10	285	240	20	200	6	0.105	0.8
☆ MCM03015H12K00	150	(179)	12	200	240	20	200	O	0.122	0.0
MCM03020H10K00	200	219	10	335	290	25	240	7	0.118	0.9
☆ MCM03020H12K00	200	(229)	12	335	290	25	240	,	0.135	0.7
☆ MCM03025H10K00	250	269	10	205	340	30	280	8	0.131	1.0
☆ MCM03025H12K00	230	(279)	12	385	340	30	260	8	0.147	1.0

- Notes: 1. Items not marked are available from standard stock.
 - 2. Items marked with $\, \!\!\!\!/ \, \!\!\!\!/ \, \,$ are designated as "quick delivery item" upon request.
 - 3. Bolt hole pitch L₃ on the items marked with * is 80 mm.

Monocarrier dynamic torque specification (N · cm)								
Ball screw lead	10	0.3 - 3.0						
(mm)	12	0.5 – 5.0						


- 1. Frictional resistance of NSK K1 is included in the dynamic torque in the table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.
- 4. Stroke limit = stroke + (9.5 [margin] × 2)

Basic load rating

Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo	ad rating (N)	
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	Ca	С	$C_{\rm a}$	L_a (km)	C_{0a}	C_0	ioau iiriit (N)
10	_	1230	6250		10			
12	φ8	1230	5880	2670	12	1690	6620	1040

Basic static moment load of linear quide

		J						
Clider	Basic st	Basic static moment load (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Single	92	51	51					

Dimension of MCM05 (Single slider)

△V is thickness of NSK K1

Reference number	Nominal stroke (mm)	Stroke limit(mm) (K1 is not equipped)	Ball screw lead (mm)	Bod / 1	y length (r	mm)	No. of mounting hole	Inertia × 10 ⁻⁴ (kg·m ²)	Mass (kg)
MCM05005H05K00 MCM05005H10K00	50	80 (95)	5 10	232	180	150	4	0.025 0.035	1.4
★ MCM05005H20K00 MCM05010H05K00 MCM05010H10K00 MCM0501	100	130	20 5 10	282	230	200	5	0.073 0.031 0.040	1.6
MCM05010H10K00 ☆ MCM05010H20K00 ☆ MCM05015H05K00	100	(145)	20	282	230	200	5	0.040 0.078 0.036	1.0
MCM05015H10K00 ☆ MCM05015H20K00	150	180 (195)	10 20	332	280	250	6	0.046 0.084	1.8
MCM05020H05K00 MCM05020H10K00 ☆ MCM05020H20K00	200	230 (245)	5 10 20	382	330	300	7	0.042 0.051 0.089	2.0
☆ MCM05025H05K00 MCM05025H10K00 ☆ MCM05025H20K00	250	280 (295)	5 10 20	432	380	350	8	0.047 0.057 0.095	2.2
☆ MCM05030H05K00 MCM05030H10K00 MCM05030H20K00	300	330 (345)	5 10 20	482	430	400	9	0.053 0.063 0.101	2.3
☆ MCM05040H05K00 MCM05040H10K00 MCM05040H20K00	400	430 (445)	5 10 20	582	530	500	11	0.064 0.074 0.112	2.7
☆ MCM05050H05K00 MCM05050H10K00 MCM05050H20K00	500	530 (545)	5 10 20	682	630	600	13	0.076 0.085 0.123	3.1
☆ MCM05060H05K00 MCM05060H10K00 MCM05060H20K00	600	630 (645)	5 10 20	782	730	700	15	0.087 0.096 0.134	3.5

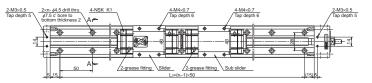
Notes: 1. Items not marked are available from standard stock.

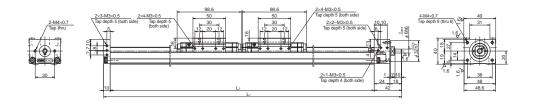
2. Items marked with $\not \simeq$ are designated as "quick delivery item" upon request.

Monocarrier dynamic torque specification (N	. (
---	-----

Ball screw lead 1.1 - 5.8 (mm)

- 1.0 4.8 1. Frictional resistance of NSK K1 is included in the dynamic torque in the table.
 - 2. Grease is packed into ball screw, linear guide parts and support unit.
 - 3. Consult NSK for life estimates under large moment loads.
- 1.6 7.9 4. Stroke limit = stroke + (15 [margin] × 2)


Basic load rating


	Lead	Shaft dia		Basic dynamic	load rating (N)	Basic static lo			
	l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
	(mm)	(mm)	C_{a}	С	$C_{\rm a}$	$L_{\rm a}$ (km)	C_{0a}	C_0	ioad iiiiii (N)
Ξ	5		3760	15600		5	6310		
	10	φ 12	2260	12400	4400	10	3780	10900	1450
	20		2260	9850		20	3780		

Basic static moment load of linear guide

Clister	Basic st	atic moment load	d (N · m)	
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}	
Single	229	89	89	

Accuracy grade: High grade (H)

Dimension of MCM05 (Double slider)

△V is thickness of NSK K1

Reference number	Nominal stroke	Stroke limit(mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass
Reference number	(mm)	(K1 is not equipped)	(mm)	<i>L</i> 1	L2	L3	n	\times 10 ⁻⁴ (kg · m ²)	(kg)
☆MCM05006H10D00	60	83 (110)	10	332	280	250	6	0.058	2.3
☆MCM05011H10D00	110	133 (160)	10	382	330	300	7	0.064	2.5
☆MCM05016H10D00	160	183 (210)	10	432	380	350	8	0.070	2.7
☆MCM05021H10D00	210	233	10	482	430	400	0	0.075	2.8
☆MCM05021H20D00	210	(260)	20	402	430	400	7	0.151	2.0
☆MCM05031H10D00	310	333	10	582	530	500	11	0.086	3.2
☆MCM05031H20D00	310	(360)	20	302	550	300	11	0.162	3.2
☆MCM05041H10D00	410	433	10	682	630	600	13	0.098	3.6
☆MCM05041H20D00	410	(460)	20	002	030	600	13	0.174	3.0
☆MCM05051H10D00	510	533	10	782	730	700	15	0.109	4.2
☆MCM05051H20D00	510	(560)	20	102	730	700	15	0.185	4.2

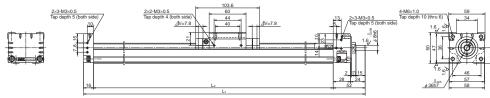
Notes: 1. Items not marked are available from standard stock.

2. Items marked with \$\frac{1}{12}\$ are designated as "quick delivery item" upon request.

Monocarrier dynamic torque specification (N · cm)

Ball screw lead	10	1.5 - 7.6
(mm)	20	2.3 – 11.8

- 1. Frictional resistance of NSK K1 is included in the dynamic torque in the table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- Consult NSK for life estimates under large moment loads.
- 4. Stroke limit = stroke + (11.4 [margin] × 2)


Basic load rating

Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo	ad rating (N)	Support unit
l	d	d Ball screw Linear guides		Support unit Rated running distance		Ball screw	Ball screw Linear guides	
(mm) (mm)		nm) $C_{\rm a}$ C $C_{\rm a}$		$L_{\rm a}$ (km)	C_{0a}	C_0	load limit (N)	
5		3760	15600		5	6310		
10	φ 12	2260	12400	4400	10	3780	10900	1450
20		2260	9850		20	3780		

Basic static moment load of linear guide

5							
Slider	Basic static moment load (N · m)						
Sildei	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}				
Double	455	765	765				

Accuracy grade: High grade (H)

Dimension of MCM06 (Single slider)

/IV is thickness of NSK K1

Differsion of McMoo (Single shaer)											
D. C	Nominal stroke	Stroke limit(mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass		
Reference number	(mm)	(K1 is not equipped)	(mm)	<i>L</i> ₁	L ₂	L ₃	n	\times 10 ⁻⁴ (kg · m ²)	(kg)		
	50	85	5 10	258	190	100	2	0.083 0.077	2.7		
☆※MCM06005H20K00	- 00	(102)	20	200	1,0		-	0.122	2.7		
MCM06010H05K00 MCM06010H10K00	100	135	5 10	308	240	200	3	0.103	3.0		
☆ MCM06010H20K00		(152)	20				_	0.137			
☆※MCM06015H05K00 ☆※MCM06015H10K00	150	185	5 10	358	290	200	3	0.122 0.106	3.5		
☆※MCM06015H20K00		(202)	20				, and the second	0.152			
MCM06020H05K00 MCM06020H10K00	200	235	5 10	408	340	300	4	0.142 0.121	3.8		
☆ MCM06020H20K00		(252)	20					0.167			
☆※MCM06025H05K00 ☆※MCM06025H10K00	250	285	5 10	458	390	300	4	0.161 0.136	4.2		
☆※MCM06025H20K00 MCM06030H05K00		(302)	20 5					0.181 0.180			
MCM06030H05K00	300	335 (352)	10	508	440	400	5	0.150	4.5		
MCM06030H20K00 MCM06040H05K00		, ,	20 5					0.196 0.219			
MCM06040H10K00	400	435 (452)	10	608	540	500	6	0.180	5.2		
MCM06040H20K00 ☆ MCM06050H05K00			20 5					0.225 0.258			
MCM06050H10K00	500	535 (552)	10	708	640	600	7	0.209	6.0		
MCM06050H20K00 ☆ MCM06060H05K00		, ,	20 5					0.255 0.297			
☆ MCM06060H10K00	600	635 (652)	10	808	740	700	8	0.239	6.7		
☆ MCM06060H20K00 ☆ MCM06070H05K00		, ,	20 5					0.284			
MCM06070H10K00	700	735 (752)	10	908	840	800	9	0.268	7.4		
MCM06070H20K00 ☆ MCM06080H05K00		, ,	20 5					0.314			
☆ MCM06080H10K00	800	835 (852)	10	1008	940	900	10	0.298	8.1		
☆ MCM06080H20K00		(-32)	20					0.343			

Notes: 1. Items not marked are available from standard stock.

2. Items marked with \$\frac{1}{2}\$ are designated as "quick delivery item" upon request.

3. Dimension G is 45 for those marked with *.

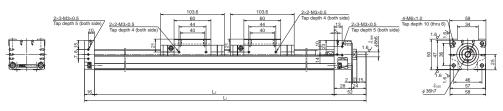
nocarrier	dynamic	torque	specification	(N ·	cm)	No

Monocarrier dynamic tore	Nonocarrier dynamic torque specification (N · cm)									
Deller	5	1.9 - 7.4	1							
Ball screw lead (mm)	10	2.2 - 8.6	2							
(11111)	20	2.8 – 11.0	4							

1. Frictional resistance of NSK K1 is included in the dynamic torque in the table.

2. Grease is packed into ball screw, linear guide parts and support unit.

3. Consult NSK for life estimates under large moment loads.


4. Stroke limit = stroke + (17.5 [margin] × 2)

Basic load rating

Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo		
l	d	Ball screw	rew Linear guides Support unit Rated			Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	$C_{\rm a}$	$L_{\rm a}$ (km)	C_{0a}	C_0	ioau iii iii (N)
5	φ 16	7310	25200		5	13500		2730
10		7060	20000	6550	10	12700	17000	
φ 15		4560	15900		20	7750		

Basic static moment load of linear guide

Clides	Basic st	Basic static moment load (N · m)							
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}						
Single	415	174	174						

Dimension of MCM06 (Double slider)

△V is thickness of NSK K1

Reference number	Nominal stroke	Stroke limit(mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass
Kererence number	(mm)	(K1 is not equipped)	(mm)	L ₁	L ₂	L ₃	n	\times 10 ⁻⁴ (kg · m ²)	(kg)
☆MCM06011H05D00	110	133	5	408	340	300	4	0.145	4.4
☆MCM06011H10D00	110	(164)	10	400	340	300	4	0.136	4.4
☆MCM06021H05D00		233	5	508	440	400		0.184	
☆MCM06021H10D00	210	(264)	10				5	0.166	5.1
☆MCM06021H20D00		(204)	20					0.257	
☆MCM06031H05D00		333	5		540	500		0.223	
☆MCM06031H10D00	310	(364)	10	608			6	0.195	5.8
☆MCM06031H20D00			20					0.286	
☆MCM06041H05D00		433	5	708	640	600	7	0.262	6.6
☆MCM06041H10D00	410	(464)	10					0.224	
☆MCM06041H20D00		(404)	20					0.316	
☆MCM06051H10D00	510	533	10	808	740	700	8	0.254	7.3
☆MCM06051H20D00	510	(564)	20	000	740	700	0	0.345	7.3
☆MCM06061H10D00	610	633	10	908	840	800	9	0.283	8.0
☆MCM06061H20D00	010	(664)	20	700	040	000	7	0.375	0.0
☆MCM06071H10D00	710	733	10	1008	940	900	10	0.313	8.7
☆MCM06071H20D00	710	(764)	20	1008	940			0.404	0.7

Notes: 1. Items not marked are available from standard stock.

2. Items marked with \$\frac{1}{2}\$ are designated as "quick delivery item" upon request.

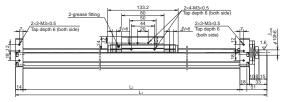
Monocarrier dynamic torque specification (N \cdot cm)									
B.II.	5	2.3 - 8.5							
Ball screw lead	10	2.7 – 10.9							

1. Frictional resistance of NSK K1 is included in the dynamic torque in the table. 2. Grease is packed into ball screw, linear guide parts and support unit.

3. Consult NSK for life estimates under large moment loads.

20 4.0 – 15.9 4. Stroke limit = stroke + (11.4 [margin] × 2)

Basic load rating


Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo	ad rating (N)	
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm) (mm)		C_{a}	$C_{\rm a}$ C $C_{\rm a}$		$L_{\rm a}$ (km)	C_{0a}	C_0	ioau iiiTiit (iv)
5	ø 16	7310	25200		5	13500		
10	φ 15	7060	20000	6550	10	12700	17000	2730
20		4560	15900		20	7750		

Basic static moment load of linear guide

Clister	Basic st	atic moment load	d (N·m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Double	825	1220	1220

Accuracy grade: High grade (H)

Dimension of MCM08 (Single slider)

ΔV is thickness of NSK K1

Reference number Nominal str		Stroke limit(mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass
- Reference number	(mm)	(K1 is not equipped)	(mm)	<i>L</i> 1	L2	L3	n	× 10 ⁻⁴ (kg · m ²)	(kg)
☆※MCM08005H05K00 ☆※MCM08005H10K00	50	85 (101)	5 10	285	220	100	2	0.101 0.100	4.1
 ☆ MCM08010H05K00 MCM08010H10K00 ☆ MCM08010H20K00 	100	135 (151)	5 10 20	335	270	200	3	0.120 0.114 0.190	4.6
☆※MCM08015H05K00 ☆※MCM08015H10K00 ☆※MCM08015H20K00	150	185 (201)	5 10 20	385	320	200	3	0.139 0.129 0.205	5.1
 ☆ MCM08020H05K00 MCM08020H10K00 ☆ MCM08020H20K00 	200	235 (251)	5 10 20	435	370	300	4	0.159 0.144 0.220	5.5
☆※MCM08025H05K00 ☆※MCM08025H10K00 ☆※MCM08025H20K00	250	285 (301)	5 10 20	485	420	300	4	0.178 0.159 0.235	6.0
	300	335 (351)	5 10 20	535	470	400	5	0.198 0.173 0.249	6.5
☆ MCM08040H05K00 MCM08040H10K00 MCM08040H20K00	400	435 (451)	5 10 20	635	570	500	6	0.236 0.203 0.279	7.4
☆ MCM08050H05K00 MCM08050H10K00 MCM08050H20K00	500	535 (551)	5 10 20	735	670	600	7	0.275 0.232 0.308	8.4
 ☆ MCM08060H05K00 MCM08060H10K00 ☆ MCM08060H20K00 	600	635 (651)	5 10 20	835	770	700	8	0.314 0.262 0.338	9.3
 ☆ MCM08070H05K00 ☆ MCM08070H10K00 ☆ MCM08070H20K00 	700	735 (751)	5 10 20	935	870	800	9	0.353 0.291 0.367	10.5
☆ MCM08080H05K00 ☆ MCM08080H10K00 ☆ MCM08080H20K00	800	835 (851)	5 10 20	1035	970	900	10	0.391 0.320 0.396	11.2

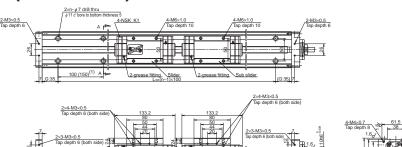
Notes: 1. Items not marked are available from standard stock.

- 3. Dimension G is 60 for those marked with *...

Monocarrier dynamic to	que specifi	cation (N · cm)
Deller	5	1.0 - 5.9
Ball screw lead (mm)	10	2.0 - 7.8
(111111)		

Notes

- 1. Frictional resistance of NSK K1 is included in the dynamic torque in the table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.
- 20 2.5 10.8 4. Stroke limit = stroke + (17.5 [margin] × 2)


Basic load rating

	J							
Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo	ad rating (N)	
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	$C_{\rm a}$	$L_{\rm a}$ (km)	C_{0a}	C_0	load littit (14)
5	φ 16	7310	30800		5	13500		
10		7060	24400	7100	10	12700	22800	3040
20	φ 15	4560	19400		20	7750		

Basic static moment load of linear guide

Clider	Basic static moment load (N · m)							
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Single	770	300	300					

MCM08 (Double slider)

Dimension of MCM08 (Double slider)

ΔV is thickness of NSK K1

Reference number	Nominal stroke	,	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass
- North of the Harrison	(mm)	(K1 is not equipped)	(mm)	L ₁	L ₂	L ₃	n	$\times 10^{-4} (kg \cdot m^2)$	(kg)
☆※MCM08008H10D00	80	104 (136)	10	435	370	300	3	0.169	6.5
☆ MCM08018H10D00	180	204	10	535	470	470 400	5	0.199	7.5
☆ MCM08018H20D00	100	(236)	20	333	470		3	0.351	7.5
☆ MCM08028H10D00	280	304	10	635	570	570 500	6	0.228	8.4
☆ MCM08028H20D00	280	(336)	20	000			0	0.380	0.4
☆ MCM08038H10D00	380	404	10	735	670	600	500 7	0.257	9.4
☆ MCM08038H20D00	300	(436)	20	733			,	0.409	7.4
☆ MCM08048H10D00	480	504	10	835	770	770 700	00 8	0.287	10.3
☆ MCM08048H20D00	400	(536)	20	033	770	700	0	0.439	10.3
☆ MCM08058H10D00	580	604	10	935	870	800	9	0.316	11.5
☆ MCM08058H20D00	300	(636)	20	733	070	000	7	0.468	11.5
☆ MCM08068H10D00	680	704	10	1035	970	900	10	0.346	12.2
☆ MCM08068H20D00	000	(736)	20	1033	1035 970		10	0.498	12.2

Notes: 1. Items not marked are available from standard stock.

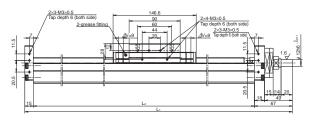
- 2. Items marked with \bigstar are designated as "quick delivery item" upon request.
- 3. Dimension (1) is 150mm for those marked with *...

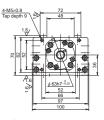
Nonocarrier dynamic tore	que specifi	cation (N · cm
Ball screw lead	10	2.5 – 10.8

Notes:

- 1. Frictional resistance of NSK K1 is included in the dynamic torque in the table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- Consult NSK for life estimates under large moment loads.
- 4. Stroke limit = stroke + (11.8 [margin] × 2)

Basic load rating


Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo	ad rating (N)	6	
l	d	Ball screw	all screw Linear guides Support unit Rated running distance				Linear guides	Support unit load limit (N)	
(mm)	(mm)	C_{a}	C _a C		L_a (km)	C_{0a}	C_0	load IIITIII (N)	
5	φ 16	7310	30800		5	13500			
10	, 15	7060	24400	7100	10	12700	22800	3040	
20	φ 15	4560	19400		20	7750			


Basic static moment load of linear guide

		5				
Slider	Basic static moment load (N · m)					
Siluei	Rolling M _{RO}	Pitching M _{PO}	Yawing Myo			
Double	1540	2050	2050			

Accuracy grade: High grade (H)

Dimension of MCM10 (Single slider)

ΔV is thickness of NSK K1

Reference number	Nominal stroke	Stroke limit(mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass
Treference number	(mm)	(K1 is not equipped)	(mm)	<i>L</i> 1	L2	L3	n	× 10 ⁻⁴ (kg · m ²)	(kg)
☆ MCM10010H10K00 ☆ MCM10010H20K00	100	130 (151)	10 20	362	280	200	3	0.332 0.446	7.8
☆◇MCM10015H10K00 ☆◇MCM10015H20K00	150	180 (201)	10 20	412	330	300	4	0.378 0.492	8.7
MCM10020H10K00 ☆ MCM10020H20K00	200	230 (251)	10 20	462	380	300	4	0.425 0.539	9.5
☆◇MCM10025H10K00 ☆◇MCM10025H20K00	250	280 (301)	10 20	512	430	400	5	0.472 0.586	10.4
MCM10030H10K00 MCM10030H20K00	300	330 (351)	10 20	562	480	400	5	0.519 0.633	11.2
MCM10040H10K00 MCM10040H20K00	400	430 (451)	10 20	662	580	500	6	0.612 0.726	13.0
☆ MCM10050H10K00 ☆ MCM10050H20K00	500	530 (551)	10 20	762	680	600	7	0.706 0.820	14.6
MCM10060H10K00 ☆ MCM10060H20K00	600	630 (651)	10 20	862	780	700	8	0.800 0.914	16.3
☆ MCM10070H10K00 ☆ MCM10070H20K00	700	730 (751)	10 20	962	880	800	9	0.893 1.007	18.0
MCM10080H10K00 ☆ MCM10080H20K00	800	830 (851)	10 20	1062	980	900	10	0.987 1.101	19.7
 ☆ MCM10090H10K00 ☆ MCM10090H20K00 	900	930 (951)	10 20	1162	1080	1000	11	1.081 1.195	21.4
☆※MCM10100H10K00 ☆※MCM10100H20K00	1000	1030 (1051)	10 20	1262	1180	1000	11	1.174 1.288	23.1

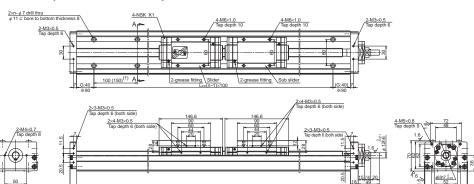
Notes: 1. Items not marked are available from standard stock.

- 2. Items marked with \$\pi\$ are designated as "quick delivery item" upon request.
- 3. Dimension G is 90 for those marked with *...
- 4. Dimension G is 15 for those marked with \diamondsuit .

Monocarrier dynamic tore	Monocarrier dynamic torque specification (N \cdot cm)							
Ball screw lead	10	2.7 – 10.8						
(mm)	20	3.1 – 12.7						

Notes:

- 1. Frictional resistance of NSK K1 is included in the dynamic torque in the table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.
- 4. Stroke limit = stroke + (15 [margin] × 2)


Basic load rating

Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo	ad rating (N)	6
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	$C_{\rm a}$	L_{a} (km)	C_{0a}	C_0	load IIITIII (IV)
10	4.20	10900	33500	7/00	10	21700	20400	2200
20	φ 20	7060	26600	7600	20	12700	29400	3380

Basic static moment load of linear guide

Slider	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Basic static moment load (N⋅m) Rolling M _{RO} Pitching M _{PO} Yawing M _{YO} 1170 425 425	
Single	1170	425	425

MCM10 (Double slider)

Dimension of MCM10 (Double slider)

ΔV is thickness of NSK K1

Reference number	Nominal stroke	,	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass
	(mm)	(K1 is not equipped)	(mm)	L ₁	L ₂	L ₃	n	× 10 ⁻⁴ (kg · m ²)	(kg)
☆◇MCM10007H10D00	70	86 (122)	10	462	380	300	3	0.463	11.0
☆ MCM10017H10D00	170	186	10	562	480	400	5	0.557	12.7
☆ MCM10017H20D00	170	(222)	20	302			5	0.785	12.7
☆ MCM10027H10D00	270	286	10	662	580	580 500	6	0.650	13.4
☆ MCM10027H20D00		(322)	20	002				0.878	13.4
☆ MCM10037H10D00	370	386	10	762	680	600	7	0.744	15.1
☆ MCM10037H20D00	370	(422)	20					0.972	
☆ MCM10047H10D00	470	486	10	862	780	700	8	0.838	17.8
☆ MCM10047H20D00	470	(522)	20	002	700		0	1.066	17.0
☆ MCM10057H10D00	570	586	10	962	880	800	9	0.931	19.5
☆ MCM10057H20D00	370	(622)	20	702	000	000	,	1.159	17.5
☆ MCM10067H10D00	670	686	10	1062	980	900	10	1.025	21.2
☆ MCM10067H20D00	570	(722)	20	1002	700	700	10	1.253	21.2
☆ * MCM10087H10D00	870	886	10	1262	1180	1000	11	1.212	23.6
☆※MCM10087H20D00	070	(922)	20	1202	1100			1.440	25.0

Notes: 1. Items not marked are available from standard stock.

- 2. Items marked with 🕸 are designated as "quick delivery item" upon request.
- 3. Dimension G is 90 for those marked with *.
- 4. Dimension (1) is 150mm for those marked with \diamondsuit .

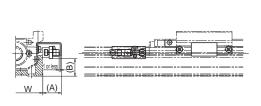
Monocarrier dynamic torque specification (N · cm)							
Ball screw lead	10	4.2 - 15.6					
(mm)	20	5.0 – 19.6					

Notes:

- 1. Frictional resistance of NSK K1 is included in the dynamic torque in the table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.
- 4. Stroke limit = stroke + (8.4 [margin] \times 2)

Basic load rating

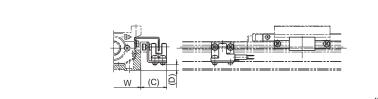
Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo	ad rating (N)	6
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	$C_{\rm a}$	L_a (km)	C_{0a}	C_0	ioad iiiTiit (N)
10	4.20	10900	33500	7/00	10	21700	20400	2200
20	φ 20	7060	26600	7600	20	12700	29400	3380


Basic static moment load of linear guide

		5			
Slider	Basic static moment load (N · m)				
	Rolling M _{RO}	Pitching M _{PO}	Yawing Myo		
Double	2340	2940	2940		

C-2-3 MCM Series Option Part C-2-3. 1 Sensor Unit

Proximity switch


(Example of assembly)

	Type Reference number					Dimension (B) (mm)	Body width W (mm)
MCM02		MC-SR02-00	MC-SR02-01	MC-SR02-02	17	2	28
MCM03		MC-SR03-10	MC-SR03-11	MC-SR03-12	17	3	34
MCM05		MC-SR05-10	MC-SR05-11	MC-SR05-12	17	15	48.6
MCM06		MC-SR06-10	MC-SR06-11	MC-SR06-12	17	19	58
MCM08		MC-SR08-10	MC-SR08-11	MC-SR08-12	16	27	80
MCM10		MC-SR10-10	MC-SR10-11	MC-SR10-12	16	35	100
Quantity	Proximity switch (a-contact)	_	3	1	E2S-W1	3 (OMRO	N Corp.)
Quality	Proximity switch (b-contact)	3	_	2	E2S-W1	4 (OMRO	N Corp.)

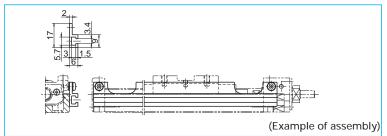
Note: 1. See page C21 for specification of proximity switch. 2. A sensor unit consists of sensors, a sensor dog and sensor mounting parts.

You require an optional spacer plate when you use a cover unit or a sensor unit for an MCM03 with the lead of 1 or 2 mm. (Refer to page C41.)

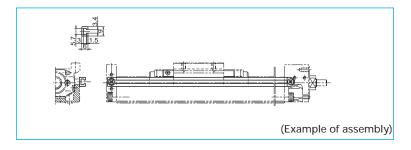
Photo sensor

(Example of assembly)

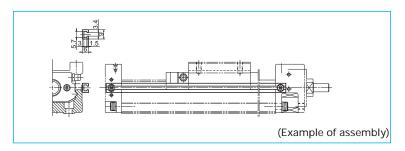
Туре	Reference number	Dimension (C) (mm)	Dimension (D) (mm)	Body width W (mm)	Remarks
MCM03	MC-SR03-13	24	0.5	34	
MCM05	MC-SR05-13	24	5	48.6	EE-SX674 (OMRON Corp.)
MCM06	MC-SR06-13	24	9	58	3 sets
MCM08	MC-SR08-13	23	17	80	(EE-1001 connector attachment)
MCM10	MC-SR10-13	22	24	100	


2. A sensor unit consists of sensors, a sensor dog and sensor mounting parts. Note: 1. See page C22 for specification of photo sensor.

You require an optional spacer plate when you use a cover unit or a sensor unit for an MCM03 with the lead of 1 or 2 mm. (Refer to page C41.)


(1) Sensor Rail

Sensor rail for MCM03: MC-SRL3- * * * *



Sensor rail for MCM05: MC-SRL5- * * * *

Sensor rail for MCM02: MC-SRL2- * * * * Sensor rail for MCM06: MC-SRL6- * * * * Sensor rail for MCM08: MC-SRL8- * * * * Sensor rail for MCM10: MC-SRL1- * * * *

* * * * is the same as rail dimension L2

Please place and assemble the seat during the attachment of the sensor rail and the support unit attaching part for MCM03, MCM05, MCM06 and MCM08.

