

B. Ball Screws

Preface

It is our pleasure to announce the publication of a new catalog which contains all NSK linear motion products. We believe this publication is one way to show our deep appreciation of your patronage.

Market demand for more sophisticated and diversified machines and equipment is rapidly escalating. NSK precision products are not only used widely in these machines, but also are crucial elements.

In response to this trend, ball screws, NSK linear guides, and Monocarriers, which are crucial mechanical components of these machines, are required to be highly reliable, maintenance-free, smaller in size and lightweight. They also are expected to heighten efficiency and satisfy uses in special environment.

Publishing a catalog to introduce our entire product line is especially meaningful under such circumstances.

This is an improved version of the previous catalog; products are categorized, and each product category has two sections. The first section contains an explanation of products for selection and a technical explanation including results of the latest experiments and research to assist thorough technological discussion. The second half is dimension tables. Last, "Other," whose pages are in color, explains special environments and lubrications such as grease, which are general issues for NSK precision products.

We hope abundant NSK products in the new catalog will be your aide in selecting the most suitable products for your purpose. We solicit your continued patronage.

Contents

A. NSK Linear Rolling Guide B. Ball Screws

A-1 Characteristics of NSK Linear Rolling Guides 1. Comparision of Rolling Guides and Sliding Guides
A-2 Types of NSK Linear Rolling Guides
A-3 Selection of NSK Linear Rolling Guides 1. Selection Flow Chart
11. Drills to Select Linear GuideA79 12. ReferenceA90
A-4 NSK Linear Guide™A91
A-5 Technical Description and Dimension Table for NSK Linear Guides 1. General Industrial UseA111 2. Liquid Crystal Display and Semiconductor
3. Machine Tools ———————————————————————————————————
A-6 Other Linear Rolling Guide Products 1. Linear Rolling Bushing

3. Linear Roller BearingsA341

B-1. Selection Guide to NSK Ball Screw	
1. Features of NSK Ball ScrewsB	
2. Structure of a Ball ScrewB	
3. Ball Screw SeriesB	
4. Procedures to Select Ball ScrewB1	
5. When Placing OrdersB3	1
B-2 Technical Description of Ball Screws	,
1. Accuracy B3	
2. Static Load Limitation B4	
3. Permissible Rotational Speed B4	7
4. Supporting Conditions for Calculation of	
Buckling Load and Critical SpeedB5	
5. Life (Dynamic Load Limitation) B5	
6. Preload and Rigidity B5	
7. Friction Torque and Drive Torque B6	
8. Even Load Distribution in Ball Nut (In Case	
of Ball Screws for High-Load Drive) B6	
9. Lubrication of Ball ScrewB6	
10. Dust Prevention for Ball ScrewB6	
11. Rust Prevention and Surface Treatment o	
Ball ScrewsB6	9
12. Ball Screw Specifications for Special	_
EnvironmentB7	
13. Noise and Vibration B7	-
14. Installation of Ball Screw	
15. Precautions for Designing Ball Screw-B8	
16. Shaft End MachiningB8	
17. Ball Screw Selection Exercise	
18. Reference	
19. Guide to Technical ServicesB10	2
20. Precautions When Handling Ball Screws	_
B10	3
B-3 Ball Screw Dimension Table	
	_
1. Standard Ball ScrewsB10	
2. Standard Nut Ball Screws	
3. Application-Oriented Ball Screws B49	ı

C. Monocarrier™

C	-1	Monocarrier™
	1.	Features C5
	2.	Classifications and SeriesC7
		AccessoriesCS
	4.	Selection of MonocarrierC10
	5.	MCM SeriesC23
	6.	MCH SeriesC71
С	-2	Toughcarrier™
	1.	FeaturesC93
	2.	Classifications and SeriesC93
		AccessoriesC95
	4.	Selection of Toughcarrier C96
	5.	TCH Series Dimension Table for Standard
		ProductsC109
	6.	AccessoriesC115
	7.	Motor Bracket Compatibility Table C128
	8.	Sensor Rail and Top Cover Unit
		Combination TableC129
	9.	Toughcarrier High-Thrust Series C132
C	-3	Technical Guide
Ŭ	1	Sensor Specifications
		Characteristics and Evaluation Method
	۷.	
	3	Special Specifications
		MaintenanceC139
		NSK Clean Greace LG2 Specifications
	J.	

D. Other

. Special Environments	D1
. Lubrication	D13
. RoHS Compliant	D24

E Appendices: Tables

1. Conversion from International System of
Units (SI)E1
2. Conversion Table between N and kgf ······ E3
3. Conversion Table between kg and lb E4
4. Conversion Table of Hardness E5
5. Deviations of Shafts Use in Common Fits
E7
6. Deviations of Holes Used in Common Fits
E9

BLOC

NSK Linear Rolling Guide Product

A-1 Characteristics of NSK Linear Rolling Guides 1. Comparison of Rolling Guides and Sliding Guides	4. Calculation of mean effective load
2. Characteristics of NSK Linear	1. Objective of preloadA28
A-2 Types of NSK Linear Rolling Guides	2. Preload and rigidity
	deformation
A-3 Selection of NSK Linear Rolling Guides	5. Application examples of preload
1. Selection Flow ChartA13 2. Rating Life and Basic Load Rating	6. Load and rating life when the preload is taken into account
2.1 Life and Basic Load RatingA15 1. LifeA15 2. Rating fatigue lifeA15 3. Basic load ratings in compliance with ISO standard	7. Calculating friction force by preload A31 4. Accuracy A32 1. Accuracy standard A32 2. Definition of accuracy A32 3. Application example of accuracy
4. Basic dynamic load ratingA15 5. Calculation of rating fatigue life	grade and preloadA34 4. Combination of accuracy grade and preloadA35
6. Dynamic equivalent loadA16 7. Basic static load ratingA16 8. Basic static moment load ratingA16	5. Maximum Rail Length
9. Basic load rating by load direction	7. Dust Proof A52 1. Standard specification parts A52 2. Dust-proof parts A53 8. Rust Prevention (Stainless Steel and Surface Treatment) A57 1. Stainless steel A57

equivalent loadA21

2. Surface treatment A57

9. Special Environment
processing equipment and medical devices" for sanitary environment
environments
guides for special environments
12. Reference
Guides

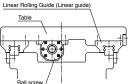
6. Design Precautions......A109

A-5 Technical Description and Dimension Table for NSK Linear Guides 1. General Industrial Use 1.1 NH Series A113 1.2 VH Series A133 1.3 TS Series A151 1.4 NS Series A157 A16 A17 A17 A37 A323 A323 A323 A324 A325

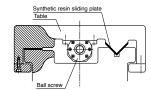
1.2 VH Series A133 1.3 TS SeriesA151 1.4 NS Series------A157 1.5 LW Series------A175 2. Liquid Crystal Display and Semiconductor 2.1 PU Series A191 2.2 LU SeriesA201 2.3 PE Series-------A213 2.4 LE Series......A223 2.5 Miniature LH Series A237 2.6 LL Series A247 3. Machine Tools 3.1 RA Series A253 3.2 LA SeriesA273 4. High-Precision Machine and High-Precision Measuring Equipment 4.1 HA Series A293 4.2 HS Series A307 5. The Comparative Table of New and Former Series------ A321

A-6 Other Linear Rolling Guide Products

1. Linear Rolling Bushing A3	323
2. Roller PackA3	334
3. Linear Roller Bearings A3	34


A-1 Characteristics of NSK Linear Rolling Guides

Characteristics of the NSK linear rolling guides are:

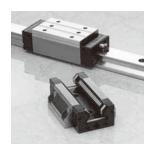

- Designs are simple and economic. This contributes to a highly accurate and low cost guide way system.
- Low friction coefficient facilitates a compact and low cost driving mechanism.
- Ultra-high purity of materials and superb processing technology ensure a long-term reliable operation.
- Prompt delivery thanks to a variety of interchangeable components.
- · Users can select the most suitable guide from a wide variety of the ball guides and roller guides.

A-1-1 Comparision of Rolling Guides and Sliding Guides

The following describes a characteristic comparison between general rolling and sliding guide ways.

Example of rolling guide

Example of sliding guide


Comparative characteristics of rolling and sliding guide ways

		-		
Function	Rolling guide	Sliding guide		
Friction	Friction coefficient: 0.01 or lower	Friction is high.		
	Difference between static and dynamic friction is small.	The difference between static and dynamic friction coefficient is significant.		
	The fluctuation of friction force due to varying speed is far less than sliding guides.			
Positioning accuracy	Lost motion is minimal.	Larger lost motion		
	Stick-slip is minimal.	Stick-slip at low speed		
	Easy to achieve sub-micron positioning	Difficult to achieve sub-micron positioning		
Life	Possible to estimate useful life	Difficult to estimate useful life		
Static rigidity	Generally high	Rigidity is great against load from a particular direction.		
	No play because of preload	• There is a mechanical play.		
	Easy to estimate rigidity	Difficult to estimate rigidity		
Speed	Wide range of use from low to high speed	 Unsuitable for extremely low or high speed 		
Maintenance, reliability	Long life through a simple maintenance	Precision is lost greatly by a worn out slide way surface		

In response to the demand for a high-speed, high-precision, high-quality, and easy maintenance, rolling guides which have above features are becoming prevalent.

Utilizing the technology we have sharpened in anti-friction rotating bearings, NSK makes various types of rolling linear guides which are highly accurate and reliable.

A-1-2 Structure and Characteristics of NSK Linear Guides

1. Structure of NSK Linear Guides

By avoiding structural complexity, and by reducing the number of components, we not only enhanced the precision of linear guides, but also are able to keep costs low. We have added NSK's patented unique structural feature to the original invention (**Fig. 1**). This contributes to higher precision and lower prices.

NSK linear guides consist of a rail and a slide (**Fig. 2**). The balls or rollers roll on the race way surface, and are scooped up by the end caps attached to both ends of the ball or roller slide. Then, the balls or rollers go through a passage made in the slide, and circulate back to the other end.

2. Characteristics of NSK Linear Guides

The use of a unique offset Gothic arch groove (Fig. 3) allows the ball type of NSK linear guides to satisfy groove designs required for specific purposes.

This unique ball groove design facilitates precise measurement of the ball groove, thus enabling the stable and highly accurate production of the rails and ball slides for random matching. (Fig. 4)

On top of that, we have developed and marketed the NSK Roller Guides, representing the culmination of NSK's analysis technology and tribology.

Such technologies ensure the features of NSK linear guides outlined below.

(1) High precision and quality

 High precision and quality come from our superb production and measuring technologies, strengthened by extensive experience in antifriction rotary bearings and ball screw production. Our quality assurance extends to the smallest components.

(2) High reliability and durability

- · Logical simplicity in shape, along with stable processing, maintains high precision and reliability.
- Super-clean materials, our advanced heat treatment and processing technologies increase product durability.

(3) Abundant in type for any purpose

 Various series are available, and their slide models and size categories are standardized to satisfy any requirement. Our technology, polished by abundant experience in the use of special materials and surface treatments, meets the customer's most demanding expectations.

(4) Development of random-matching parts for short delivery time

• The adoption of the Gothic arch groove which makes measuring easy, and a new reliable quality control method has made random-matching of the rails and the ball slides possible. The parts are stocked as standard products, thereby reducing delivery time.

(5) Patented static load carrying capacity (impact-resistance)

• When a super-high load (impact) is applied, our Gothic arch groove spreads the load to surfaces which usually do not come into contact in the ball type NSK linear guides. This increases impact load resistance (Fig. 5).

(6) Lineup of extremely high-load capacity series

 The LA series provides a top class high-load capacity for the ball linear guides through a unique load carrying configuration with three ball recirculation circuits on the one side.

By installing rollers that are the largest possible diameter and length, the NSK roller linear guides have realized the world's highest load capacity, far superior to the roller linear guides of other companies.

Α1

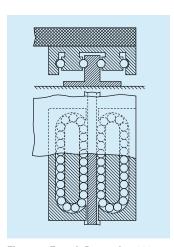


Fig. 1 • French Patent in 1932. • Inventor: Gretsh (German)

NSK added its patented technology to the invention in Fig. 1, and improved the linear guide structure, thus realizing low cost design.

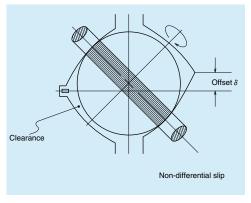


Fig. 3 Two point contacts of the offset Gothic arch groove

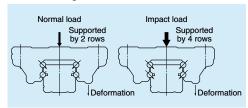


Fig. 5 Shock-resistance

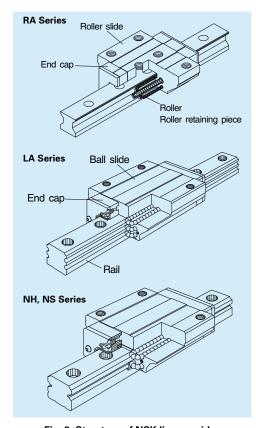


Fig. 2 Structure of NSK linear guides

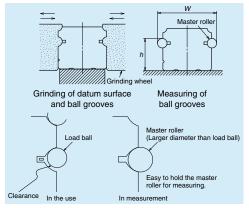


Fig. 4 Processing and measuring grooves

Measuring grooves is easy: you can obtain highly accurate results for all types of NSK series. This is why you can purchase rails and slides separately for random matching.