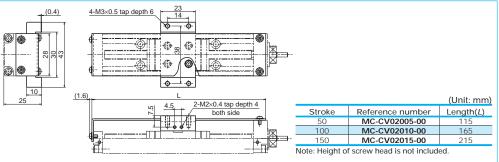
Body of MCM Series and Sensor Rail Combination Table

Nominal size	Body length L_2 (mm)	Reference number	Sensor rail reference num
	100	MCM02005H01K MCM02005P01K MCM02005H02K MCM02005P02K	MC-SRL2-0100
MCM02	150	MCM02010H01K MCM02010P01K MCM02010H02K MCM02010P02K	MC-SRL2-0150
	200	MCM02015H01K MCM02015P01K MCM02015H02K MCM02015P02K	MC-SRL2-0200
	115	MCM03005P01K00 MCM03005P02K00	MC-SRL3-0115
MCM03	140	MCM03005H10K00 MCM03005H12K00	MC-SRL3-0140
	190	MCM030031112K00 MCM03010P01K00 MCM03010P02K00 MCM03010H10K00 MCM03010H12K00	MC-SRL3-0190
	240	MCM03015P01K00 MCM03015P02K00 MCM03015H10K00 MCM03015H12K00	MC-SRL3-0240
	290	MCM03020H10K00 MCM03020H12K00	MC-SRL3-0290
	340	MCM03025H10K00 MCM03025H12K00	MC-SRL3-0340
	180	MCM05005H05K00 MCM05005H10K00 MCM05005H20K00	MC-SRL5-0180
	230	MCM05010H05K00 MCM05010H10K00 MCM05010H20K00	MC-SRL5-0230
	280	MCM05015H05K00 MCM05015H10K00 MCM05015H20K00 MCM05006H10D00	MC-SRL5-0280
	330	MCM05020H05K00 MCM05020H10K00 MCM05020H20K00 MCM05011H10D00	MC-SRL5-0330
	380	MCM05025H05K00 MCM05025H10K00 MCM05025H20K00 MCM05016H10D00	MC-SRL5-0380
MCM05	430	MCM05030H05K00 MCM05030H10K00 MCM05030H20K00 MCM05021H10D00 MCM05021H20D00	MC-SRL5-0430
	530	MCM05040H05K00 MCM05040H10K00 MCM05040H20K00 MCM05031H10D00 MCM05031H20D00	MC-SRL5-0530
	630	MCM05050H05K00 MCM05050H10K00 MCM05050H20K00 MCM05041H10D00 MCM05041H20D00	MC-SRL5-0630
	730	MCM05060H05K00 MCM05060H10K00 MCM05060H20K00 MCM05051H10D00 MCM05051H20D00	MC-SRL5-0730

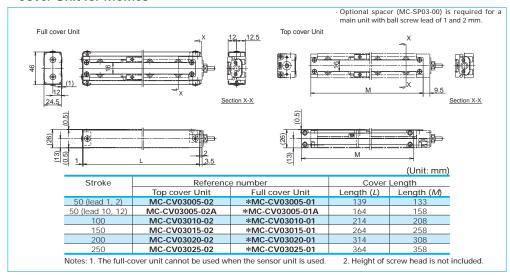
Nominal size	Body length L_2 (mm)	Reference number	Sensor rail reference number
		MCM06005H05K00	
	190	MCM06005H10K00	MC-SRL6-0190
		MCM06005H20K00	
		MCM06010H05K00	
	240	MCM06010H10K00	MC-SRL6-0240
		MCM06010H20K00	
		MCM06015H05K00	
	290	MC-SRL6-0290	
		MCM06015H20K00	
		MCM06020H05K00	
		MCM06020H10K00	
	340	MCM06020H20D00	MC-SRL6-0340
		MCM06011H05D00	
		MCM06011H10D00	
		MCM06025H05K00	
	390	MCM06025H10K00	MC-SRL6-0390
		MCM06025H20K00	
		MCM06030H05K00	
		MCM06030H10K00	
		MCM06030H20K00	
	440	MCM06021H05D00	MC-SRL6-0440
-		MCM06021H10D00	
		MCM06021H20D00	
		MCM06040H05K00	
		MCM06040H10K00	
MCM06		MCM06040H70K00	
	540	MCM06031H05D00	MC-SRL6-0540
		MCM06031H10D00	
		MCM06031H20D00	
		MCM06050H05K00	
		MCM06050H05K00	
		MCM06050H20K00	
	640	MCM06041H05D00	MC-SRL6-0640
		MCM06041H00D00	
		MCM06041H10D00	
		MCM06060H05K00	
		MCM06060H10K00	
	740	MCM06060H10K00	MC-SRL6-0740
	740	MCM06051H10D00	IVIC-3RE0-0740
		MCM06051H10D00	
		MCM06070H05K00	
		MCM06070H105K00	
	840	MCM06070H10K00	MC-SRL6-0840
	840		IVIC-SKL0-U840
		MCM06061H10D00	
		MCM06061H20D00	
		MCM06080H05K00	
	0.40	MCM06080H10K00	MAG CDI / 00 10
	940	MCM06080H20K00	MC-SRL6-0940
		MCM06071H10D00	
		MCM06071H20D00	

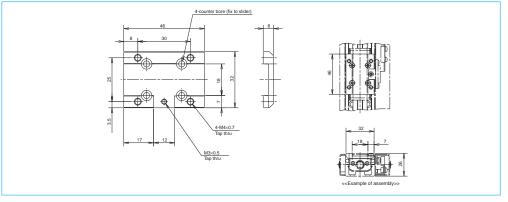
rence numb
.8-0220
.0-0220
.8-0270
.8-0320
8-0370
.0-0370
8-0420
8-0470
8-0570
.8-0670
.8-0770
.8-0870
8-0970
.5 0770

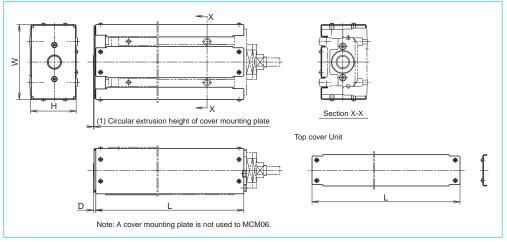
Nominal size	Body length L_2 (mm)	Reference number	Sensor rail reference numb
	280	MCM10010H10K00	MC CDI 1 0200
	280	MCM10010H20K00	MC-SRL1-0280
	222	MCM10015H10K00	140 CDL 4 0000
	330	MCM10015H20K00	MC-SRL1-0330
		MCM10020H10K00	
	380	MCM10020H20K00	MC-SRL1-0380
		MCM10007H10D00	
	400	MCM10025H10K00	140 CDL 4 0400
	430	MCM10025H20K00	MC-SRL1-0430
		MCM10030H10K00	
	400	MCM10030H20K00	MC CDL 1 0400
	480	MCM10017H10D00	MC-SRL1-0480
		MCM10017H20D00	
		MCM10040H10K00	
	500	MCM10040H20K00	140 CDL 4 0E00
	580	MCM10027H10D00	MC-SRL1-0580
		MCM10027H20D00	
	680	MCM10050H10K00	
		MCM10050H20K00	140 CDI 4 0/00
MCM10		MCM10037H10D00	MC-SRL1-0680
		MCM10037H20D00	
		MCM10060H10K00	
	700	MCM10060H20K00	
	780	MCM10047H10D00	MC-SRL1-0780
		MCM10047H20D00	
		MCM10070H10K00	
		MCM10070H20K00	
	880	MCM10057H10D00	MC-SRL1-0880
		MCM10057H20D00	
		MCM10080H10K00	
	000	MCM10080H20K00	140 CDI 4 0000
	980	MCM10067H10D00	MC-SRL1-0980
		MCM10067H20D00	
	1000	MCM10090H10K00	MC CDI 1 1000
	1080	MCM10090H20K00	MC-SRL1-1080
		MCM10100H10K00	
	1100	MCM10100H20K00	MC CDL 1 1100
	1180	MCM10087H10D00	MC-SRL1-1180
		MCM10087H20D00	


C39 C40

NSK


C-2-3. 2 Cover Unit


Cover Unit for MCM02


Cover Unit for MCM03

Spacer for MCM03 (Optional) MC-SP03-00 (for ball screw lead 1 and 2 mm)

Cover Unit for MCM05, 06, 08, and 10

(Unit: mm)

Doforonoo numb	Stı	oke	Cover unit Ref	erence number		Cover	length	
Reference number	Single slider	Double slider	Top cover Unit	*Full cover Unit	Length (L)	Height (H)	Width (W)	End part (D)
	50	_	MC-CV05005-01	MC-CV05005-00	200			
	100	_	MC-CV05010-01	MC-CV05010-00	250	1		
	150	60	MC-CV05015-01	MC-CV05015-00	300	1		
	200	110	MC-CV05020-01	MC-CV05020-00	350	1		
MCM05	250	160	MC-CV05025-01	MC-CV05025-00	400	38.5	65	2.6
	300	210	MC-CV05030-01	MC-CV05030-00	450			
	400	310	MC-CV05040-01	MC-CV05040-00	550			
	500	410	MC-CV05050-01	MC-CV05050-00	650			
	600	510	MC-CV05060-01	MC-CV05060-00	750			
	50	_	MC-CV06005-01	MC-CV06005-00	225			
	100	_	MC-CV06010-01	MC-CV06010-00	275			
	150	_	MC-CV06015-01	MC-CV06015-00	325	1	75 —	_
	200	110	MC-CV06020-01	MC-CV06020-00	375			
	250	_	MC-CV06025-01	MC-CV06025-00	425			
MCM06	300	210	MC-CV06030-01	MC-CV06030-00	475	48.5		
	400	310	MC-CV06040-01	MC-CV06040-00	575			
	500	410	MC-CV06050-01	MC-CV06050-00	675			
	600	510	MC-CV06060-01	MC-CV06060-00	775	1		
	700	610	MC-CV06070-01	MC-CV06070-00	875	1		
	800	710	MC-CV06080-01	MC-CV06080-00	975	1		
	50	_	MC-CV08005-01	MC-CV08005-00	248			
	100	_	MC-CV08010-01	MC-CV08010-00	298			
	150	_	MC-CV08015-01	MC-CV08015-00	348			
	200	80	MC-CV08020-01	MC-CV08020-00	398			
	250	_	MC-CV08025-01	MC-CV08025-00	448			
MCM08	300	180	MC-CV08030-01	MC-CV08030-00	498	56.5	90	2.6
	400	280	MC-CV08040-01	MC-CV08040-00	598			
	500	380	MC-CV08050-01	MC-CV08050-00	698			
	600	480	MC-CV08060-01	MC-CV08060-00	798			
	700	580	MC-CV08070-01	MC-CV08070-00	898			
	800	680	MC-CV08080-01	MC-CV08080-00	998	1		
	100	_	MC-CV10010-01	MC-CV10010-00	308			
	150	_	MC-CV10015-01	MC-CV10015-00	358	1		
	200	70	MC-CV10020-01	MC-CV10020-00	408	1		
	250	_	MC-CV10025-01	MC-CV10025-00	458	1		
	300	170	MC-CV10030-01	MC-CV10030-00	508	1		
NACNA10 [400	270	MC-CV10040-01	MC-CV10040-00	608] ,, -	110	3.6
MCM10	500	370	MC-CV10050-01	MC-CV10050-00	708	66.5	110	3.6
	600	470	MC-CV10060-01	MC-CV10060-00	808]		
	700	570	MC-CV10070-01	MC-CV10070-00	908]		
	800	670	MC-CV10080-01	MC-CV10080-00	1008]		
	900	_	MC-CV10090-01	MC-CV10090-00	1108]		
	1000	870	MC-CV10100-01	MC-CV10100-00	1208			

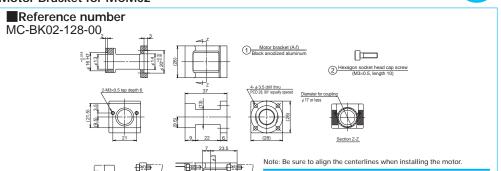
*When a sensor unit is used, the full-cover unit cannot be used.

Not include height such as screw

Note: The dimensions of cover shown above do not include the head height of fixing machine screws. Add the head of machine screws of approximately 2.5 mm to the outer measurement of a cover unit. Set a margin for mechanical interference with surrounding components.

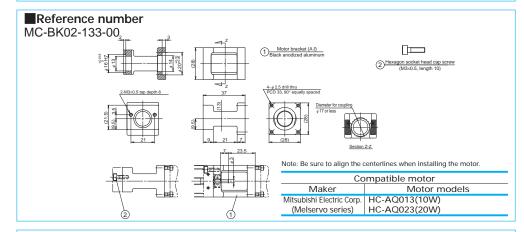
Compatible motor

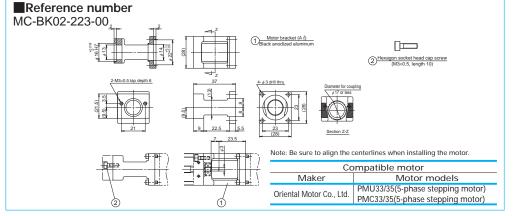
(Σ- mini Series) SGMM-A2(20W)

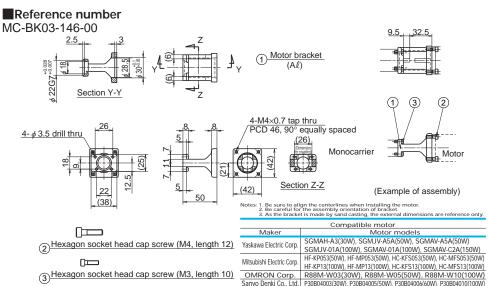

SGMM-A1(10W)

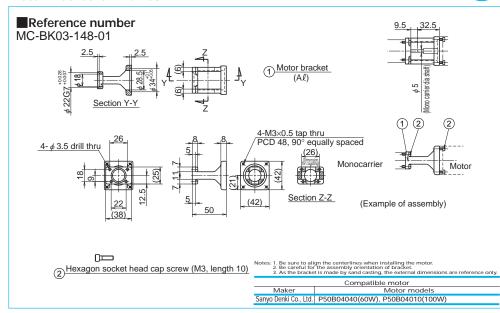
Motor models

C-2-3. 3 Motor Bracket

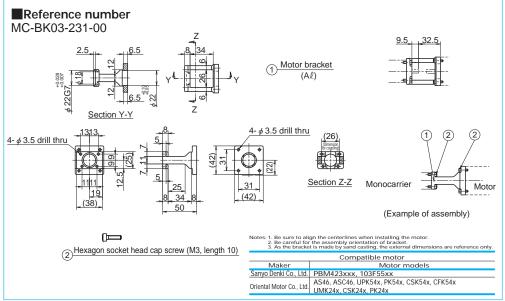

•Motor models are subject to change at the motor manufacturers. For details, please contact the manufacture.

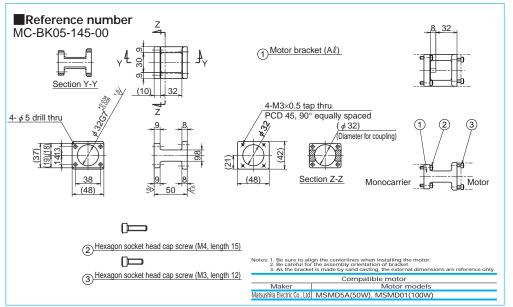

Motor Bracket for MCM02

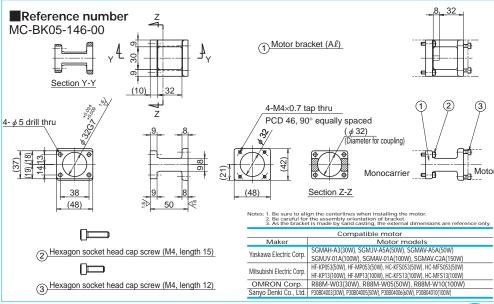

Maker

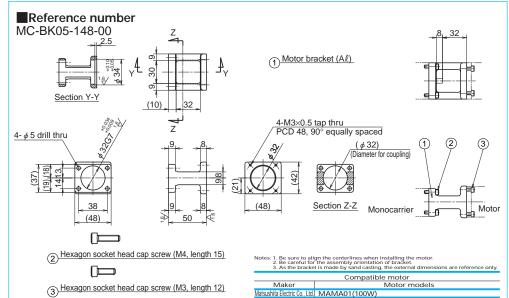

Yaskawa Electric Corp.

Motor Bracket for MCM03



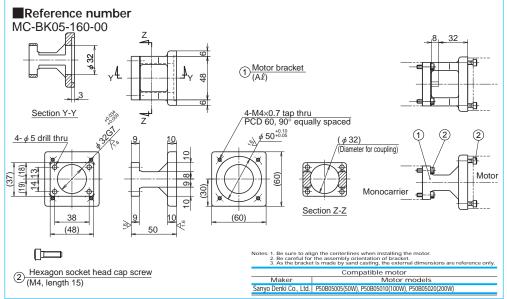


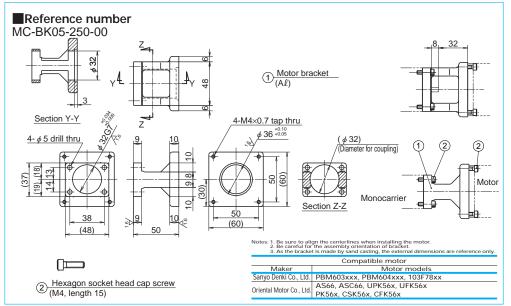

Motor Bracket for MCM03

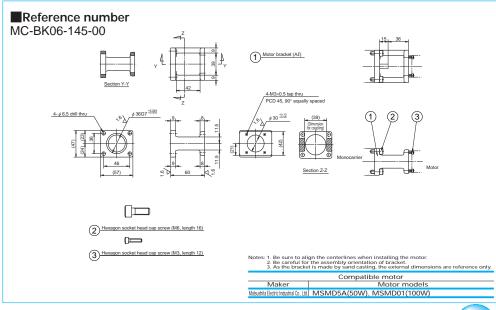


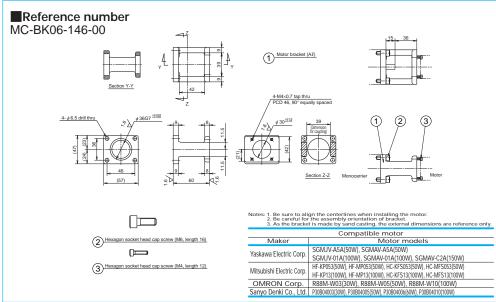
Motor Bracket for MCM05

Motor Bracket for MCM05



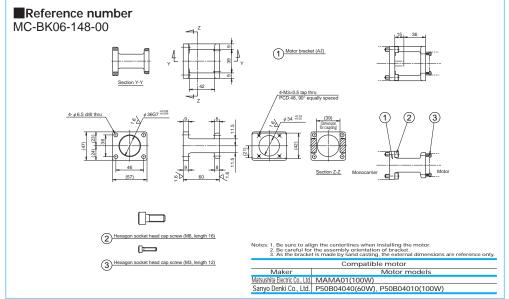


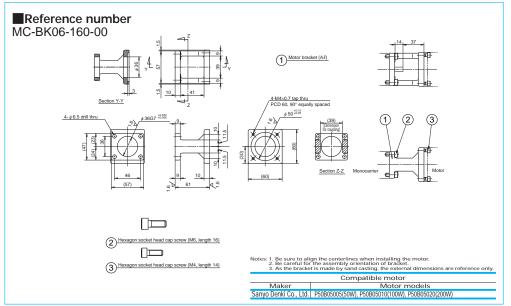

Motor Bracket for MCM05



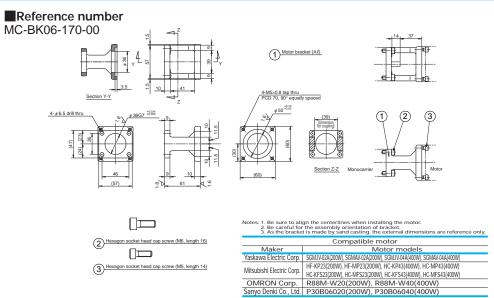
Motor Bracket for MCM05

Motor Bracket for MCM06

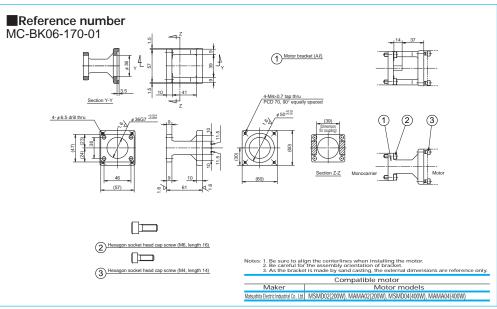



Standard stock

Motor Bracket for MCM06

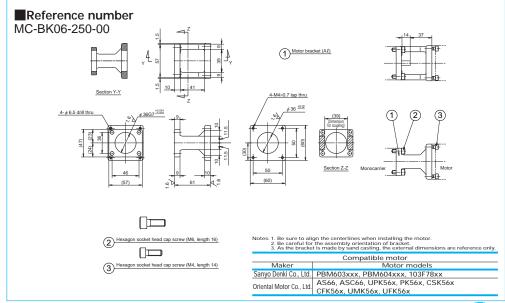


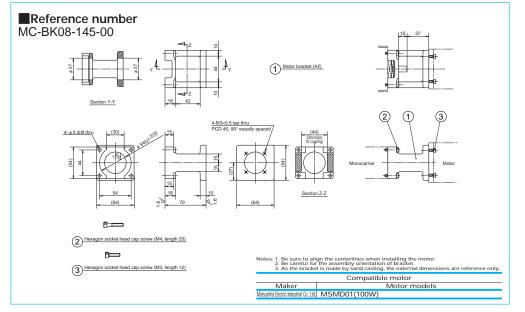
Standard stock


Motor Bracket for MCM06

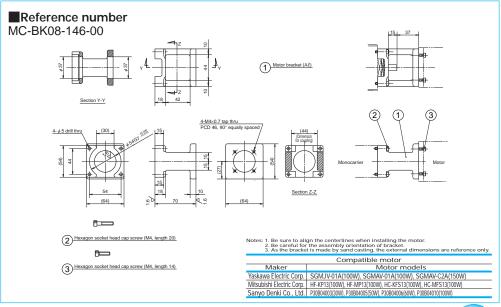
Motor Bracket for MCM06

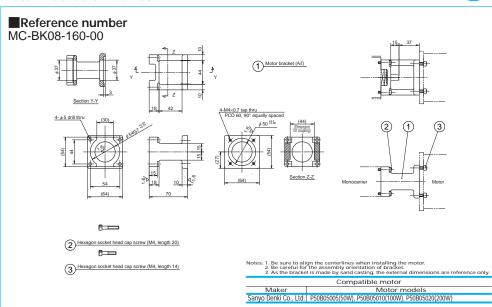
Motor Bracket for MCM06




Standard stock

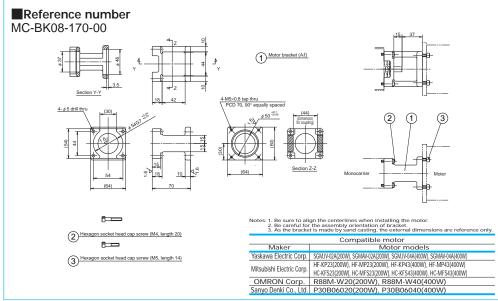
Motor Bracket for MCM06

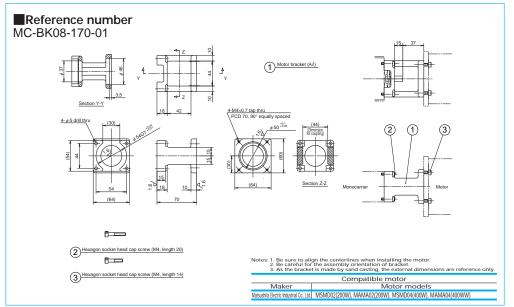


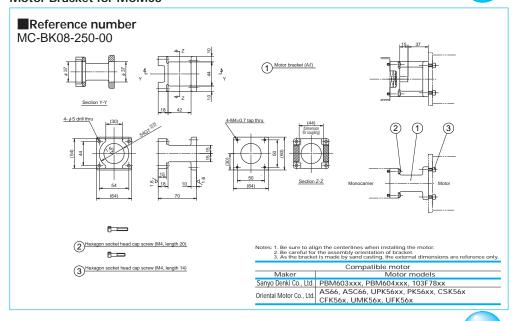

Standard stock

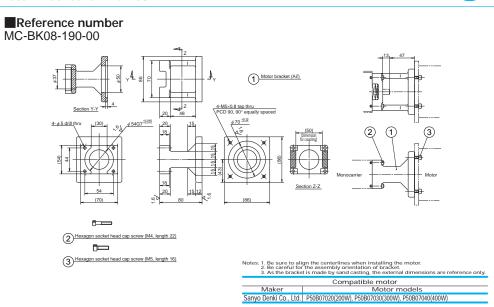
Motor Bracket for MCM08

Motor Bracket for MCM08



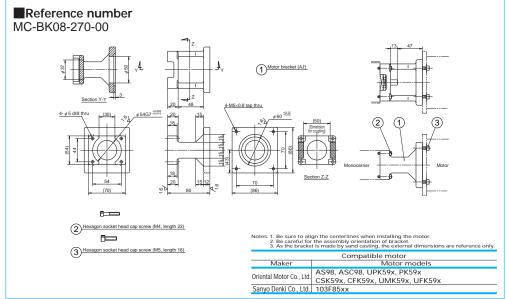


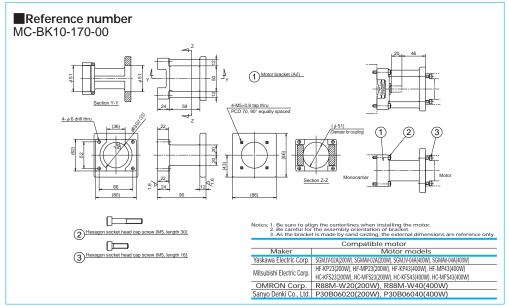

Motor Bracket for MCM08

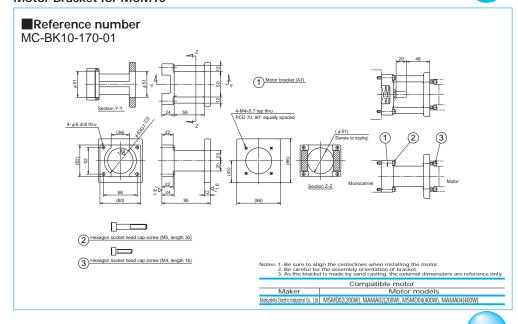

Motor Bracket for MCM08

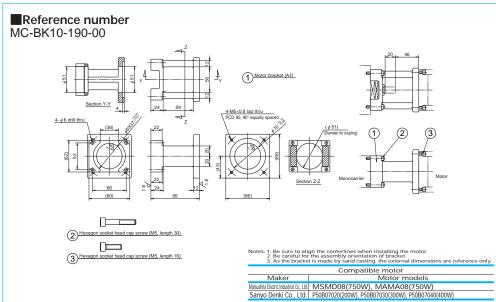
Motor Bracket for MCM08

Motor Bracket for MCM08



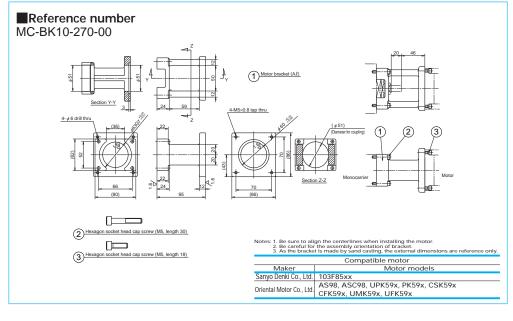



Motor Bracket for MCM08


Motor Bracket for MCM10

Motor Bracket for MCM10

Motor Bracket for MCM10



Option Part

NSK

Motor Bracket for MCM10

Availability Motor Table of Motor Bracket for MCM Series

lominal size	Reference number	Motor bracket	Motor manufacturer	Stepping motor					Watta	ge of AC servi	motor							
willings 2026	code	reference number	Word mallulacturer	model number	10	20	30	50	60	100	150	200	300	400	750			
	1	MC-BK02-128-00	Yaskawa Electric Corp.		SGMM-A1	SGMM-A2												
ICM02	2	MC-BK02-133-00	Mitsubishi Electric Corp.		HC-AQ013	HC-AQ023												
VICIVIU2	3	MC-BK02-223-00	Oriental Motor Co., Ltd.	PMU33/35 (5-phase)														
	3	IVIC-BKU2-223-00	Oriental Motor Co., Ltd.	PMC33/35 (5-phase)														
								SGMJV-A5A		SGMJV-01A								
			Yaskawa Electric Corp.				SGMAH-A3	SGMAV-A5A		SGMAV-01A	SGMAV-C2A							
								HF-KP053		HF-KP13								
								HF-MP053		HF-MP13								
	1	MC-BK03-146-00	Mitsubishi Electric Corp.															
								HC-KFS053		HC-KFS13								
								HC-MFS053		HC-MFS13								
			OMRON Corp.				R88M-W03	R88M-W05		R88M-W10								
ICM03			Sanyo Denki Co., Ltd.				P30B04003	P30B04005		P30B04010								
	2	MC-BK03-148-01	Sanyo Denki Co., Ltd.						P50B04040	P50B04010								
			Sanyo Denki Co., Ltd.	PBM423xxx														
			Sanyo Denki Co., Ltd.	103F55xx														
				AS46, ASC46														
	3	MC-BK03-231-00		UPK54x, PK54x														
			Oriental Motor Co., Ltd.	CSK54x, CFK54x														
				UMK24x, CSK24x														
				PK24x														
	1	MC-BK05-145-00	Matsushita Electric Industrial Co., Ltd.	11270				MSMD5A		MSMD01								
	<u> </u>	W.C-DK03-145-00	masser tid Literature industrial Cit., Litt.					SGMJV-A5A		SGMJV-01A				 				
	1		Yaskawa Electric Corp.				SGMAH-A3		1		SGMAV-C2A		1					
			,					SGMAV-A5A		SGMAV-01A								
	1	2 MC-BK05-146-00					1	HF-KP053		HF-KP13	1		1					
	2		2 MC-BK05-146-0	Mitsubishi Electric Corp.					HF-MP053		HF-MP13							
								HC-KFS053		HC-KFS13								
								HC-MFS053		HC-MFS13								
			OMRON Corp.				R88M-W03	R88M-W05		R88M-W10								
CM05			Sanyo Denki Co., Ltd.				P30B04003	P30B04005	P30B04006	P30B04010								
CIVIUS	3	MC-BK05-148-00	Matsushita Electric Industrial Co., Ltd.							MAMA01								
	4	MC-BK05-160-00						P50B05005		P50B05010		P50B05020						
				PBM603xx,														
			Sanyo Denki Co., Ltd.	PBM604xx														
	5 N		Sanyo Denki Co., Ltd.	103F78xx														
		MC-BK05-250-00		AS66, ASC66														
			Oriental Motor Co., Ltd.	UPK56x, UFK56x														
				PK56x, CSK56x,														
				CFK56x											1			
	1	MC-BK06-145-00	Matsushita Electric Industrial Co., Ltd.					MSMD5A		MSMD01								
									SGMJV-A5A		SGMJV-01A	SGMAV-C2A						
			Yaskawa Electric Corp.					SGMAV-A5A		SGMAV-01A	SGIVIAV-CZA							
								HF-KP053		HF-KP13								
		MC-BK06-146-00						HF-MP053		HF-MP13								
	2		MC-BK06-146-00	MC-BK06-146-00	MC-BK06-146-00	Mitsubishi Electric Corp.					HC-KFS053		HC-KFS13					
								1				1		1				
			ON ADDOL: -	-		-	Door	HC-MFS053	-	HC-MFS13			-	-				
	1		OMRON Corp.			-	R88M-W03	R88M-W05	-	R88M-W10			1					
			Sanyo Denki Co., Ltd.			-	P30B04003	P30B04005										
	3	MC-BK06-148-00	Sanyo Denki Co., Ltd.						P50B04040					\vdash				
	_	1	Matsushita Electric Industrial Co., Ltd.							MAMA01								
	4	MC-BK06-160-00	Sanyo Denki Co., Ltd.					P50B05005		P50B05010		P50B05020						
	_ "																	
			Venlage El									SGMJV-02A		SGMJV-04A				
	1		Yaskawa Electric Corp.				1				1	SGMAV-02A	1	SGMAV-04A				
CM06				İ								HF-KP23		HF-KP43				
	1						1				1	HF-MP23	1	HF-MP43				
	5	MC-BK06-170-00	Mitsubishi Electric Corp.									HC-KES23		HC-KFS43				
	1						1				1	HC-KFS23 HC-MFS23	1	HC-KFS43 HC-MFS43				
	1		ON FRONT O	-				_	-		_		-	_				
	1		OMRON Corp.									R88M-W20		R88M-W40				
			Sanyo Denki Co., Ltd.									P30B06020		P30B06040				
	6	MC-BK06-170-01	Matsushita Electric Industrial Co., Ltd.				1				1	MSMD02	1	MSMD04				
		51100 170-01	The Local Control of Co., Clu.									MAMA02		MAMA04				
			Samue Dordi Co. 171	PBM603xxx,														
	1		Sanyo Denki Co., Ltd.	PBM604xxx			1				1		1					
	1		Sanyo Denki Co., Ltd.	103F78xx														
	7	MC-BK06-250-00	,	AS66, ASC66														
	1			UPK56x, PK56x			1				1		1					
	1		Oriental Motor Co., Ltd.	CSK56x, CFK56x			1				1		1					
		1		UMK56x, UFK56x	I	1	1	1	1	1	I	I	1	1 1				