A3 A4

A-2 Types of NSK Linear Rolling Guides

Product	Appearance	Shape	Rolling element	Load carrying characteristics
NSK Linear Guides	NH Series		Ball	High vertical load carrying capacity
	VH Series		Ball	High vertical load carrying capacity
	TS Series		Ball	Four-way equal load carrying capacity

Note: For customers who have used the former LH or SH series, NH series is recommended as a substitute. Please confirm the correlation between NH series and former ones on the comparative table at A321.

igidity: ☆, Extremely high; ◎, High; ◎, Medium; ○, Low	

Friction characteristics: \bigcirc , Low; \bigcirc , Normal Assembly workability: \bigcirc , Good; \bigcirc , Fair

Rigidity	Friction characteristic	Assembly workability	Major applications	Page
			Industrial robots Materials handling equipment Semiconductor manufacturing equipment Laser cutting machines Electric discharge machines Packaging/packing machines	A113
			Industrial robots Materials handling equipment Woodworking machines Laser cutting machines Electric discharge machines Packaging/packing machines	A133
			Industrial robots Materials handling equipment Woodworking machines Laser cutting machines Electric discharge machines Packaging/packing machines	A151

A5 A6

Product	Appearance	Shape	Rolling element	Load carrying characteristics
	NS Series		Ball	High vertical load carrying capacity
	LW Series		Ball	High vertical load carrying capacity
NSK Linear Guides	PU Series		Ball	Four-way equal load carrying capacity
	LU Series		Ball	Four-way equal load carrying capacity
	PE Series		Ball	Four-way equal load carrying capacity

Note: For customers who have used the former LS or SS series, NS series is recommended as a substitute. Please confirm the correlation between NS series and former ones on the comparative table at A321.

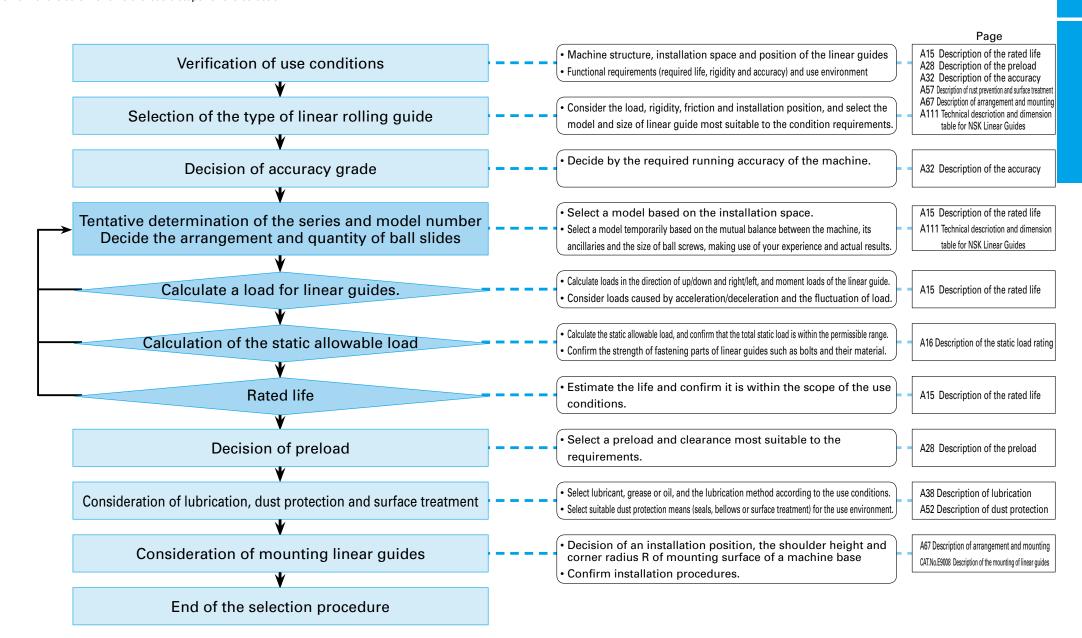
Α7

Product	Appearance	Shape	Rolling element	Load carrying characteristics
	LE Series		Ball	Four-way equal load carrying capacity
	Miniature LH Series		Ball	High vertical load carrying capacity
NSK Linear Guides	LL Series		Ball	Four-way equal load carrying capacity
_	RA Series		Roller	Four-way equal load carrying capacity
	LA Series		Ball	Four-way equal load carrying capacity

Rigidity	Friction characteristic	Assembly workability	Major applications	Page
0	0	0	Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages XY stages of microscope Miniature robots Pneumatic equipment Computer peripherals	A223
0	0		Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages Microscope XY stages Miniature robots Pneumatic equipment Computer peripherals	A237
			Knitting machines Computer peripherals Pneumatic equipment Office equipment	A247
$\stackrel{\wedge}{\sim}$			Machining centers NC lathes Heavy cutting machine tools Various types of NC grinders Gear-cutting machines Press machines Electric discharge machines	
		0	Machining centers NC lathes Heavy cutting machine tools Various types of NC grinders Gear-cutting machines Press machines Electric discharge machines	A273

A9 A10

Product	Appearance	Shape	Rolling element	Load carrying characteristics
NSK Linear Guides	HA Series		Ball	Four-way equal load carrying capacity
NSK Line	HS Series		Ball	High vertical load carrying capacity
Linear rolling bushing			Ball	P
Roller pack	100		Roller	
Linear roller bearing			Roller	


Rigidity	Friction characteristic	Assembly workability	Major applications	Page
			Machining centers Precision lathes Various types of NC grinders Electric discharge machines Optical stages LCD manufacturing equipment Die molding machines High-precision measuring equipment	A293
			Machining centers Precision lathes Various types of grinders Electric discharge machines Optical stages LCD manufacturing equipment High-precision measuring equipment	A307
			Materials handling equipment Packaging/packing machines Medical equipment Pneumatic equipment Office equipment Assembling machines	A323
			Large machine tools Conveyor system for heavy objects (guide ways for heavy loads)	A334
	0		Large machine tools Conveyor system for heavy objects (guide ways for heavy loads)	A341

A11 A12

A-3 Selection of NSK Linear Rolling Guides

A-3-1 Selection Flow Chart

The flow chart below shows the basic steps for the selection.

A13 A14

A-3-2 Rating Life and Basic Load Rating

A-3-2.1 Life and Basic Load Rating

1. Life

Although used in appropriate conditions, the linear guide deteriorates after a certain period of operation, and eventually becomes unusable. In broad definition, the period until the linear guide becomes unusable is called "life." There are "fatigue life " caused by flaking, and "accuracy life" which the result of wear components.

2. Rating fatigue life

When the linear guide runs under loads, the rolling elements and the rolling contact surface of the grooves are exposed to repetitive stress. This brings about fatigue to the material, and generates flaking. Flaking is scale-like damage to the surface of the rolling contact surface.

Total running distance until first appearance of flaking is called "fatigue life." This is "life" in the narrow sense. The fatigue life varies significantly even in linear guides produced in the same lot, and even when they are operated under the same conditions. This is attributable to the inherent variation of the fatigue of the material itself.

"Rating fatigue life" is the total running distance which allows 90% of the group of linear guides of the same reference number to run without causing flaking when they are independently run under the same conditions. The rating fatigue life is sometimes indicated by total operating hours when the linear guides run at a certain speed.

3. Basic load ratings in compliance with ISO standard

NSK defines the basic load rating in compliance with the ISO standard.

The basic load rating listed in "A-5 Technical Description and Dimension Table for NSK Linear Guides." comply with the ISO standard.

ISO: International Organization for

Standardization

[Basic dynamic load rating]

ISO 14728-1; Rolling bearings — Linear motion rolling bearings

Part 1: Dynamic load ratings and rating life

[Basic static load rating]

ISO 14728-2; Rolling bearings — Linear motion

rolling bearings
Part 2: Static load ratings

4. Basic dynamic load rating

- ISO international standard, the basic dynamic load rating, which indicates load carrying capacity of the linear guide, is a load whose direction and volume do not change, and which furnishes 100 km of rating fatigue life.
- In case of the linear guides, it is a constant load applied to downward direction to the center of the slide.
- For balls as rolling element, some linear guide manufacturers in Japan and Asian countries define the load for the basic fatigue life of 50 km as the basic dynamic load ratings.
- The following formula may be used to convert the basic dynamic load rating for 50 km (C_{50}) into the dynamic load rating for 100 km (C_{100}) rated fatigue life.
- For balls as rolling element

 $C_{100} = \frac{C_{50}}{1.26}$

For rollers as rolling element

5. Calculation of rating fatigue life

 In general, the rating fatigue life "L" can be calculated from the basic dynamic load rating "C" and the load "F" to a slide using the following formula.

[For balls as rolling element] The third power of the index.

For the basic dynamic load rating for 100 km

$$L=100\times\left[\frac{C_{100}}{F}\right]$$

For the basic dynamic load rating for 50 km

$$L=50\times\left(\frac{C_{50}}{F}\right)$$

[For rollers as rolling element] The ten third power of the index

For the basic dynamic load rating for 100 km

$$L = 100 \times \left(\frac{C_{100}}{F}\right)^{\frac{1}{3}}$$

For the basic dynamic load rating for 50 km

$$L=50\times\left[\frac{C_{50}}{F}\right]^{\frac{1}{3}}$$

L; Rating fatigue life (km)

 C_{100} ; Basic dynamic load rating for 100 km rated fatique life (N)

 C_{50} ; Basic dynamic load rating for 50 km rated fatigue life (N)

F; Load to a slide (dynamic equivalent load) (N)

6. Dynamic equivalent load

 Loads applied to the linear guide (slide load) comes from various directions up/down and right/left directions and/or as moment loads. Sometimes more than one type of load is applied simultaneously. Sometimes the volume and direction of the load may change.

Various loads cannot be used as they are to calculate the life of the linear guide. Therefore, it is necessary to use a hypothetical load on the slide with a constant volume, which would generate a value equivalent to an actual fatigue life. This is called "dynamic equivalent load." For actual calculation, refer to "A-3-2.2 3. Calculation of dynamic equivalent load"

7. Basic static load rating

- When an excessive load or a momentary large impact is applied to the linear guide, local permanent deformation takes place on the rolling elements and on the rolling contact surfaces. After exceeding a certain level, the deformation hampers smooth linear guide operation.
- Basic static load rating is a static load when:
 [Permanent deformation of the rolling elements]
 + [permanent deformation of the rolling contact
- + [permanent deformation of the rolling contact surfaces] becomes approximately 0.0001 times of the rolling element diameter.
- In the case of the linear guides, it is a load which is applied in downward direction to the center of the slide.
- Values of the basic static load rating C₀ are shown in "A-5 Technical Description and Dimension Table for NSK Linear Guides."

8. Basic static moment load rating

 Generally, NSK linear guides use a set of two rails and four slides for the guide way of one axis.
 Under some operating condition, static moment load should be taken into account.

"M_o," which is the limit of static moment load , and calculated from permanent deformation in such use is shown in "A-5 Technical Description and Dimension Table for NSK Linear Guides."

9. Basic load rating by load direction

• The basic load rating is considered to be a downward load to the slide and is indicated in the dimension tables as the dynamic load rating C and the static load rating C_0 respectively. However, the load may be applied to a slide in upward or lateral directions in actual use. In such a case the basic load rating shall be compensated as shown in **Table 2.1**. The basic dynamic load rating of the RA and LA Series is the same in C and C_0 for all load directions, up, down and lateral, while the NH Series, for an example, has different basic load ratings by the load direction as shown in the table.

Table 2.1 Basic load ratings by load direction

Load rating	Basic dy	namic lo	ad rating	Basic static load rating			
Load Series direction	Downward	Upward	Lateral	Downward	Upward	Lateral	
NH,VH,NS, LW,LH,HS	С	С	0.84 <i>C</i>	C ₀	0.78 <i>C</i> ₀	0.65 <i>C</i> ₀	
TS,PU,LU,PE,LE, LL,RA,LA,HA	С	С	С	C ₀	C ₀	C _o	

A-3-2.2 How to Calculate the Life

1. Setting operating condition of linear guide

- · First, set operating conditions to determine whether the temporarily selected model satisfies the required life.
- · Major operating conditions are as follows. Set all values to calculate applied loads to each slide. (Refer to Table 2.2.)

Axis set up : Horizontal or vertical Rail combination : Single rail or multiple

rail

: F_x , F_y and F_z (N) Applying loads Slide span : l (mm) Rail span : L (mm) Position of load action point : X, Y, Z (mm) Center of driving mechanism : X_b , Y_b , Z_b (mm) Operating speed : V (mm/sec) Time in acceleration : t (sec) Operating frequency (duty cycle)

2. Calculating load to a slide

· Table 2.2 shows a formula to calculate loads that are going to be applied to each assembled slide into a machine.

The Table shows six typical patterns of linear guide installing structure.

- In the Tables, directions indicated by arrows denote "plus" for the applied loads (F_x, F_y, F_z) and the loads which are applied to the slides. $(F_r, F_s, M_r, M_p, M_v)$
- · Codes in the Tables are as follows:

F.: Vertical loads to the slide (N)

 F_s : Lateral loads to the slide (N)

 M_r : Rolling moment to the slide (N · mm)

 $M_{\scriptscriptstyle D}$: Pitching moment to the slide (N · mm)

 M_{v} : Yawing moment to the slide (N · mm)

Suffixes (1, 2, ...) to the above $F_r - M_v$: Slide number

- F_{xi} : Load applied in X direction (i = 1 to n; n is the number of loads applied in X direction) (N)
- F_{vi} : Load applied in Y direction (j = 1 to n; n is the number of loads applied in Y direction) (N)
- F_{zk} : Load applied in Z direction (k = 1 to n; n is the number of loads applied in Z direction) (N)

Coordinates (X_{xi}, Y_{xi}, Z_{xi}) : Point where load F_{xi} (mm) is applied.

Coordinates (X_{vi} , Y_{vi} , Z_{vi}): Point where load F_{vi} (mm) is applied.