C57 C58

U
60

code 1	reference number	Motor manufacturer					turer Stepping motor Wattage of AC servo motor										
1												400	750				
1		Matsushita Electric Industrial Co., Ltd.							MSMD01								
	MC-BK08-145-00																
									SGMJV-01A								
		Yaskawa Electric Corp.							SGMAV-01A	SGMAV-C2A				1			
									HF-KP13								
2	MC-BK08-146-00								HF-MP13					1			
		Mitsubishi Electric Corp.							HC-KFS13					1			
									HC-MFS13								
		Sanyo Denki Co., Ltd.				P30B04003	P30B04005	P30B04006	P30B04010								
3	MC-BK08-160-00	Sanyo Denki Co., Ltd.					P50B05005		P50B05010		P50B05020						
		Vackaum Floetrie Corn									SGMJV-02A		SGMJV-04A				
		laskawa Liectric Corp.									SGMAV-02A		SGMAV-04A				
											HF-KP23		HF-KP43				
4	MC.RK08.170.00	Mitsuhishi Flortric Corn									HF-MP23		HF-MP43				
7	INC DIGGO 170 GO	with the control of p.												1			
		Sanyo Denki Co., Ltd.															
5	MC-BK08-170-01	Matsushita Electric Industrial Co., Ltd.															
											_						
6	MC-BK08-190-00	Sanyo Denki Co., Ltd.									P50B07020	P50B07030	P50B07040				
		Sanyo Denki Co., Ltd.															
_		Sanyo Denki Co., Ltd.															
7	MC-BK08-250-00													1			
		Oriental Motor Co., Ltd.												1			
														1			
	MC-BK08-270-00	Sanyo Denki Co., Ltd.															
		MC-BK08-270-00 Orient	Oriental Motor Co., Ltd.												1		
8																	
			UIVIKS9X, UFKS9X								SCM IV OOM		SCM IV OAA				
		Yaskawa Electric Corp.															
1	MC-BK10-170-00	Mitsubishi Electric Corp.															
		OMRON Corp.															
		Sanyo Denki Co., Ltd.									P30B06020		P30B06040				
		The state of the s									MSMD02		MSMD04				
2	MC-BK10-170-01	Matsushita Electric Industrial Co., Ltd.									MAMA02		MAMA04	1			
														MSMD08			
3	MC-BK10-190-00	Matsushita Electric Industrial Co., Ltd.												MAMA08			
		Sanyo Denki Co., Ltd.									P50B07020	P50B07030	P50B07040				
		Sanyo Denki Co., Ltd.	103F85xx														
			AS98, ASC98														
4	MC-BK10-270-00	Oriontal Motor Co. Ltd.	UPK59x, PK59x											1			
		Charles Wolds Co., Eld.	CSK59x, CFK59x											1			
			UMK59x, UFK59x														
	4 5 6 6 7 8 8 1 1 2 3 3	4 MC-BK08-170-00 5 MC-BK08-170-01 6 MC-BK08-190-00 7 MC-BK08-250-00 8 MC-BK08-270-00 1 MC-BK10-170-00 2 MC-BK10-170-01 3 MC-BK10-190-00	MC 8K08-160-00 Sanyo Denki Co., Ltd. Yaskawa Electric Corp. MC 8K08-170-00 Mitsubishi Electric Corp. CMRON Corp. Sanyo Denki Co., Ltd. MC 8K08-170-01 Metashi Bicirc Industri Co., Ltd. MC 8K08-170-01 Metashi Bicirc Industri Co., Ltd. Sanyo Denki Co., Ltd. Sanyo Denki Co., Ltd. Sanyo Denki Co., Ltd. Sanyo Denki Co., Ltd. MC 8K08-270-00 Oriental Motor Co., Ltd. MC 8K08-270-00 Oriental Motor Co., Ltd. MC 8K10-170-00 Mitsubishi Electric Corp. MC 8K10-170-01 Mitsubishi Electric Corp. MC 8K10-170-01 Mitsubishi Electric Corp. MC 8K10-170-01 Metashi Bicirc Industri Co., Ltd. MC 8K10-170-01 Sanyo Denki Co., Ltd. Sanyo Denki Co., Ltd.	Sarryo Denki Co., Ltd.	Sanyo Denki Co., Ltd.	Sarryo Denki Co., Ltd.	Sarryo Denki Co., Ltd. P30804003	Sarryo Denki Co., Ltd. P30804003 P20804003	Sarryo Denki Co., Ltd. P30804003 P30804005 P30804006	Sarryo Denki Co., Ltd. P30804003 P30804005 P30804006 P30804010	Sarryo Denki Co., Ltd. P30804003 P30804005 P20804006 P20804010	Sarryo Denki Co_Ltd. P36804000 P30804000 P30804000 P30804000 P30804000 P30804000 P30804000 P30804000 P30804000 P30804000 P30805010 P3080	Sarryo Denki Co., Ltd. P30804005 P30804006 P3080500 P	Samp Denki Co., Ltd. P30804005 P30804005 P30804010 P30804010 P30804010 P30804010 P30804010 P30804010 P30805010 P3080			

1	MC	H Series Reference Number	C63
	Co	ding	
2	MC	H Series Dimension Table of	
	Sta	indard Products	
	MC	L06	C64
	MC	H06	C65
	MC	H09	C67
	MC	H10	C69
3	M	CH Series Option Part	
,	3. 1	Sensor Unit	C71
,	3. 2	Cover Unit	C73
,	3. 3	Intermediate Plate For Motor	C77

MCH Series

C61 C62

C-3 MCH Series

C-3-1 MCH Series Reference Number Coding

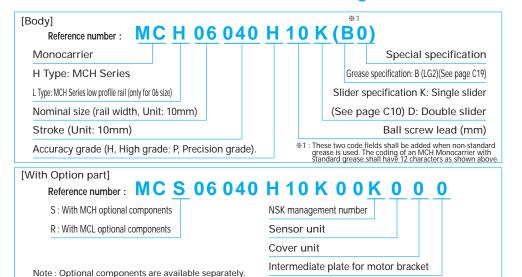


Table 1 Sensor unit (See page C71)

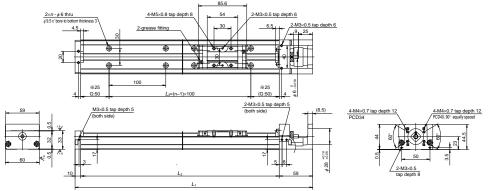
Reference number code	Specification	Reference number
0	N/A	_
1	Proximity switch (b-contact 3 pieces)	MC—SRHxx—10
2	Proximity switch (a-contact 3 pieces)	MC—SRHxx—11
3	Proximity switch (a-contact 1 piece, b-contact 2 pieces)	MC—SRHxx—12
4	Photo sensor 3 pieces	MC—SRHxx—13

Note: Sensor rail is not included in a sensor unit. If you require the rail, please request separately. (See page C71 to 72.)

Table 2 Cover unit (See page C73 - 75)

Reference number code	Specification	Reference number
0	N/A	_
1	For single slider	MC—HVxxxxx—00
	For double slider	MC—HVxxxxxD00

xxxxx: Reference number and stroke number


Table 3 Intermediate plate for motor bracket (See page C77 - 80)

Reference		Туре									
number code	MCH06 (MCL06)	MCH09	MCH10								
0	N/A	N/A	N/A								
1	MC-BKH06-145-00	MC-BKH09-145-00	MC-BKH10-170-00								
2	MC-BKH06-146-00	MC-BKH09-146-00	MC-BKH10-170-01								
3	MC-BKH06-231-00	MC-BKH09-170-00	MC-BKH10-190-00								
4	MC-BKH06-250-00	MC-BKH09-170-01	MC-BKH10-190-01								
5	_	MC-BKH09-231-00	MC-BKH10-250-00								
6	_	MC-BKH09-250-00	MC-BKH10-270-00								

C-3-2 MCH Series Dimension Table of Standard Products

MCL06

Accuracy grade: High grade (H)

- The rail of MCL 06 is made lighter than that of MCH 06 by lowering the rail height. The weight ratio between the MCH 06 and MCL 06 is 5 to 4.
- Double slider specification is also available for the MCL 06.
- Combinations of stroke and ball screw lead of the MCL 06 are the same as those of the MCH 06.

Dimension of MCL06 (Single slider)

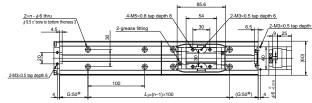
Reference number	Nominal stroke (mm)	Stroke limit(mm) (K1 is not equipped)	Ball screw lead (mm)	<i>L</i> ₁	Bod L ₂	ly length (r	nm)	Inertia × 10 ⁻⁶ (kg · m²)	Mass (kg)
☆※MCL06005H05K ☆※MCL06005H10K	50	53 (65)	5 10	219	150	100	2	2.38 3.45	1.0
☆ MCL06010H05K ☆ MCL06010H10K	100	103 (115)	5 10	269	200	100	2	3.17 4.12	1.3
 	200	203 (215)	5 10	369	300	200	3	4.51 5.46	1.9
 	300	303 (315)	10 20	469	400	300	4	6.80 10.6	2.6
 ★ MCL06040H10K ★ MCL06040H20K 	400	403 (415)	10 20	569	500	400	5	8.13 11.9	3.2
 ★ MCL06050H10K ★ MCL06050H20K 	500	503 (515)	10 20	669	600	500	6	9.47 13.3	3.9

- Notes: 1. Items not marked are available from standard stock.
 - 2. Items marked with 🕏 are designated as "quick delivery item" upon request.
 - 3. Dimension of G is 25 instead of 50 for those marked with *.

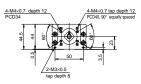
Monocarrier dynamic tord	que specifi	cation (N · cm)	
Ball screw lead	5	1.0 – 4.8	
Ball screw lead	10	11_58	

- 1. Frictional resistance of NSK K1 is included in the dynamic torque in the table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating											
Lead	Shaft dia		Basic dy	namic load rating	j (N)	Basic static lo	Cupport unit				
l d		Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)			
(mm)	(mm)	C _a	С	$C_{\rm a}$	L_a (km)	C_{0a}	C_0	ioau iiiiii (N)			
-		3000 (High grade)	22000		-	5410 (High grade)					
5		3760 (Precision)	22800		5	6310 (Precision)					
10	1	1930 (High grade)	18100	4400	10	3160 (High grade)	10900	1450			
10	φ 12	2260 (Precision)	16100	4400	10	3780 (Precision)	10900				
20		1930 (High grade)	14400		20	3160 (High grade)					
20		2260 (Precision)	14400		20	3780 (Precision)					


Basic static moment load of linear guide

	5							
CII		Basic static moment load (N · m)						
SIIC	Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing Myo				
Sin	gle	335	133	133				


Accuracy grade: High grade (H)

MCH06

Accuracy grade: High grade (H)

Dimension of MCH06 (Single slider)

Reference number	Nominal stroke	Stroke limit(mm)	Ball screw lead			y length (r		Inertia × 10 ⁻⁶ (kg·m²)	Mass			
	(mm)	(K1 is not equipped)	(mm)	L ₁	L ₂	L3	n	x 10 -(kg · m-)	(kg)			
* MCH06005H05K		53	5					2.38				
※ MCH06005H10K	50		10	219	150	100	2	3.45	1.8			
☆※ MCH06005H20K		(65)	20					7.25				
MCH06010H05K		103	5					3.17				
MCH06010H10K	100	100	(115)	10	269	200	100	2	4.12	2.2		
☆ MCH06010H20K				(113)	20					7,92		
MCH06020H05K	200	200	200		203	5					4.51	
MCH06020H10K				(215)	10	369	300	200	3	5.46	3.0	
MCH06020H20K		(213)	20					9.26				
☆ MCH06030H05K		303	5		400 300		300 4	5.85	3.7			
MCH06030H10K	300		10	469		300		6.80				
MCH06030H20K		(315)	20					10.6				
☆ MCH06040H05K		403	5					7.18				
MCH06040H10K	400	(415)	10	569	500	400	5	8.13	4.5			
MCH06040H20K		(413)	20					11.9				
☆ MCH06050H05K		503	5	669		500		8.52	5.2			
MCH06050H10K	500	(515)	10		600		6	9.47				
MCH06050H20K		(515)	20					13.3	1 3.2			

Notes: 1. Items not marked are available from standard stock.

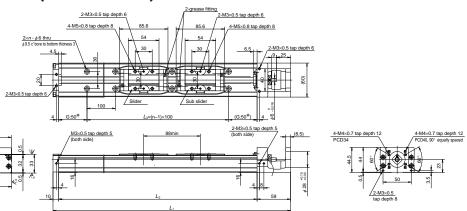
- 2. Items marked with ☆ are designated as "quick delivery item" upon request.
- 3. Dimension of G is 25 instead of 50 for those marked with *.

1.6 - 7.9

Monocarrier dynamic tor	que specifi	cation (N · cm
D.H I I	5	1.0 – 4.8
Ball screw lead	10	11 E0

Notes:

- 1. Frictional resistance of NSK K1 is included in the dynamic torque in the table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating

	Lead	Shaft dia		Basic dy	namic load ratinç	Basic static loa	6		
_	l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit
	(mm)	(mm)	C_{a}	С	C_{a}	L_a (km)	C_{0a}	C_0	load limit (N)
	5		3000 (High grade)	22800		5 1	5410 (High grade)		
	5		3760 (Precision)	22000			6310 (Precision)	16300	
	10	φ12	1930 (High grade)	18100	4400	10	3160 (High grade)		1450
	10	φ 12	2260 (Precision)	16100	4400		3780 (Precision)		
	20		1930 (High grade)	14400		20	3160 (High grade)		
	20		2260 (Precision)	14400		20	3780 (Precision)		

Basic static moment load of linear guide

Slider Basic static momer Rolling M _{RO} Pitching N Single 335 133	atic moment load	d (N · m)	
	Pitching M _{PO}	Yawing M _{YO}	
Single	335	133	133

MCH06 (Double slider)

Dimension of MCH06 (Double slider)

Reference number	Nominal stroke (mm)	Stroke limit(mm) (K1 is not equipped)	Ball screw lead (mm)	<i>L</i> 1	Bod L ₂	ly length (r	mm)	Inertia × 10 ⁻⁶ (kg · m²)	Mass (kg)
\	(,		, ,	LI	L2	L3	11		(1.9)
☆MCH06010H05D	100	115	5	369	300	200	2	4.82	3.5
☆MCH06010H10D	100	(139)	10				3	6.72	3.3
☆MCH06020H05D	200	215	5	469	400	300	4	8.06	4.2
☆MCH06020H10D	200	(239)	10					15.7	
☆MCH06030H05D	300	315	5	569	500	500 400	00 5	9.40	5.0
☆MCH06030H10D	300	(339)	10	307	300			17.0	
☆MCH06040H10D	400	415	10	669	600	500 500	6	10.7	5.7
☆MCH06040H20D	400	(439)	20		000			18.3	

Notes: 1. Items not marked are available from standard stock.

2. Items marked with 🖈 are designated as "quick delivery item" upon request.

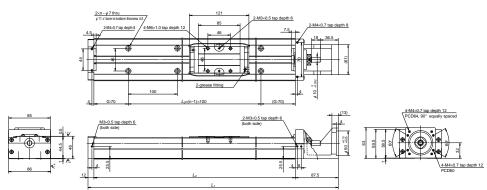
Monocarrier dynamic torque specification (N ⋅ cm) 5 | 1.2 - 5.2

Dall assess land	5	1.2 - 5.2
Ball screw lead (mm)	10	1.5 - 9.6
(11111)	20	2.3 - 11.8

Notes:

- 1. Frictional resistance of NSK K1 is included in the dynamic torque in the table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating


sic ioad	rating								
Lead	Shaft dia		Basic dy	namic load rating	(N)	Basic static lo	Basic static load rating (N)		
l	d	Ball screw	Linear guides	near guides $egin{array}{cccc} {\sf Support\ unit} & {\sf Rated\ running\ dist} \\ {\it C} & {\it C_a} & {\it L_a\ (km)} \\ \end{array}$		Ball screw	Linear guides	Support unit load limit (N	
(mm)	(mm)	C _a	C			C_{0a}	C_0	ioau iiiiiit (iv	
-		3000 (High grade)	22222		-	5410 (High grade)			
5	φ 12	3760 (Precision)	22800	4400	5	6310 (Precision)			
10		1930 (High grade)	10100		10	3160 (High grade)		1450	
10		2260 (Precision)	18100	4400	10	3780 (Precision)		1450	
20		1930 (High grade)	14400		20	3160 (High grade)			
20		2260 (Precision)	14400		20	3780 (Precision)			

Basic static moment load of linear guide

Slider	Basic static moment load (N · m)						
	Rolling M _{RO}	Pitching M _{PO}	Yawing Myo				
Double	770	730	730				

Accuracy grade: High grade (H)

Accuracy grade: High grade (H)

Dimension of MCH09 (Single slider)

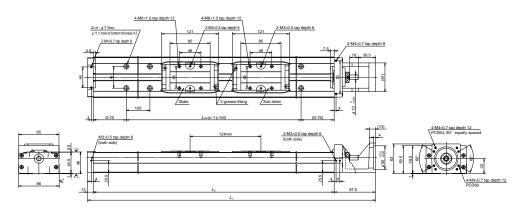
Reference number	Nominal stroke (mm)	Stroke limit(mm) (K1 is not equipped)	Ball screw lead (mm)	<i>L</i> 1	Bod L ₂	y length (r	nm)	Inertia × 10 ⁻⁶ (kg·m ²)	Mass (kg)
☆MCH09010H05K	, ,	107	5					9.2	
☆MCH09010H10K ☆MCH09010H20K	100	(121)	10 20	339.5	240	100	2	10.7 16.8	5.0
MCH09020H05K MCH09020H10K	200	207	5 10	439.5	340	200	3	12.4 13.9	6.5
☆MCH09020H20K MCH09030H05K		(221)	20				-	20.0	
MCH09030H10K ☆MCH09030H20K	300	307 (321)	10	539.5	440	300	4	17.1	8.1
MCH09040H05K		407	5				_	18.8	
MCH09040H10K ☆MCH09040H20K	400	(421)	10 20	639.5	540	400	5	20.3 26.4	9.7
☆MCH09050H05K MCH09050H10K	500	507	5 10	739.5	640	500	6	22.0	11
MCH09050H20K		(521)	20					29.6	
☆MCH09060H05K MCH09060H10K	600	607 (621)	10	839.5	740	600	7	25.2 26.7	13
MCH09060H20K ☆MCH09070H05K		` ′	20 5					32.8 28.4	
☆MCH09070H10K	700	707 (721)	10	939.5	840	700	8	30.0	14.5
☆MCH09070H20K ☆MCH09080H05K		807	5					36.0 31.6	
MCH09080H10K MCH09080H20K	800	(821)		1 039.5	940	800	9	33.2 39.2	16

Notes: 1. Items not marked are available from standard stock.

2. Items marked with 🕸 are designated as "quick delivery item" upon request.

		-							
Monocarrier dynamic torque specification (N · cm)									
D.II.	5	1.0 - 5.9							
Ball screw lead (mm)	10	2.0 - 7.8							
	20	2.0 - 10.8							

- 1. Frictional resistance of NSK K1 is included in the dynamic torque in the table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- Consult NSK for life estimates under large moment loads.


Basic load rating

Lead	Shaft dia		Basic dy	namic load rating	Basic static lo	6		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	d Ball screw (high grade) Linear guides Support unit Rated running distance Ball screw (Linear guides) Linear guides Support unit Rated running distance Ball screw (Linear guides) Linear guides Linear guides </td <td>C_0</td> <td>ioau iiiriit (iv)</td>	C_0	ioau iiiriit (iv)				
5		6820 (High grade)	40400		E	13200 (High grade)		
5		7100 (Precision)	40600		5	13000 (Precision)	30500	
10	,,,,	5110 (High grade)	22200	20000 7400	10	9290 (High grade)		3040
10	φ 15 7060 (Pre	7060 (Precision)	32200	/100	10	12700 (Precision)		
20		3290 (High grade)	25500			5620 (High grade)		
20		4560 (Precision) 25500	25500	20		7750 (Precision)		

Basic static moment load of linear guide

	Basic static moment load (N · m)						
	Pitching M _{PO}	Yawing M _{YO}					
Single	890	385	385				

MCH09 (Double slider)

Dimension of MCH09 (Double slider)

Reference number	Nominal stroke (mm)	Stroke limit(mm) (K1 is not equipped)	Ball screw lead (mm)	<i>L</i> ₁	Bod L ₂	y length (r L ₃	nm)	Inertia × 10 ⁻⁶ (kg · m²)	Mass (kg)
	150	183 (211)	5 10	539.5	440	300	4	16.1 19.2	8.9
☆MCH09025H05D ☆MCH09025H10D	250	283 (311)	5 10	639.5	540	400	5	19.3 22.4	11
☆MCH09035H05D ☆MCH09035H10D	350	383 (411)	5 10	739.5	640	500	6	22.5 25.6	12
☆MCH09045H10D ☆MCH09045H20D	450	483 (511)	10 20	839.5	740	600	7	28.8 40.9	14
☆MCH09065H10D ☆MCH09065H20D	650	683 (711)	10 20	1 039.5	940	800	9	35.2 47.3	17

Notes: 1. Items not marked are available from standard stock.

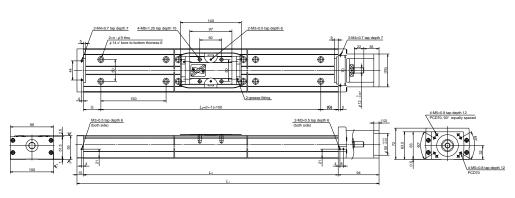
Monocarrier dynamic torque specification (N · cm) 5

1.5 - 7.0 Ball screw lead 10 4.0 - 17.2

- 1. Frictional resistance of NSK K1 is included in the dynamic torque in the table.
- 2.5 10.8 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

sic ioau	rating							
Lead	Shaft dia		Basic dy	Basic dynamic load rating (N)		Basic static lo	6	
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support un load limit (N
(mm)	(mm)	C _a	С	$C_{\rm a}$	L_a (km)	C_{0a}	C_0	ioau iiiiii (i
-		6820 (High grade)	40/00		-	13200 (High grade)		
5		7100 (Precision)	40600		5	13000 (Precision)	30500	
10	, 15	5110 (High grade)	22200	7100	10	9290 (High grade)		2040
10	φ 15	7060 (Precision)	32200	7100		12700 (Precision)		3040
20		3290 (High grade)	25500		0.0	5620 (High grade)		
	4560 (Precision)	25500		20	7750 (Precision)			


Basic static moment load of linear guide

		5				
Slider	Basic static moment load (N · m)					
Siluei	Rolling M _{RO}	Pitching M _{PO}	Yawing Myo			
Double	1780	2070	2070			

Accuracy grade: High grade (H)

MCH₁₀

Accuracy grade: High grade (H)

Dimension of MCH10 (Single slider)

Reference number	Nominal stroke (mm)	Stroke limit(mm) (K1 is not equipped)	Ball screw lead (mm)	<i>L</i> ₁	Bod L ₂	y leng	th (mm)	n	Inertia × 10 ⁻⁶ (kg · m²)	Mass (kg)
☆MCH10010H10K ☆MCH10010H20K	100	126 (142)	10 20	389	280	65	150	2	33.2 41.1	7.3
☆MCH10020H10K ☆MCH10020H20K	200	226 (242)	10 20	489	380	40	300	3	43.4 51.3	9.5
	300	326 (342)	10 20	589	480	15	450	4	53.7 61.6	12
MCH10040H10K MCH10040H20K	400	426 (442)	10 20	689	580	65	450	4	62.4 71.8	14
MCH10050H10K MCH10050H20K	500	526 (542)	10 20	789	680	40	600	5	74.7 82.3	16
MCH10060H10K MCH10060H20K	600	626 (642)	10 20	889	780	15	750	6	84.9 92.5	19
MCH10070H10K MCH10070H20K	700	726 (742)	10 20	989	880	65	750	6	95.1 103	21
MCH10080H10K MCH10080H20K	800	826 (842)	10 20	1 089	980	40	900	7	105 113	23
☆MCH10090H10K MCH10090H20K	900	926 (942)	10 20	1 189	1 080	15	1 050	8	116 123	25
☆MCH10100H10K MCH10100H20K	1 000	1 026 (1 042)	10 20	1 289	1 180	65	1 050	8	126 133	27
☆MCH10110H10K ☆MCH10110H20K	1 100	1 126 (1 142)	10 20	1 389	1 280	40	1 200	9	136 143	29
☆MCH10120H10K ☆MCH10120H20K	1 200	1 226 (1 242)	10 20	1 489	1 380	15	1 350	10	146 154	32

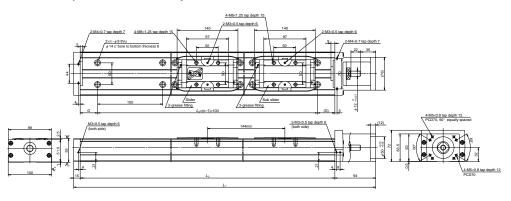
Notes: 1. Items not marked are available from standard stock.

2. Items marked with $\not \simeq$ are designated as "quick delivery item" upon request.

Monocarrier	dynamic	torque	specification	(N·	cn

Ball screw lead

- 1. Frictional resistance of NSK K1 is included in the dynamic torque in the table.
- Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating

Lead	Shaft dia		Basic dy	namic load rating	Basic static lo			
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load liffit (N)
10		8230 (High grade)	44600	7/00	10	17100 (High grade)		3380
10	, 20	10900 (Precision)	44600			21700 (Precision)		
00	φ 20	5300 (High grade)	25.400	7600	20	10300 (High grade)	42000	
20		7060 (Precision)	35400		20	12700 (Precision)		

Basic static moment load of linear guide

Clider	Basic st	Basic static moment load (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Single	1460	610	610					

MCH10 (Double slider)

Dimension of MCH10 (Double slider)

Reference number	Nominal stroke				Boo	ly leng	th (mm)		Inertia	Mass
Reference number	(mm)	(K1 is not equipped)	(mm)	L ₁	L ₂	G	L ₃	n	× 10 ⁻⁶ (kg · m ²)	(kg)
☆MCH10025H10D	250	282	10	689	580	65	65 450	4	67.1	15
☆MCH10025H20D		(314)	20	009 000	03	430	4	82.4	15	
☆MCH10035H10D	350	382	10	789	680	40	600	5	77.3	17
☆MCH10035H20D		(414)	20	707	000	40	000	0	92.5] ''
☆MCH10045H10D	450	482	10	889	780 15	15 750	6	87.5	20	
☆MCH10045H20D		(514)	20	009 700	700	15	730	U	103	2.0
☆MCH10055H10D	550	582	10	989	880	65	750	6	97.7	22
☆MCH10055H20D	550	(614)	20	989			750	0	113	22
☆MCH10065H10D	650	682	10	1 089	980	40	900	7	108	- 24
☆MCH10065H20D	650	(714)	20	1 009	900	40	900	/	123	
☆MCH10075H20D	750	782(814)	20	1 189	1 080	15	1 050	8	133	26
☆MCH10085H20D	850	882(914)	20	1 289	1 180	65	1 050	8	143	28
☆MCH10095H20D	950	982(1 014)	20	1 389	1 280	40	1 200	9	154	30
☆MCH10105H20D	1 050	1 082(1 114)	20	1 489	1 380	15	1 350	10	164	33

Notes: 1. Items not marked are available from standard stock.

2. Items marked with \$\frac{1}{2}\$ are designated as "quick delivery item" upon request.

Monocarrier dynamic tor	que specifi	cation (N · cm
Ball screw lead	10	4.2 – 15.6
(F 0 40 /

- 1. Frictional resistance of NSK K1 is included in the dynamic torque in the table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 20 5.0 19.6 3. Consult NSK for life estimates under large moment loads.

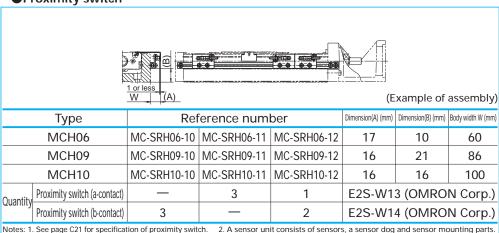
Basic load rating

Daoio 10a0									
Lead	Shaft dia	Basic dynamic load rating (N) Basic static load rating (N)					6		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)	
(mm)	(mm)	$C_{\rm a}$	С	$C_{\rm a}$	L_a (km)	C_{0a}	C_0	ioau iii iii (iv)	C
10		8230 (High grade)	44400		40	17100 (High grade)			7
10	4.00	10900 (Precision)	44600	7/00	10	21700 (Precision)	42000	2200	1
20	φ 20	5300 (High grade)	25 400	7600	20	10300 (High grade)	42000	3380	
20		7060 (Precision)	35400		20	12700 (Precision)			

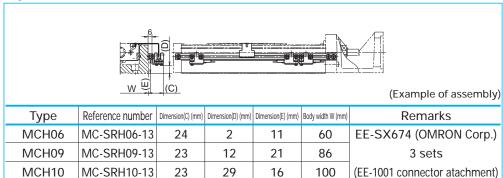
Basic static moment load of linear quide

	ÿ						
Clides	Basic static moment load (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing Myo				
Double	2920	3430	3430				

C70

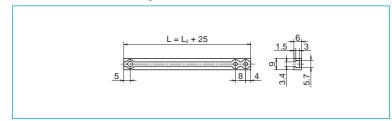

NSK

C-3-3 MCH Series Option Part


C-3-3. 1 Sensor Unit

Proximity switch

Photo sensor


2. A sensor unit consists of sensors, a sensor dog and sensor mounting parts.

Sensor rail

Reference number : MC-SRL- * * * *

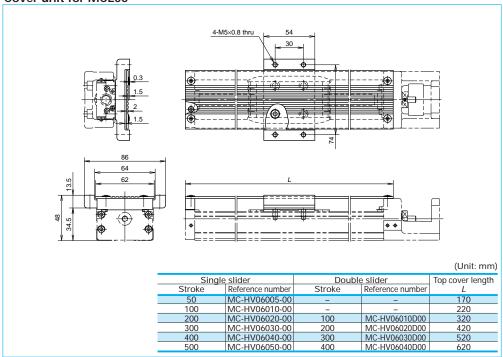
• * * * * is the same as rail dimension L_2 .

Notes: 1. See page C22 for specification of photo sensor.

Body of MCH Series and Sensor Rail Combination Table

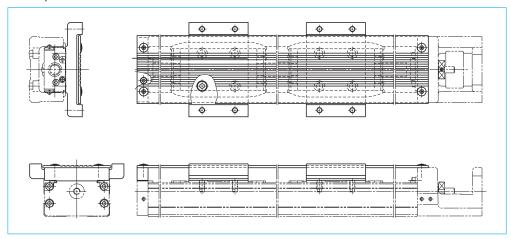
Table 4

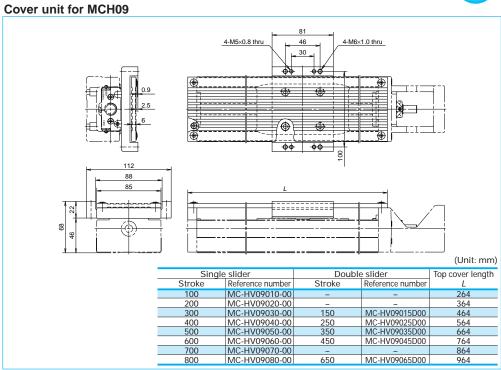
	150	MCH06005H05K MCH06005H10K	140 001 0450
	150	MCHOROGELION	
		MICHOGOGGITTOR	MC-SRL-0150
		MCH06005H20K	
		MCH06010H05K	
	200	MCH06010H10K	MC-SRL-0200
		MCH06010H20K	
		MCH06020H05K	
		MCH06020H10K	
	300	MCH06020H20K	MC-SRL-0300
		MCH06010H05D	
		MCH06010H10D	
		MCH06030H05K	
MCH06		MCH06030H10K	
IVICIIOO	400	MCH06030H20K	MC-SRL-0400
		MCH06020H05D	
		MCH06020H10D	
		MCH06040H05K	
		MCH06040H10K	
	500	MCH06040H20K	MC-SRL-0500
		MCH06030H05D	
		MCH06030H10D	
		MCH06050H05K	
		MCH06050H10K	
	600	MCH06050H20K	MC-SRL-0600
		MCH06040H10D	
		MCH06040H20D	
	150	MCL06005H05K	MC-SRL-0150
	150	MCL06005H10K	IVIC-3RL-0130
	200	MCL06010H05K	MC-SRL-0200
	200	MCL06010H10K	WIC-3KL-0200
	300	MCL06020H05K	MC-SRL-0300
MCL06	300	MCL06020H10K	IVIC-SKL-0300
IVICEU6	400	MCL06030H10K	MC CDL 0400
		MCL06030H20K	MC-SRL-0400
	F00	MCL06040H10K	MC CDL OFOO
	500	MCL06040H20K	MC-SRL-0500
	600	MCL06050H10K	MC-SRL-0600
	600	MCL06050H20K	IVIC-SKL-0600
		MCH09010H05K	
	240	MCH09010H10K	MC-SRL-0240
		MCH09010H20K	
		MCH09020H05K	
	340	MCH09020H10K	MC-SRL-0340
		MCH09020H20K	
		MCH09030H05K	
		MCH09030H10K	
	440	MCH09030H20K	MC-SRL-0440
		MCH09015H05D	
		MCH09015H10D	
		MCH09040H05K	
. 401.100		MCH09040H10K	
MCH09	540	MCH09040H20K	MC-SRL-0540
		MCH09025H05D	
		MCH09025H10D	
		MCH09050H05K	
		MCH09050H10K	
	640	MCH09050H20K	MC-SRL-0640
	0.40	MCH09035H05D	7VIO 3112 0040
		MCH09035H03D	
		MCH09060H05K	
		ACOLOGOROU IOUN	1
		MCHOOGEDHION	
	740	MCH09060H10K	MC SDL 0740
	740	MCH09060H10K MCH09060H20K MCH09045H10D	MC-SRL-0740


Nominal size	Body length L ₂ (mm)	Reference number	Sensor rail reference number
		MCH09080H05K	
	840	MCH09080H10K	MC-SRL-0840
		MCH09080H20K	
MCH09		MCH09080H05K	
IVIOI 107		MCH09080H10K	
	940	MCH09080H20K	MC-SRL-0940
		MCH09065H10D	
		MCH09065H20D	
	280	MCH10010H10K	MC-SRL-0280
	200	MCH10010H20K	1410 0112 0222
	380	MCH10020H10K	MC-SRL-0380
		MCH10020H20K	1410 0112 0222
	480	MCH10030H10K	MC-SRI -0480
	400	MCH10030H20K	IVIO-SINE 0 100
	580	MCH10040H10K	MC-SRL-0580
	500	MCH10025H10D	IVIO SILE COCC
		MCH10050H10K	
	680	MCH10050H20K	MC-SRL-0680
	000	MCH10035H10D	1410 0112 0222
		MCH10035H20D	
		MCH10060H10K	
	780	MCH10060H20K	MC-SRL-0780
	1 1	MCH10045H10D	
		MCH10045H20D	
		MCH10070H10K	
	880	MCH10070H20K	MC-SRL-0880
MCH10		MCH10055H10D	
		MCH10055H20D	
	[MCH10080H10K	
	980	MCH10080H20K	MC-SRL-0980
		MCH10065H10D	
		MCH10065H20D	
	1000	MCH10090H10K	NAC CDI 1000
	1080	MCH10090H20K	MC-SRL-1080
		MCH10075H20D	-
	1100	MCH10100H10K	140 CDL 1100
	1180	MCH10100H20K	MC-SRL-1180
		MCH10085H20D MCH10110H10K	
	1200	MCH10110H10K MCH10110H20K	MC-SRI -1280
	1280		IVIC-SKL-120U
		MCH10095H20D	
	1200	MCH10120H10K	* 40 CDL 1200
	1380	MCH10120H20K	MC-SRL-1380
		MCH10105H20D	

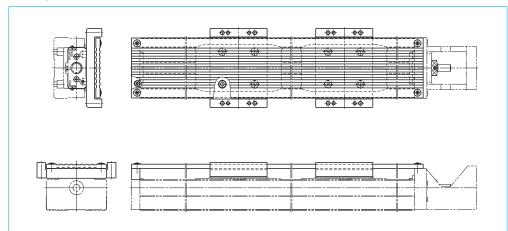
NSK

C-3-3. 2 Cover Unit

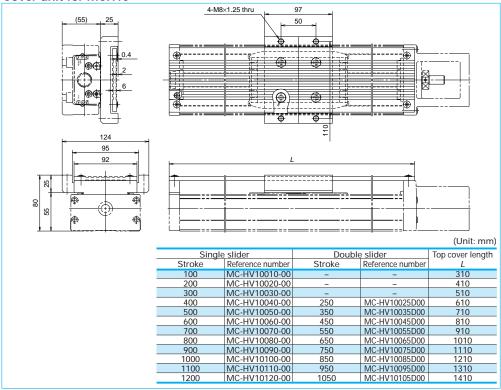

Cover unit for MCH06 Cover unit for MCL06

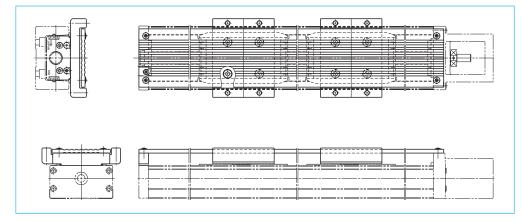


Cover unit for double sliders (reference drawing)


Two spacers are attached for the double slider.

Cover unit for double sliders (reference drawing)


Two spacers are attached for the double slider.



Cover unit for MCH10

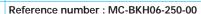
Cover unit for double sliders (reference drawing)

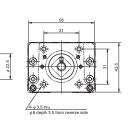
Two spacers are attached for the double slider.

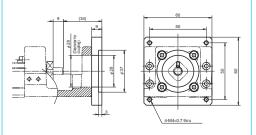
76

C-3-3. 3 Intermediate Plate for Motor

- ●Please ask NSK for a motor that is not listed in the compatible motor list.
- In case of motor indirect mount, please consult with NSK. Be sure to align the center lines when installing the motor.
- Motor models are subject to change at the motor manufacturers. For details, please contact the manufacture.

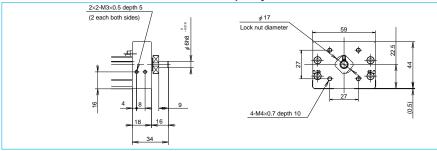

Motor Bracket for MCH06 and MCL06

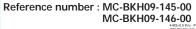


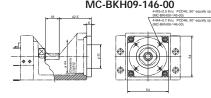

Reference number : MC-BKH06-146-00
9 (35) 10 40 40 40 40 40 40 40 40 40 40 40 40 40
Compatible motor

Compatible motor		
Maker	Motor models	
Vanlance Flantsia Casa	SGMAH-A3(30W), SGMJV-A5A(50W), SGMAV-A5A(50W)	
Yaskawa Electric Corp.	SGMJV-01A(100W), SGMAV-01A(100W)	
	HF-KP053(50W), HF-MP053(50W), HC-KFS053(50W)	
Mitsubishi Electric Corp.	HC-MFS053(50W), HF-KP13(100W), HF-MP13(100W)	
	HC-KFS13(100W), HC-MFS13(100W)	
OMRON Corp.	R88M-W03(30W), R88M-W05(50W), R88M-W10(100W)	
Sanyo Denki Co., Ltd.	P30B04xxx P Series	

		Compatible mater	_
ı		Compatible motor	
ı	Maker	Motor models	
	Matsushita Electric Industrial Co., Ltd.	MSMD5A(50W), MSMD01(100W)	
ŀ			
	Reference no	umber : MC-BKH06-231-00	

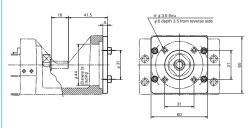



Compatible motor		
Maker	Motor models	
Oriental Motor	AS46, ASC46, UPK54x, PK54x,	
Co., Ltd.	CSK54x, CFK54x, UMK24x, CSK24x, PK24x	
Sanyo Denki Co., Ltd.	PBM423xxx, 103F55xx	


		Compatible motor
	Maker	Motor models
	Oriental Motor Co., Ltd.	AS66, ASC66, UPK56x, UFK56x, PK56x, CSK56x, CFK56x MUMS02(200W), MUMS04(400W)
	Sanyo Denki Co., Ltd.	PBM603xx, PBM604xx, 103F78xx

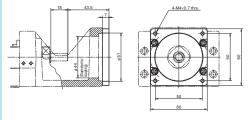
Diameter of ball screw shaft end to install a pulley for indirect motor mount of MCH06

Motor Bracket for MCH09

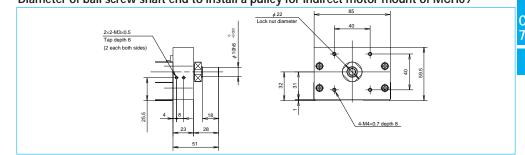


Reference number	Compatible motor	
Reference number	Maker	Motor models
MC-BKH09-145-00	Matsushita Electric Industrial Co., Ltd.	MSMD5A(50W), MSMD01(100W)
	Yaskawa Electric Corp.	SGMJV-A5A(50W), SGMAV-A5A(50W)
		SGMJV-01A(100W), SGMAV-01A(100W)
		HF-KP053(50W), HF-MP05(50W), HC-KFS053(50W)
MC-BKH09-146-00	Mitsubishi Electric Corp.	HC-MFS053(50W), HF-KP13(100W), HF-MP13(100W)
		HC-KFS13(100W), HC-MFS13(100W)
	OMRON Corp.	R88M-W05(50W), R88M-W10(100W)
	Sanyo Denki Co., Ltd.	P30B04xxx P Series

Reference number: MC-BKH09-170-00 MC-BKH09-170-01

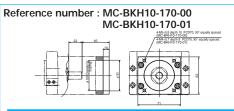

Reference number	Compatible motor	
Reference number	Maker	Motor models
	Yaskawa Electric Corp.	SGMJV-02A(200W), SGMAV-02A(200W)
		SGMJV-04A(400W), SGMAV-04A(400W)
MC-BKH09-170-00		HF-KP23(200W), HF-MP23(200W), HF-KP43(400W)
	Mitsubishi Electric Corp.	HF-MP43(400W), HC-KFS23(200W), HC-MFS23(200W)
		HC-KFS43(400W), HC-MFS43(400W)
	OMRON Corp.	R88M-W20(200W), R88M-W40(400W)
	Sanyo Denki Co., Ltd.	P30B06xxx P Series
MC-BKH09-170-01	Matsushita Electric Industrial Co., Ltd.	MSMD02(200W), MSMA02(200W)
		MSMA04(400W), MSMD04(400W)

Reference number: MC-BKH09-231-00

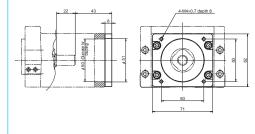

ı			_
ı		Compatible motor	
l	Maker	Motor models	
l	Sanyo Denki Co., Ltd.	PBM423xxx, 103F55xx	
l	Oriental Motor	AS46, ASC46, UPK54x, PK54x, CSK54x, CFK54x	
l	Co., Ltd.	UMK24x, CSK24x, PK24x	
н			

Reference number: MC-BKH09-250-00

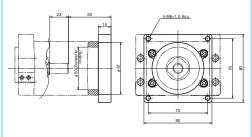
Compatible motor		
Maker Motor models		
Sanyo Denki Co., Ltd.	PBM603xx, PBM604xx, 103F78xx	
	AS66, ASC66, UPK56x, UFK56x, PK56x	
Co., Ltd.	CSK56x, CFK56x	


Diameter of ball screw shaft end to install a pulley for indirect motor mount of MCH09

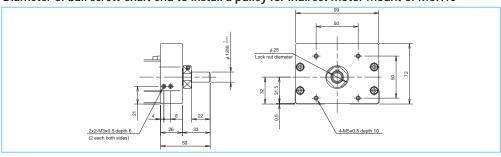
Motor Bracket for MCH10



Reference number	Compatible motor	
Reference number	Maker	Motor models
	Yaskawa Electric Corp.	SGMJV-02A(200W), SGMAV-02A(200W)
		SGMJV-04A(400W), SGMAV-04A(400W)
MC-BKH10-170-00		HF-KP23(200W), HF-MP23(200W), HF-KP43(400W)
	Mitsubishi Electric Corp.	HF-MP43(400W), HC-KFS23(200W), HC-MFS23(200W)
		HC-KFS43(400W), HC-MFS43(400W)
	OMRON Corp.	R88M-W20(200W), R88M-W40(400W)
	Sanyo Denki Co., Ltd.	P30B06xxx P Series
MC DVII10 170 01	Matsushita Electric Industrial Co., Ltd.	MSMD02(200W), MSMA02(200W)
MC-BKH10-170-01		MSMD04(400W), MSMA04(400W)


Reference number	C	ompatible motor
	Maker	Motor models
MC-BKH10-190-00	Mitsubishi Electric Corp.	HC-KFS73(750W), HC-MFS73(750W) HF-KP73(750W), HF-MP73(750W)
MC-BKH10-190-01	Sanyo Denki Co., Ltd.	P50B07xxx P Series

Reference number: MC-BKH10-250-00


	Compatible motor		
Maker Motor models			
Sanyo Denki Co., Ltd.	PBM603xx, PBM604xx, 103F78xx		
Oriental Motor	AS66, ASC66, UPK56x, PK56x, CSK56x, CFK56x		
Co., Ltd.	UMK56x, UFK56X		

Reference number : MC-BKH10-270-00

Compatible motor				
Maker	Motor models			
	AS98, ASC98, UPK59x, PK59x, CSK59x, CFK59x UMK59x, UFK59x			

Diameter of ball screw shaft end to install a pulley for indirect motor mount of MCH10

Availability Motor Table of Intermediate Plate for MCH Series

lominal size	Reference number	Motor bracket	Motor manufacturer	Stepping motor	20		Wattage of A	C servo motor		750	
	code 1	reference number MC-BKH06-145-00	Matsushita Electric Industrial Co., Ltd.	model number	30	50 MSMD5A	100 MSMD01	200	400	750	
		1010 DIG100 110 00	Yaskawa Electric Corp.		SGMAH-A3	SGMJV-A5A	SGMJV-01A				
	2		raskawa Electric Corp.		SOIVIAITAS	SGMAV-A5A	SGMAV-01A				
						HF-KP053 HF-MP053	HF-KP13 HF-MP13				
	2	MC-BKH06-146-00	Mitsubishi Electric Corp.			HC-KFS053	HC-KFS13				
			ON IDOM O		D00141400	HC-MFS053	HC-MFS13				
			OMRON Corp. Sanyo Denki Co., Ltd.	P30B04xxx (P Series)	R88M-W03	R88M-W05	R88M-W10				
				PBM423xxx							
MCH06			Sanyo Denki Co., Ltd.	103F55xx							
MCL06	3	MC-BKH06-231-00		AS46 , ASC46 UPK54x , PK54x							
	3	IVIC-DKHU0-23 I-00	Oriental Motor Co., Ltd.	CSK54x , CFK54x							
				UMK24x , CSK24x							
				PK24x							
			Sanyo Denki Co., Ltd.	PBM603xx PBM604xx							
			Sarryo Beriki co., Eta.	103F78xx							
	4	MC-BKH06-250-00		AS66 , ASC66							
			Oriental Motor Co., Ltd.	UPK56x , UFK56x				MUMS02	MUMS04		
				PK56x , CSK56x CFK56x							
	1	MC-BKH09-145-00	Matsushita Electric Industrial Co., Ltd.	2. 7007		MSMD5A	MSMD01				
			Yaskawa Electric Corp.				SGMJV-01A				
					+	SGMAV-A5A HF-KP053	SGMAV-01A HF-KP13			-	
		140 DIVIDO 444				HF-KP053 HF-MP05	HF-KP13 HF-MP13				
	2	MC-BKH09-146-00	Mitsubishi Electric Corp.			HC-KFS053	HC-KFS13				
			01400110			HC-MFS053	HC-MFS13				
			OMRON Corp. Sanyo Denki Co., Ltd.	P30B04xxx (P Series)		R88M-W05	R88M-W10				
				1 JOBOHAAA (1 JCHC3)				SGMJV-02A	SGMJV-04A		
			Yaskawa Electric Corp.						SGMAV-04A		
	3	MC-BKH09-170-00						HF-KP23 HF-MP23	HF-KP43 HF-MP43		
			Mitsubishi Electric Corp.					HC-KFS23	HC-KFS43		
								HC-MFS23	HC-MFS43		
			OMRON Corp.	D00D04 (D0 1)				R88M-W20	R88M-W40		
MCH09			Sanyo Denki Co., Ltd.	P30B06xxx (P Series)	_			MSMD02	MSMD04		
	4	MC-BKH09-170-01	Matsushita Electric Industrial Co., Ltd.					MSMA02	MSMA04		
ľ		MC-BKH09-231-00	Sanyo Denki Co., Ltd.	PBM423xxx							
				103F55xx AS46 , ASC46	1						
	5		MC-BKH09-231-00		UPK54x , PK54x						
			Oriental Motor Co., Ltd.	CSK54x, CFK54x							
				UMK24x , CSK24x PK24x							
				PBM603xx							
			Sanyo Denki Co., Ltd.	PBM604xx							
		MC-BKH09-250-00		103F78xx							
	6				AS66 , ASC66 UPK56x , UFK56x						
			Oriental Motor Co., Ltd.	PK56x , CSK56x							
				CFK56x							
			Yaskawa Electric Corp.					SGMJV-02A SGMAV-02A	SGMJV-04A SGMAV-04A		
					1			HF-KP23	HF-KP43		
	1	MC-BKH10-170-00	Mitsubishi Electric Corp.					HF-MP23	HF-MP43		
	'	10.5 DKITTO-170-00	with Subistit Electric Corp.					HC-KFS23 HC-MFS23	HC-KFS43 HC-MFS43		
			OMRON Corp.		+			R88M-W20			
			Sanyo Denki Co., Ltd.	P30B06xxx (P Series)				55.11. 1120			
	2	MC-BKH10-170-01	Matsushita Electric Industrial Co., Ltd.					MSMD02	MSMD04		
					-			MSMA02	MSMA04	HC-KFS	
		NAC DIVINO 100 00	Address to the left of the section of							HC-KFS HC-MFS	
MCH10	3	MC-BKH10-190-00	Mitsubishi Electric Corp.							HF-KP7	
	_	MC BKIIIO 100 C1	Canua Danid Co. 141	DEODOZwa (D.Carla)	-					HF-MP	
	4	MC-BKH10-190-01	Sanyo Denki Co., Ltd.	P50B07xxx (P Series) PBM603xx	_						
			Sanyo Denki Co., Ltd.	PBM604xx							
				103F78xx							
	5	MC-BKH10-250-00		AS66 , ASC66							
			Oriental Motor Co., Ltd.	UPK56x , PK56x CSK56x , CFK56x							
				UMK56x , UFK56x							
				AS98 , ASC98							
	6	MC-BKH10-270-00	Oriental Motor Co., Ltd.	UPK59x , PK59x							
				CSK59x , CFK59x							

C79 C80

MEMO

Other

BLOCK

Other

I. Special Environments	D
2. Lubrication ····· D	1
3. RoHS Compliant ····· D	2

1 Special Environments

1.1 Specifications for Special Environments

1. Linear guide

Table 1.1 Linear guide specifications

Facilitation	Condition		NSK linear guid	le specifications		Technical
Environment	Condition	Rail, slide	Steel balls/rollers	Ball Recirculation component	Lubrication/surface treatment	Explanation Page No.
		Standard material	Standard material	Standard material	LG2 Grease	D8
	Atmosphere,	Standard material	Staridard material	Standard material	NSK K1 lubrication unit	D10
	normal temperature				LG2 Grease	D8
Clean	normai temperature				NSK K1 lubrication unit	D10
		Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
	Atmosphere-Vacuum, normal temperature Atmosphere-Vacuum up to 200°C				Fluoride grease	
	Atmosphere-Vacuum, normal temperature				Fluoride grease	
Vacuum	Atmosphere-Vacuum up to 200°C	Martancitic stainless stool	Martensitic stainless steel	Austenitic stainless steel		
vacuum	Atmosphere-Vacuum up to 300°C	iviai terisitic stairiless steer	iviai terisitic stairiless steer	Austernite stanness steer	Molybdenum disulfide	
	High vacuum up to 500°C				Special silver film	D7
	Vapor, steam	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel		
	vapor, steam	Standard material	Standard material	Standard material		D5
	Acid, alkali	Standard material	Staridard material		Fluoride low temperature chrome plating	D5
						D5
Corrosion	Acid, alkali, clean			Austenitic stainless steel	Fluoride low temperature chrome plating	D5
resistance		Martensitic stainless steel	Martensitic stainless steel		LG2 Grease	D8
	Strong acid,				Fluoride low temperature chrome plating	D5
	strong alkali				Fluoride grease	
	Organic solvent				Fluoride grease	
	Atmosphere	Standard material	Standard material		ET150 Grease	
High	up to 150°C				E1100 Grouse	
temperature	Atmosphere Up to 200°C	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Fluoride grease	
temperature	Atmosphere Up to 200	Ividi terisitio starriess steer	TVICITORIO STATITICOS STOCI		Fluoride grease	
	°C, Corrosion resistant				ridorido gredae	
Low temperature	-273°C –	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Solid lubricant	
Radiation	Atmosphere	Standard material	Standard material	Standard material	Radiation resistant grease	
resistance	Auriospriore	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	radiation resistant grease	
	Fine particles,	Standard material	Standard material	Standard material		D10
Foreign	wooden chips		Martensitic stainless steel	Austenitic stainless steel	NSK K1 lubrication unit	D10
matters	Water,	Martensitic stainless steel	Standard material	Standard material		D10
	under water		Martensitic stainless steel	Austenitic stainless steel		D10

2. Ball screw

Table 1.2 Ball screw specifications

Environment	Condition	NSK Ball screw specification				
LIIVII OI IIII EI IL	Condition	Screw shaft, ball nut	Steel balls	Ball Recirculation component	Lubrication/surface treatment	Explanation Page No.
		Standard material	Standard material	Standard material	LG2 Grease	D8
	Atmosphere,	Standard material	Standard material	Standard material	NSK K1 lubrication unit	D10
	' '				LG2 Grease	D8
Clean	normal temperature				NSK K1 lubrication unit	D10
		Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
	Atmosphere-Vacuum, normal temperature				Fluoride grease	
	Atmosphere-Vacuum up to 200°C					
	Atmosphere up to 200°C, Corrosion resistant	Ceramic	Ceramic	Ceramic	Fluoride grease	
	Atmosphere-Vacuum, normal temperature				Fluoride grease	
	Atmosphere-Vacuum up to 200°C					
Vacuum -	Atmosphere-Vacuum up to 300°C	Martensitic stainless steel	Martensitic Stainless Steel	Austenitic stainless steel	Molybdenum disulfide	
	High vacuum up to 500°C				Special silver film	D7
		Standard material	Standard material		Fluoride low temperature	D5
Corrosion	Acid, alkali, clean	Martensitic stainless steel	Martensitic stainless steel	.	chrome plating	D5
resistance		Precipitation hardening stainless steel	Precipitation hardening stainless steel	Austenitic stainless steel	El	
	Strong acid, strong alkali, clean, nonmagnetic	Ceramic	Ceramic		Fluoride grease	
	Atmosphere-Vacuum, clean	Special austenitic stainless steel			Fluoride grease	
Nonmagnetic	Atmosphere-Vacuum, up to 200°C, clean	Ceramic	Ceramic	Austenitic stainless steel	Fluoroplastic	
	Atmosphere Up to 200°C	Standard material	Standard material		Fluoride grease	
High	Atmosphere Up to 200°C	Martensitic stainless steel	Martensitic stainless steel		Fluoride low temperature chrome plating	D5
temperature	Atmosphere- up to 500	0	0	Austenitic stainless steel		
	°C, corrosion resistance	Ceramic	Ceramic		Fluoride grease	
Low temperature	-273°C –	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Solid lubricant	
Radiation	Atmoonho	Standard material	Standard material	Standard material	Dadiation registant co	
resistance	Atmosphere	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Radiation resistant grease	
Foreign:	Fine particles,	Standard material	Standard material	Standard material		D10
Foreign	wooden chips	Mantanalkia atalahan 1991	Mantanaltia atalalaan 1991	Assats attaining a total	NSK K1 lubrication unit	D10
matters	Water, under water	iviartensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel		D10

1.2 Lubrication and Materials

1. Lubrication

Grease can be used for high rotation and magnetic field. However, grease evaporates or solidifies in special environment such as vacuum, high temperature, and low temperature. Solid lubricant is

Fig. 2.1 Lubrication in clean environment

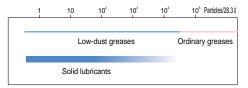


Fig. 2.3 Lubrication in corrosive environment

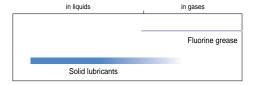
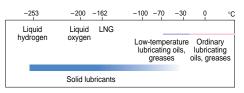



Fig. 2.5 Lubrication in low temperature

used when it is difficult to use grease. Functions of solid lubricant differ greatly by condition where it is used. It is important to select the most suitable solid lubrication for the environment.

Fig. 2.2 Lubrication in vacuum

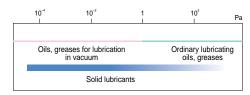


Fig. 2.4 Lubrication in high temperature

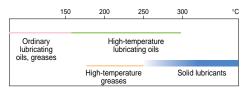


Fig. 2.6 Lubrication in radioactive environment

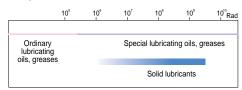
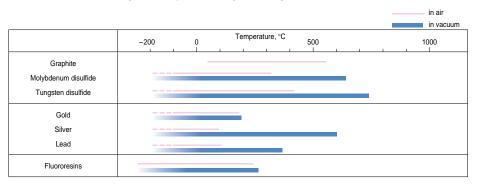



Fig. 2.7 Temperature range for using solid lubricants

2. Materials

Iron type metals are used in vacuum, high temperature, and high speed environments as

the basic material. We generally use nonmagnetic stainless steel for nonmagnetic materials.

Table 2.1 Characteristics of metal materials

Application	Type of steel	Linear expansivity ×10 ⁻⁶ /°C	Young's modulus GPa	Hardness (1) HB
For clean environment, vacuum environment.	Martensitic stainless steel SUS440C	10.1	200	580
corrosion resistance, low temperature,	Austenitic stainless steel SUS304	16.3	193	150
high temperature, radioactive resistance	Precipitation hardening stainless steel SUS630	10.8	200	277 – 363
Nonmagnetic	Nonmagnetic stainless steel	17.0	195	420

Note (1) Hardness of steel is usually indicated by Rockwell C Scale. For comparison, these figures are expressed by Brinell number.

1.3 Rust Prevention and Surface Treatment

1. Fluoride low temperature chrome plating The use environment of NSK linear guides and ball screws is expanding from general industrial machines, semiconductor and liquid crystal manufacturing systems to aerospace equipment.

Among all measures to cope with environment, rust prevention is the most challenging. Such environment includes: Moisture for washers and other equipment; Chemicals used in the wet processing of semiconductor and liquid crystal display manufacturing equipment.

NSK developed electrolytic rust prevention black film treatment (black chrome plating) which is added by fluoro resin impregnating treatment. (hereinafter referred as "Fluoride low temperature chrome plating") This surface treatment methods has proved its superiority as the rust prevention of linear guides and ball screws which are used in above equipment.

What is "Fluoride low temperature chrome plating?"

This is a type of black chrome plating which forms a black film (1 to 2 µm) on the metal surface. Fluoroplastic coating is added to the film to increase corrosion resistance.

- Accuracy control is easily manageable due to low temperature treatment and to an absence of hydrogen embrittlement.
- Product accuracy is less affected due to the thin film which has high corrosion resistance.
- This method is superior to other surface treatments in durability on the rolling surface.
- Inexpensive compared with products by other surface treatment and stainless steel products.

Do not use organic solvent because it adversely affects antirust property of the plating.