Coordinates (X_{2k}, Y_{2k}, Z_{2k}) : Point where load F_{2k} (mm) is applied.

l: Slide span (mm)

L: Rail span (mm)

Coordinates (X_b, Y_b, Z_b) : Center of driving mechanism

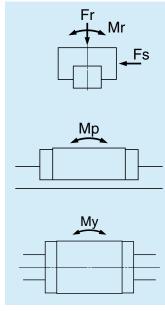
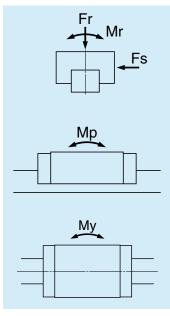
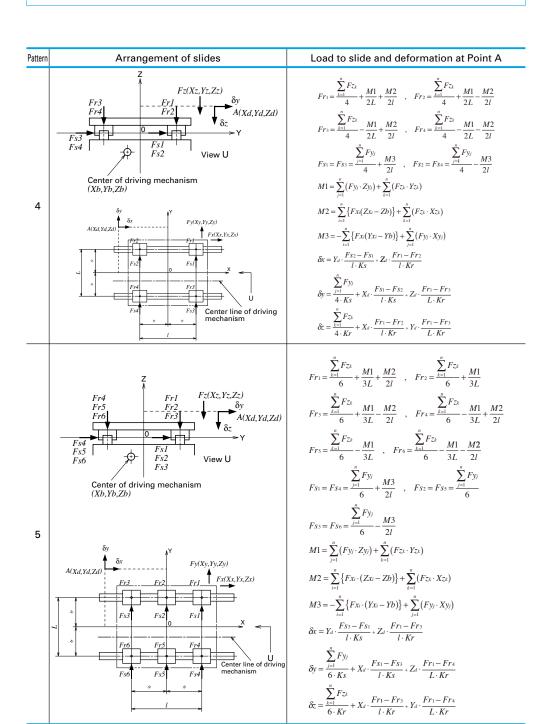
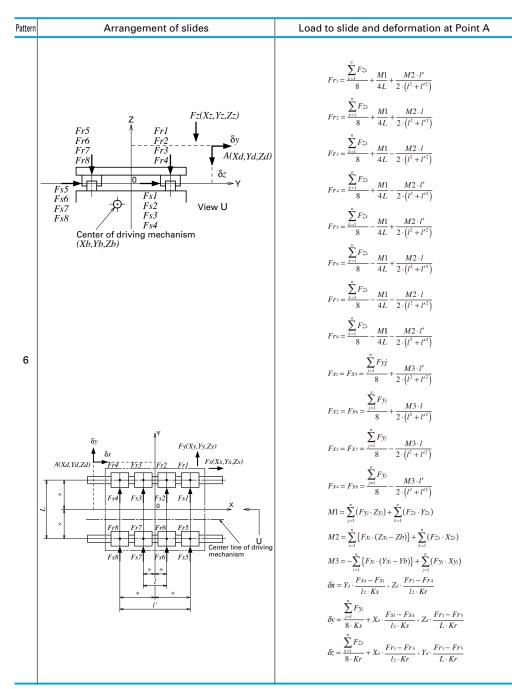





Fig. 2.1

	Table 2.2 Loads applied to the slides							
Pattern	Arrangement of slides	Load to slide and deformation at Point A						
1	$F_{SI} = \begin{cases} F_{SI}(X_{z},Y_{z},Z_{z}) \\ F_{IJ}(X_{z},Y_{z},Z_{z}) \\ Center of driving mechanism \\ (X_{D},Y_{D},Z_{D}) \end{cases}$	$Fr_{1} = \sum_{k=1}^{n} Fz_{k} , Fs_{1} = \sum_{j=1}^{n} Fy_{j}$ $Mr_{1} = \sum_{j=1}^{n} (Fyj \cdot Zyj) + \sum_{k=1}^{n} (Fzk \cdot Yzk)$ $Mp_{1} = \sum_{i=1}^{n} \{Fxi \cdot (Zxi - Zb)\} + \sum_{k=1}^{n} (Fzk \cdot Xzk)$ $My_{1} = -\sum_{i=1}^{n} \{Fxi \cdot (Yxi - Yb)\} + \sum_{j=1}^{n} (Fyj \cdot Xyj)$						
2	Fr1 Fr2 Fr2 Fr3 View U Center of driving mechanism (Xb,Yb,Zb) Fy(Xy,Yy,Zy) Fr1 Fx(Xx,Yx,Zx) Center line of driving mechanism	$Fr_{1} = \frac{\sum_{k=1}^{n} Fz_{k}}{2} + \frac{M2}{l} , Fr_{2} = \frac{\sum_{k=1}^{n} Fz_{k}}{2} - \frac{M2}{l}$ $Fs_{1} = \frac{\sum_{j=1}^{n} Fy_{j}}{2} + \frac{M3}{l} , Fs_{2} = \frac{\sum_{j=1}^{n} Fy_{j}}{2} - \frac{M3}{l}$ $Mr_{1} = \frac{M1}{2} , Mr_{2} = \frac{M1}{2}$ $M1 = \sum_{j=1}^{n} (Fy_{j} \cdot Zy_{j}) + \sum_{k=1}^{n} (Fz_{k} \cdot Yz_{k})$ $M2 = \sum_{i=1}^{n} \{Fx_{i} \cdot (Zx_{i} - Zb)\} + \sum_{k=1}^{n} (Fz_{k} \cdot Xz_{k})$ $M3 = -\sum_{i=1}^{n} \{Fx_{i} \cdot (Yx_{i} - Yb)\} + \sum_{j=1}^{n} (Fy_{j} \cdot Xy_{j})$						
3	Fri View U Center of driving mechanism (Xb,Yb,Zb) F_{S2} F_{S1} View U Center of driving mechanism (Xb,Yb,Zb) F_{S1} F_{S1} F_{S2} F_{S1} F_{S1} F_{S1} F_{S1} F_{S2} F_{S1} F_{S1} F_{S1} F_{S2} F_{S1} F_{S2} F_{S1} F_{S1} F_{S2} F_{S2} F_{S1} F_{S2} F_{S1} F_{S2} F_{S1} F_{S2} F_{S2} F_{S1} F_{S2} F_{S1} F_{S2} F_{S1} F_{S2} F_{S2} F_{S1} F_{S2} F_{S2} F_{S2} F_{S2} F_{S2} F_{S2} F_{S3} F_{S2} F_{S2} F_{S3} F_{S3} F_{S2} F_{S3} F_{S4} F_{S3} F_{S4} F_{S5} F_{S4} F_{S5}	$Fr_{1} = \frac{\sum_{k=1}^{n} Fz_{k}}{2} + \frac{M1}{L} , Fr_{2} = \frac{\sum_{k=1}^{n} Fz_{k}}{2} - \frac{M1}{L}$ $Fs_{1} = Fs_{2} = \frac{\sum_{j=1}^{n} Fy_{j}}{2}$ $Mp_{1} = Mp_{2} = \frac{M2}{2} , My_{1} = My_{2} = \frac{M3}{2}$ $M1 = \sum_{j=1}^{n} (Fy_{j} \cdot Zy_{j}) + \sum_{k=1}^{n} (Fz_{k} \cdot Yz_{k})$ $M2 = \sum_{i=1}^{n} \{Fx_{i} \cdot (Zx_{i} - Zb)\} + \sum_{k=1}^{n} (Fz_{k} \cdot Xz_{k})$ $M3 = -\sum_{i=1}^{n} \{Fx_{i} \cdot (Yx_{i} - Yb)\} + \sum_{j=1}^{n} (Fy_{j} \cdot Xy_{j})$						

3. Calculation of dynamic equivalent load

• For the calculation of dynamic equivalent load, use the load in Table 2.3 which matches the intended use of the linear guide.

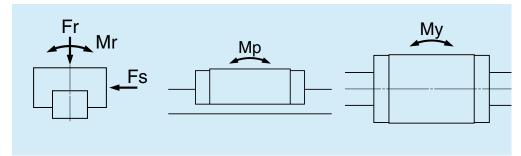


Fig. 2.2

Table 2.3 Loads in the arrangement of linear guides

	A	Loads nec	essary to ca	alculate dyı	namic equiv	/alent load	Dimension annimalent
Pattern	Arrangement of linear guide	Lo	ad	M	oment lo	ad	Dynamic equivalent load
	guide	Up/down (vertical)	Right/left (lateral)	Rolling	Pitching	Yawing	loud
1		F,	F _s	M,	$M_{\scriptscriptstyle m p}$	$M_{\scriptscriptstyle \gamma}$	$F_r = F_r$ $F_{se} = F_s \cdot \tan \alpha$
2		F,	Fs	M _r			$F_{re} = \mathcal{E}_r \cdot M_r$ $F_{pe} = \mathcal{E}_p \cdot M_p$ $F_{ye} = \mathcal{E}_y \cdot M_y$
3		F,	Fs		M _p	M _y	α : Contact angle NH, VH, NS, LW, LH, HS Series $\alpha = 50^{\circ}$
4		F,	F _s				TS, PU, LU, PE, LE, RA, LA, HA Series $\alpha = 45^{\circ}$

• Use the dynamic equivalent coefficient $\mathcal E$ in the table below for an easy conversion of moment loads to the dynamic equivalent load.

• The coefficient of each moment direction is as follows. \mathcal{E}_{r} : Rolling direction \mathcal{E}_{r} : Pitching direction \mathcal{E}_{r} : Yawing direction

Table 2.4 Dynamic equivalent coefficients

Unit: 1/m

											Jiiic. 1/111
Model No.	$oldsymbol{arepsilon}_{r}$	$\varepsilon_{_{\mathtt{p}}}$	$\varepsilon_{\scriptscriptstyle{y}}$	Model No.	$oldsymbol{arepsilon}_{r}$	$\varepsilon_{_{\mathrm{p}}}$	$arepsilon_{_{\mathbf{y}}}$	Model No.	$oldsymbol{arepsilon}_{r}$	$\varepsilon_{_{\mathtt{p}}}$	$arepsilon_{_{y}}$
NH15	188	111	132	NS35S	76	87	104	LE15L	50	68	68
NH15L	188	72	86								
NH20	142	81	97	LW17	66	125	149	LH08	316	269	321
NH20L	142	57	68	LW21	59	108	129	LH10	253	203	242
NH25	123	68	81	LW27	53	76	91	LH12	223	136	162
NH25L	123	51	61	LW35	32	51	61				
NH30A	98	70	83	LW50	25	38	46	RA15	105	95	95
NH30EF	98	58	69					RA15L	105	70	70
NH30L	98	44	52	PU05	377	431	431	RA20	79	74	74
NH35	78	51	61	PU07	267	349	349	RA20L	79	55	55
NH35L	78	36	43	PU09	215	222	222	RA25	71	64	64
NH45	60	38	45	PU09L	215	136	136	RA25L	71	50	50
NH45L	60	30	36	PU12	163	204	204	RA30	<u>56</u>	58	58
NH55	51	31	37	PU12L	163	125	125	RA30L	56	44	44
NH55L	51	25	30	PU15	133	174	174	RA35	46	52	52
NH65	43	27	32	PU15L	133	102	102	RA35L	46	39	39
NH65L	43	20	24	11105	005	050	050	RA45	37	40	40
\/\\a_	100	111	100	LU05	385	359	359	RA45L	37	30	30
VH15	188	111	132	LU07	286	305	305	RA55	32	33	33
VH15L	188	72	86	LU09	217	242	242	RA55L	32	24	24
VH20 VH20L	142 142	81	97 68	LU09L LU09R	217 217	138 203	138 203	RA65 RA65L	26	28 19	28 19
VH20L VH25	123	57 68	81	LU12	167	203	203	LEGAU	26	19	19
VH25L	123	51	61	LU12L	167	116	116	LA25	122	76	76
VH25L VH30A	98	70	83	LU12L LU15	133	174	174	LA25 LA25L	122	47	47
VH30EF	98	58	69	LU15L	133	94	94	LAZSL LA30	105	63	63
VH30EF	98	44	52	LUISL	133	34	34	LA30L	105	43	43
VH35	- 30 78	51	61	PE05	194	277	277	LA30L LA35	84	54	<u> 43</u> 54
VH35L		36	43	PE07	141	203	203	LA35L	84	37	37
VH45	60	38	45	PE09	123	161	161	LA35L LA45	60	41	41
VH45L	60	30	36	PE09L	123	108	108	LA45L	60	31	31
VH55	51	31	37	PE12	90	136	136	LA55	51	33	33
VH55L	51	25	30	PE12L	90	90	90	LA55L	51	26	26
VIIOUL			- 55	PE 15	50	111	111	LA65	43	29	29
TS15	128	122	122	PE15L	50	72	72	LA65L	43	20	20
TS20	97	90	90			, <u>-</u>	, <u>-</u>				
TS25	81	77	77	LE05	196	248	248	HA25	122	33	33
TS30	67	61	61	LE05S	196	323	323	HA30	105	27	27
TS35	55	54	54	LE07	141	188	188	HA35	84	23	23
				LE07S	141	349	349	HA45	60	20	20
NS15	177	116	138	LE07L	141	122	122	HA55	51	16	16
NS15S	177	174	208	LE09	123	149	149		-		
NS20	127	94	112	LE09S	123	277	277	HS15	177	45	54
NS20S	127	136	162	LE09L	123	102	102	HS20	127	39	47
NS25	111	70	83	LE12	90	125	125	HS25	111	33	39
NS25S	111	108	129	LE12S	90	233	233	HS30	94	27	32
NS30	94	63	75	LE12L	90	86	86	HS35	76	23	28
NS30S	94	102	121	LE15	50	102	102				
NS35	76	54	64	LE15S	50	174	174				
·											

Definitions of codes appearing at the end of the model number in **Table 2.4**:

: Super-high-load type ; NH45L S : Medium load type ; NS25S No code: High-load type ; NH45

: Ball slide shape is square ; NH30<u>A</u> (only NH30 and VH30) Α EF : Ball slide shape is flanged type (EL, FL type) ; NH30EF (only NH30 and VH30) R : Miniature Series with ball retainer ; LU09R (only LU and LE)

A21 A22

• The formula is determined by the relationship of loads in terms of volume. A full dynamic equivalent load can be easily obtained by using each coefficient.

After obtaining the dynamic equivalent load of the necessary load directions from **Table 2.4**, use the formulas below to calculate full dynamic equivalent loads.

- When Fr is the largest load : Fe = Fr + 0.5Fse + 0.5Fre + 0.5Fpe + 0.5Fye
- When Fse is the largest load : Fe = 0.5Fr + Fse + 0.5Fre + 0.5Fpe + 0.5Fye
- When Fre is the largest load : Fe = 0.5Fr + 0.5Fse + Fre + 0.5Fpe + 0.5Fye
- When Fpe is the largest load : Fe = 0.5Fr + 0.5Fse + 0.5Fre + Fpe + 0.5Fye
- When Fye is the largest load : Fe = 0.5Fr + 0.5Fse + 0.5Fre + 0.5Fpe + Fye

For the values of each dynamic equivalent load in the formulas above, disregard load directions and take the absolute value.

• It is necessary to include the amount of preload for the calculation of rating life when selecting "Z3 medium preload" or "Z4 heavy preload" as a preload. For the calculation of full dynamic equivalent loads that consider preload, see "A-3-3 6" on page A31.

4. Calculation of mean effective load

When the load to the slide deviates, obtain a mean effective load which becomes equal to the life of slide under variable load conditions. If the load does not vary, use the dynamic equivalent load as it is.

(1) When load and running distance vary stepwise (Fig. 2.3)

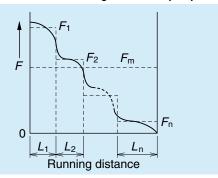


Fig. 2.3 Stepwise load change

Running distance while dynamic equivalent load F_1 is applied: L_1

Running distance while dynamic equivalent load F_2 is applied: L_2

Running distance while dynamic equivalent load F_3 is applied: L_3

.

Running distance while dynamic equivalent load F_n is applied: L_n

From the above, mean effective load Fm can be obtained by the following formula.

In case of ball

In case of roller

$$Fm = \sqrt[3]{\frac{1}{L} (F_1^3 L_1 + F_2^3 L_2 + \dots + F_n^3 L_n)}$$

$$Fm = \frac{10}{3} \sqrt{\frac{1}{L} \left(F_1^{\frac{10}{3}} L_1 + F_2^{\frac{10}{3}} L_2 + \dots + F_n^{\frac{10}{3}} L_n \right)}$$

Fm: Mean effective load of the deviating load (N)

L: Running distance (ΣLn)

(2) When load changes almost linearly (Fig. 2.4)

Approximate mean effective load Fm can be obtained by the following formula.

$$Fm = \frac{1}{3} (Fmin + 2Fmax)$$

Fmin: Minimum value of dynamic

equivalent load (N)

 ${\it F}$ max : Maximum value of dynamic

equivalent load (N)

(3) When load changes in sinusoidol pattern (Fig. 2.5)

At time of (a): Fm = 0.65 FmaxAt time of (b): Fm = 0.75 Fmax

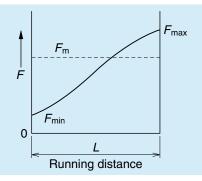
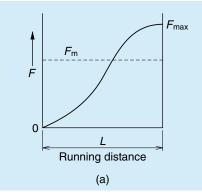



Fig. 2.4 Linear load change

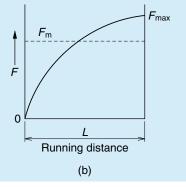


Fig. 2.5 Load that changes in sinusoidal pattern

5. Various coefficients

(1) Load factors

- Although a load applied to the slide can be calculated, the actual load becomes larger than the calculated value due to the machine's vibration and impact.
- Therefore, calculation of load on the slide should take into consideration the load factors in Table 2.5.

Table 2.5 Load factor fw

Impact/Vibration	Load factor		
No external impact/	40.45		
vibration	1.0 – 1.5		
There is impact/	15 20		
vibration from outside.	1.5 – 2.0		
There is significant	20.20		
impact/vibration.	2.0 – 3.0		

(2) Hardness coefficient

- For linear guides, in order to function optimally, both the rolling elements and the rolling contact surface must have a hardness of HRC58 to 62 to an appropriate depth.
- The hardness of NSK linear guide fully satisfies HRC58 to 62. Therefore, in most cases it is not necessary to consider hardness. If the linear guide is made of a special material by a customer's request, as the material hardness is lower than HRC58, use the following formula for adjustment.

$$C_{H} = f_{H} \cdot C$$
 $C_{OH} = f_{H}' \cdot C_{o}$

 $C_{\rm H}$: Basic dynamic load rating adjusted by hardness coefficient

f_H: Hardness coefficient (Refer to Fig. 2.6)

 C_{OH} : Basic static load rating adjusted by hardness coefficient

f_u': Static hardness coefficient (Refer to Fig. 2.6)

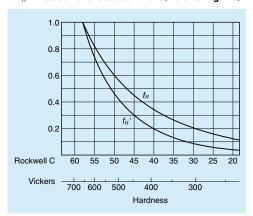


Fig. 2.6 Hardness coefficient

(3) Reliability coefficient

 In general, a reliability of 90% is customary. In this case, reliability coefficient is 1. Therefore, the reliability coefficient does not have to be included in calculation.

6. Calculation of rating life

(1) Life Calculating Formula

The life calculating formula in the stroke movement with normal lubrication, the following relationships exist between the slide mean effective load $F_{\rm m}$ (N), the basic dynamic load rating to load application direction C (N), and the rating fatigue life L (km).

[For balls as rolling element]

For the basic dynamic load rating for 100 km

$$L = 100 \times \left(\frac{f_{\text{H}} \cdot C_{100}}{f_{\text{w}} \cdot F_{\text{m}}} \right)$$

For the basic dynamic load rating for 50 km

$$L = 50 \times \left(\frac{f_{\text{H}} \cdot C_{50}}{f_{\text{w}} \cdot F_{\text{m}}} \right)$$

[For rollers as rolling element]

For the basic dynamic load rating for 100 km

$$L = 100 \times \left(\frac{f_{\text{H}} \cdot C_{100}}{f_{\text{w}} \cdot F_{\text{m}}} \right)^{\frac{10}{3}}$$

For the basic dynamic load rating for 50 km

$$L = 50 \times \left(\frac{f_{\text{H}} \cdot C_{50}}{f_{\text{W}} \cdot F_{\text{m}}} \right)^{\frac{1}{3}}$$

L : Rating fatigue life (km)

 $C_{\mbox{\tiny 100}}$: Basic dynamic load rating for 100 km rated fatigue life (N)

C₅₀: Basic dynamic load rating for 50 km rated fatique life (N)

f_H: Hardness coefficient

f_w: Load coefficient

F_m: Average load (N)

Note: Do not use the basic static load rating C_0 and the basic static moment rating $M_{\rm RO}$, $M_{\rm PO}$ or $M_{\rm VO}$ for a calculation of the life.

(2) Life as an entire guide way system

In those cases when several slides comprise

a single guide way system (such as a single-axis table), the life of the slide to which the most strenuous condition is applied is considered to be the life of the entire system.

Fig. 2.7 Life of a

system

For example, in Fig. 2.7, if "slide A" is the slide which receives the largest mean

effective load, or if "slide A" is the one which has the shortest life, the life of the system is considered to be the life of "slide A."

7. Examination of the basic static load rating

(1) Examine from the basic static load rating

 Examine the static equivalent load P₀, which is applied to the slide, from the basic static load rating C₀ and the static permissible load factor fs.

$$fs = \frac{C}{P}$$

When the static equivalent load P_0 is a combination of vertical loads Fr and lateral load Fs, calculate it using formulas below.

For NH, VH, NS, LW, LH and HS Series:
If compressed load and lateral load are combined

 $P_0 = Fr + 1.54Fs$

If tensile load and lateral load are combined $P_0 = 1.28Fr + 1.54Fs$

For TS, PU, LU, PE, LE, LL, RA, LA and HA Series: $P_0 = Fr + Fs$

 The table below shows guidelines of fs for general industrial use.

Table 2.6

Use conditions	fs
Under normal operating conditions	1 – 2
Operating under vibration/impact	1.5 – 3

- Basic static load rating is not a destructive force to the balls, rollers, rails, or slides. The balls can withstand a load more than seven times larger than the basic static load rating. It is sufficient as a safety factor to the destruction load designed for general machines.
- However, when a heavy load applied to the rail and slide in tension direction, the strength of the bolts which secures the rail and the ball slide affects the strength of the entire system. Strength of the bolt and its material should be considered.

(2) Examining from static moment load rating

• Also examine the static permissible moment load $M_{\rm po}$ from the basic static moment load $M_{\rm po}$ and the static permissible load factor fs.

$$fs = \frac{M_{p0}}{M_0}$$

If more than one moment load in any direction is combined, please consult NSK.

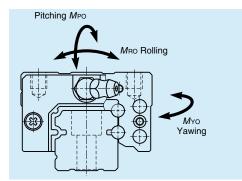


Fig. 2.8 Moment load directions

8. Precautions for the design in examining the life

The following points must be heeded in examining the life.

In case of oscillating motion

- If the rolling elements do not rotate all the way, but only halfway, and if this minute stroke is repeated, lubricant disappears from the contact surface of rolling elements and raceways. This generates "fretting," a premature wear. Fretting cannot be entirely prevented, but it can be mitigated.
- A grease which prevents fretting is recommended for oscillating stroke operations. When a standard grease is used, the life can be markedly prolonged by adding a normal stroke travel (about the slide length) once every several thousand cycles.

When applying pitching or yawing moment

- The load applied to the rolling element rows inside the slide is inconsistent if a pitching or yawing moment load is applied. Loads are heavy on the rolling elements on each end of the row.
- In such case, a heavy load lubricant grease or oil are recommended. Another countermeasure is using one size larger model of linear guide to reduce the load per rolling element.
- The moment load to a ball slide is insignificant for 2-rail, 4-slide combination which is commonly used.

When an extraordinary high load is applied during stroke

- If an extraordinary large load is applied at certain position of the stroke, calculate not only the life based on the mean effective load, but also the life based on the load in this range.
- When an extraordinary heavy load is applied and thus the application of high tensile stress to fixing bolts of the rails and slides is foreseen, the strength of the bolts should be considered.

When the calculated life is extraordinarily short (Less than 3 000 km in calculated life)

- In such case, the contact pressure to the rolling elements and the rolling contact surface is extraordinarily high.
- If the linear guides are operated under such state continually, the life is significantly affected by the loss of lubrication and the presence of dust, and thus the actual life becomes shorter than calculated.
- It is necessary to reconsider the arrangement of linear guides, the number of slide, and the type of model in order to reduce the load to the slides.
- It is necessary to consider preload for calculation of rating life when selecting Z3 (medium preload) or Z4 (heavy preload) as a preload. For the calculation of full dynamic equivalent loads that consider preload, see "A-3-3 6" on page A31.

Application at high speed

- The standard maximum allowable speed of a linear guide under normal conditions is 100 m/min. However, the maximum allowable speed can be affected by accuracy of installation, operating temperature, external loading etc.
- The end cap with high speed specification must be used when the operating speed exceeds the permissible speed. In such a case, please consult NSK.

A-3-3 Preload

1. Objective of preload

- An elimination of clearance between the raceways and rolling elements vanishes the mechanical play of the linear guide system.
- When a preload is applied, the deformation of linear guides by external vertical load is further improved thus increasing the system stiffness.
- Preloading method
 The preload is applied by inserting rolling elements slightly bigger than the space of two raceways as shown in Fig. 3.1.

2. Preload and rigidity

- In NSK linear guides, slight size changes of rolling elements, which are going to be inserted in the slide, control the clearance and amount of preload.
- In NSK linear guides, the rigidity is further increased and the elastic deformation is reduced by applying preload.
- In general, the load range of ball guide system in which the preload is effective, is about 2.8 times of the preload (Fig.3.2). For roller guide system, it becomes about 2.2 times of the preload.
- Fig. 3.3 shows the relationship between the ball slide deformation and the external vertical load under a specified preload. NH35 is used as an example.
- The following show the definition of linear guide rigidity.
- (1) Radial rigidity: Rigidity of vertical and lateral directions, up/down and right/left (Fig. 3.4).
- (2) Moment rigidity: Three moment directions, pitching, rolling, and yawing (Fig. 3.5).

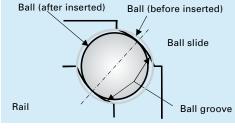


Fig. 3.1 Preloading method

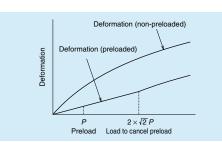


Fig. 3.2 Elastic deformation

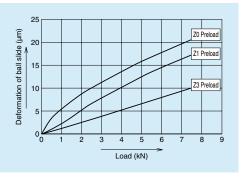


Fig. 3.3 Rigidity of NH35, downward direction load (example)

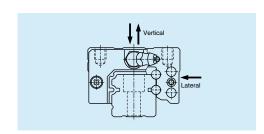


Fig. 3.4 Radial rigidity

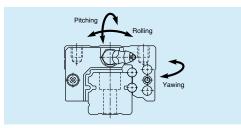
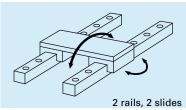
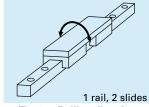




Fig. 3.5 Moment rigidity

- · Since two rails and four slides are used in general as a pair, consideration only for the radial rigidity is sufficient.
- · However, in cases as shown in Fig. 3.6, Fig. 3.7 and Fig. 3.8, it is necessary to take into account the moment rigidity in addition to the radial rigidity.

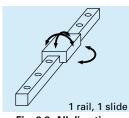


Fig. 3.6 Pitching and vawing direction

Fig. 3.7 Rolling direction Fig. 3.8 All directions

3. Selection of preload classification

- Several types of preload that match the characteristic of each series are set for NSK linear guides.
- Types of preload classification for each series are shown in Table 3.1. Table 3.2 shows the selection criterion of the preload classification.