• Humidity cabinet corrosion resistance test

Table 3.1 Results of the humidity cabinet test

		Test sample	Fluoride low temperature chrome plating	Hard chrome plating	Electroless nickel plating	Equivalent to SUS440C material	Standard steel
Chara	cterist	ic	(recommended)	(reference)	(reference)		
		Тор	(Ground) B	(Ground) B	(Ground) A	(Ground) C	(Ground) D
	Rusting	Side	(Ground) A	(Ground) A	(Ground) A	(Ground) C	(Ground) E
	nsti	Bottom	(Ground) A	(Ground) A	(Ground) A	(Ground) C	(Ground) E
	₹.	End	(Machined) A	(Machined) C	(Machined) A	(Machined) C	(Machined) E
		Chamfer/grinding recess	(Drawn) A	(Drawn) D	(Drawn) A	(Drawn) C	(Drawn) E
Rust prevention ability	Test conditions Testing cabinet: High temperature, highly moist cabinet (made by DABAI ESPEC) Temperature: 70°C Relative humidity:95%			O	9	•	0
Rust	Tim fror hur Rea	Festing time: 96 h le to "reach to" and "falling" " the temperature/ indity conditions suching: 5 h ing: 2 h			E-Mission of the Control of the Cont		是 经
		Film thickness	5 μm	0.5 – 7 µm	10 µm	_	_

Rustina

A: No rust C: Spotty rust

B: Not rust, but some discoloration D: Light rusted E: Completely rusted

Corrosion resistance test against chemicals

Table 3.2 Result of the corrosion resistance test

Test conditions Rail base material: Equivalent to SUS440C Chemical density: 1 mol/ℓ Fluoride low temperature Hard chrome plating None surface treatment chrome plating Immersed in solution for 24 hrs Nitric acid Immersed in solution for 24 hrs Fluoride Exposed to vapor for 72 hrs Hydrochloric acid type washing solution HC &: H2O2: H2O =1:1:8 Hydrochloric acid (immersed) \bigcirc Sulfuric acid (immersed) \bigcirc Χ Ammonia or sodium hydroxide \bigcirc \triangle

O: Normal △: Partial surface damage ▲: Overall surface damage X: Corroded

Surface treatment durability test

Life of surface treatment by peeling

Fig. 3.1 Result of durability test

Total evaluation

Table 3.3 Evaluation

		Don't servestice			
	Available length	ability	Quality stability	Durability	Cost
Fluoride low temperature chrome plating	© (4 m)	0	0	0	0
Hard chrome plating	△ (2 m)	0	X	\triangle	\triangle
Electroless nickel plating	© (4 m)	0	\triangle	Χ	\triangle
Material equivalent to SUS440C	(3.5 m)	0	0	0	\triangle
	0		0 -		

O: Excellent

O: Suitable in use

△: Not very suitable in use X: Problem in use

1.4 Measures Against Special Environments

1. In vacuum

Silver-film plated ball screw

Ball screws that are plated by soft metal (special silver film) as a solid lubricant are developed the application for vacuum environment such as semiconductor manufacturing equipment and surface modification systems.

Durability test in high vacuum

Test equipment and conditions

Table 4.1 shows ball screw specifications. Figure 4.1 is a schematic of the testing system in vacuum chamber. Table 4.2 shows testing conditions.

Table 4.1 Ball screw specifications

	Table 4.1 Dali Sciew Specifications				
Shaft diameter		12 mm			
	Lead	4 mm			
:	Steel ball diameter	2.381 mm			
Numbers of circuit of balls		2.5 turns, 1 circuit			
Axis load (preload)		29.4 N			
Max	ximum surface pressure (preload volume)	about 690 Pa			
	Shaft	SUS630			
rial	Nut	SUS440C			
Material	Ball return tube	SUS304			
2	Steel balls	SUS440C			
	Solid lubricant	Special silver film			

Table 4.2 Testing conditions

Rotational speed	300 min ⁻¹	
Vacuum chamber	1.3×10 ^{-₅} – 1.3×10 ⁻ β Pa	
pressure		
Stroke	160 mm	

Evaluation method

It is understood that the rolling bearing with solid lubrication reaches end of life when the lubrication film deteriorates, resulting in sudden rise of friction torque. In this test, ball screw rotation torque was constantly measured to study durability and operation. Results were then evaluated.

Test results

Fig. 4.2 shows two distinctive examples obtained in the torque characteristic test.

Photo 4.1 Vacuum testing system

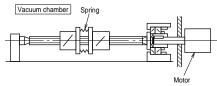


Fig. 4.1 Schematic of the testing system

Test results of the ball screw 1

The torque tendency was stable until about 1 x 10^7 rev. Then the torque characteristics slightly deteriorated. At about 1.35×10^7 rev, the torque suddenly rose. At this point, it was determined that the ball screw reached the end of its life.

Test results of the ball screw 2

Torque value is a little higher in the test 1. The value is also little unstable. The torque momentarily soared several times during the test (some 10N \cdot cm). It is thought this is attributable to the repeated peeling/sticking of the surface film made of soft metal (silver, etc.)

When the torque finally soared at 1.13×10^7 rev., it was determined that the ball screw reached the end of its life.

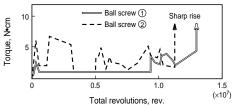


Fig. 4.2 Torque variation

Table 4.3 Ball screw durability

	Classification	Ball screw ①	Ball screw 2
	Total revolutions (rev.)	1.35×10 ⁷	1.13×10 ⁷
Life	Total traveling distance (km)	54.0	45.2
	Total traveling hours(1)(h)	750	628

Note: (1) Total traveling hours when operated constantly at 300 min⁻¹

Conclusion

Table 4.3 explains results of the two ball screw durability tests.

From these results and other findings, it is estimated that a life of more than 1×10^7 rev. is possible with a load of about 29.4 N.

Torque may soar momentarily before the ball screw reaches its final life due to peeling/sticking of the surface film made of soft metal like silver. For this reason, it is recommendable to select a drive motor with extra torque capacity.

2. Clean environment

NSK Clean Grease LG2, LGU

NSK Clean Grease LG2 is used in clean room for NSK linear guides, ball screws, Monocarriers, Robot Modules, Megathrust motors, XY tables, etc. with low-dust emitting specifications. For its low dust emission and high durability, LG2 earns trust and high reputation of semiconductor equipment manufacturers.

LG2 is superior in many areas to fluorine greases which are commonly used in clean room.

Features

- Remarkably low dust emission
- Long life -- More than ten times longer than fluoride greases, and equivalent to ordinary greases.
- Excellent rust prevention -- Significantly higher capacity than fluorine greases.
- Low and stable torque -- 20% or less than that of fluorine greases

Table 4.4 Nature of Clean Grease LG2

Name	Thickener	Base oil	Base oil kinematic viscosity mm²/s (40°C)	Consistency	Dropping point °C
Clean Grease LG2	Lithium soap	Synthetic hydrocarbon oil + mineral oil	30	207	200
Clean Grease LGU	Diurea	Synthetic hydrocarbon oil	100	209	260

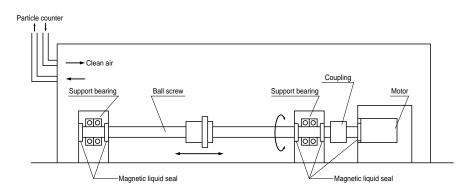
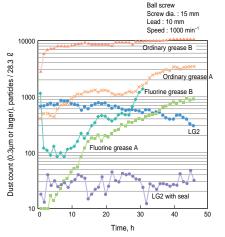



Fig. 4.3 Setting to measure dust generated by ball screw

■ Feature 1: Remarkably low dust emission

Compared with fluoride greases, dust emission by LG2 is low and stable for long period of time.

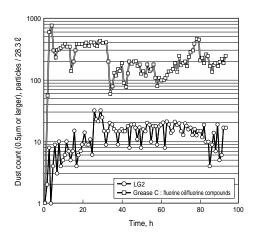


Fig. 4.4 Comparison in dust emission characteristics

Fig. 4.5 Dust emission from linear guide (Linear quide: LU09)

• Feature 2 : Long life

Life is ten times or longer than fluorine greases, and equivalent to ordinary greases. This stretches maintenance intervals.

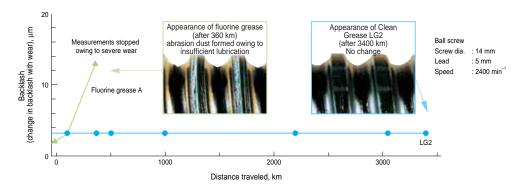


Fig. 4.6 Results of ball screw durability test

NSK

● Feature 3: Excellent rust prevention capacity

The rust prevention capacity is significantly higher than fluoride type greases. Handling and preparation for operation are easy.

Ball screw rust prevention test (test conditions: 96 hr at humidity 95%, temperature 70°C)

Photo 4.2

Table 4.5 Rust prevention test on bearing

Туре	Rusting after 7 days
NSK Clean Grease	No rust
LG2	
Fluorine grease B	Rusted

Test conditions: 19 mg is sealed in ball bearing 695

: Temp. 90°C, Humidity 60%

: Studied by microscope Evaluation

● Feature 4 : Stable torque

Torque is 20% or lower than fluorine greases.

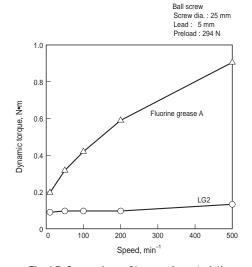


Fig. 4.7 Comparison of torque characteristics

Total evaluation

Table 4.6 Evaluation

Characteristic	LG2	Fluorine grease	General grease
Dust generation	0	O- Δ	△ - X
Torque	0	X	O- Δ
Durability	0	△ – X	0
Rust prevention ability	0	△ – X	0

○ : Suitable △ : Not very suitable X : Problem in use

3. Environment with foreign matters

NSK K1 lubrication unit (linear guide and ball screw)

Molded oil is made of a lubrication oil and polyolefin which has affinity with the lubrication oil. More than 70% of the mass is lubrication oil.

Molded oil which is formed into NSK K1 lubrication unit effectively seals linear guides, continually supplying lubrication oil. NSK K1 lubrication unit has made it possible to use linear guides in water or powder dust.

NSK K1 lubrication unit is available for ball screws.

Features

- Extend maintenance-free intervals
- No contamination of surrounding environment
- Prolong life of the products exposed to water D

Refer to Page A38 and B209 for details of NSK K1 lubrication unit.

1.5 Table to Cope With Special Environments

1. Linear guides

Series	Model No.		environm				
Š	Model No.	Clean	Vacuum	Corrosion	High temp.	Hygienic	High dust proofing
	SH15	0		0			
	SH20	0		0			
	SH25	0		0			
SH		0		0			
	SH35	0		0			
	SH45	0		0			
	SH55	0		0			
	SS15	0		0			
	SS20	0		0			
SS	SS25	0		0			
	SS30	0		0			
	SS35	0		0			
	LH08	0		0			
	LH10	0		0			
	LH12	0		0		0	
	LH15	0	0	0	0	0	
	LH20	0	0	0	0	0	
LH	LH25	0	0	0	0	0	
	LH30	0	0	0	0	0	
	LH35	0		0		0	
	LH45	0		0			
	LH55	0		0			
	LH65	0		0			
	LS15	0	0	0	00	0	
	LS20	0	0	0	0	0	
LS	LS25	0	Ó	0	0	0	
	LS30	0	0	0	0	Ŏ	
_	LS35	0		0		0	
	VH15	0		0	0		0
	VH20	0		0	0		0
	VH25	0		0	0		0
VH	VH30	0		0	0		0
	VH35	0		0			0
	VH45	0		0			0
	VH55	0		0			0
	LW17	0		0		0	
	LW21	0		0		0	
LW	LW27	0		0		0	
	LW35	0		0		0	
	LW50	0		0			
	TS15	0		0			
	TS20	0		0			
TS	TS25	0		0			
	TS30	0		0			
	TS35	0		0			
RA	RA15	0		0			
	RA20			0			

Series	Model No.	Special	Special environment which linear guide can tolerate						
æ	IVIOGEI NO.	Clean	Vacuum	Corrosion	High temp.	Hygienic	High dust proofin		
	RA25	0		0					
	RA30	0		0					
RA	RA35	0		0					
`^	RA45	0		0					
	RA55	0		0					
	RA65	0		0					
	LA25	0		0					
	LA30	0		0					
Α.	LA35	0		0					
-^	LA45	0		0					
	LA55	0		0					
	LA65	0		0					
	PU05	0		0					
	PU07	0		0					
νU	PU09	0		0		0			
	PU12	0		0		0			
	PU15	0		0		0			
	PE05	0		0					
	PE07	0		0					
PΕ	PE09	0		0		0			
	PE12	Ó		Ö		Ô			
	PE15	Ó		Ö		Ô			
Т	LU05	Ó							
	LU07	Ó		0					
	LU09_L	Ó	0	Ö	0	0			
U	LU09_R	Ó		Ö		Ô			
	LU12_L	Õ	0	Õ	0	Õ			
	LU12_R	Õ		Õ		Õ			
	LU15	Õ	0	Ô	0	Õ			
	LE05	Õ		Ô					
	LE07	Ŏ	0	Õ	0				
	LE09_L	Ŏ	Ŏ	Õ	Ŏ	0			
_	LE09_R	Ŏ		Ŏ		Ŏ			
LE	LE12_L	Õ	0	Õ	0	Õ			
	LE12_R	Ŏ		Õ		Ŏ			
	LE15_L	Ŏ		Ŏ	0	ŏ			
	LE15AR	ŏ		Ŏ		ŏ			
	HA25	ŏ		Ŏ					
	HA30	ŏ		Ŏ					
ΙА	HA35	T ŏ	 	ŏ					
	HA45	l ŏ		ŏ					
	HA55	l ŏ		ŏ					
	HS15	l ŏ		ŏ					
	HS20	1 6		ŏ					
45	HS25	<u> </u>		0					
٦٥	HS30	1 6	<u> </u>	<u> </u>					
	HS35	1 ~	+	-					

2. Ball screws

Series	Special environment					
	Clean	Vacuum	Rust prevention	High temp.	Foreign matters	
KA Series	0	0	0			
For Contaminated environments VSS Type					0	
Made-to-order ball screw	_*	0*	0*		0*	

*Available in the made-to-order ball screw.

Please consult NSK.

1.6 Precautions for Handling

Please observe the following precautions to maintain high functions of ball screws and linear motion guide bearings in special environment over a long period.

- Products are washed to remove oil, and wrapped in a way to protect them from moisture. Use the product as soon as possible after opening the package.
- After opening, store the ball slide (interchangeable type linear guide) and ball nut (rolled ball screw) in a clean, air-tight container such as desiccater with desiccating agent (e.g. silica gel). Do not apply rust preventive oil or paper or product that vaporizes rust preventive agent.
- Wear plastic gloves and handle product in clean place.

2. Lubrication

There are two types of lubricating method -- grease and oil -- for ball screws and linear guides.

Use a lubricant agent and method most suitable to condition requirements and purpose to optimize functions of the ball screws and linear guides.

In general, lubricants with low base oil kinematic viscosity are used for high speed operation, in which thermal expansion has large impact, and in low temperatures.

Lubrication with high base oil kinematic viscosity is used for oscillating operations, low speed and high

The following are lubrication methods by grease and by oil.

2.1 Grease Lubrication

Grease lubrication is widely used because it does not require special oil supply system or piping. Grease lubricants made by NSK are:

- · Various types of grease in bellowed container which can be instantly attached to the grease pump;
- · NSK Grease Unit which comprise a hand grease pump and various nozzles. They are compact and easy to use.

1. NSK grease lubricants

Table 1.1 shows the marketed general grease widely used for linear guides and ball screws, in specific uses, conditions and purposes.

Table 1.1 Grease lubricant for linear guides and ball screws

Type	Thickener	Base oil	Base oil kinematic viscosity	Range of use	Purpose
			mm²/s (40°C)	temperature (°C)	
AS2	Lithium type	Mineral oil	130	- 10 - 110	For ball screws and linear guides
					for general use at high load.
PS2	Lithium type	Synthetic oil	15	- 50 - 110	For ball screws and linear guides for low
		+ mineral oil			temperature and high frequency operation.
LR3	Lithium type	Synthetic oil	30	- 30 - 130	For ball screws at high
					speed, medium load.
LG2	Lithium type	Synthetic oil	30	- 20 - 70	For ball screws and linear
		+ synthetic			guides for clean
		hydrocarbon oil			environment.
LGU	Diurea	Synthetic	100	- 30 - 120	For ball screws and linear
		hydrocarbon oil			guides for clean environment.
NF2	Urea composite type	Synthetic oil	27	- 40 - 100	For fretting resistant ball
		+ mineral oil			screws and linear guides.

(1) NSK Grease AS2

Features

It is an environmentally friendly and widely used grease for high load application. It is mineral oil based grease containing lithium thickener and several additives. It is superb in load resistance as well as stability in oxidization. It not only maintains good lubrication over a long period of time, but also demonstrates superb capability in retaining water. Even containing a large amount of water, it does not lose grease when it is softened.

Application

It is a standard grease for general NSK linear guides and ball screws. It is prevalently used in many applications because of its high base oil viscosity, high load resistance, and stability in oxidization. The

AS2 has replaced the AV2 grease as the standard grease.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil
Consistency	275
Dropping point	185°C
Volume of evaporation	0.24% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr
Oil separation	2.8% (100°C, 24 hr)
Base oil kinematic viscosity	130 mm²/s (40°C)

(2) NSK Grease PS2

Features

The major base oil component is synthetic oil with mineral oil. It is an excellent lubrication especially for low temperature operation. It is for high speed and light load.

Application

It is a standard grease for NSK miniature linear guides and ball screws. It is especially superb for low temperature operation, but also functions well in normal temperatures, making it ideal for small equipment with light load.

(Previous reference number is NSK Grease No.2)

Nature

Thickener	Lithium soap base
Base oil	Synthetic oil + mineral oil
Consistency	275
Dropping point	190°C
Volume of evaporation	0.60% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr
Oil separation	3.6% (100°C, 24 hr)
Base oil kinematic viscosity	15 mm²/s (40°C)

(3) NSK Grease LR3

Features

It contains a special synthetic oil for high temperature and stability, and a carefully selected anti-oxidation agent. This grease dramatically increases lubrication life under high temperature conditions. It is used for high speed, medium load. Lubrication life exceeded 2000 hours in the endurance test at 150°C. Its rust prevention capacity in severe conditions such as water and moist environments is further strengthened.

Application

It is a standard grease for NSK standard linear guides and ball screws in finished shaft end FA Type. It is ideal for operation with medium load, at high speed such as positioning in high tact material handling

(Previous reference number is NSK Grease No.1)

Nature

Thickener	Lithium soap base	
Base oil	Mineral oil	
Consistency	227	
Dropping point	208°C	
Volume of evaporation	0.30% (99°C, 22 hr)	
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)	I
Oil separation	1.9% (100°C, 24 hr)	-
Base oil kinematic viscosity	30 mm ² /s (40°C)	

D13

(4) NSK Grease LG2

Features

This grease was developed by NSK to be exclusively used for linear guides and ball screws in clean room. Compared to the fluorine grease which are commonly used in clean room, LG2 has several advantages such

- · Higher in lubrication function
- Longer lubrication life
- More stable torque (resistant to wear)
- · Higher rust prevention.

In dust generation, LG2 is more than equal to fluorine grease in keeping dust volume low. Since the base oil is not a special oil but a mineral oil, LG2 can be handled in the same manner as general greases.

Application

LG2 is a lubrication grease for rolling element products such as linear guides and ball screws for semiconductor and liquid crystal display (LCD) processing equipment which require a highly clean environment. Because LG2 is exclusively for a clean environment at normal temperatures, however, it cannot be used in a vacuum environment.

Refer to "Special environment" in Page D8 for detailed data on superb characteristics of NSK Grease LG2.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil + Synthetic hydrocarbon oil
Consistency	207
Dropping point	200°C
Volume of evaporation	1.40% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.8% (100°C, 24 hr)
Base oil kinematic viscosity	30 mm ² /s (40°C)

(5) NSK Grease LGU

Features

This is a proprietary urea base grease of NSK featuring low dust emission exclusively for ball screws and linear guides which are used in clean rooms.

In comparison with fluorine base grease, which has been used commonly in clean rooms, LGU has better

lubricating property, longer duration of lubricant, better torque variation, much better anti-rust property, and equivalent or better dust emission. In addition, this grease can be handled in the same way as the other common grease because high-grade synthetic oil is used as the base oil.

LGU grease contains much less metallic elements compared to LG2 grease. It can be used in high temperature environment.

Application

This is exclusive lubrication grease for ball screws and linear guides that are installed in equipment that requires cleanliness, as same as LG2 grease, and it can be used in high temperature range of -30° to 180°C.

This cannot be used in vacuum.

Nature

Diurea
Synthetic hydrocarbon oil
209
260°C
0.09% (99°C, 22 hr)
Satisfactory (Method B, 100°C, 24 hr)
0.6% (100°C, 24 hr)
100 mm ² /s (40°C)

(6) NSK Grease NF2

Features

It uses high-grade synthetic oil as the base oil and urea base organic compound as the thickener. It has remarkable anti-fretting corrosion property. It can be used in wide temperature range, from low to high, and has superior lubrication life.

Application

This grease is suitable for ball screws and linear guides of which application include oscillating operations. Allowable temperature range is -40° to 130°C.

Nature

Thickener	Diurea
Base oil	Synthetic hydrocarbon oil
Consistency	288
Dropping point	269°C
Volume of evaporation	7.9% (177°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.6% (100°C, 24 hr)
Base oil kinematic viscosity	27 mm²/s (40°C)

Precautions for handling

- · Wash the linear guides and ball screws to remove oil prior to applying Clean Grease LG2 or LGU, so the grease functions are fully utilized.
- · Clean grease is exclusively used for clean environments at normal temperatures.

2. How to replenish grease

Use grease fitting to linear guide ball slide or to ball screw nut if exclusive grease supply component is not used. Supply required amount to grease fitting by a grease gun (pump).

Wipe off old grease and accumulated dust before supplying new grease. If grease fitting is not used, apply grease directly to the rail or to the ball groove of the screw shaft. Remove the seal if possible, and move a ball slide or ball nut few strokes so the grease permeates into the ball slide and inside the nut. A hand grease pump, an exclusive and easy lubrication device to linear guides and ball screws, is available at NSK.

3. Volume of grease to be replenished

Once grease is replenished, another supply is not required for a long period of time. But under some operational conditions, it is necessary to periodically replenish grease. The following are replenishing methods.

- * When there is an exclusive grease supply system and the volume from the spout can be controlled, the criterion is:
- · All at once, replenish the amount which fills about 50% of the internal space of the ball slide, or the internal space of the ball nut. This method eliminates waste of grease, and is efficient.

Tables 1.2 and 1.3 show internal spaces of ball slide and ball nut for reference.

* When replenishing using a grease gun:

Use a grease gun and fill the inside of ball slide and the ball nut with grease. Supply grease until it comes out from the ball slide or ball nut area. Move the ball slide or ball nut by hand while filling them with grease, so the grease permeates all areas. Do not operate the machine immediately after replenishing. Always try the system a few times to spread the grease throughout the system and to remove excess grease from inside. Trial operations are necessary because the resistance to sliding force of linear guide and the ball screw torque greatly increase immediately after replenishment (full-pack state) and may cause problems. Grease's agitating resistance is accountable for this phenomenon. Wipe off excess grease that 16 accumulates at the end of the rail and screw shaft after trial runs, so the grease does not scatter to other areas.

D15

Table 1.2 Inside space of the ball slide of linear guide

SH. SS Series

011, 00 0	01103		Unit: cm³	
Series	SH		S	S
Model No.	High-load type	Super-high-load type	Medium-load type	High-load type
15	2	3	1.5	2
20	5	7	3	4
25	9	12	5	7
30	11	17	7	11
35	20	27	11	17
45	42	53	_	_
55	73	93	-	-

LH, LS Series

Series	LH		L	S
Model No.	High-load type	Super-high-load type	Medium-load type	High-load type
08	0.2	-	-	-
10	0.4	-	-	-
12	1.2	_	_	_
15	3	4	2	3
20	6	8	3	4
25	9	13	5	8
30	13	20	8	12
35	22	30	12	19
45	47	59	_	_
55	80	100	1	-
65	139	186	-	-
85	_	336	-	-

Unit: cm³

VH Series

VH Series	Unit: cm³		
Series	VH		
Model No.	High-load type	Super-high-load type	
15	3	4	
20	6	8	
25	9	13	
30	13	20	
35	22	30	
45	47	59	
55	80	100	

RA Series

Series	RA			
Nodel No.	High-load type	Super-high-load type		
15	1	1.5		
20	2	2.5		
25	3	3.5		
30	5	6		
35	6	8		
45	10	13		
55	15	20		
65	33	42		

LA Series

-A Julius	•	Unit: cm³		
Series	LA			
Model No.	High-load type	Super-high-load type		
25	8	12		
30	14	18		
35	21	29		
45	38	48		
55	68	86		
65	130	177		

Unit: cm3

HA, HS Series

.,, .,	Unit: cm³	
Series Model No. HA		HS
15	-	5
20	-	9
25	16	16
30	27	25
35	42	40
45	67	
55	122	-

PE, PU Series

·				Unit: cm
Series	PE		PU	
Model No.	Standard type	Standard type High-load type		High-load type
05	0.1	-	0.1	-
07	0.2	-	0.1	-
09	0.4	0.5	0.2	0.3
12	0.5	0.7	0.3	0.4
15	1.2	1.6	0.8	1.1

Unit: cm³

LW Series

Lvv Series	Unit: cm
Series Model No.	LW
17	3
21	3
27	7
35	24
50	52

TS Sorios

13 Series	Unit: cm
Series Model No.	TS
15	2
20	3
25	6
30	9
35	15

LE, LU Series

					O 1 11 11 11 11 11 11 11 11 11 11 11 11
Series	LE			L	U
Model No.	Medium-load type	Standard type	High-load type	Standard type	High-load type
05	0.1	0.1	-	0.1	-
07	0.1	0.2	0.3	0.1	_
09	0.2	0.4	0.5	0.2	0.3
12	0.3	0.5	0.7	0.3	0.4
15	0.8	1.2	1.6	0.8	1.1

Table 1.3 Inside space of ball nut

Return tube type (single nut)

			ctain tabe ty	pe (single nat)			Unit: cm³
Nut model	Inside space	Nut model	Inside space	Nut model	Inside space	Nut model	Inside space
1004 – 2.5	0.8	2005 – 5	4.3	2525 – 1.5	7.5	4005 – 10	14
1205 – 2.5	1.2	2010 – 2.5	4.7	2805 – 5	6	4010 – 5	30
1210 – 2.5	1.4	2020 – 1.5	4.2	3205 – 5	7	4012 – 5	34
1405 – 2.5	2.2	2504 – 5	3.2	3206 – 5	9.5	4510 – 5	34
1510 – 2.5	2.3	2505 – 5	5	3210 – 5	22	5010 – 5	37
1605 – 2.5	2.6	2506 – 5	7	3225 – 2.5	17	5010 – 10	59
1616 – 1.5	2.1	2510 – 3	9.5	3232 – 1.5	15		
2004 – 5	2.7	2520 – 2.5	12	3610 – 5	32		

Deflector type

(single	nut) _{Un}	it: cm³
Nut model	Inside spac	е
2505 – 6	6.5	
2510 – 4	10	
3205 – 8	9.5	_
3210 – 6	28	
4010 – 8	42	
5010 – 8	52	

End cap type

	Unit: cm ¹
Nut model	Inside space
1520 – 1.5	1.9
2040 – 1	2.8
2550 – 1	4.2

Remarks: Nut model: shaft diameter, lead, total number of turns of balls Please consult NSK for other specifications.

4. Intervals of checks and replenishments

Although the grease is of high quality, it gradually deteriorates and its lubrication function diminishes. Also, the grease in the ball slide and ball nut is gradually removed by stroke movement. In some environments, the grease becomes dirty, and foreign

objects may enter. New grease should be replenished depending on frequency of use. The following is a guide of intervals of grease replenishments to linear guides and ball screws.

Table 1.4 Intervals of checks and replenishments for grease lubrication

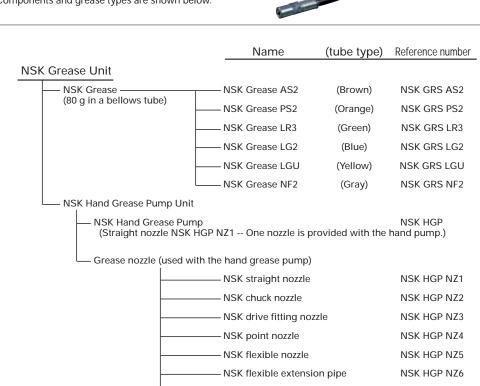
	Intervals of checks	Items to check		Intervals of replenishments		
3-6 months		Dirt, foreign matters such as		Usually once per year. Every 3000 km for material handling		
		cutting chip		system which travels more than 3000 km per year. Replenish		
				if checking results warrant it necessary.		

Note: 1) As a general rule, do not mix greases of different brands. Grease structure may be destroyed if greases of different thickeners are mixed. Even when greases have the same thickener, different additives in them may have an adverse effect on each other.

2) Grease viscosity varies by temperature. Viscosity is particular high in winter due to low temperature. Pay attention to increase in linear guide's sliding resistance and ball screw torque in such occasion.

5. NSK Grease Unit

Supply grease to NSK linear guides and ball screws by a manual type hand grease pump. Install the grease in bellows tube to the pump. Several types of grease (80 g) are available.


NSK HGP NZ7

Grease in a bellows tube

(1) Composition of NSK Grease Unit

Components and grease types are shown below.

NSK straight extension pipe

(2) NSK Greases (80 g in a bellows tube)

Refer to Page D14 for their natures and details.

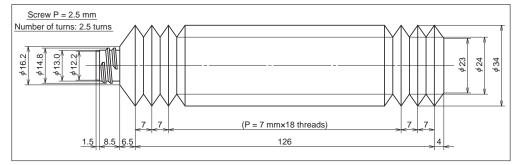


Fig. 3.1 Bellows tube

(3) NSK manual Grease Pump Unit

① NSK Hand Grease Pump Unit (Reference number: NSK HGP)

Features

- Light-weight Can be operated by one hand, yet there is no worry to making a mistake.
- Inserting by high pressure.... Insert at 15 Mpa.
- No leakingDoes not leak when held upside down.
- Easy to change grease ···· Simply attach the grease in bellows tube.
- Remaining grease ····· Can be confirmed through slit on the tube.
- Several nozzles ······Five types of nozzles to choose from.