Table 3.1 Classification of preload in each series

		Preloaded	assembly (ı	not random	matching)	Rand	om-matching	type
	Preload	Heavy preload	Medium preload	Slight preload	Fine clearance	Medium preload	Slight preload	Fine clearance
	Series	Z4	Z3	Z1	Z0	ZH	ZZ	ZT
	NH, NS		0	0	0	0	0	0
	VH		0	0	0		0	0
	LW		(0)	0	0		0	0
	PU			0	0			0
	LU			0	0			0
Dall audala	PE			0	0			0
Ball guide	LE			0	0			0
	Miniature LH			0	0			
	LL				0			
	LA	0	0					
	HA		0	0				
	HS		0	0				
Roller guide	RA		0	0		0	0	

Table 3.2 Selection criterion of the preload

Classification of preload	Use condition	Applications		
Z0 and ZT (Fine clearance)	An application in which a set of two parallel linear guides (four ball slides/two rails) is used to sustain a unidirectional load with low vibration and impact. An application in which the accuracy is not very necessary but a friction force must be minimized.	Welding machines, Glass processing machines, Packaging/packing machines, Materials handling equipment		
Z1 and ZZ (Slight preload)	Moment loads are applied. Application for a highly accurate operation.	Industrial robots, Inspection/measuring equipment, Laser cutting machine, Electric discharge machines, PCB drillers, Chip mounters		
Z3, ZH, and Z4 (Medium preload, Heavy preload)	Application in which extremely high stiffness is essential. Application in which vibration and impact load will be applied.	Machining centers, Lathes, Milling machines, Boring machines, Grinders		

4. Estimation of the elastic deformation

The followings are the relation between load and deformation.

- Without the preload
- When the rolling element is ball The deformation is proportional to the 2/3 power of the load.
- When the rolling element is roller The deformation is proportional to the 9/10 power of the load.
- With the preload The deformation is directly proportional to the load.

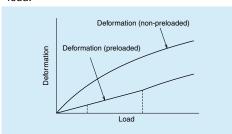


Fig. 3.9 Elastic deformation

A preloaded linear guide deforms proportionally to the load as shown in Fig. 3.9; the calculation of system deformation can be done using the deformation curve. The factors required for an estimation of the system deformation are listed below. The stiffness of slide is shown on the relevant explanation of each linear guide series.

- <Required conditions to calculate deformation>
- Volume of load
- Direction of load
- Point of load application
- · Position of deformation calculation
- · Arrangement of rails and ball slides
- · Position of a driving mechanism

Please refer to the calculation formula of deformation for typical table structures on the pages A18 to A20.

examples of preload

Table 3.3 shows typical application for each preload types of the NSK linear guides.

Refer to this table when selecting "
or your application

Table 3.3 Application examples of preload

Je of		Preload					
Type of machine	Application	Heavy preload Z4	Medium preload Z3, ZH	Slight preload Z1, ZZ	Fine clearance ZO, ZT		
	Machining centers	0	0				
	Grinders	0	0				
s	Lathes	0	0				
90	Milling machines	0	0				
e te	Drilling machines	0	0				
hin	Boring machines		0				
Machine tools	Gear cutters	0	0				
2	Diesinking machines		0	0			
	Laser cutting machines		0	0			
	Electric discharge machines		0				
	Punch presses		0	0			
	Press machines			0	0		
ner	Welding machines		0	0	0		
iρi	Painting machines			0	0 0		
q.	Textile machines			0	0		
d e	Coil winders		0	0			
an	Woodworking machines		Ó	0	0		
Səc	Glass processing machines			0	0		
iΫ	Stone cutting machines			0	0		
nac	Tire forming machines			0	0		
a	• ATC			0	0		
Industrial machines and equipment	Industrial robots		0	0	0		
qri	Materials handling equipment			0	Ó		
드	Packing machines			Õ	0		
	Construction machines				0		
ű	• Probers		0				
itie	Wire bonders		0	0			
io.	PCB drillers		0	0			
r fa	Wafer slicers		Ō				
cto	Wafer dicers		0				
Semiconductor facilities	Chip mounters		0	0			
co	IC handlers			0			
Ë.	• Scanners			0			
Š	Lithographic machines		0	0			
	Measuring/inspection equipment			0			
	Three-dimensional measuring equipment		0	00			
ပ	Medical equipment			0	0		
Others	OA equipment			Ö	0 0 0		
ŏ	Railway cars			0	Õ		
	Stage systems				Ô		
	Pneumatic equipment			0	Õ		
	oumado oquipment			\cup	$\overline{}$		

A29 A30

6. Load and rating life when the preload is taken into account

- It is necessary to include the amount of preload for the calculation of rating life when the Z3 (medium preload) or the Z4 (heavy preload) preload type is specified.
- Full dynamic equivalent load when the preload is taken into account can be obtained by the following formulas.

For balls as rolling element

$$Fe_{P} = P \left| 1 + \frac{Fe}{2.83 \times P} \right|^{\frac{3}{2}}$$

P: Preload (N)

However, when the full dynamic equivalent load taking account of preload is larger than the load at which preload is removed, $Fe_P = Fe$. For this case, preload is lost at $F_{PO} = 2^{\frac{3}{2}}P$

For rollers as rolling element

$$Fe_{P} = P \left| 1 + \frac{Fe}{2.16 \times P} \right|^{\frac{10}{9}}$$

P: Preload (N)

However, when the full dynamic equivalent load taking preload into account is larger than the load at which preload is removed, $Fe_P = Fe$. For this case, preload is lost at $F_{PO} = 2^{10}P$

7. Calculating friction force by preload

- Dynamic friction force per one slide of the ball quide can be calculated from a preload value.
- The following is a simple calculation to obtain the criterion of dynamic friction force.
 For the slight preload ZZ of a preloaded randommatching type linear guide, use the preload volume of slight preload Z1 type assembly.

F = iP

F: Dynamic friction force (N)

P: Preload (N)

i : Contact coefficient

Use the following contact coefficient values (\emph{i}) for each series of linear guides.

NH, VH, NS, LW, LH and HS Series

: 0.004 LA and HA Series : 0.010 PU, LU, PE and LE Series : 0.026

 The starting friction force when the slide begins to move depends on lubrication condition.
 Roughly estimate it at 1.5 to 2 times of the dynamic friction obtained by the above method.

Calculation example

In case of NH35AN - Z3

i = 0.004

P = 2350 (N) (refer to NH series preload)

F = iP

 $= 0.004 \times 2350 = 9.4 (N)$

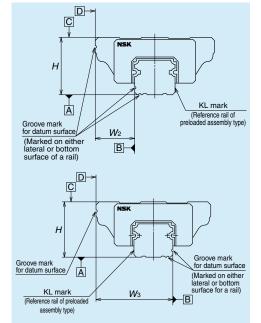
Therefore, the criteria of the dynamic friction force of NH35AN - Z3 is 9.4 N.

For seal friction, refer to seal friction of each Series.

NSK

A-3-4 Accuracy

1. Accuracy standard

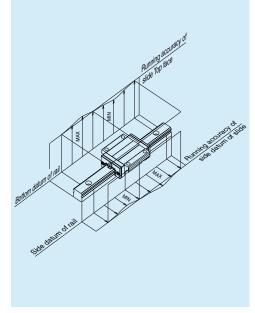

The accuracy characteristics of linear guide are specified to each series in the variations of assembled height, assembled width, and running parallelism. We also specify the mutual variation of a pair of linear guides in the assembled height and assembled width. The accuracy of the table equipped with a set of linear guides is depending on other accuracies and many factors besides the accuracy of linear guides. Those are the accuracy of the mounting surface of the machine, the mounting span between two linear guides, the span of ball slides, the number of ball slides, and the location of the point at where the accuracy is really required. The NSK linear guides can deal with these factors and provide the best suited model for your specific application.

2. Definition of accuracy

• Table 4.1, Fig. 4.1 and Fig. 4.2 show accuracy characteristics.

Table 4.1 Definition of accuracy

Characteristics	Definition (Figs. 4.1 and 4.2)
Mounting height H	Distance from A (rail bottom datum surface) to C (slide top surface)
Variation of H	Variation of H in slides assembled to the rails of a set of linear guides
Mounting width	Distance from B (rail side datum surface) to D (slide side datum surface).
W_2 or W_3	Applicable only to the reference linear guide.
Variation of W_2 or W_3	Difference of the width (W_2 or W_3) between the assembled slides
	which are installed in the same rail. Applicable only to the reference
	linear guide.
Running parallelism of	Variation of C (slide top surface) to A (rail bottom datum surface) when
slide, surface C to surface A	slide is moving.
Running parallelism of	Variation of D (slide side datum surface) to B (rail side datum surface)
slide, surface D to surface B	when a slide is moving.



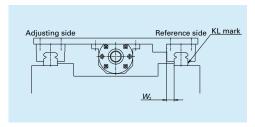

Fig. 4.1 Assembled dimensions

Fig. 4.2 Running parallelism of slide

Mounting width: W_2 , and W_3

• Mounting width differs depending on the arrangement of the datum surfaces of the rail and slide on the reference linear guide (indicated as KL on the rail). (Fig. 4.3 and Fig. 4.4)

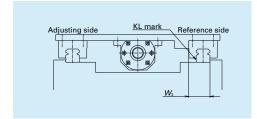


Fig. 4.3 Mounting width W₂

Fig. 4.4 Mounting width W₃

Running Parallelism of Ball Slide

Running parallelism of slide is common in all series. Specifications of all accuracy grades are shown
in Table 4.2. However, applicable accuracy grades differ by series. Please refer to "Table 4.4 Accuracy
grade and applicable series" on page A35.

Table 4.2 Running parallelism of slide

Unit: µm

Accuracy grade	Pre	loaded asser	Random-ma	Random-matching type			
Rail length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	Precision grade PH	Normal grade PC
- 50	2	2	2	4.5	6	2	6
50 – 80	2	2	3	5	6	3	6
80 – 125	2	2	3.5	5.5	6.5	3.5	6.5
125 – 200	2	2	4	6	7	4	7
200 – 250	2	2.5	5	7	8	5	8
250 – 315	2	2.5	5	8	9	5	9
315 – 400	2	3	6	9	11	6	11
400 – 500	2	3	6	10	12	6	12
500 - 630	2	3.5	7	12	14	7	14
630 – 800	2	4.5 (4)	8	14	16	8	16
800 – 1 000	2.5	5 (4.5)	9	16	18	9	18
1 000 – 1 250	3	6 (5)	10	17	20	10	20
1 250 – 1 600	4	7 (6)	11	19	23	11	23
1 600 – 2 000	4.5	8 (7)	13	21	26	13	26
2 000 – 2 500	5	10 (8)	15	22	29	15	29
2 500 – 3 150	6	11 (9.5)	17	25	32	17	32
3 150 – 4 000	9	16	23	30	34	23	34

Note: Value of () is the running parallelism of RA Series.

3. Application examples of accuracy grade and preload

Table 4.3 shows examples of accuracy grade and preload of NSK linear guides for specific purposes. Refer to this table when selecting accuracy grade and preload type for your application.

Table 4.3 Application examples of accuracy grade and preload

Je e			Acc	curacy gra	ade			Prel	oad	
Type of machine	Application	Ultra precision P3	Super precision P4	High precision P5, PH	Precision grade P6	Normal grade PN, PC	Heavy preload Z4	Medium preload Z3, ZH	Slight preload Z1, ZZ	Fine clearance ZO, ZT
	 Machining centers 		0	0	0		0	0		
	Grinders	0	0	0			0	0		
응	Lathes		0	0	0		0	0		
\$	 Milling machines 		0	0	0		0	0		
e_	Drilling machines			0	0		0	0		
Machine tools	Boring machines		0	0	0		0	0		
ac	Gear cutters		0	0	0		0	0		
Σ	 Diesinking machines 		0	0	0			0	0	
	 Laser cutting machines 		0	0	0			0	0	
	 Electric discharge machines 	0	0	0			0	0		
Ħ	 Punch pressses 			0	0			0	0	
Industrial machines and equipment	Press machines				0	0			0	0
bπ	 Welding machines 				0	0		0	0	0
.in	 Painting machines 				0	0			0	0
ĕ	Textile machine				0	0			0	0
ũ	Coil winders				0	0		0	0	
ŝ	 Woodworking machines 			0	0	0		0	0	0
ne	Glass processing machines				0	0			0	0
ch:	Stone cutting machines				0	0			0	0
ц	 Tire forming machines 				_	0			0	0
듩	• ATC				0	0			0	0
Ę.	Industrial robots			0	0	0		0	0	0
Sn	Materials handling equipment				0	0			0	0
l l	Packing machines				0	0			0	0
	 Construction machines 					0				0
es	Probers	0						0	0	
∄	Wire bonders		0	0				0	0	
fac	PCB drillers			0	0			0	0	
Ö	Wafer slicers	0	0					0		
Semiconductor facilities	Wafer dicers	0	0					0		
puc	Chip mounters			0	0			0	0	
5	• IC handlers			0	0				0	
en	• Scanners			0	0				0	
ഗ	 Lithographic machines 	0	0					0	0	
	Measuring/inspection equipment	0	0	0	0				0	
	Three-dimensional measuring equipment	0	0	0	0			0	0	
Others	 Medical equipment 		0	0	0				0	0
اعّ	OA equipment				0	0			0	0
Ö	Railway cars					0			0	0
	Stage systems					0				0
	 Pneumatic equipment 				0	0			0	0

Note: Only Z1 and Z0 are available for PN grade.

For random-matching type, preload "ZH" and "ZZ" are available for PH grade. For PC grade, "ZH", "ZZ" and "ZT" are available.

4. Combination of accuracy grade and preload

(1) Accuracy grades

- The accuracy grade which matches the characteristic of each series is set for the NSK linear guides.
- Table 4.4 shows the accuracy grades available for each series.
- Refer to "3. Application examples of accuracy grade" which shows cases of appropriate accuracy grade for specific purpose.

Table 4.4 Accuracy grades and applicable series

	Prelo	aded assen	nbly (not ra	ndom mato	ching)	Random-ma	atching type
Series	Ultra precision	Super precision	High precision	Precision grade	Normal grade	High precision	Normal grade
	P3	P4	P5	P6	PN	PH	PC
NH, NS	0	0	0	0	0	0	0
VH	0	0	0	0	0		0
LA	0	0	0	0			
LW			0	0	0		0
PE, LE		0	0	0	0		0
PU, LU		0	0	0	0		0
Miniature LH		0	0	0	0		
LL					0		
НА	0	0	0				
HS	0	0	0				
RA	0	0	0	0		0*	

^{*)} Only RA25 to RA65 are available in random matching.

(2) Preload

- Several classifications of preload that match the characteristic of each series are set for the NSK linear guides.
- The classification of preload for each series are shown in Table 4.5.
- Refer to the specifications of each series for details of radial clearance, preload, and rigidity.
- "3. Application examples of accuracy grade" shows the cases of appropriate preload classifications and accuracy grades for specific purposes.

Table 4.5 Classification of preload

	Preloaded	assembly (ı	not random	matching)	Rand	dom-matching	type
Series	Heavy preload	Medium preload	Slight preload	Fine clearance	Medium preload	Slight preload	Fine clearance
	Z4	Z3	Z1	Z0	ZH	ZZ	ZT
NH, NS		0	0	0	0	0	0
VH		0	0	0		0	0
LA	0	0					
LW		(0)	0	0		0	0
PE, LE			0	0			0
PU, LU			0	0			0
Miniature LH			0	0			
LL				0			
НА		0	0				
HS		0	0				
RA		0	0		0	0	

Notes: 1) Z3 preload classification is only applicable to LW35 and LW50 for LW Series.

- 2) Only RA25 to RA65 are available in random matching.
- 3) The preload code of "Z" is omitted from the specification number. Only the number of preload classification code is specified on the last code of the reference number. (Refer to the reference number of each series.)

A35 A36

(3) Combinations of accuracy grade and preload

• Combinations of accuracy grade and preload are shown in Table 4.6.

Table 4.6 Combinations of accuracy grade and preload type

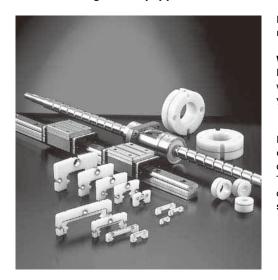
	Accuracy grade	Preload		
Dralandad agambly	P3 – P6	Z4 – Z0		
Preloaded assembly	PN	Z1, Z0		
Random-matching type	PC, PH*1,*2	ZH, ZZ, ZT		

^{*1)} The random-matching type is available for the models of RA25 to RA65. PH grade is set for the accuracy. *2) ZH and ZZ preload are available for the PH accuracy grade.

A-3-5 Maximum Rail Length

General Industrial Use Unit: mm									
Series	Size Material	15	20	25	30	35	45	55	65
NH	Special high carbon steel	2 980	3 960	3 960	4 000	4 000	3 990	3 960	3 900
INIT	Stainless steel	1 800	3 500	3 500	3 500				
VH	Special high carbon steel	2 000	3 960	3 960	4 000	4 000	3 990	3 960	
VП	Stainless steel	1 800	3 500	3 500	3 500				
TS	Special high carbon steel	1 960	2 920	4 000	4 040	4 040			
NS	Special high carbon steel	2 920	3 960	3 960	4 000	4 000			
INS	Stainless steel	1 800	3 500	3 500	3 500	3 500			

					U	nit: mm
Series	Size Material	17	21	27	35	50
LW	Special high carbon steel	1 000	1 600	2 000	2 000	2 000

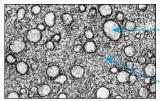

Liquid (Crystal Display	Unit: mm						
Series	Size Material	05	07	08	09	10	12	15
PU	Stainless steel	210	375		600		800	1 000
LU	Special high carbon steel				1 200		1 800	2 000
LO	Stainless steel	210	375		600		800	1 000
PE	Stainless steel	150	600		800		1 000	1 200
LE	Stainless steel	150	600		800		1 000	1 200
LH	Stainless steel			375		600	800	

Machine Tools Unit: mm									
Series	Size Material	15	20	25	30	35	45	55	65
RA	Special high carbon steel	2 000	3 000	3 900	3 900	3 900	3 650	3 600	3 600
LA	LA Special high carbon steel 3 960 4 000 4 000 3 990 3 960 3 900								
High-Precision Machine and High-Precision Measuring Equipment Unit: mm									

						•		
Series	Size Material	15	20	25	30	35	45	55
HA	Special high carbon steel			3 960	4 000	4 000	3 990	3 960
HS	Special high carbon steel	2 000	3 960	3 960	4 000	4 000		
пъ	Stainless steel	1 700	3 500	3 500	3 500	3 500		

A-3-6 Lubrication

1. NSK linear guides equipped with "NSK K1™" lubrication unit



NSK K1 lowers machine operation cost, and reduces impact on the environment.

What is "long-term, maintenance-free" operation? Ball screws and linear guides which are equipped with NSK K1 do not require maintenance for five years or up to 10 000 km operational distance.

What is NSK K1 lubrication unit?

NSK K1 is a lubrication device which combines oil and resin in a single unit. The porous resin contains a large amount of lubrication oil. Touching its surface to the raceway of a rail close to the ball contact point NSK K1 constantly supplies fresh oil which seeps from the resin.

Enlarged surface of NSK K Lubrication Unit

Polyolefin

Unlike vinyl chloride products, polyolefin does not produce dioxin. Polyolefin is also being used increasingly at supermarkets for food wrapping.

Lubrication oil

It is mineral oil-based lubricant. The oil has a viscosity of 100 cSt.

Remarkable capacity with new material: NSK K1[™] lubrication unit information

- A NSK K1 lubrication unit (referred to as NSK K1 hereafter) equipped with an NSK linear guide is an outstanding new lubrication material.
- A Newly developed porous synthetic resin contains large volume of lubricant oil that seeps out and enhances lubricating function.
- Simply install NSK K1 inside a standard end seal (rubber).
- We also provide NSK K1 lubrication unit for sanitary environments suited for food processing machinery, medical equipment and their ancillaries for the environment where hygiene control is essential. For details, refer to "A-3-9 3. NSK Linear Guides for Food Processing Equipment and Medical Devices for Sanitary Environment".

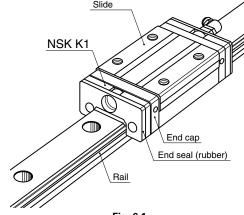


Fig. 6.1

A37 A38

(1) Features

NSK K1 comprises a part of the compact and efficient lubrication unit.

1) Maintenance is required only infrequently

Used with grease, the lubrication function lasts for a long time. Ideal for systems/environments in which replenishing is difficult.

For automotive component processing lines, etc.

2) Does not pollute the environment

A very small volume of grease combined with NSK K1 can provide sufficient lubrication in the environment where grease is undesirable as well as in the environment where high cleanliness is required.

Food processing/medical equipment, liquid crystal displays/semiconductor manufacturing equipment, etc.

We also provide NSK K1 lubrication unit for sanitary environment suited for food processing machinery. medical equipment and their ancillaries for the environment where hygiene control is essential. For details, refer to "A-3-9 3. NSK Linear Guides for Food Processing Equipment and Medical Devices for Sanitary Environment".

(2) Functions

NSK K1 has various superb functions. NSK's ample test data and field performances confirm NSK K1 abilities.

1) Durability test at high speed, with no other lubrication

Fig. 6.2 shows test results under these conditions. The linear guide operated with no lubricant is unable to travel after a short period because breakage occurs. Equipped with NSK K1, the linear guide easily travels 25 000 km.

Conditions: Sample ; LH30AN (preload Z1) Travel speed : 200 m/min

3) Good for applications where lubricant is washed away

Used with grease, life of the machine is prolonged even when the machine is washed entirely by water. or in an environments where the machine is exposed to rain or wind.

Food processing equipment, housing/construction machines, etc.

4) Maintains efficiency in dusty environments

In environments where oil- and grease-absorbing dust is produced, long-term efficiency in lubrication and prevention from foreign inclusions is maintained by using NSK K1 in combination with grease.

Woodworking machines, etc.

*Stainless steel linear guides are available for use in corrosive environments or other environments where rusting is a potential

Stroke : 1 800 mm No lubricant: Completely degreased, no lubrication NSK K1: Completely degreased, no lubrication + NSK K1

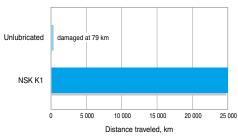


Fig. 6.2 Durability test at high speed, with no **lubrication (lubricated by NSK K1 only)**

2) Immersion test

Fig. 6.3 shows the test results after a linear guide is immersed in water once per week for 24 hours at a time, then traveled for 2 700 km. Without NSK K1, the ball groove sufrace wore out at an early stage and broke. With NSK K1, the wear was reduced to about 1/3 (Table 6.1). This test proves the effect of NSK K1.

: LS30 Stainless steel Conditions: Sample

(preload Z1)

Travel speed ; 24 m/min Stroke : 400 mm

Load : 4 700 N/Slide

Lubricant ; Fully packed with grease

(*) exclusive use for food

proccesing machines

Immersing condition:

Immersed and traveled once per week for 24 hours at a time.

* Grease made in U.S.A.

Characteristic

Consistency: 280 Base oil viscosity: 580 (cSt)

Table 6.1 Comparison in wear of grooves and steel balls (2 700 km) Unit: um

			Offic. prii
Lubricating condition	Ball slide groove	Rail groove	Steel balls
With NSK K1	16 – 18	2 – 3	6 – 8
Without NSK K1	30 – 45	9 – 11	17 – 25

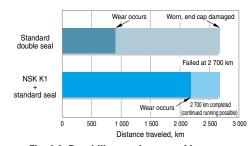


Fig. 6.3 Durability test immersed in water

4) Dust generation

Fig. 6.5 is a comparison of dust generation of NSK K1. The combination of NSK K1 and NSK Clean Grease LG2 (low dust generation grease) generates as little dust as fluorine grease (vacuum grease).

Conditions: Sample : LS20

Travel speed ; 36 m/min

3) Durability test with wood chips

Wood chips absorb lubricant. Maintaining lubrication in such environment is extremely difficult. Fig. 6.4 shows that the life when NSK K1 is added to a standard seal is two times longer than the life when two seals are combined (standard double seal).

Conditions: Sample : LH30AN (preload Z1)

> Travel speed : 24 m/min Stroke : 400 mm ; 490 N/Slide Load

Seal specifications/lubricant:

Standard double Seal...Standard double

Seal + AS2 Grease

NSK K1 ---- NSK K1 + Standard

seal + AS2 Grease

Wood chip conditions:

1 ····· Volume of wood chips: Large 2····· Volume of wood chips: Medium

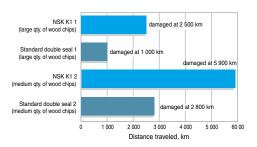


Fig. 6.4 Durability test with wood chips

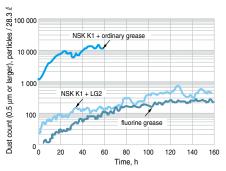


Fig. 6.5 Comparison of dust emission

(3) Specifications

1) Applicable series and sizes

- a) Can be installed in NH, NS, LW, PU, LU, PE, LE, LH, RA, LA, HA, and HS series. It is standard equipment for the VH and TS Series.
- b) Can be used with stainless steel materials and surface-treated items.

2) Standard specifications

a) NSK K1 is installed between the end seal and end

For the TS series, it is installed in the end cap. (Double-seal specification, and specification with protector are also available upon request.)

- b) NSK standard grease is packed inside the slide.
 (You may specify the type of grease and its volume if required.)
- Accuracy and preload classifications are the same as standard items. (Dynamic friction increases slightly due to NSK K1.)

3) Number of installed NSK K1

Normally, one NSK K1 should be installed on both ends of slides. (two K1s for one slide)

However, more NSK K1 may be required under more stringent operating conditions and environment. Please consult NSK for details in such a case.

Precautions for handling

To maintain high fuctionality of the NSK K1, observe the following precautions.

1. Temperature range for use: Maximum temperature in use: 50°C

Momentary maximum temperature in use: 80°C

2. Chemicals that should not come into contact with NSK K1:

Do not leave the NSK K1 in an organic solvent, such as hexane and thinner that remove oil, or rust preventive oil that contains white kerosene.

Note: Water-type cutting oil, oil-type cutting oil, mineral-oil type grease and ester-type grease do not damage NSK K1.

2. Lubrication

Mainly there are two ways of lubrication, grease and oil, for linear guides.

Use a lubricant agent and method most suitable to condition requirements and the purpose to optimize functions of linear guides.

In general, lubricants with low base oil kinematic viscosity are used for high-speed operation, in which thermal expansion has a large impact, and in low temperatures.

Lubrication with high base oil kinematic viscosity is used for oscillating operations, operations in low speeds and in high temperatures.

The following are lubrication methods by grease and by oil.

(1) Grease Lubrication

Grease lubrication is widely used because it does not require a special oil supply system or piping. Grease lubrication accessories available from NSK are:

- · Various types of grease in bellows tube which can be instantly attached to the hand grease pump;
- NSK Grease Unit that consists of a hand grease pump and various nozzles. These are compact and easy to use.

1) NSK grease lubricants

Table 6.2 shows the marketed general grease widely used for linear guides. In addition to these grease, NSK provides special grease for specific conditions and purposes.

Table 6.2 Grease lubricant for linear guides

Type	Thickener	Base oil	Base oil kinematic viscosity mm²/s (40°C)	Range of use temperature (°C)	Purpose
AS2*1	Lithium type	Mineral oil	130	-10 - 110	For general use at high load
PS2*2	Lithium type	Synthetic oil + synthetic hydrocarbon oil	15.9	-50 - 110	For low temperature and high frequency operation
LG2	Lithium type	Mineral oil + synthetic hydrocarbon oil	32	-20 - 70	For clean environment
LGU	Diurea	Synthetic hydrocarbon oil	95.8	-30 - 120	For clean environment
NF2	Urea composite type	Synthetic hydrocarbon oil	26	-40 - 100	For fretting resistant

^{*1)} Standard grease of NH, VH, TS, NS, LW, LH, RA, LA, HA, and HS Series.

^{*2)} Standard grease of PU, LU, PE, and LE Series.

[1] NSK Grease AS2

Features

It is environmentally friendly and widely used grease for high-load applications. It is mineral oil based grease containing lithium thickener and several additives. It is superb in load resistance as well as stability in oxidization. It not only maintains good lubrication over a long period of time, but also demonstrates superb capability in retaining water. Even containing a large amount of water, it does not lose grease when it is softened.