Specifications

- Discharge pressure · · 15 Mpa
- Spout volume ······ 0.35 g/stroke
- Mass of main body ... 393 g
- · Overall length · · · · · About 200 mm
- Overall width ······ About 200 mm
- Grease tube outer diameter $\cdots \phi$ 38.1
- Accessory Several nozzles for a unique application can be attached

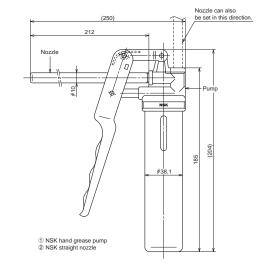


Fig. 3.2 NSK Hand Grease Pump with NSK straight nozzle

2 Nozzles

Table 3.1 Nozzles that can be attached to NSK Hand Grease Pump

Name	Designation code	Use	Dimensions
NSK straight nozzle	NSK HGP NZ1	Can be used with grease fitting A, B, and C under JIS B1575 standard.	Rc1/8
NSK chuck nozzle	NSK HGP NZ2	Same as above. However, there is no need to press the hand pump because the grease fitting and the nozzle come to contact due to the chucking mechanism at the tip.	Rc1/8
NSK fitting nozzle	NSK HGP NZ3	Dedicated for the $-\phi 3$ drive-in grease fitting.	30 11 M6×1.0 C 120 155
NSK point nozzle	NSK HGP NZ4	Used for linear guides and ball screws which do not have grease fitting. Supplies grease directly to the ball grooves, or through the opening of ball slide or ball slide to inside.	Tip. \$\phi 1.5 \\ \text{Rc1/8} \\ \text{Rc1/8} \\ \text{136}
NSK flexible nozzle	NSK HGP NZ5	The tip of the flexible nozzle is chuck nozzle. Used to supply grease to the area where hand cannot reach.	14HEX. Rc1/8
NSK flexible extension pipe	NSK HGP NZ6	Flexible extension pipe connects the grease pump and the nozzle	Rp1/8 14HEX. 14HEX. Rc1/8
NSK straight extension pipe	NSK HGP NZ7	Straight extension pipe connects the grease pump and the nozzle.	Rp1/8 12HEX. Rc1/8

Table 3.2 Grease fittings used for NSK linear guide

		Tap hole for	1 3	5	Chuck	Drive-in nipple	Point	Flexible
Series	Model number	grease fitting	fitting	nozzle NZ1	nozzles NZ2	nozzle NZ3	nozzle NZ4	nozzle NZ5
	SH15	φ3	Drive-in type			0		
SH Series	SH20, 25, 30, 35°)	M6×0.75	B type	0	0			0
	SH45, 55	Rc1/8	B type	0	0			0
SS Series	SS15	φ3	Drive-in type			0		
33 Series	SS20, 25, 30, 35°)	M6×0.75	B type	0	0			0
	LH08, 10	_	_				0	
III C:	LH12, 15	φ3	Drive-in type			0		
LH Series	LH20, 25, 30, 35°)	M6×0.75	B type	0	0			0
	LH45, 55, 65, 85	Rc1/8	B type	0	0			0
100	LS15	φ3	Drive-in type			0		
LS Series	LS20, 25, 30, 35°)	M6×0.75	B type	0	0			0
	VH15	φ3	Drive-in type			0		
VH Series	LH20, 25, 30, 35°)	M6×0.75	B type	0	0			0
	VH45, 55	Rc1/8	B type	0	0			0
	LW17	φ3	Drive-in type					
LW Series	LW21, 27, 35*)	M6×0.75	B type	0	0			0
	LW50	Rc1/8	B type	0	Ō			Ō
TO 0 .	TS15	φ3	Drive-in type			0		
TS Series	TS20, 25, 30, 35*)	M6×0.75	B type	0	0			0
	RA15, 20	φ3	Drive-in type			0		
RA Series	RA25, 30, 35*)	M6×0.75	B type	0	0			0
	RA45, 55, 65	Rc1/8	B type	0	0			0
	LA25, 30, 35*)	M6×0.75	B type	0	0			Ō
LA Series	LA45, 55, 65	Rc1/8	B type	0	Ō			Ō
D. I. G	PU05, 07, 09, 12	_	-				0	
PU Series	PU15	φ3	Drive-in type					
DE 0 1	PE05, 07, 09, 12	-	- 71				0	
PE Series	PE15	φ3	Drive-in type			0		
LU Series	LU05, 07, 09, 12, 15	-	- 71				0	
LE Series	LE05, 07, 09, 12, 15	_	-				0	
	HA25, 30, 35*)	M6×0.75	B type	0	0			0
HA Series	HA45, 55	Rc1/8	B type	O	Ö			Ō
	HS15	φ3	Drive-in type	,		0		
HS Series	HS20, 25, 30, 35*)	M6×0.75	B type	0				

^{*)} When using a chuck nozzle, make sure that it does not interfere with the table on linear guides. Note: PU, PE, LU, and LE Series: Apply grease directly to ball groove, etc. using a point nozzle.

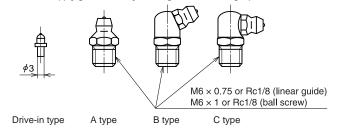


Fig. 3.3 Grease fittings

A long threaded grease fitting is required for NSK linear guides because of dust proof parts. Please refer to the sections pertaining to the lubrication and dust proof parts of each series.

Normally, grease fitting is not provided to NSK ball screw. However, ball nut has a tap hole to install a grease fitting. The user should install a grease fitting if necessary. If there is no tap hole, apply grease directly to the screw shaft and ball grooves.

2.2 Oil Lubrication

Required amount of new oil is regularly supplied by:

- Manual or automatic intermittent supply system;
- · Oil mist lubricating system via piping.

Equipment for oil lubrication is more costly than grease lubrication. However, oil mist lubricating system supplies air as well as oil, raising the inner pressure of the ball slide. This prevents foreign matters from entering, and the air cools the system. Use an oil of high atomizing rate such as ISO VG 32 to 68 for the oil mist lubrication system.

ISO VG 68 to 220 are recommended for common intermittent replenishment system. Approximate volume of oil Q for a ball slide of linear guide per hour can be obtained by the following formula.

In case of ball type linear guides except the LA Series

 $Q = n/150 \text{ (cm}^3/\text{hr)}$

In case of LA Series, RA Series

 $Q \ge n/100 \text{ (cm}^3/\text{hr)}$

n: Linear guide code

e.g. When LH45 is used,

n = 45

Therefore.

 $Q = 45/150 = 0.3 \text{ cm}^3/\text{hr}$

Similarly, approximate oil supply volume Q to ball screw can be obtained by the following formula.

 $Q = d/15 \text{ (cm}^3/\text{hr)}$

d: Nominal shaft diameter of the ball screw

e.g. When the shaft diameter is 50,

d = 50

Therefore.

 $Q = 50/15 = 3.3 \text{ cm}^3/\text{hr}$

For oil lubrication by gravity drip, the oil supply position and installation position of the ball slide or ball nut are crucial. In case of linear guide, unless it is installed to a horizontal position, the oil flows only on the down side, and does not spread to all raceway surface. This may cause insufficient lubrication. For ball screw lubrication as well, oil does not spread if the oil orifice is installed at the bottom, causing insufficient lubrication. Please consult NSK to correct such situations prior to use. NSK has internal design which allows oil lubricant to flow throughout the system. Table 2.1 shows the criterion of intervals of oil checks and replenishments.

Table 2.1 Intervals of checks and replenishments

Method	Intervals of checks	Items to check	Replenishment or intervals of changes		
Automatic intermittent supply	Weekly	Volume of oil, dirt, etc.	Replenish at each check. Suitable volume for tank capacity.		
Oil bath	Daily before operation	Oil surface	Make a suitable criterion based on consumption		

Note: 1) As with grease lubrication, do not mix oil lubricant with different types.

- Some components of the linear guide and ball screw are made of plastic. Avoid using an oil that adversely affects synthetic resin.
- 3) When using oil mist lubricating system, please confirm an oil supply amount at the each outlet part.

3. RoHS Compliant

1. Linear Guides

- · Linear Guides listed in the catalog except the products for special environments, are compliant with RoHS.
- · Please consult NSK for RoHS of special parts and lubricant provided by customer, and customersupplied product.

2. Ball Screws

· Ball screws listed in the catalog except the products for special environments, are compliant with RoHS.

3. Monocarriers

· Monocarriers listed in the catalog are compliant with RoHS.

4. Ball Screw Support Bearings

· Ball screw support bearings listed in the catalog are compliant with RoHS.

*For details of country-specific RoHS, contact NSK.

APPENDICES: TABLES

ı			
ı			
ı			
ı			
ď			

BLOCK

Appendices: Tables

1.	Conversion from International Systems of Units (SI) ······ E1
2.	Conversion table between N and kgf ·····E3
3.	Conversion table between kg and lb E4
4.	Hardness conversion table \cdots E5
5.	Variations of shaft used in common fits E7
	Variations of housing holes in

1. Conversion from international system of units (SI)

Comparisons of SI, CGS, and engineering systems of units

Items System of units	Length	Mass	Time	Temperature	Acceleration	Force	Stress	Pressure	Energy	Power
SI	m	kg	S	K, °C	m/s²	N	Pa	Pa	J	W
CGS system	cm	g	s	°C	Gal	dyn	dyn/cm²	dyn/cm²	erg	erg/s
Engineering system	m	kgf • s²/m	S	°C	m/s²	kgf	kgf/m²	kgf/m²	kgf • m	kgf • m/s

Conversion rates from SI system of units

	SI unit	711VC13101114t	Units other than			
Item	Name of unit	Abbreviation	Name of unit	Abbreviation	Conversion rate from SI unit	
Anglo	Radian			« Appreviation	100/-	
Angle	Radian	rad	Degree		180/π	
			Minute		10 800/π	
			Second		648 000/π	
Length	Meter	m	Micron	μ	106	
			Angstrom	Å	1010	
Area	Square meter	m²	Are	а	10-2	
			Hectare	ha	10-4	
Volume	Cubic meter	m³	Liter	I, L	10³	
			Deciliter	dl, dL	104	
Time	Second	S	Minute	min	1/60	
			Hour	h	1/3 600	
			Day	d	1/86 400	
Numbers of vibration numbers of frequency	Hertz	Hz	Cycle	S ⁻¹	1	
Rotational speed	Times per second	S ⁻¹	Times per minute	rpm	60	
Velocity	Meter per second	m/s	Kilometer per hour	km/h	3 600/1 000	
			Knot	kn	3 600/1 852	
Acceleration	Meter per square second	m/s²	Gal	Gal	10 ²	
			G	G	1/9.806 65	
Mass	Kilogram	kg	Ton	t	10 ⁻³	
Force	Newton	N	Weight kilogram	kgf	1/9.806 65	
			Weight ton	tf	1/(9.806 65×10³)	
			Dyne	dyn	10⁵	
Torque and	Newton meter	N · m	Weight kilogram	kgf • m	1/9.806 65	
moment of force			meter	J		
Stress	Pascal	Pa	Weight kilogram per square centimeter	kgf/cm²	1/(9.806 65×10 ⁴)	
	(Newtons per square meter)	(N/m²)	Weight kilogram per square millimeter	kgf/mm²	1/(9.806 65×10°)	
	(()	- 3 3 - 1	3		

Prefixes for SI units

Powers of 10	Prefix Name Code	Powers of 10	Prefix Name Code
$10^{18} \\ 10^{15} \\ 10^{12}$	exa E	10 ⁻¹	deci d
	peta P	10 ⁻²	centi c
	tera T	10 ⁻³	milli m
10°	giga G	10 ⁻⁶	micro μ
10 ⁶	mega M	10 ⁻⁹	nano n
10 ³	kilo k	10 ⁻¹²	pico p
10 ²	hecto h	10 ⁻¹⁵	femto f
10 ¹	deca da	10 ⁻¹⁸	atto a

Conversion rates from SI units (continued from previous page)

lk a ma	SI unit		Units other than	Commenciary make from Claumit	
Item	Name of unit	Abbreviation	Name of unit	Abbreviation	Conversion rate from SI unit
Pressure	Pascal	Pa	Weight kilogram per square meter	kgf/m²	1/9.806 65
	(newton per square meter)	(N/m^2)	Water column meter	mH_2O	1/(9.806 65×10³)
			Mercurial column millimeter	mmHg	760/(1.013 25×10 ⁵)
			Torr	Torr	760/(1.013 25×10 ⁵)
			Bar	bar	10-5
			Atmosphere	atm	1/(1.013 25×10 ⁵)
Energy	Joule	J	Erg	erg	107
	(newton meter)	(N • m)	Calorie (international)	cal _{IT}	1/4.186 8
			Weight kilogram meter	kgf • m	1/9.806 65
			Kilowatt hour	kW•h	1/(3.6×10 ⁶)
			Metric horsepower/hour	PS•h	≈3.776 72×10 ⁻⁷
Electric power,	Watt	W	Weight kilogram meter per second	kgf • m/s	1/9.806 65
power	(joules per second)	(J/s)	Kilo calorie per hour	kcal/h	1/1.163
			Metric horsepower	PS	≈1/735.498 8
Viscosity, Viscosity index	Pascal second	Pa•s	Poise	Р	10
Kinematic viscosity,	Square meter	m²/s	Stokes	St	104
Kinematic viscosity index	per second		Centistokes	cSt	106
Temperature, Difference in temperature	Kelvin, Celsius degrees	K, °C	Degree	°C	[See Note (1)]
Electrical current, magnetomotive force	Ampere	А	Ampere	Α	1
Electrical power, electromotive force	Volt	V	(Watt per ampere)	(W/A)	1
Magnetic field intensity	Ampere per meter	A/m	Oersted	Oe	4π/10³
Magnetic flux density	Tesla	Т	Gauss	Gs	104
			Gamma	γ	109
Electrical resistance	Ohm	Ω	(Volt per ampere)	(V/A)	1

Note (1) Conversion from TK to θ °C is : θ = T – 273.15. To indicate temperature difference: $\Delta T = \Delta \theta$. ΔT and $\Delta \theta$ indicate temperature differences measured by Kelvin and Celsius respectively.

Remarks: Names and abbreviations of the unit in parentheses indicate the definition of the unit shown above the parentheses or left to the parentheses.

Conversion example 1 N = 1/9.806 65 kgf

NSK

2. Conversion table between N and kgf

[How to read the table]

E3

To convert 10 N to kgf, locate 10 in the center column in the first block. Locate a corresponding kgf figure in the right side column. You will find 10 N is 1.0197 kgf. To convert 10 kgf to N, locate a figure in N column to its left. You will find 10 kgf is 98.006 N.

3. Conversion table between kg and lb

[How to read the table]

To convert 10 kg to lb, locate 10 in the center column in the first block. Locate a corresponding lb figure in right column. You will find 10 kg is 22.046 lb. To convert 10 lb to kg, locate the figure in the kg column to the left. You will find 10 lb is 4.536 kg.

1	kg	= 2.2046226	lb
1	lb	= 0.45359237	ka

N		kgf	N		kgf	N		kgf	kg		lb	kg		lb	kg		lb
9.8066	1	0.1020	333.43	34	3.4670	657.05	67	6.8321	0.454	1	2.205	15.422	34	74.957	30.391	67	147.71
19.613	2	0.2039	343.23	35	3.5690	666.85	68	6.9341	0.907	2	4.409	15.422	35	77.162	30.844	68	149.91
29.420	3	0.3059	353.04	36	3.6710	676.66	69	7.0360	1.361	3	6.614	16.329	36	79.366	31.298	69	152.12
39.227	4	0.4079	362.85	37	3.7729	686.47	70	7.0300	1.814	4	8.818	16.783	37	81.571	31.751	70	154.32
49.033	5	0.5099	372.65	38	3.8749	696.27	71	7.1300	2.268	5	11.023	17.237	38	83.776	32.205	71	156.53
47.033	3	0.3077	372.03	30	3.0747	070.27	71	7.2400	2.200	3	11.025	17.237	30	03.770	32.203	/ 1	130.33
58.840	6	0.6118	382.46	39	3.9769	706.08	72	7.3420	2.722	6	13.228	17.690	39	85.980	32.659	72	158.73
68.647	7	0.7138	392.27	40	4.0789	715.89	73	7.4439	3.175	7	15.432	18.144	40	88.185	33.112	73	160.94
78.453	8	0.8158	402.07	41	4.1808	725.69	74	7.5459	3.629	8	17.637	18.597	41	90.390	33.566	74	163.14
88.260	9	0.9177	411.88	42	4.2828	735.50	75	7.6479	4.082	9	19.842	19.051	42	92.594	34.019	75	165.35
98.066	10	1.0197	421.69	43	4.3848	745.31	76	7.7498	4.536	10	22.046	19.504	43	94.799	34.473	76	167.55
107.87	11	1.1217	431.49	44	4.4868	755.11	77	7.8518	4.990	11	24.251	19.958	44	97.003	34.927	77	169.76
117.68	12	1.2237	441.30	45	4.5887	764.92	78	7.9538	5.443	12	26.455	20.412	45	99.208	35.380	78	171.96
127.49	13	1.3256	451.11	46	4.6907	774.73	79	8.0558	5.897	13	28.660	20.865	46	101.41	35.834	79	174.17
137.29	14	1.4279	460.91	47	4.7927	784.53	80	8.1577	6.350	14	30.865	21.319	47	103.62	36.287	80	176.37
147.10	15	1.5296	470.72	48	4.8946	794.34	81	8.2597	6.804	15	33.069	21.772	48	105.82	36.741	81	178.57
156.91	16	1.6315	480.53	49	4.9966	804.15	82	8.3617	7.257	16	35.274	22.226	49	108.03	37.195	82	180.78
166.71	17	1.7335	490.33	50	5.0986	813.95	83	8.4636	7.711	17	37.479	22.680	50	110.23	37.648	83	182.98
176.52	18	1.8355	500.14	51	5.2006	823.76	84	8.5656	8.165	18	39.683	23.133	51	112.44	38.102	84	185.19
186.33	19	1.9375	509.95	52	5.3025	833.57	85	8.6676	8.618	19	41.888	23.587	52	114.64	38.555	85	187.39
196.13	20	2.0394	519.75	53	5.4045	843.37	86	8.7696	9.072	20	44.092	24.040	53	116.84	39.009	86	189.60
205.94	21	2.1414	529.56	54	5.5065	853.18	87	8.8715	9.525	21	46.297	24.494	54	119.05	39.463	87	191.80
215.75	22	2.2434	539.37	55	5.6084	862.99	88	8.9735	9.979	22	48.502	24.948	55	121.25	39.916	88	194.01
225.55	23	2.3453	549.17	56	5.7104	872.79	89	9.0755	10.433	23	50.706	25.401	56	123.46	40.370	89	196.21
235.36	24	2.4473	558.98	57	5.8124	882.60	90	9.1774	10.886	24	52.911	25.855	57	125.66	40.823	90	198.42
245.17	25	2.5493	568.79	58	5.9144	892.41	91	9.2794	11.340	25	55.116	26.308	58	127.87	41.277	91	200.62
254.97	26	2.6513	578.59	59	6.0163	902.21	92	9.3814	11.793	26	57.320	26.762	59	130.07	41.730	92	202.83
264.78	27	2.7532	588.40	60	6.1183	912.02	93	9.4834	12.247	27	59.525	27.216	60	132.28	42.184	93	205.03
274.59	28	2.8552	598.21	61	6.2203	921.83	94	9.5853	12.701	28	61.729	27.669	61	134.48	42.638	94	207.23
284.39	29	2.9572	608.01	62	6.3222	931.63	95	9.6873	13.154	29	63.934	28.123	62	136.69	43.091	95	209.44
294.20	30	3.0591	617.82	63	6.4242	941.44	96	9.7893	13.608	30	66.139	28.576	63	138.89	43.545	96	211.64
	0.4	0.1/11			, 50,0	054.05	0.7	0.0040		0.1		00.00-		444.40	40.005	07	242.05
304.01	31	3.1611	627.63	64	6.5262	951.25	97	9.8912	14.061	31	68.343	29.030	64	141.10	43.998	97	213.85
313.81	32	3.2631	637.43	65	6.6282	961.05	98	9.9932	14.515	32	70.548	29.484	65	143.30	44.452	98	216.05
323.62	33	3.3651	647.24	66	6.7301	970.86	99	10.095	14.969	33	72.753	29.937	66	145.51	44.906	99	218.26

4. Conversion table of hardness

F	Rockwell C Scale		Brinell h	ardness	Rockwe A Scale	ell hardness B Scale	
	hardness	Vickers hardness	Standard ball	Tungsten	Load 588.4 N	Load 980.7 N	Shore hardness
	(1 471 N)			carbide ball	brale penetrator	Diameter 1.5888 mm {1/16 in} sphere	
	68	940	_	_	85.6	_	97
	67	900	-	_	85.0	-	95
	66	865	-	_	84.5	-	92
	65	832	_	739	83.9	-	91
	64	800	_	722	83.4	_	88
	63	772	_	705	82.8	_	87
	62	746	_	688	82.3	_	85
	61	720	_	670	81.8	_	83
	60	697	_	654	81.2	_	81
	59	674	_	634	80.7	_	80
	58	653	_	615	80.1	_	78
	57	633	_	595	79.6	_	76 76
	56	613		577	79.0	_	76 75
	55	595	_	560	78.5	_	74
	54	577		543	78.0	_	74 72
	34	377	_	343	70.0	_	72
	53	560	_	525	77.4	_	71
	52	544	500	512	76.8	_	69
	51	528	487	496	76.3	_	68
	50	513	475	481	75.9	_	67
	49	498	464	469	75.2	-	66
	48	484	451	455	74.7	_	64
	47	471	442	443	74.1	_	63
	46	458	432	432	73.6	_	62
	45	446	421	421	73.1	_	60
	44	434	409	409	72.5	_	58
	43	423	400	400	72.0	_	57
	42	412	390	390	71.5	_	56
	41	402	381	381	70.9	_	55
	40	392	371	371	70.9	_	54
	39	382	362	362	69.9	_	52
	37	302	302	302	07.7	_	JΖ

Rockwell C Scale		Brinell h	ardness		ell hardness	
hardness				A Scale	B Scale	
Tidi di 1033	Vickers hardness	Standard ball	Tungsten	Load 588.4 N	Load 980.7 N	Shore hardness
(1 471 N)	naruness	Staridard Dali	carbide ball	brale penetrator	Diameter 1.5888 mm {1/16 in} sphere	nardness
38	372	353	353	69.4	_	51
37	363	344	344	68.9	_	50
36	354	336	336	68.4	(109.0)	49
35	345	327	327	67.9	(108.5)	48
34	336	319	319	67.4	(108.0)	47
33	327	311	311	66.8	(107.5)	46
32	318	301	301	66.3	(107.0)	44
31	310	294	294	65.8	(106.0)	43
30	302	286	286	65.3	(105.5)	42
29	294	279	279	64.7	(104.5)	41
28	286	271	271	64.3	(104.0)	41
27	279	264	264	63.8	(103.0)	40
26	272	258	258	63.3	(102.5)	38
25	266	253	253	62.8	(101.5)	38
24	260	247	247	62.4	(101.0)	37
23	254	243	243	62.0	100.0	36
22	248	237	237	61.5	99.0	35
21	243	231	231	61.0	98.5	35
20	238	226	226	60.5	97.8	34
(18)	230	219	219	_	96.7	33
(16)	222	212	212	-	95.5	32
(14)	213	203	203	_	93.9	31
(12)	204	194	194	_	92.3	29
(10)	196	187	187	_	90.7	28
(8)	188	179	179	-	89.5	27
(6)	180	171	171	_	87.1	26
(4)	173	165	165	-	85.5	25
(2)	166	158	158	_	83.5	24
(0)	160	152	152	_	81.7	24

E7

NSK

5. Deviations of shafts used in common fits

	fication of eter (mm) or less	d6	е6	f6	g5	g6	h5	h6	h7	h8	h9	h10	js5	js6
_	- 3	- 20 - 26	- 14 - 20	- 6 - 12	- 2 - 6	- 2 - 8	0 - 4	0 - 6	0 -10	0 - 14	0 - 25	0 - 40	± 2	± 3
3	3 6	- 30 - 38	- 20 - 28	- 10 - 18	- 4 - 9	- 4 - 12	0 - 5	- 8	0 -12	0 - 18	- 30	- 48	± 2.5	± 4
6	5 10	- 40 - 49	- 25 - 34	- 13 - 22	- 5 -11	- 5 - 14	0 - 6	0 - 9	0 -15	0 - 22	0 - 36	0 - 58	± 3	± 4.5
10) 18	- 50 - 61	- 32 - 43	- 16 - 27	- 6 -14	- 6 - 17	0 - 8	0 -11	0 -18	0 - 27	0 - 43	- 70	± 4	± 5.5
18	30	- 65 - 78	- 40 - 53	- 20 - 33	- 7 -16	- 7 - 20	0 - 9	0 -13	0 -21	0 - 33	0 - 52	0 - 84	± 4.5	± 6.5
30	50	- 80 - 96	- 50 - 66	- 25 - 41	- 9 -20	- 9 - 25	0 -11	0 -16	0 -25	0 - 39	0 - 62	0 -100	± 5.5	± 8
50) 80	-100 -119	- 60 - 79	- 30 - 49	-10 -23	- 10 - 29	0 -13	0 -19	0 -30	0 - 46	0 - 74	0 -120	± 6.5	± 9.5
80) 120	-120 -142	- 72 - 94	- 36 - 58	-12 -27	- 12 - 34	0 -15	0 -22	0 -35	0 - 54	0 - 87	0 -140	± 7.5	±11
120) 180	-145 -170	- 85 -110	- 43 - 68	-14 -32	- 14 - 39	0 -18	0 -25	0 -40	0 - 63	0 -100	0 -160	± 9	±12.5
180) 250	-170 -199	-100 -129	- 50 - 79	-15 -35	- 15 - 44	0 -20	0 -29	0 -46	0 - 72	0 -115	0 -185	±10	±14.5
250	315	-190 -222	-110 -142	- 56 - 88	-17 -40	- 17 - 49	0 -23	0 -32	0 -52	0 - 81	0 -130	0 -210	±11.5	±16
315	5 400	-210 -246	-125 -161	- 62 - 98	-18 -43	- 18 - 54	0 -25	0 -36	0 -57	0 - 89	0 -140	0 -230	±12.5	±18
400	500	-230 -270	-135 -175	- 68 -108	-20 -47	- 20 - 60	0 -27	0 -40	0 -63	0 - 97	0 -155	0 -250	±13.5	±20
500) 630	-260 -304	-145 -189	- 76 -120	_	- 22 - 66	_	0 -44	0 -70	0 -110	0 -175	0 -280	_	±22
630) 800	-290 -340	-160 -210	- 80 -130	_	- 24 - 74	_	0 -50	0 -80	0 -125	0 -200	0 -320	_	±25
800) 1000	-320 -376	-170 -226	- 86 -142	_	- 26 - 82	_	0 -56	0 -90	0 -140	0 -230	0 -360	_	±28
1000) 1250	-350 -416	-195 -261	- 98 -164	_	- 28 - 94	_	0 -66	0 -105	0 -165	0 -260	0 -420	_	±33
1250	1600	-390 -468	-220 -298	-110 -188	_	- 30 -108	_	0 -78	0 -125	0 -195	0 -310	0 -500	_	±39
1600	2000	-430 -522	-240 -332	-120 -212	_	- 32 -124	_	0 -92	0 -150	0 -230	0 -370	0 -600	-	±46

ι	Jnit:	um

15 16 17 18 18 10 18 18 19 18 19 19 19 19													01	onit. µm
\$\frac{\pmatrix}{2} = \frac{2}{2} \cdot \frac{4}{2} \cdot \frac{4}{2} \cdot \frac{4}{2} \cdot \frac{4}{2} \cdot \frac{4}{2} \cdot \frac{1}{2} \cdot \frac{1}	j5	i6	i7	k5	k6	k7	m5	m6	n6	p6	r6	r7		
## ## ## ## ## ## ## ## ## ## ## ## ##	, .	, .	,							1			Over	or less
-2 -2 -4 +1 +1 +1 +1 +1 +4 +4 +4 +8 +112 +15 +19 +19 -6 10 10 -2 -2 -2 -5 +1 +1 +11 +1 +1 +6 +6 +10 +15 +19 +19 +19 +19 -6 10 118 +15 +19 +19 +19 +19 +19 +19 +19 +19 +19 +19		- 2	- 4	0	0	0	+ 2	+ 2	+ 4	+ 6	+ 10	+ 10	_	3
-2 - 2 - 5	- 2	- 2	- 4	+ 1	+ 1	+ 1	+ 4	+ 4	+ 8	+ 12	+ 15	+ 15	3	6
-3 -3 -6 + 1 + 1 + 1 + 1 + 7 + 7 + 7 + 12 + 18 + 23 + 23 + 10	- 2	- 2	- 5	+ 1	+ 1	+ 1	+ 6	+ 6	+ 10	+ 15	+ 19	+ 19	6	10
-4	3	- 3	- 6	+ 1	+ 1	+ 1	+ 7	+ 7	+ 12	+ 18	+ 23	+ 23	10	18
-5 - 5 - 10		- 4	- 8	+ 2	+ 2	+ 2	+ 8	+ 8	+ 15	+ 22	+ 28	+ 28	18	30
+ 6 + 12 + 18 + 15 + 21 + 32 + 24 + 30 + 39 + 51 + 41 + 41 + 41			+15 -10	+13 + 2			+20 + 9	+ 25 + 9	+ 33 + 17	+ 42 + 26	+ 34	+ 34	30	50
+ 6 +13 +20 +18 +25 +38 +28 +35 +45 +59 +51 +51 +51 +51 +51 +51 +51 +51 +51 +51	+ 6	+12		+15	+21	+32		+ 30	+ 39	+ 51	+ 41	+ 41	50	65
+ 6 + 13	- 7	- 7	-12	+ 2	+ 2	+ 2	+11	+ 11	+ 20	+ 32	+ 43	+ 43	65	80
+7 +14 +22 +21 +28 +43 +33 +40 +52 +68 +63 +63 +63 +63 +63 +63 +63 +63 +63 +63	+ 6										+ 51	+ 51	80	100
+7 +14 +22 +21 +28 +43 +33 +40 +52 +68 +63 +63 +63 +105 140 160 -11 -11 -18 +3 +3 +3 +3 +3 +15 +15 +27 +43	- 9	- 9	-15	+ 3	+ 3	+ 3	+13	+ 13	+ 23	+ 37	+ 54	+ 54	100	120
-11 -11 -18											+ 63	+ 63	120	140
+ 68 + 68 160											+ 65	+ 65	140	160
+77 +16 +25 +24 +33 +50 +37 +46 +60 +79 +179 +179 +170 +200 225 -130 -13 -21 +4 +4 +4 +4 +4 +17 +17 +31 +50 +80 +80 +80 +80 +80 +80 +80 +80 +80 +8													160	180
-13 -13 -21											+ 77	+ 77	180	200
+7											+ 80	+ 80	200	225
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											+ 84	+ 84	225	250
-16	+7	+16	+26					+ 52			+ 94	+ 94	250	280
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-16 			+ 4	+ 4	+ 4	+20	+ 20	+ 34	+ 56	+ 98	+ 98	280	315
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+7	+18						+ 57			+108	+108	315	355
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-18		-28	+ 4	+ 4	+ 4	+21	+ 21	+ 37	+ 62	+114	+114	355	400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		+20									+126	+126	400	450
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-20		-32	+ 5	+ 5	+ 5	+23	+ 23	+ 40	+ 68	+132	+195 +132	450	500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	_	_	_			_				+150	+220 +150	500	560
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0	0		+ 26	+ 44	+ 78	+155	+225 +155	560	630
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	_	_	_	+50	+80	_	+ 80		+138	+225 +175	+255 +175	630	710
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0	0		+ 30	+ 50	+ 88	+185	+185	710	800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	_	_	_			_				+210	+210	800	900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0	0		+ 34	+ 56	+100	+220	+220	900	1000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	_	_	_			_	+106			+250	+250	1000	1120
+78 +125					0	0		+ 40	+ 66	+120	+260	+260	1120	1250
+330 +330 1400 1600 +92 +150 - +150 +184 +262 +370 +370 1600 1800 0 0 - +58 +92 +170 +492 +550 1000 2000	_	_	_	_			_				+300	+300	1250	1400
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0	0		+ 48	+ 78	+140	+330	+330	1400	1600
	_	_	_	_			_				+370	+370	1600	1800
					U	U		+ 58	+ 92	+1/0		+550 +400	1800	2000