Application

It is standard grease for general NSK linear guides. It is prevalently used in many applications because of its high base oil viscosity, high-load resistance, and stability in oxidization.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil
Consistency	275
Dropping point	181°C
Volume of evaporation	0.24% (99°C, 22 hr)
Copper corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	2.8% (100°C, 24 hr)
Base oil kinematic viscosity	130 mm ² /s (40°C)

[2] NSK Grease PS2

Features

The major base oil component is synthetic oil with mineral oil. It is an excellent lubrication especially for low-temperature operation. It is for a high-speed and light-load application.

Application

It is standard grease for NSK miniature linear guides. It is especially superb for low-temperature operation, but also functions well in normal temperatures, making it ideal for small equipment with light load.

Nature

Thickener	Lithium soap base
Base oil	Synthetic oil + Synthetic hydrocarbon oil
Consistency	275
Dropping point	190°C
Volume of evaporation	0.60% (99°C, 22 hr)
Copper corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	3.6% (100°C, 24 hr)
Base oil kinematic viscosity	15.9 mm²/s (40°C)

[3] NSK Grease LG2

Features

This grease was developed by NSK to be exclusively used for linear guides in clean room. Compared to the fluorine grease which is commonly used in clean room, LG2 has several advantages such as:

- Higher in lubrication function
- Longer lubrication life
- More stable torque (resistant to wear)
- · Higher rust prevention.

In dust generation, LG2 is more than equal to the fluorine grease in keeping dust volume low. Since the base oil is not special oil but mineral oil, LG2 can be handled in the same manner as general grease.

Application

LG2 is the lubrication grease for linear guides for semiconductor and liquid crystal display (LCD) processing equipment which require a highly clean environment. Because LG2 is exclusively for a clean environment at normal temperatures, however, it cannot be used in a vacuum environment.

Refer to "Special environment" in page A60 for the detailed data on superb characteristics of NSK Grease LG2.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil + Synthetic hydrocarbon oil
Consistency	199
Dropping point	201°C
Volume of evaporation	1.40% (99°C, 22 hr)
Copper corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.8% (100°C, 24 hr)
Base oil kinematic viscosity	32 mm²/s (40°C)

[4] NSK Grease LGU

Features

This is a proprietary urea base grease of NSK featuring low dust emission exclusively for linear guides which are used in clean room.

In comparison with the fluorine base grease, which has been used commonly in clean room, LGU has better lubricating property, longer duration of lubricant, better torque variation, much better anti-rust property, and equivalent or better dust generation. In addition, this grease can be handled in the same way as the other common grease because high-grade synthetic oil is used as the base oil.

LGU grease contains much less metallic elements compared to LG2 grease. It can be used in high temperature environment.

Application

This is exclusive lubrication grease for linear guides that are installed in equipment that requires cleanliness, as same as LG2 grease, and it can be used in high temperature range of -30°C to 180°C. This grease cannot be used in vacuum.

Nature

Thickener	Diurea
Base oil	Synthetic hydrocarbon oil
Consistency	201
Dropping point	260°C
Volume of evaporation	0.09% (99°C, 22 hr)
Copper corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.6% (100°C, 24 hr)
Base oil kinematic viscosity	95.8 mm²/s (40°C)

[5] NSK Grease NF2

[5] NSK Grease NF2

• Features
It uses high-grade synthetic oil as the base oil and urea base organic compound as the thickener. It has remarkable anti-fretting corrosion property. It can be used in wide temperature range, from low to high, and has superior lubrication life.

Application

This grease suits for linear guides whose application includes oscillating operations. Allowable temperature range is -40°C to 100°C.

Nature

Thickener	Diurea
Base oil	Synthetic hydrocarbon oil
Consistency	288
Dropping point	260°C
Volume of evaporation	0.22% (99°C, 22 hr)
Copper corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.5% (100°C, 24 hr)
Base oil kinematic viscosity	26 mm²/s (40°C)

Precautions for handling

- · Wash the linear guides to remove oil prior to applying Clean Grease LG2 or LGU, so the grease functions are fully utilized.
- The clean grease is exclusively used for clean environments at normal pressure.

A43 **A44**

2) How to replenish grease

Use the grease fitting of a slide if an exclusive grease supply system is not used. Supply the required amount of grease by a grease pump.

Wipe off old grease and accumulated dust before supplying new grease. If the grease fitting is not used, apply grease directly to the rail. Remove the seal if possible, and move the slide few strokes so the grease permeates it. A hand grease pump, an exclusive and easy lubricating device for linear guides, is available at NSK.

3) Volume of grease to be replenished

Once grease is replenished, another supply is not required for a long time. But under some operational conditions, it is necessary to periodically replenish grease. The following are replenishing methods.

 When there is an exclusive grease supply system and the volume from the spout can be controlled, the criterion is: All at once, replenish the amount that fills about 50% of the internal space of the slide. This method eliminates waste of grease, and is efficient.

Page A46 shows the internal spaces of slide of each series for your reference.

• When replenishing grease using a grease gump:

Use a grease pump and fill the inside of slide with grease. Supply grease until it comes out from the slide area. Move the slide by hand while filling them with grease, so the grease permeates all areas. Do not operate the machine immediately after replenishing. Always try to run-in the system a few times to spread the grease throughout the system and to remove excess grease from inside. Running-in operation is necessary because the sliding force of the linear guide greatly increases immediately after the replenishment (full-pack state) and may cause problems. Grease's stirring resistance is accountable for this phenomenon. Wipe off excess grease that accumulates at the end of the rail after trial runs, so the grease does not scatter to other areas.

4) Intervals of checks and replenishments

Although the grease is of high quality, it gradually deteriorates and its lubrication function diminishes. Also, the grease in the slide is gradually removed by stroke movement. In some environments, the grease becomes dirty, and foreign objects may enter a slide. New grease should be replenished depending on the frequency of use. The following is a guide of intervals of grease replenishments to linear guides.

Table 6.3 Intervals of checks and replenishments for grease lubrication

Intervals of checks	Items to be checked	Intervals of replenishments	
	Dirt, foreign matters such as	Usually once per year is sufficient. Every 3 000 km for a	
3-6 months	cutting chip	system such as material handling equipment that travels	
3 0 111011113		more than 3 000 km per year. Replenish if checking results	
		warrant it necessary.	

Notes: 1) As a general rule, do not mix greases of different brands. Grease structure may be destroyed if greases of different thickeners are mixed. Even when greases have the same thickener, different additives in them may have an adverse effect on each other.

2) Grease viscosity varies by temperature. Viscosity is particular high in winter due to low temperature. Pay attention to increase in linear guide's sliding resistance in such occasion.

NH Series

		Unit: cm		
Series	NH			
Model No.	High-load type	Ultra-high-load type		
15	3	4		
20	6	8		
25	9	13		
30	13	20		
35	22	30		
45	47	59		
55	80	100		
65	139	186		

VH Series

Series VH High-load type Ultra-high-load type Ultra-high-load type Ultra-high-load type Series Series			Unit: cm³
15 3 4 20 6 8 25 9 13 30 13 20 35 22 30 45 47 59	Series	V	Н
20 6 8 25 9 13 30 13 20 35 22 30 45 47 59	Model No.	High-load type	Ultra-high-load type
25 9 13 30 13 20 35 22 30 45 47 59	15	3	4
30 13 20 35 22 30 45 47 59	20	6	8
35 22 30 45 47 59	25	9	13
45 47 59	30	13	20
	35	22	30
55 80 100	45	47	59
	55	80	100

TS Series

	Unit: cm³
Series Model No.	TS
15	2
20	3
25	6
30	9
35	15

NS Series

		Unit: cm	
Series	NS		
Model No.	Medium-load type	High-load type	
15	2	3	
20	3	4	
25	5	8	
30	8	12	
35	12	19	

RA Series

		Unit: cm	
Series	RA		
Model No.	High-load type	Ultra-high-load type	
15	1	1.5	
20	2	2.5	
25	3	3.5	
30	5	6	
35	6	8	
45	10	13	
55	15	20	
65	33	42	

Table 6.4 Inside space of the slide

LW Series

	Onit. Citi
Series Model No.	LW
17	3
21	3
27	7
35	24
50	52

PU, LU Series

				Unit: cm
Series	PU		L	U
Model No.	Standard type	High-load type	Standard type	High-load type
05	0.1	-	0.1	-
07	0.1	-	0.1	-
09	0.2	0.3	0.2	0.3
12	0.3	0.4	0.3	0.4
15	0.8	1.1	0.8	1.1

PE, LE Series

					Offic. Citi
Series	PE			LE	
Model No.	Standard type	High-load type	Medium-load type	Standard type	High-load type
05	0.1	-	0.1	0.1	-
07	0.2	1	0.1	0.2	0.3
09	0.4	0.5	0.2	0.4	0.5
12	0.5	0.7	0.3	0.5	0.7
15	1.2	1.6	0.8	1.2	1.6

Miniature LH Series

	Unit: cm
Series Model No.	LH
08	0.2
10	0.4
12	1.2

LA Series

		Unit: cm	
Series	LA		
Model No.	High-load type	Ultra-high-load type	
25	8	12	
30	14	18	
35	21	29	
45	38	48	
55	68	86	
65	130	177	

HA, HS Series

		Offic. Citi
Series Model No.	НА	HS
15	_	5
20	-	9
25	16	16
30	27	25
35	42	40
45	67	ı
55	122	_

Unit: cm

5) NSK grease unit

A hand grease pump and lubrication grease contained in a bellows tube (80 g of grease) which can be loaded to the grease pump.

Grease in a bellows tube

[1] Composition of NSK grease unit

Components and grease types are shown below.

		Name	(Tube color)	Reference number
NSK Grease U	Jnit			
— NSK G		NSK Grease AS2	(Ocher)	NSK GRS AS2
(80 g ii	n a bellows tube)	NSK Grease PS2	(Orange)	NSK GRS PS2
		NSK Grease LG2	(Blue)	NSK GRS LG2
		NSK Grease LGU	(Yellow)	NSK GRS LGU
		NSK Grease NF2	(Gray)	NSK GRS NF2
└─ NSK H	and Grease Pump Ur	nit		
	NSK Hand Grease Pu (Straight nozzle NSI	ımp K HGP NZ1 One nozzle is p	provided with a ha	NSK HGP and grease pump.)
	Grease nozzle (used	with a hand grease pump)		
		NSK straight nozzle		NSK HGP NZ1
		NSK chuck nozzle		NSK HGP NZ2
		NSK drive fitting no	zzle	NSK HGP NZ3
		NSK point nozzle		NSK HGP NZ4
		NSK flexible nozzle		NSK HGP NZ5
		NSK flexible nozzle NSK flexible extensi	ion pipe	NSK HGP NZ5 NSK HGP NZ6

NSK

[2] NSK greases (80 g in a bellows tube)

Refer to pages A43 and D14 for their natures and details.

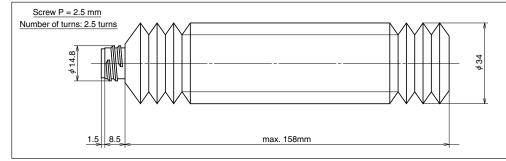


Fig. 6.6 Bellows tube

[3] NSK hand grease pump unit

a) NSK Hand Grease Pump (Reference number: NSK HGP)

Features

 Light-weight ············ 	\cdots Can be operated by one
	hand, yet there is no
	worry to make a mistake.

• Inserting by high pressure ··· Insert at 15 Mpa.

 No leakingDoes not leak when held upside down.

• Easy to change grease ···· Simply attach grease in bellows tube.

• Remaining grease ······Can be confirmed through slit on tube.

• Several nozzles ·······Five types of nozzles to choose from.

Specifications

• Discharge rate · · · · · · 15 MPa

• Spout volume ·······0.35 cc/shot

Mass of main body······ Without nozzle 240 g
 Provided nozzle 90 g

• Outer diameter of bellows grease tube······ φ 38.1

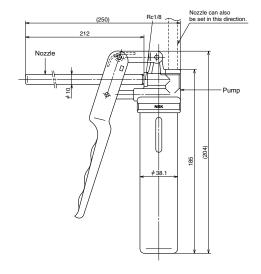


Fig. 6.7 NSK Hand Grease Pump with NSK straight nozzle

*Air is contained in the unopened bellows tube. Try the system tens of times when to use the hand grease pump. The tube will be use after deflated from the tube.

b) Nozzles

Table 6.5 Nozzles that can be attached to NSK Hand Grease Pump

Name	Designation code	Use	Dimensions
NSK straight nozzle	NSK HGP NZ1	Can be used with grease fitting A, B, and C under JIS B1575 standard.	R1/8
NSK chuck nozzle	NSK HGP NZ2	Same as above. However, there is no need to press the hand pump because the grease fitting and the nozzle come into contact due to the chucking mechanism at the tip.	R1/8
NSK fitting nozzle	NSK HGP NZ3	Dedicated for the $-\phi 3$ drive-in grease fitting.	30 11 M6×1.0 5 155
NSK point nozzle	NSK HGP NZ4	Used for linear guides that do not have grease fitting. Supplies grease directly to the ball grooves, or through the opening of slide or slide to inside.	Tp. + 1.5 R1/8
NSK flexible nozzle	NSK HGP NZ5	The tip of the flexible nozzle is a chuck nozzle. The straight nozzle is not available for use.	14HEX. 14HEX. P1/8
NSK flexible extension pipe	NSK HGP NZ6	Flexible extension pipe connects the grease pump and the nozzle	Rp1/8 14HEX. R1/8
NSK straight extension pipe	NSK HGP NZ7	Straight extension pipe connects the grease pump and the nozzle.	Rp1/8 12HEX. R1/8

Table 6.6 Grease fittings used for NSK linear guide

Series	Model No.	Tap hole for grease fitting	fitting	nozzle NZ1	Chuck nozzle NZ2	Drive-in fitting nozzle NZ3	Point nozzle NZ4	Flexible nozzle NZ5
	NH15	φ3	Drive-in type			0		
NH Series	NH20, 25, 30, 35*	M6×0.75	B type	0	0			0
	NH45, 55, 65	Rc1/8	B type	0	0			0
	VH15	φ3	Drive-in type			0		
VH Series	VH20, 25, 30, 35*	M6×0.75	B type	0	0			
	VH45, 55	Rc1/8	B type	0	0			
TS Series	TS15	φ3	Drive-in type			0		
13 Series	TS20, 25, 30, 35*	M6×0.75	B type	0	0			0
NS Series	NS15	φ3	Drive-in type			0		
No Series	NS20, 25, 30, 35*	M6×0.75	B type	0	0			0
	LW17	φ3	Drive-in type			0		
LW Series	LW21, 27, 35*	M6×0.75	B type	0	0			0
	LW50	Rc1/8	B type	0	0			0
PU Series	PU05, 07, 09, 12	_	_				0	
PU Series	PU15	φ3	Drive-in type			0		
LU Series	LU05, 07, 09, 12, 15	-	-				0	
PE Series	PE05, 07, 09, 12	_	-				0	
I L Selles	PE15	φ3	Drive-in type			0		
LE Series	LE05, 07, 09, 12, 15	_	-				0	
Miniature	LH08, LH10	_	-				0	
LH Series	LH12	φ3	Drive-in type			0		
RA Series	RA15, 20	φ3	Drive-in type			0		
	RA25, 30, 35*	M6×0.75	B type	0	0			
	RA45, 55, 65	Rc1/8	B type	0	0			
LA Series	LA25, 30, 35*	M6×0.75	B type	0	0			
LA Series	LA45, 55, 65	Rc1/8	B type	0	0			0
HA Series	HA25, 30, 35*	M6×0.75	B type	0	0			0
TIA Series	HA45, 55	Rc1/8	B type	0	0			0
HS Series	HS15	φ3	Drive-in type			0		
HS Series	HS20, 25, 30, 35*	M6×0.75	B type	0	0			0

Note: PU, LU, PE, and LE Series; Apply grease directly to ball groove, etc. using a point nozzle.