NSK

6. Deviations of holes used in common fits

Classific diamete Over	cation of er (mm) or less	E6	F6	F7	G6	G7	H6	H7	H8	J6	J7	JS6	JS7
_	3	+ 20 + 14	+ 12 + 6	+ 16 + 6	+ 8 + 2	+ 12 + 2	+ 6 0	+ 10 0	+ 14 0	+ 2 - 4	+ 4 - 6	± 3	± 5
3	6	+ 28 + 20	+ 18 + 10	+ 22 + 10	+ 12 + 4	+ 16 + 4	+ 8	+ 12 0	+ 18	+ 5 - 3	± 6	± 4	± 6
6	10	+ 34 + 25	+ 22 + 13	+ 28 + 13	+ 14 + 5	+ 20 + 5	+ 9	+ 15 0	+ 22	+ 5 - 4	+ 8 - 7	± 4.5	± 7.5
10	18	+ 43 + 32	+ 27 + 16	+ 34 + 16	+ 17 + 6	+ 24 + 6	+ 11	+ 18	+ 27 0	+ 6 - 5	+10	± 5.5	± 9
18	30	+ 53 + 40	+ 33 + 20	+ 41 + 20	+ 20 + 7	+ 28 + 7	+ 13	+ 21	+ 33	+ 8 - 5	+12 - 9	± 6.5	±10.5
30	50	+ 66 + 50	+ 41 + 25	+ 50 + 25	+ 25 + 9	+ 34 + 9	+ 16 0	+ 25 0	+ 39	+10 - 6	+14 -11	± 8	±12.5
50	80	+ 79 + 60	+ 49 + 30	+ 60 + 30	+ 29 + 10	+ 40 + 10	+ 19	+ 30	+ 46	+13 - 6	+18 -12	± 9.5	±15
80	120	+ 94 + 72	+ 58 + 36	+ 71 + 36	+ 34 + 12	+ 47 + 12	+ 22	+ 35 0	+ 54	+16 - 6	+22 -13	±11	±17.5
120	180	+110 + 85	+ 68 + 43	+ 83 + 43	+ 39 + 14	+ 54 + 14	+ 25	+ 40	+ 63	+18 - 7	+26 -14	±12.5	±20
180	250	+129 +100	+ 79 + 50	+ 96 + 50	+ 44 + 15	+ 61 + 15	+ 29	+ 46	+ 72 0	+22 - 7	+30 -16	±14.5	±23
250	315	+142 +110	+ 88 + 56	+108 + 56	+ 49 + 17	+ 69 + 17	+ 32	+ 52 0	+ 81	+25 - 7	+36 -16	±16	±26
315	400	+161 +125	+ 98 + 62	+119 + 62	+ 54 + 18	+ 75 + 18	+ 36	+ 57 0	+ 89	+29 - 7	+39 -18	±18	±28.5
400	500	+175 +135	+108 + 68	+131 + 68	+ 60 + 20	+ 83 + 20	+ 40	+ 63 0	+ 97 0	+33 - 7	+43 -20	±20	±31.5
500	630	+189 +145	+120 + 76	+146 + 76	+ 66 + 22	+ 92 + 22	+ 44	+ 70	+110	_	_	±22	±35
630	800	+210 +160	+130 + 80	+160 + 80	+ 74 + 24	+104 + 24	+ 50	+ 80	+125	_	_	±25	±40
800	1000	+226 +170	+142 + 86	+176 + 86	+ 82 + 26	+116 + 26	+ 56	+ 90	+140	_	_	±28	±45
1000	1250	+261 +195	+164 + 98	+203 + 98	+ 94 + 28	+133 + 28	+ 66	+105	+165 0	_	_	±33	±52.5
1250	1600	+298 +220	+188 +110	+235 +110	+108 + 30	+155 + 30	+ 78	+125 0	+195	_	_	±39	±62.5
1600	2000	+332 +240	+212 +120	+270 +120	+124 + 32	+182 + 32	+ 92 0	+150 0	+230 0	_	_	±46	±75

Unit	: µm
------	------

K5	К6	K7	M5	M6	M7	N5	N6	N7	P6	P7	Classific diamete Over	cation of er (mm) or less
0 - 4	0 - 6	0 - 10	- 2 - 6	- 2 - 8	- 2 - 12	- 4 - 8	- 4 - 10	- 4 - 14	- 6 - 12	- 6 - 16	_	3
0 - 5	+ 2 - 6	+ 3	- 3 - 8	- 1 - 9	0 - 12	- 7 -12	- 5 - 13	- 4 - 16	- 9 - 17	- 8 - 20	3	6
+ 1 - 5	+ 2 - 7	+ 5 - 10	- 4 -10	- 3 - 12	0 - 15	- 8 -14	- 7 - 16	- 4 - 19	- 12 - 21	- 9 - 24	6	10
+ 2	+ 2 - 9	+ 6 - 12	- 4 -12	- 4 - 15	0 - 18	- 9 -17	- 9 - 20	- 5 - 23	- 15 - 26	- 11 - 29	10	18
+ 1	+ 2 -11	+ 6 - 15	- 5 -14	- 4 - 17	0 - 21	–12 –21	- 11 - 24	- 7 - 28	- 18 - 31	- 14 - 35	18	30
+ 2	+ 3 -13	+ 7 - 18	- 5 -16	- 4 - 20	0 - 25	-13 -24	- 12 - 28	- 8 - 33	- 21 - 37	- 17 - 42	30	50
+ 3 -10	+ 4 -15	+ 9 - 21	- 6 -19	- 5 - 24	0 - 30	-15 -28	- 14 - 33	- 9 - 39	- 26 - 45	- 21 - 51	50	80
+ 2 -13	+ 4 -18	+ 10 - 25	- 8 -23	- 6 - 28	0 - 35	-18 -33	- 16 - 38	- 10 - 45	- 30 - 52	- 24 - 59	80	120
+ 3 -15	+ 4 -21	+ 12 - 28	- 9 -27	- 8 - 33	0 - 40	-21 -39	- 20 - 45	- 12 - 52	- 36 - 61	- 28 - 68	120	180
+ 2 -18	+ 5 -24	+ 13 - 33	-11 -31	- 8 - 37	0 - 46	-25 -45	- 22 - 51	- 14 - 60	- 41 - 70	- 33 - 79	180	250
+ 3 -20	+ 5 -27	+ 16 - 36	-13 -36	- 9 - 41	0 - 52	-27 -50	- 25 - 57	- 14 - 66	- 47 - 79	- 36 - 88	250	315
+ 3 -22	+ 7 -29	+ 17 - 40	-14 -39	- 10 - 46	0 - 57	-30 -55	- 26 - 62	- 16 - 73	- 51 - 87	- 41 - 98	315	400
+ 2 -25	+ 8 -32	+ 18 - 45	-16 -43	- 10 - 50	0 - 63	-33 -60	- 27 - 67	- 17 - 80	- 55 - 95	- 45 -108	400	500
_	0 -44	0 - 70	_	- 26 - 70	- 26 - 96	_	- 44 - 88	- 44 -114	- 78 -122	- 78 -148	500	630
_	0 -50	0 - 80	_	- 30 - 80	- 30 -110	_	- 50 -100	- 50 -130	- 88 -138	- 88 -168	630	800
_	0 -56	0 - 90	_	- 34 - 90	- 34 -124	_	- 56 -112	- 56 -146	-100 -156	-100 -190	800	1000
	0 -66	0 –105	_	- 40 -106	- 40 -145	_	- 66 -132	- 66 -171	-120 -186	-120 -225	1000	1250
_	0 -78	0 -125	_	- 48 -126	- 48 -173	_	- 78 -156	- 78 -203	-140 -218	-140 -265	1250	1600
_	0 -92	0 –150	_	- 58 -150	- 58 -208	_	- 92 -184	- 92 -242	-170 -262	-170 -320	1600	2000

Worldwide Sales Offices and Manufacturing Plants

Room 1001, Building A, Zhongyin Building, 727 XI'an Road, Changchun, Jilin Province,

Room 06, 09F The Exchange Tower 2, No. 189 NanJing Road, Heping District,

A1 22F, Golden Eagle International Plaza, No.89 Hanzhong Road, Nanjing,

Room 2306, Unit B, No.137, Keyuan 2nd Road, Jiulongpo District, Chonqing,

F:023-6806-5292 C:86

No. 2518 Huancheng Road (West) Fengxian District, Shanghai, China (201401)

P: 0431-8898-8682 F: 0431-8898-8670 C: 86

P:025-8472-6671 F:025-8472-6687 C:86

P: 021-3365-5757 F: 021-3365-5262 C: 86

Tianjin, China (300050)
P: 022-8319-5030 F: 022-8319-5033

Jiangsu Province, China (210029)

China (400039)

NSK-WARNER (SHANGHAI) CO. LTD.

D-022-6906-5210

TIAN JIN

NANJING

CHONGOING

AKS PRECISION BALL (HANGZHOU) CO., LTD. **NSK LTD.-HEADQUARTERS, TOKYO, JAPAN** No. 189 Hongda Road, Xiaoshan Area of Economic & Technological Development Zone, www.nsk.com Hangzhou, Zhejiang, China (311231) Nissei Bldg., 1-6-3 Ohsaki, Shinagawa-ku, Tokyo 141-8560, Japan P: 0571-2280-1288 F: 0571-2280-1268 C: 86 INDUSTRIAL MACHINERY BUSINESS DIVISION-HEADQUARTERS NSK-YAGI PRECISION FORGING (ZHANGJIAGANG) CO., LTD. P: 03-3779-7227 F: 03-3779-7644 No. 34 Zhenxing Road, Zhangjiagang Economic Development Zone, Zhangjiagang City, GLOBAL AFTERMARKET DEPARTMENT Jiangsu Province, China (215600) P: 03-3779-7253 F: 03-3779-7644 P:0512-5867-6496 F:0512-5818-0970 PRECISION MACHINERY DEPARTMENT NSK-WANDA ELECTRIC POWER ASSISTED STEERING SYSTEMS CO.,LTD. F: 03-3779-7644 P- 03-3779-7163 1833 Yatai Road, Wenyan Town, Xiaoshan, Hangzhou, Zhejiang, China (311258) P:0571-8230-2735 F:0571-8230-2692 C:86 MECHATRONICS BUSINESS DEPARTMENT P: 0466-21-3027 F: 0466-21-3206 AUTOMOTIVE BUSINESS DIVISION-HEADQUARTERS RANE NSK STEERING SYSTEMS LTD. 14, Rajagopalan Salai, Vallancherry, Guduvancherry, Tamil Nadu-603 202, India P:044-474-06017 F:044-274-66001 C:91 Africa Plot No.28A, Sector 6, HSIIDC Growth Centre Bawal, District Rewari, Haryana -123 501. India NSK SOUTH AFRICA (PTY) LTD. P:01284-264281 F:01284-264280 JOHANNESBURG 25 Galaxy Avenue, Linbro Business Park, Sandton, Gauteng, P.O. Box 1157, NSK INDIA SALES CO.PVT.LTD. New No.7, Old No.5, Boat Club Road, Chennai-600 028, India P:044-2433-1161 F:044-2433-1160 C:91 F:044-2433-1160 311, JMD Pacific Square, Sector 15 (II), 32nd Milestone, National Highway-8, **Asia and Oceania** Gurgaon Harvana-122 001 India P:0124-4104-530 F:0124-4104-532 C:91 Australia: NSK AUSTRALIA PTY. LTD. www.au.nsk.com 502, Trinity Towers, 83, Topsia Road, Kolkata-700 046, India KOLKATA 11 Dalmore Drive, Scoresby, Victoria 3179, Australia P: 03-9764-8302 F: 03-9764-8304 C: P:033-4001-2062 F:033-4001-2064 C:91 321, A Wing, Ahura Centre, 82, Mahakali Caves Road, Andheri East, Mumbai SYDNEY 24-28 River Road West, Parramatta, New South Wales 2150, Australia P: 02-8843-8100 P:022-2838-7787 F:022-2838-5191 C:91 F: 02-9893-8406 1/69 Selhurst Street, Coopers Plains, Queensland 4108, Australia BRISBANE NSK-ABC BEARINGS LTD. P: 07-3347-2600 F: 07-3345-5376 C: 61 Plot No.A2, SIPCOT Growth Centre, Oragadam, Mathur Village, Sriperumbudur Taluk, OFFICE/PLANT PERTH Unit 1, 71 Tacoma Circuit, Canning Vale, Western Australia 6155, Australia Kancheepuram District, Tamil Nadu-602 105, India F: 08-9256-1044 P- 08-9256-5000 P:044-2714-3000 F:044-2714-3099 China: NSK HONG KONG LTD. PT. NSK BEARINGS MANUFACTURING INDONESIA Suite 814 World Commerce Centre, Harbour City, T.S.T. KLN, Hong Kong HONG KONG JAKARTA PLANT Blok M4. Kawasan Berikat MM2100 Industrial Town Cikarang Barat, Bekasi P: 2739-9333 F: 2739-9323 C: 852
Room 8B08-09, Jueshi Tower, Jiabing Road, Luohu, Shenzhen, China (518001) 17520, Indonesia SHENZHEN. F: 021-898-0156 C: 62 P: 021-898-0155 P: 0755-25904886 F: 0755-25904883 PT. NSK INDONESIA www.id.nsk.com KUNSHAN NSK CO., LTD. Summitmas II, 6th Floor, Jl. Jend Sudirman Kav. 61-62, Jakarta 12190, Indonesia 258 South Huang Pu Jiang Rd., Kunshan Economic & Technical Development OFFICE/PLANT P- 021-252-3458 F: 021-252-3223 C: 62 Zone, Jiang Su, China (215335) PT NSK-WARNER INDONESIA P: 0512-5771-5654 F: 0512-5771-5689 C: 86 MM2100 Industrial Town, Cikarang Barat, Bekasi 17520, Indonesia CHANGSHU NSK NEEDLE BEARING CO., LTD. P: 021-8998-3216 F: 021-8998-3218 C: 62 No. 66 Dongnan Road, Changshu Southeast Economic Development Zone, Changshu City, Jiangsu, China (215500) Korea: NSK KOREA CO., LTD. www.kr.nsk.com P: 0512-5230-1111 F: 0512-5230-6011 C: 86 SEOUL Posco Center (West Wing) 9F, 892, Daechi-4Dong, Kangnam-Ku, Seoul, 135-777, Korea P: 02-3287-0300 F: 02-3287-0345 C: 82 NSK STEERING SYSTEMS DONGGUAN CO., LTD. OFFICE/PLANT High-tech Park, Shilong Road, Guanlong Section, Dongguan, Guangdong, China (523119) CHANGWON 60, Seongsan-Dong, Changwon, Kyungsangnam-Do, 641-315, Korea P: 0769-2262-0960 F: 0769-2316-2867 ZHANGJIAGANG NSK PRECISION MACHINERY CO., LTD. PI ANT P: 055-287-6001 F: 055-285-9982 OFFICE/PLANT No. 34 Zhenxing Road, Zhangjiagang Economic Development Zone, Zhangjiagang City, Malaysia: NSK BEARINGS (MALAYSIA) SDN. BHD. www.my.nsk.com Jiangsu Province, China (215600) No. 2, Jalan Pemaju, U1/15, Seksyen U1, Hicom Glenmarie Industrial Park P: 0512-5867-6496 F: 0512-5818-0970 C: 86 HEAD OFFICE
 SUZHOU NSK BEARINGS CO., LTD.

 OFFICE/PLANT
 No. 22 Taishan Road, Suzhou New District, Jiangsu, China (215129)

 P: 0512-6665-5666
 F: 0512-6665-9138
 C: 86
 40150 Shah Alam, Selangor, Malaysia P: 03-7803-8859 F: 03-7806-5982 No 36 Jalan kikik Taman Inderawasih 13600 Praj Penang Malaysia F: 04-3991830 P: 04-3902275 No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China P: 0512-5796-3000 F: 0512-5796-3300 C: 86 JOHOR BAHRU 88 Jalan Ros Merah 2/17, Taman Johor Jaya, 81100 Johor Bahru, Johor, Malaysia P: 07-3546290 F: 07-3546291 C: 60 KOTA KINABALU Lot 10, Lrg Kurma 4, Likas Ind. Centre, 5/12 Miles Jln Tuaran, 88450 Inanam, NSK (SHANGHAI) TRADING CO., LTD. No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China P: 0512-5796-3000 F: 0512-5796-3300 C: 86 Sabah, Malaysia F: 088-421261 P: 088-421260 NSK (CHINA) INVESTMENT CO., LTD. www.nsk.com.cn Gr. Floor, 89 Jalan Bendahara, 31650 Ipoh, Perak, Malaysia HEAD OFFICE No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China P: 0512-5796-3000 F: 0512-5796-3300 C: 86 P: 05-2555000 F: 05-2553373 C: 60 NSK MICRO PRECISION (M) SDN. BHD. www.my.nsk.com BELING Room 2116, Beijing Fortune Bldg., 5 Dong San Huan Bei Lu, Chao Yang District, MALAYSIA PLANT No.43 Jalan Taming Dua, Taman Taming Jaya 43300 Balakong, Selangor Darul Ehsan, Beijing, China (100004) P: 010-6590-8161 F: 010-6590-8166 C: 86 Malayeia P: 03-8961-3960 F: 03-8961-3968 C: 60 GUANGZHOU Room 3101/3102/3106A Guanadona Telecom Plaza, 18 Zhonashan Er Road New Zealand: Guangzhou, Guangdong, China (510080) NSK NEW ZEALAND LTD. www.nsk-rhp.co.nz C: 86 P: 020-3786-4833 F: 020-3786-4501 3 Te Apunga Place, Mt. Wellington, Auckland, New Zealand P: 09-276-4992 F: 09-276-4082 C: 64 ALICKI AND CHENGDU Room1901, Green Land Hotel, No.99 Zhonglieci Xi Street, Chengdu, Sichuan Province, China (610016) P: 028-8661-4200 F: 028-8661-4343 C: 86 NSK REPRESENTATIVE OFFICE NSK CHINA SALES CO., LTD. 8th Floor The Salcedo Towers 169 H.V. dela Costa St., Room 01-03, Tower B 27F, Far East International Plaza, No.317 Xianxia Road, Salcedo Village Makati City, Philippines 1227 Shanghai, China (200051) F: 02-893-9173 P: 02-893-9543 P- 021_6235_0198 F- 021_6235_1858 C- 86 Singapore CHANGCHUN

NSK Ltd. has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and without any obligation on the part of the manufacturer. Every care has been taken to ensure the accuracy of the data contained in this brochure, but no liability can be accepted for any loss or damage suffered through errors or omissions. We will gratefully acknowledge any additions or corrections.

SINGAPORE

TAIPEI

TAINAN

TAICHUNG

NSK INTERNATIONAL (SINGAPORE) PTE LTD.

P: 6496-8000

P: 02-2509-3305

P: 06-505-5861

TAIWAN NSK PRECISION CO. LTD.

NSK SINGAPORE (PRIVATE) LTD. www.nsk-singapore.com.sg

238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684 P: 6496-8000 F: 6250-5845 C: 65

238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684

11F., No.87, Song Jiang Rd., Jhongshan District, Taipei City 104, Taiwan R.O.C.

No.8 Daye 1st Rd., Southern Taiwan Science Park, Tainan County 741, Taiwan R.O.C.

C: 886

C: 886

F: 6250-5845

F: 02-2509-1393

F: 06-505-5061

F: 04-2311-2627

107-7, Sec. 3, Wen Xing Rd., Taichung City 407, Taiwan R.O.C.

Worldwide Sales Offices and Manufacturing Plants

	FECHNOLOGY CO., LTD.		United Kingdor	m:
TAIPEI	11F., No. 87, Songjiang Rd., Jhongshan District, Taipei City	104, Taiwan R.O.C.	NSK BEARING	S EUROPE LTD.
	P: 02-2509-3305 F: 02-2509-1393 C: 886		PETERLEE PLANT	3 Brindley Road, South West Industrial Estate, Peterlee, Co. Durham SR8 2JD, U. P: 0191-586-6111 F: 0191-586-3482 C: 44
Thailand:	S (THAILAND) CO.,LTD.		PLAN I NEWARK	P: 0191-586-6111 F: 0191-586-3482 C: 44 Northern Road, Newark, Nottinghamshire NG24 2JF, U.K.
BANGKOK	26 Soi On-Nuch 55/1 Pravet District, Bangkok 10250, Thaila	ind	PLANT	P: 01636-605-123 F: 01636-605-000 C: 44
	P: 02320-2555 F: 02320-2826 C: 66			AN TECHNOLOGY CENTRE
	S MANUFACTURING (THAILAND) CO., LTD.		NEWARK	Northern Road, Newark, Nottinghamshire NG24 2JF, U.K.
OFFICE/PLANT	700/430 Moo 7, Amata Nakom Industrial Estate, T.Donhualo Chonburi 20000, Thailand	or, A.Muangchonburi,	NSK UK LTD.	P: 01636-605-123 F: 01636-643-241 C: 44
	P: 038-454-010 F: 038-454-017 C: 66		NEWARK	Northern Road, Newark, Nottinghamshire NG24 2JF, U.K.
SIAM NSK STE	ERING SYSTEMS CO., LTD.		1121774111	P: 01636-605-123 F: 01636-605-000 C: 44
OFFICE/PLANT	90 Moo 9, Wellgrow Industrial Estate, Km.36 Bangna-Trad R	Rd., Bangwao,	NSK PRECISIO	
	Bangpakong, Chachoengsao 24180, Thailand		PLANT	Northern Road, Newark, Nottinghamshire NG24 2JF, U.K. P: 01636-605-123 F: 01636-605-000 C: 44
NOV AGIA DAG	P: 038-522-343 F: 038-522-351 C: 66 FIFIC TECHNOLOGY CENTRE (THAILAND) CO., L	TD	NEW STEEDING	G SYSTEMS EUROPE LTD.
CHONBURI	700/430 Moo 7. Amata Nakorn Industrial Estate, T.Donhualo		HEAD OFFICE	Belmont Place, Belmont Road, Maidenhead, Berkshire SL6 6TB, U.K.
	Chonburi 20000, Thailand	.,,,		P: 01628-509-800 F: 01628-509-808 C: 44
	P: 038-454-631 F: 038-454-634 C: 66		PETERLEE	6/7 Doxford Drive, South West Industrial Estate, Peterlee, Co. Durham SR8 2PP, U.I
Vietnam:			PLANT	P: 0191-518-6400 F: 0191-518-6421 C: 44
NSK VIETNAM HEAD OFFICE	CO., LTD. Techno Center, Room 204-205, Thang Long Industrial Park,	Dong Anh District	No while an	ad Cauth Amarica
HEAD OFFICE	Hanoi, Vietnam	Dong Ann District,		nd South America
	P: 04-3955-0159 F: 04-3955-0158 C: 84			CAS, INC. (AMERICAN HEADQUARTERS)
NSK REPRESE	NTATIVE OFFICE		ANN ARBOR	4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A.
HO CHI MINH CITY	Suite 307, Metropolitan Building, 235 Dong Khoi Street, Distr P: 08-3822-7907 F: 08-3822-7910 C: 84	trict 1,HCMC, Vietnam	Argentina:	P: 734-913-7500 F: 734-913-7511 C: 1
	r. uo-sozz-7907 r: u8-3822-7910 C: 84		NSK ARGENTI	NA SRL
Eurana			BUENOS AIRES	Garcia del Rio 2477 Piso 7 Oficina "A" (1429) Buenos Aires-Argentina
Europe				P: 11-4704-5100 F: 11-4704-0033 C: 54
NSK EUROPE MAIDENHEAD	ELTD. (EUROPEAN HEADQUARTERS) WY Belmont Place, Belmont Road, Maidenhead, Berkshire SL6 6	ww.eu.nsk.com	Brazil:	TD4
** ADDITIOND	P: 01628-509-800 F: 01628-509-808 C: 44	015, O.N.	NSK BRASIL L' HEAD OFFICE	TDA. www.br.nsk.com Rua 13 de Maio, 1633-14th Andar-Bela Vista-CEP 01327-905 São Paulo, SP. Braz
France:			TILAD OTTIOL	P: 011-3269-4786 F: 011-3269-4720 C: 55
NSK FRANCE S	3.A.S.		SUZANO PLANT	Av. Vereador Joao Batista Fitipaldi, 66, CEP 08685-000, Vila Maluf, Suzano, SP, Braz
PARIS	Quartier de l'Europe, 2 Rue Georges Guynemer, 78283 Guya P: 01-30-57-39-39 F: 01-30-57-00-01 C: 33	ancourt, France		P: 011-4744-2527 F: 011-4744-2529 C: 55
Germanv:	P: 01-30-57-39-39 F: 01-30-57-00-01 C: 33		BELO HORIZONTE	Rua Ceara 1431-4th andar-sala 405-Funcionarios Belo Horizonte-MG, Brazil 30150-311
NSK DEUTSCH	ILAND GMBH			P: 031-3274-2591 F: 031-3273-4408 C: 55
HEAD OFFICE	Harkortsrasse 15, D-40880 Ratingen, Germany		JOINVILLE	Rua Blumenau, 178-sala 910-Centro Joinville-SC, Brazil 89204-250
	P: 02102-4810 F: 02102-4812-290 C: 49			P: 047-3422-5445 F: 047-3422-2817 C: 55
STUTTGART	Liebknechtstrasse 33, DE-70565 Stuttgart-Vahingen, Germa	any	PORTO ALEGRE	Av. Cristovão Colombo, 1694-sala 202-Floresta Porto Alegre-RS, Brazil 90560 00
WOLESBURG	P: 0711-79082-0 F: 0711-79082-289 C: 49 Heinrich-Nordhoff-Strasse 101, D-38440 Wolfsburg, German		BECIFE	P: 051-3222-1324 F: 051-3222-2599 C: 55
WOLFSBUNG	P: 05361-27647-10 F: 05361-27647-70 C: 49	ily	RECIFE	Av. Conselheiro Aguiar, 2738-6th andar-conj. 604-Boa Viagem Recife-PE, Brazil 51020-02 P: 081-3326-3781 F: 081-3326-5047 C: 55
INGOLDSTADT	Ingoldstadt, D-85055 Ingoldstadt, Germany		Canada:	1.001-0020-0701 1.001-0020-0047 0.00
	P: 0841-901-4640 F: 0841-901-4642 C: 49		NSK CANADA	INC. www.ca.nsk.com
NSK PRECISIO	ON EUROPE GMBH		HEAD OFFICE	5585 McAdam Road, Mississauga, Ontario, Canada L4Z 1N4
DÜSSELDORF	Harkortsrasse 15, D-40880 Ratingen, Germany P: 02102-4810 F: 02102-4812-290 C: 49		TORONTO	P: 905-890-0740 F: 800-800-2788 C: 1 5585 McAdam Road, Mississauga, Ontario, Canada L4Z 1N4
NEUWEG FERT	TIGUNG GMBH		TORONTO	P: 877-994-6675 F: 800-800-2788 C: 1
OFFICE/PLANT	Ehinger Strasse 5, D-89597 Munderkingen, Germany		MONTREAL	2150-32E Avenue, Lachine, Quebec, Canada H8T 3H7
	P: 07393-540 F: 07393-5414 C: 49			P: 514-633-1220 F: 800-800-2788 C: 1
Italy:			VANCOUVER	3353 Wayburne Drive, Burnaby, British Columbia, Canada V5G 4L4
NSK ITALIA S.I	P.A. Via Garibaldi 215. Garbagnate Milanese (Milano) 20024. Italy	,	Mexico:	P: 877-994-6675 F: 800-800-2788 C: 1
	P: 0299-5191 F: 0299-028373 C: 39		NSK RODAMIE	NTOS MEXICANA, S.A. DE C.V. www.mx.nsk.com
INDUSTRIA CU	JSCINETTI S.P.A.		MEXICO CITY	Av. Presidente Juarez No.2007 Lote 5, Col. San Jeronimo Tepetlacalco,
TORINO PLANT	Via Giotto 4, I-10080, S. Benigno C. se (Torino), Italy			Tlalnepantla, Estado de Mexico, Mexico, C.P.54090
Nathaul	P: 011-982-4811 F: 011-988-0284 C: 39			P: 55-3682-2900 F: 55-3682-2937 C: 52
Netherlands: NSK FUROPE	AN DISTRIBUTION CENTRE B.V.		United States	of America: ATION www.us.nsk.com
LUNUFER	De Kroonstraat 38, 5048 AP Tilburg, Netherlands		HEAD OFFICE	4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A.
	P: 013-4647647 F: 013-4647648 C: 31		. IL IS STITUE	P: 734-913-7500 F: 734-913-7511 C: 1
Poland:			NSK AMERICAN	4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A.
	LTD. REPRESENTATIVE OFFICE		TECHNOLOGY CENTER	P: 734-913-7500 F: 734-913-7511 C: 1
WARSAW	Ul. Migdalowa 4/73, 02-796, Warsaw, Poland P: 022-645-1525 F: 022-645-1529 C: 48		CLARINDA PLANT	
NSK BEARING	P: 022-645-1525 F: 022-645-1529 C: 48 S POLSKA S.A.		EDVNKI IN DI VVIT	P: 712-542-5121 F: 712-542-4905 C: 1 3400 Bearing Drive, Franklin, Indiana 46131, U.S.A.
OFFICE/PLANT	UI. Jagiellonska 109, 25-734 Kielce, Poland		. HANKEIN FEAINT	P: 317-738-5000 F: 317-738-5050 C: 1
	P: 041-366-5001 F: 041-367-0500 C: 48		LIBERTY PLANT	1112 East Kitchel Road, Liberty, Indiana 47353, U.S.A.
NSK EUROPE	AN TECHNOLOGY CENTER, POLAND OFFICE			P: 765-458-5000 F: 765-458-7832 C: 1
	UI. Jagiellonska 109, 25-734 Kielce, Poland P: 041-366-5812 F: 041-366-5206 C: 48		NSK PRECISIO	ON AMERICA, INC. www.npa.nsk.com
NSK STEEDIN	P: 041-366-5812 F: 041-366-5206 C: 48 G SYSTEMS EUROPE (POLSKA) SP.ZO.O.		OFFICE/PLANT	3450 Bearing Drive, Franklin, Indiana 46131, U.S.A. P: 317-738-5000 F: 317-738-5050 C: 1
CORPORATE	Ul. Mariana Jachimowicza 17, 58-306 Walbrzych, Poland		SAN JOSE	P: 317-738-5000 F: 317-738-5050 C: 1 780 Montague Expressway, Suite 508, San Jose, California 95131, U.S.A.
OFFICE/PLANT	P: 074-664-4101 F: 074-664-4104 C: 48		3,114 000E	P: 408-944-9400 F: 408-944-9405 C: 1
NSK NEEDLE E	BEARING POLAND SP.ZO.O.		NSK STEERING	G SYSTEMS AMERICA, INC. www.nssa.nsk.com
OFFICE/PLANT	UL. Jagiellonska 109, 25-734 Kielce, Poland		OFFICE/PLANT	110 Shields Drive, Bennington, Vermont 05201, U.S.A.
NSK POLSKA S	P: 041-345-2469 F: 041-345-0361 C: 48		ANNI APPOD	P: 802-442-5448 F: 802-442-2253 C: 1
NSK POLSKA : KIELCE	UI. Karczowkowska 41, 25-711 Kielce, Poland		ANN ARBOR	4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A. P: 734-913-7500 F: 734-913-7102 C: 1
	P: 041-347-5110 F: 041-347-5101 C: 48		NSK-WARNER	
Spain:			TROY	3001 West Big Beaver Road, Suite 701, Troy, Michigan 48084, U.S.A.
NSK SPAIN S.A				P: 248-822-8888 F: 248-822-1111 C: 1
BARCELONA	C/Tarragona 161, 2ª Planta, 08014, Barcelona, Spain P: 093-433-5775 F: 093-433-5776 C: 34			IERICA, INC. www.la.nsk.com
Turkove	P: U93-433-57/5 P: U93-433-57/6 C: 34		MIAMI	2500 NW 107th Avenue, Suite 300, Miami, Florida 33172, U.S.A.
	ARLORTA DOGUTIC LTD STI			P: 305-477-0605 F: 305-477-0377 C: 1
Turkey: NSK RULMANI ISTANBUL	LARI ORTA DOGU TIC. LTD. STI. 19 Mayis Mah. Ataturk Cad. Ulya Engin Is Merkezi No. 68 Ka	at. 6, Kozyatagi		P: 305-477-0605

NSK Ltd. has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and without any obligation on the part of the manufacturer. Every care has been taken to ensure the accuracy of the data contained in this brochure, but no liability can be accepted for any loss or damage suffered through errors or omissions. We will gratefully acknowledge any additions or corrections.

For the latest information, please refer to the NSK website.

34734, Istanbul, Turkey

P: 0216-355-0398 F: 0216-355-0399 C: 90

INSTALLATION OF NSK LINEAR GUIDES™

NSK Ltd.

NSK Linear Guide™: Handling Precautions

NSK linear guides are high quality and are easy to use. NSK places importance on safety in design. For maximum safety, please follow precautions as outlined below.

(1) Lubrication

Confirm lubrication.

- a. If your linear guide is rust prevention specification, thoroughly wipe the rust prevention oil, and put lubricant inside of slide before using.
- b. If you are using oil as lubricant, the oil may not reach the raceway depending on how the slide is installed. Consult NSK in such case.

(2) Handling

Handle with care.

Do not drop.

Do not disassemble.

Do not give impact.

- a. Random-matching slides are installed to the provisional rail when they leave the factory. Handle the slide with care during installation to the rail.
- b. Do not disassemble the guide unless absolutely necessary. Not only does it allow dust to enter, but it lessens precision.
- c. Slide may move by simply leaning the rail. Make sure that the slide does not disengage from the rail.
- d. Standard end cap is made of plastic. Beating it or hitting it against an object may cause damage.

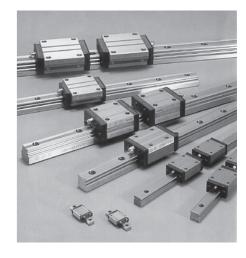
(3) Precautions in use

Do not contaminate. Temperature limitation.

Do not hang upside down.

- a. Make every effort not to allow dust and foreign objects to enter.
- b. Please apply splash guard or bellows to the linear quide to prevent sticking resolvent or cooland when it contains corrosive material.
- c. The temperature of the place where linear guides are used should not exceed 80°C (excluding heat-resistant type linear guides). A higher temperature may damage the plastic
- d. If the user cuts the rail, thoroughly remove burrs and sharp edges on the cut surface.
- e. When hanging upside-down (e.g. the rail is installed upside-down on the ceiling in which the slide faces downward), should the end cap be damaged, causing the balls or rollers to fall out, the slide may be detached from the rail and fall. For such use, take measures including installing a safety device.

(4) Storage

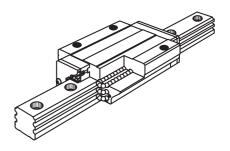


Store in the correct position.

a. Linear guide may bend if the rail is stored in inappropriate position. Place it on a suitable surface, and store it in a flat position.

Installation of NSK Linear Guides™ [No.1 Machine Tools]

We thank you very much for your patronage of NSK linear guides. This manual describes the procedure for handling of NSK Linear Guides and installation in machine tools with the prescribed accuracy.



We recommend two types of NSK linear guides for the machine tools application. One is RA Series that offers high rigidity, highly reliable durability and high impact load carrying capacity. The other is LA Series that has been widely accepted in the field.

NSK Linear Guides are composed of a rail that governs linear motion of slides, and slides containing recirculating rolling elements that allow smooth movement and retain rigidity of a machine's table or saddle.

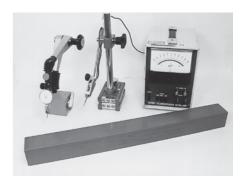
Note: Be aware that balls of LA Series fall out a ball slide when it is removed from a rail.


Before installing linear guides for the first time, we recommend a trial installation to gain experience with the procedure. In this trial installation, carefully measure the accuracy of the mounting surfaces on the machine and the accuracy of the linear guides to clarify the relation with the required table accuracy. This will enable you to judge the required accuracy of the machine base and accuracy grade of linear guides, as well as how and what degree you have to measure related accuracy, so that no problems will arise after the machines are finally put into mass production. When installing linear guides for the first time, carefully follow the procedure in this manual.

Remove burrs and roughness on the machine base mounting surfaces with an oil stone or other such stone. Then clean the surfaces with thinner or other volatile fluid.

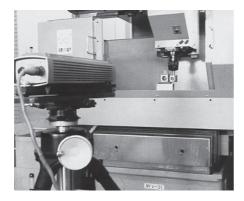
Highly precise measurements of the machine base are necessary; therefore, appropriate instruments in good condition must be used. Suitable instruments are described next.

The motion of any object can be separated into six "degrees of freedom": three angular movements (pitching, yawing, and rolling) and three linear movements (longitudinal, vertical, and lateral).



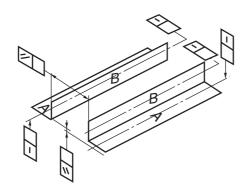
Instruments, which are suitable for only specific measurements, must be maintained and used properly.

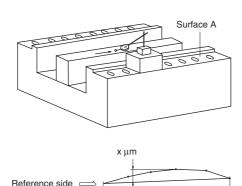
Most levels utilize bubbles in a fluid, but some are electric and have a digital indicator. Both types can measure angular wobble in pitching and rolling.


A good straightedge and a dial indicator or an electrical micrometer can be used under the ordinarily conditions to measure pitching, yawing, and rolling as well as vertical and lateral movements.

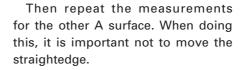
Autocollimators measure angular movement using reflected light, so they can measure pitching and yawing accurately.

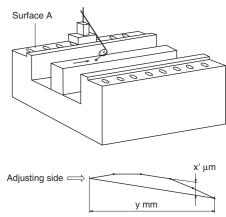
Laser interferometer can read pitching, yawing, and linear movement with high accuracy; however, it is not practical since it is hard to handle and requires much time for the setting.

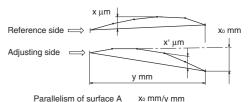



For the purposes of this manual, the combination of a straightedge and a dial indicator was chosen, with an autocollimator and a level used for reference.

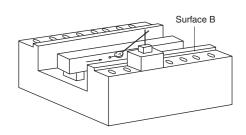
The machine base mounting surfaces are designated here as "A" for the rail bottoms and "B" for the rail sides.

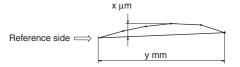

The linearity and parallelism of these surfaces are measured in the following manner.


To measure the linearity of each A surface, place a suitable measuring block on one surface and attach a dial indicator to it with its stylus on a straightedge lying parallel to surface A. Holding the block firmly against surface B with both hands, slide the block along surface A for a specified step, record the measurement, then repeat the same to the end of the rail.

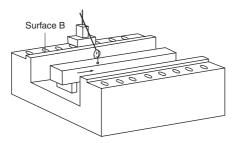


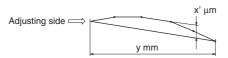
y mm

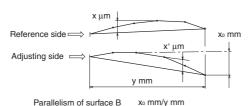




From the measurements of the two A surfaces, determine their Reference side == parallelism.




To measure the linearity of the two B surfaces of the machine base, use an arrangement similar to that for the A surfaces but with the dial indicator stylus against the side of the straightedge.

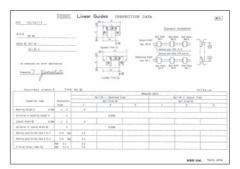


In this case also, the straightedge must not be moved.

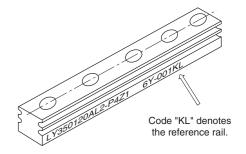
The measurements of the two B surfaces also determine their parallelism.

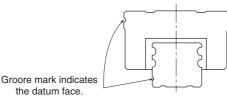
The accuracy measurement of the linear guide mounting surfaces is now complete. The linear guides should be carefully installed using the following procedure.

NSK linear guides are packed in corrugated cardboard boxes. Generally we pack the linear guides for machine tools as a pair in the shipping container.

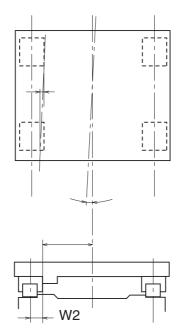

The linear guides are first wrapped in vinyl sheets and placed in their boxes together with an inspection sheet.

Caps for the rail mounting holes are also included if requested by the customer.


For the P3, P4 and P5 accuracy grades, actual inspection data are listed on the inspection sheets. For the P6 and PN accuracy grades, the inspection certificate are stamped to indicate compliance with the specifications.


Remove the vinyl wrapping and look for the reference and production numbers on the sides of the rails and slides.

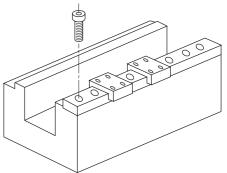
The reference rail is distinguished from the adjusting side rail by the letters KL following the production number on the rail side.


Both rails and all slides are marked with groove mark that designate the datum face.

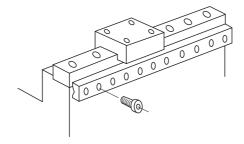
Groore mark indicates

The two rails look similar but one of them is the reference rail that has controlled dimensional variation on the slide datum faces against that of the rail, that mate with corresponding surfaces on the table. If other slides are installed against the table's reference side surface, the table will be skewed as shown by the alternate long and short dash lines in the figure. In the case of twoaxis (Cartesian type) tables, accurate squareness of two-axis cannot be obtained.

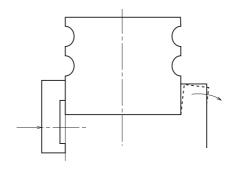
Generally, no reference side face is provided on the table for the other rail; therefore, the slide face variation is not controlled so closely. This rail is called the "adjusting side rail."



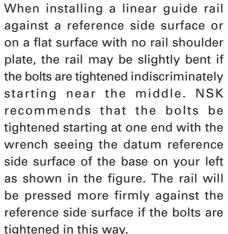
The bottoms of the rails have been coated with rust preventive oil, so wipe it off thoroughly with a clean soft cloth.

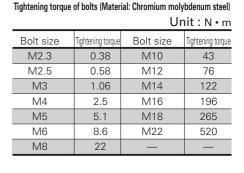


Place a linear guide on the machine base as it is ready for installation.


Temporarily tighten its mounting bolts lightly so that the rail's bottom is firmly against the base.

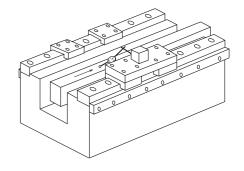
Then install the shoulder plate to press the rail against the opposing surface and tighten the bolts firmly with a wrench. The tightening torque depends on the rigidity of the machine base. In the case of high rigidity, tighten the bolts uniformly with the specified torque.

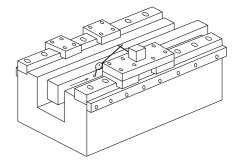



If the machine base is not highly rigid, first tighten temporarily the bolts of shoulder plate so that the rail contacts closely to the datum side surface. Then tighten them again firmly after retightening the rail mounting bolts. Even if there is any bending of NSK linear guide rails, it is a simple curvature and the amount is small, so the bolts do not have to be too tight.

The main purpose of the shoulder plate is to prevent the rail from being disturbed in case of an accident or other troubles. Therefore, tighten the rail mounting bolts firmly and then, tighten the side plate bolts.

In NSK linear guides, the mounting holes are processed after heat treatment using a precision machining center; therefore, the hole pitch accuracy is as good as the positioning accuracy of the machine, which is considered very good.

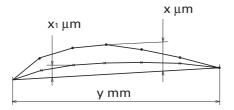



Near side

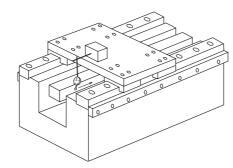
_4

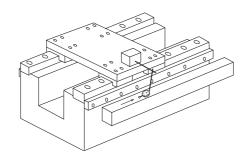
After installing the linear guides as explained above, mount a steel plate on the pair of slides on one rail and measure the pitching by following the same procedure used for inspecting the machine base reference surfaces.

Measure the yawing in the same way and compare the data with that obtained for the machine base reference surfaces to find the variation caused by the installation of the guides.

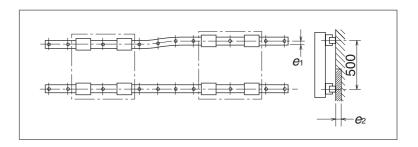


Rails of linear guides will deform to fit the contour of the machine base; i.e., they will become concave if the machine base is concave. If it is not attained, use care when taking measurements since vibration of the machine or floor will cause trouble.


Finally, install the table, saddle, or interim table and check the accuracy of the entire assembly. The linearity of the completed assembly should be better than that for individual slides; however, this depends on the rigidity of the machine and the installing accuracy.


The measurements obtained are important characteristics of each machine built, and are essential data for your installation work instruction at the mass production.

If you removed rust preventive oil or grease from surfaces of the linear guides when installing linear guides, we recommend supplying a rust preventive oil or grease on rail surfaces after installation.



The installation of linear guides is easy if the instructions in this manual are followed carefully. If the accuracy is sufficiently poor to shorten the life of the linear guides, the frictional force will increase, which will serve as a warning. The allowable errors, which are shown below for the LA Series, consist of the error in parallelism (e_1) and error in height (e_2) of the two rails.

Recommended allowable installation error of the LA Series (Maximum)

Unit:µm

		Model number						
Item	Preload code	LA25	LA30	LA35	LA45	LA55	LA65	
Permissible values of	Z3	15	17	20	25	30	40	
parallelism in two rails e ₁	Z4	13	15	17	20	25	30	
Permissible values of parallelism (height) in two rails e ₂	Z3, Z4	185/500mm						

If the errors are smaller than the values in the preceding table, there should be no trouble. Naturally, errors should be as small as possible to achieve the highest performance and reliability of your products.

The procedure for installing linear guides is not too difficult, but care is required. In case of an improper installation, it is necessary to remove them and check all the related parts; however, we hope this will never be necessary. Many machine tool builders install linear guides regularly with no difficulty by following the procedure that is modified to meet their way of chekings based on this manual.

For assistance or more information, please contact an NSK branch office.

Assembly and Installation of NSK Linear Guides™ (No. 2: General Industrial Machines)

Thank you for choosing NSK linear guides. This manual briefly describes the recommended handling and installation of NSK linear guides for general industrial use.

There are two ways installing the linear guides into general industrial machines. One of them provides a datum shoulder on the mounting base of the machine for accurate horizontal alignment the same as the way for machine tools, while the other is not required a datum shoulder. Refer to "No.1 Machine Tools" for installation procedure that requires a datum shoulder for accurate horizontal alignment. The installation procedure described in this manual assumes that the datum shoulder is not required for horizontal alignment.

NSK recommends random-matching LH and LS Series linear guides for general industrial application because they feature self-aligning capability better suited to tolerate some misalignment, interchangeability between the rails and ball slides for ease of addition of number of ball slides and their replacement, and standardized stock for short delivery times.

For random-matching LH and LS Series linear guides, the ball slides and the rails are stocked separately. The ball slides are mounted on plastic provisional rails that allows for easy transfer of the ball slide to and from the steel rail.

The ball slides are designed with retainers to prevent the balls from falling out when they are removed from the rail. However, NSK recommends that the ball slide should be stored on a provisional rail prior to installation to prevent contamination from dust and other foreign objects.

The following is a description of how the ball slide should be removed from and replaced on the linear guide rail.

The ball slide is held on the provisional rail using a rubber band. The rubber band should catch the bottom channel in the provisional rail and then twist around to secure the ball slide.

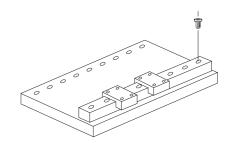
When transferring the ball slide from the provisional rail onto the rail, or vice versa, butt the provisional rail up against the rail and slide the ball slide directly from one onto the other. It is a good idea to secure the ball slide onto the provisional rail with a rubber band after removal from the rail.

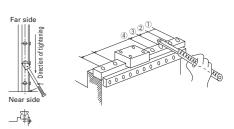
If a ball is accidentally dropped from the ball slide, it should be cleaned and replaced to the appropriate groove. The correct groove can be determined by the size of the clearance between the balls (the groove missing the ball will have greater clearance than the other grooves). It is normal to have a gap of 1.5 ball diameters in each groove.

The following section describes how to install the linear guides on the machine.

Ball slides and rails are supplied separately. Each is wrapped in vinyl sheet, and packed in a container. Each container has a certificate of inspection included.

Caps for rail mounting holes are available upon request.

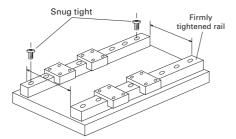

The certificate of inspection included with every rail and ball slide is NSK's guarantee of quality. If you should have any questions about the quality, please feel free to contact your local NSK branch office.


The rail is always shipped with rust preventive oil, which should be wiped off with a clean soft cloth before applying grease to the rail. Ball slides are prepacked with NSK standard grease, so no cleaning is required prior to installation.

Now the linear guide is ready for installation. Put it on a mounting surface.

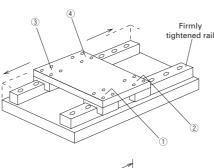
Temporarily tighten its mounting bolts lightly so that the rail's bottom is firmly against the base.

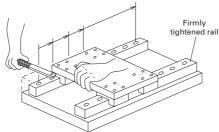
Then tighten the bolts firmly with torque wrench to the specified torque starting from the one end.



In NSK linear guides, the mounting holes are processed after heat treatment using a precision machining center; therefore, the hole pitch accuracy is as good as the positioning accuracy of the machine, which is considered very good.

When installing a linear guide rail on a flat surface the same as this case, the rail tends to be slightly bent in the shape of S letter if the bolts are tightened indiscriminately starting near the middle because of friction at the seat of bolt head. NSK recommends that the bolts be tightened starting at one end with the wrench as shown in the above figure.


The rail that has been tightened can now be used as a reference rail. Using a vernier calipers or other accurate tool, measure the distance between the two rails, and adjust each end until they are the same. Tighten a bolt snugly at each end of the rail.


The next step is to install the table, and to use the table to align the rails.

Firmly bolt the table to ball slides 1 and 2 on the firmly secured rail as shown in the diagram. Then position ball slide 3 at the left end of the adjusting rail, and bolt the table to this ball slide. Move the ball slide 3 to right and bolt the table to the ball slide 4.

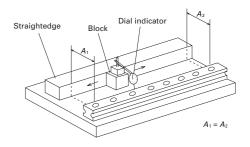
Move the table to one end of the rails, and start tightening the adjusting rail bolts sequentially to the specified torque while checking excessive friction of table movement. Continue moving the table down the rail tightening each adjacent bolt until they have all been tightened.

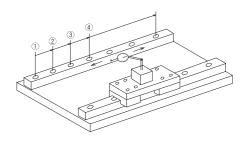
If you removed rust preventive oil or grease from surfaces of the linear guides when installing linear guides, we recommend supplying a rust preventive oil or grease on rail surfaces after installation.

As described above, installation of the linear guides is not difficult work if you carefully follow the above procedure.

However, objective of the preceding procedure is only for an assembly of the table that moves smoothly. If you need to control motion accuracy of the table (straightness), it requires to add the following procedure.

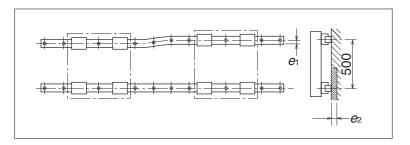
When bolting the first rail on the machine base, align it straight using a straightedge and a dial indicator.


Bolt on the rail at the both ends lightly, and position a straightedge beside it. Set the straightedge parallel to the rail measuring distance A1 and A2 by a vernier calipers or some other accurate measuring tool.


Move the dial indicator along the straightedge, and take readings at every bolt hole along the rail. Make fine adjustment of the rail to the straightedge until the desired reading is made, and tighten the bolt to the specified torque.

When all of the bolts have been tightened, slide the dial indicator from one end of the rail to the other to ensure that the desired straightness has been achieved.

Position the dial indicator on two ball slides on the reference rail as shown in the diagram. Tighten bolts of the adjusting side rail sequentially from the one end while noting the reading of the dial indicator.


Straightness of NSK linear guides is controlled so that it can be easily adjusted manually for easy installation.

In order to maintain stable production of the tables, we recommend to install the linear guides while checking the alignment accuracy quantitatively even smooth operation is the least requirement. As the final part of the manual, this section describes the allowable tolerances for installation in order to maximize the performance of NSK linear guides.

We recommend that the mounting errors e_1 and e_2 do not exceed the values shown in the table below.

Recommended allowable installation error of the LS Series (Maximum)

Item	Preload	Model number							
item	code	LS15	LS20	LS25	LS30	LS35			
Permissible values	Z0, ZT	20	22	30	35	40			
of parallelism in two	Z1, ZZ	15	17	20	25	30			
rails: e ₁	Z3	12	15	15	20	25			
Permissible values of	Z0,ZT	375 μm/500 mm							
parallelism (height) in two rails : e ₂	Z1, ZZ, Z3	330 μm/500 mm							

Recommended allowable installation error of the LH Series (Maximum)

	Preload	Model number										
	code	LH08	LH10	LH12	LH15	LH20	LH25	LH30	LH35	LH45	LH55	LH65
Permissible values	Z0, ZT	9	12	19	22	30	40	45	55	65	80	110
	Z1, ZZ	8	11	18	18	20	25	30	35	45	55	70
	Z3	_	_	_	13	15	20	25	30	40	45	60
Permissible values of parallelism (height) in two rails: e ₂	Z0, ZT	375 μm/500 mm										
	Z1, ZZ, Z3		330 μm/500 mm									

If the errors are smaller than the values in the preceding tables, there should be no trouble. Naturally, errors should be as small as possible to achieve the highest performance and reliability of your products.

The procedure for installing linear guides is not too difficult, but care is required. In case of an improper installation, it is necessary to remove them and check all the related parts; however, we hope this will never be necessary.

Please contact your local NSK branch office for any questions regarding the installation of NSK linear guides.

Worldwide Sales Offices

NSK LTDHEADQUARTERS, TOKYO, JA NDUSTRIAL MACHINERY BUSINESS DIVISION-HEADQUARTERS		Indonesia: PT. NSK INDONESIA	www.id.nsk.com	Poland: NSK EUROPE LTD. WARSAW LI	AISON OFFICE
GLOBAL AFTERMARKET DEPARTMENT		Jakarta	tel: 021-252-3458	Warsaw	tel: 022-645-1525
PRECISION MACHINERY DEPARTMENT		Korea:		NSK EUROPEAN TECHNOLOGY CEN	
MECHATRONICS BUSINESS DEPARTMENT		NSK KOREA CO., LTD.	www.kr.nsk.com	Kielce	tel: 041-366-5812
AUTOMOTIVE BUSINESS DIVISION-HEADQUARTERS		Seoul	tel: 02-3287-0300	NSK STEERING SYSTEMS EUROPE	
Africa		Changwon	tel: 055-287-6001	Walbrzych	tel: 074-664-4101
South Africa:		Malaysia: NSK BEARINGS (MALAYSIA) SDN.BH	D	NSK NEÉDLE BEARING POLAN Kielce	tel: 041-345-2469
NSK SOUTH AFRICA (PTY) LTD.		Shah Alam	tel: 03-7803-8859	NSK POLSKA SP.ZO.O.	tel. 041-345-2469
Johannesburg	tel: 011-458-3600	New Zealand:	tel. 03-7603-6639	Kielce	tel: 041-347-5110
Asia and Oceania		NSK NEW ZEALAND LTD.	www.nsk-rhp.co.nz	Spain:	101.041 041 0110
Australia:		Auckland	tel: 09-276-4992	NSK SPAIN S.A.	
NSK AUSTRALIA PTY, LTD.	www.au.nsk.com	Philippines:		Barcelona	tel: 093-433-5775
Melbourne	tel: 03-9764-8302	NSK REPRESENTATIVE OFFIC		Turkey:	
China:		Manila	tel: 02-893-9543	NSK RULMANLARI ORTA DOGI	
NSK HONG KONG LTD.		Singapore: NSK INTERNATIONAL (SINGAL	OODE) DIE LID	Istanbul United Kingdom:	tel: 0216-355-0398
Hong Kong	tel: 2739-9933	Singapore Singapore	tel: 6496-8000	NSK EUROPEAN TECHNOLOGY	CENTRE
Shenzhen	tel: 0755-25904886	NSK SINGAPORE (PRIVATE) LTD. www.n		Newark	tel: 01636-605-123
KUNSHAN NSK CO., LTD.		Singapore	tel: 6496-8000	NSK UK Ltd.	101. 0 1000 000 120
Kunshan	tel: 0512-5771-5654	Taiwan:	101.0100 0000	Newark	tel: 01636-605-123
CHANGSHU NSK NEEDLE BEAF	RING CO., LTD.	TAIWAN NSK PRECISION CO.,		NSK PRECISION UK LTD.	
Jiangsu	tel: 0512-5230-1111	Taipei	tel: 02-2509-3305	Newark	tel: 01636-605-123
NSK STEERING SYSTEMS DON	tel: 0769-2262-0960	TAIWAN NSK TECHNOLOGY C		NSK STEERING SYSTEMS EUR	OPE LTD.
Dongguan NSK (CHINA) RESEARCH & DEVEL		_Taipei	tel: 02-2509-3305	Maidenhead	tel: 01628-509-800
Jiangsu	tel: 0512-5796-3000	Thailand: NSK BEARINGS (THAILAND) C	O LTD	North and South America	
NSK (SHANGHAI) TRADING CO.		Bangkok	tel: 02320-2555	NSK AMERICAS, INC. (AMERICAI	
Jiangsu	tel: 0512-5796-3000	SIAM NSK STEERING SYSTEM		Ann Arbor Argentina:	tel: 734-913-7500
NSK (CHINA) INVESTMENT CO.,	ITD	Chachoengsao	tel: 038-522-343	NSK ARGENTINA SRL	
Jiangsu	tel: 0512-5796-3000	NSK ASIA PACIFIC TECHNOLOGY CENT	ER (THAILAND) CO., LTD.	Buenos Aires	tel: 11-4704-5100
Beijing	tel: 010-6590-8161	Chonburi	tel: 038-454-631	Brazil:	tol. 11 4704 0100
Guangzhou	tel: 020-3786-4833	Vietnam:		NSK BRASIL LTDA.	www.br.nsk.com
Chengdu	tel: 028-8661-4200	NSK VIETNAM CO., LTD.		Sãn Paulo	tel: 011-3269-4786
NSK CHINA SALES CO., LTD.		Hanoi NSK REPRESENTATIVE OFFIC	tel: 04-3955-0159	Canada:	
Shanghai	tel: 021-6235-0198	Ho Chi Minh City	tel: 08-3822-7907	NSK CANADA INC.	www.ca.nsk.com
Changchun	tel: 0431-8898-8682	Europe	tel. 06-3622-7907	Toronto Mexico:	tel: 905-890-0740
Tianjin	tel: 022-8319-5030	NSK EUROPE LTD. (EUROPEAN HEADQUARTER)	S) www.eu.nsk.com	NSK RODAMIENTOS MEXICANA, S.A. DE C.V	l ununu my nek eem
Nanjing	tel: 025-8472-6671	Maidenhead	tel: 01628-509-800	Mexico City	tel: 55-3682-2900
Chongqing	tel: 023-6806-5310	France:	161.01020-303-000	United States of America:	tol. 55 5002 2500
India:		NSK FRANCE S.A.S.		NSK CORPORATION	www.us.nsk.com
RANE NSK STEERING SYSTEMS Chennai	tel: 044-474-06017	Paris	tel: 01-30-57-39-39	Ann Arbor	tel: 734-913-7500
NSK INDIA SALES CO. PVT. LTD		Germany:		NSK AMERICAN TECHNOLOGY	CENTER
Chennai	tel: 044-2433-1161	NSK DEUTSCHLAND GMBH		Ann Arbor	tel: 734-913-7500
Gurgaon	tel: 0124-4104-530	Düsseldorf	tel: 02102-4810	NSK PRECISION AMERICA, INC.	www.npa.nsk.com
Kolkata	tel: 033-4001-2062	NSK PRECISION EUROPE GME	tel: 02102-4810	Franklin NSK STEERING SYSTEMS AMERICA, INC	tel: 317-738-5000
Mumbai	tel: 022-2838-7787	Düsseldorf Italv:	ter. 02 102-46 10	Bennington	tel: 802-442-5448
NSK-ABC BEARINGS LTD.	10 022 2000 7707	NSK ITALIA S.P.A.		NSK LATIN AMERICA, INC.	www.la.nsk.com
Chennai	tel: 044-2714-3000	Milano	tel: 0299-5191	Miami	tel: 305-477-0605
			0200 0101	- 0000	
					<as 2009="" july="" of=""></as>
			F	or the latest information, please refer	to the NSK website
			'	or the latest information, please relei	to the Hort Website.

NSK Ltd. has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. In the part of the manufacturer. Every care has been taken to ensure the part of the manufacturer. Every care has been taken to ensure the accountry of the data or continuous and the part of the manufacturer. Every care has been taken to ensure the accountry of the data or continuous the part of the manufacturer. Every care has been taken to ensure the accountry of the data contained in this brochure, but no liability can be accepted for any loss or damage suffered through errors or omissions. We will gratefully acknowledge any additions or corrections.

For more information about NSK products, please contact: -