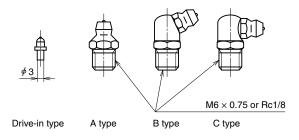


Fig. 6.8 Grease fittings

A long threaded grease fitting is required because of dust-proof parts. Please refer to the sections pertaining to the lubrication and dust-proof parts of each series.

^{*)} When using a chuck nozzle, make sure that it does not interfere with the table on linear guides.

(2) Oil lubrication

Required amount of new oil is regularly supplied by:

- Manual or automatic intermittent supply system;
- · Oil mist lubricating system via piping.

Equipment for oil lubrication is more costly than one for grease lubrication. However, oil mist lubricating system supplies air as well as oil, thus raising the inner pressure of the slide. This prevents foreign matters from entering, and the air cools the system. Use an oil of high atomizing rate such as ISO VG 32-68 for the oil mist lubrication system.

ISO VG 68-220 are recommended for common intermittent replenishment system. Approximate volume of oil Q for a slide of linear guide per hour can be obtained by the following formula.

In case of all ball type linear guides except LA series

 $Q \ge n/150 \text{ (cm}^3/\text{hr)}$

In case of LA and RA series

 $Q \ge n/100 \text{ (cm}^3/\text{hr)}$

n: Linear guide size code

e.g. When NH45 is used,

n = 45,

Therefore,

 $Q = 45/150 = 0.3 \text{ cm}^3/\text{hr}$

For the oil lubrication by gravity drip, the oil supply position and installation position of the slide are crucial. In case of linear guide, unless it is installed to a horizontal position, the oil flows only on the down side, and does not spread to all raceway surface. This may cause insufficient lubrication. Please consult NSK to correct such situations prior to use. NSK has the internal design which allows oil lubricant to flow throughout the system.

Table 6.7 shows the criterion of intervals of oil checks and replenishments.

Table 6.7 Intervals of checks and replenishments

Method	Intervals of checks	Items to check	Replenishment or intervals of changes
Automatic intermittent supply	Weekly	Volume of oil, dirt, etc.	Replenish at each check. Suitable volume for tank capacity.
Oil bath	Daily before operation	Oil surface	Make a suitable criterion based on consumption

Notes: 1) As with grease lubrication, do not mix oil lubricant with different types.

- 2) Some components of the linear guide are made of plastic. Avoid using an oil that adversely affects synthetic resin.
- 3) When using oil mist lubricating system, please confirm an oil supply amount at the each outlet port.

A-3-7 Dust Proof

1. Standard specification parts

- To keep foreign matters from entering inside the slide, NSK linear guides have end seals on both ends, bottom seals at the bottom surfaces, and an inner seal in the inside of slide.
- The seals for standard specification for each series are shown in Table 7.1.
- Seal friction per a standard slide is shown in the technical description of the dust-proof parts of each series.

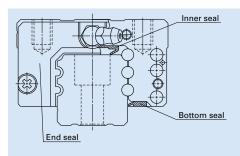


Fig. 7.1

Table 7.1 Standard seals

		End seal	Bottom seal	Inner seal
NIII Carria	NH15	0	0	-
NH Series	NH20, NH25, NH30, NH35, NH45, NH55, NH65	0	0	Δ
VH Series	VH15	0	0	_
vn Series	VH20, VH25, VH30, VH35, VH45, VH55	0	0	Δ
TS Series	TS15, TS20, TS25, TS30, TS35	0	0	0
NS Series	NS15	0	0	-
No Series	NS20, NS25, NS30, NS35	0	0	Δ
LW Series	LW17, LW21, LW27, LW35, LW50	0	0	-
PU Series	PU05, PU07, PU09, PU12, PU15	0	_	-
LU Series	LU05, LU07, LU09	Δ	_	-
LO Series	LU12, LU15	0	-	-
PE Series	PE05, PE07, PE09, PE12, PE15	0	_	-
LE Series	LE05, LE07, LE09, LE12, LE15	0	_	-
Miniature	LH08, LH10	0	-	-
LH Series	LH12	0	0	-
RA Series	RA15, RA20	0	0	Δ
na Series	RA25, RA30, RA35, RA45, RA55, RA65	0	0	0
LA Series	LA25, LA30, LA35, LA45, LA55, LA65	0	0	Δ
HA Series	HA25, HA30, HA35, HA45, HA55	0	0	0
HS Series	HS15, HS20, HS25, HS30, HS35	0	Δ	-

: Equipped as a standard feature

△ : Available upon request

A51 A52

2. Dust-proof parts

 NSK has the following items for the dust-proof parts. Select a suitable type for the operating environment.

Table 7.2 Optional dust-proof parts

Name	Purpose	Reference page
NSK K1 lubrication unit	Made of oil impregnated resin. Enhances lubricating functions.	A38 – A41
Double seal	It combines two end seals for enhancing sealing function.	A53
Protector	Protect the end seal from hot and hard contaminants.	A54
Rail cap	Prevents foreign matters, such as swarf generated in cutting operation from clogging the rail-mounting holes.	A54
Inner seal	Installed inside a slide, and prevents foreign matters from entering the rolling contact surface.	A55
Bellows	Covers the linear guide.	A55
Rail cover *	Covers the rail top surface, and prevents foreign matters, such as cutting dust, from collecting in the rail mounting holes.	A310

^{*)} The rail cover is available only for RA25 to RA65 of RA series.

(1) Double seal

- · It is a combination of two end seals to enhance seal function.
- · When the double seal is installed, the end seal section becomes thicker than the standard item. Please pay attention to the increase in a slide length when designing the mounting dimension of slide and the table stroke. Please refer to the section of dust-proof components for the dimensional increase in the length direction of each series due to fitting of double seal.
- Double-seal set: Can be installed to a completed standard ball slide assembly later upon request. It comprises two end seals, two collars, and two machine screws for installation (Fig. 7.2). The product reference numbers of each series are described on the section of dust-proof parts.
- · When attaching a grease fitting to the end cap after the double seal is equipped, you require a connector shown in Fig. 7.2. Please specify the connector set when ordering the linear guides.
- · For VH, RA, LA, HA, and HS Series, the doubleseal set can be only installed before shipping from the factory.

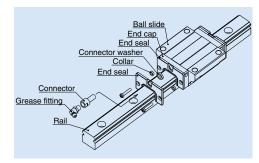


Fig. 7.2 Double seal

(2) Protector

- A protector is usually installed outside the end seal to prevent high-temperature fine particles such as welding spatter and other hard foreign matters from entering the slide.
- Same as the case with the double seal, when the protector is installed, the slide becomes longer. Take this thickness of slide into consideration for determining the relevant dimensions such as the system stroke and the ball slide installation envelope. An increase in the length of the ball slide due to the installation of protector is shown in the technical description of the dust-proof parts of each series.
- · The protectors are available from the stock and we can install them to a completed standard slide assembly upon request. The model numbers of the protectors for ordering are shown in the technical explanation of the dust -proof parts of each series.
- · When attaching a grease fitting to the end cap after the protector is equipped, you require the connector shown in Fig. 7.3. Please specify the connector set when ordering the linear guides.
- For VH, RA, LA, HA, and HS Series, the protector can only be installed only before shipping from the factory.

(3) Bolt-hole cap to plug the bolt holes for rail mounting

- · After the rail is mounted to the machine base, a bolt-hole cap is used to plug the bolt hole to prevent foreign matters from clogging up the hole and from entering into the slide (Fig. 7.4).
- The bolt-hole cap is made of synthetic resin which has superb in its resistance to oil and abrasion.
- · Sizes of the bolt for the each linear guide model as well as the reference number of the bolt-hole cap are shown in the technical description of the dust-proof parts of each series.
- To insert the cap into the rail bolt hole, use a flat dolly block (Fig. 7.5). Pound the cap gradually until its height becomes flush with the rail top surface.
- You can reorder extra bolt hole caps. Sizes of the bolts and each model number of bolt-hole caps are shown in the technical description of the dust-proof parts of each series.
- · Caps which are made of metal is also available upon request.

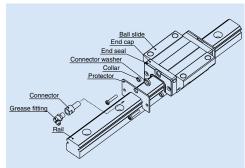


Fig. 7.3 Protector

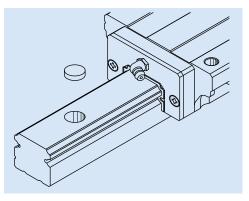


Fig. 7.4

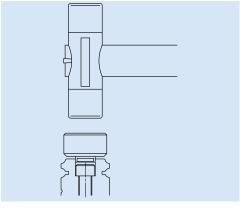


Fig. 7.5

(4) Inner seal

- The end seal installed on both ends of a slide cannot arrest entire contaminant, though the missed amount is negligible. An inner seal protects the rolling contact surface from such contaminant which entered inside the slide (Fig. 7.6).
- The inner seal is installed inside the slide. Therefore, the appearance in size and the shape are the same as the standard slide. (The inner seal is already installed before shipping.)
- · It is strongly recommended to use the bellows and the double seal along with the inner seal to maintain the precision of the linear guide.
- · Refer to Table 7.1 for availability of inner seal.

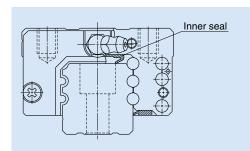


Fig. 7.6 Inner seal when installed

[1] Installation of bellows NH and NS Series

* Fixing to the ball slide (Fig. 7.7)

- Remove two machine screws (M2) which secure the end seals to the end of the slide (Fig. 7.7). For NS15, hold the end cap by hand. Otherwise, the end cap is detached from the ball slide, and the balls inside may spill out.
- Then insert a spacer to the hole for securing the end seal. Fasten the mounting plate at the end of the bellows to the slide with a slightly longer machine screw (provided with the bellows).

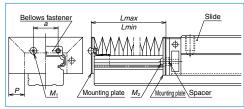


Fig. 7.7

(5) Bellows

- A bellows covers entire linear guide. It has been used widely as a way of protection in an environment where foreign matters are prevalent.
- · NSK has bellows exclusively for NH, NS, LW and LA Series. They have a middle bellows and a bellows at both ends. For NH Series, there are low and high type bellows which are in compliance with their slide types.
- The high type is used for AN and BN types. The low type is used for EM, GM, AL and BL types. The top of the high type bellows is slightly lower than the top surface of the slide.
- When a high type bellows is installed to the slide with the height code L (such as AL), the top of the bellows becomes higher than the slide. However, it is advantageous for stroke because the pitch of the bellows becomes larger than the low type.
- Special bellows are required when installing the linear guide vertically, or hanging it from a ceiling. Please consult NSK in such a case.
- · When a bellows is used, please be advised that we cannot put a grease fitting on the end of slide to which the bellows is attached. If you require the grease fitting, it shall be put on the side of end cap or slide body. Consult NSK for details.
- For the dimension of bellows, please refer to the section of dust proof parts of each series.

* Fixing to the rail

- · To install bellows for NH and NS Series, lightly knock a fastener exclusively for bellows to the end of the rail (Fig. 7.7). Then secure the mounting plate to the end of the bellows through the tap hole of the fastener.
- · As described above, a bellows can be easily fixed to the end of the rail without adding a tap hole on the end of the rail.
- · Bellows fastener is available only for the horizontal mounting positions. For other mounting positions, sliding plate is required (see Fig. 7.10 on page A56.)

For fixing to the rail, make tap holes to the rail end surface. Fix the bellows mounting plate to the rail end surface through these tap holes by using a machine screw, NSK processes a tap hole to the rail end face when ordered with a linear quide.

[2] LW and LA Series

* Fixing to the ball slide (Fig. 7.8 and Fig. 7.9)

- · Remove two machine screws which secure the end seal. (For LW17 and LW21, hold the end cap by hand while removing the machine screw. Otherwise, the end cap is detached from the slide, and the balls inside may spill over and
- · Insert a spacer to the securing hole of the end seal, fasten the mounting plate on the end of the

bellows using a slightly longer machine screw (provided with the bellows).

* Fixing to the rail

* Fixing to the rail
• Make two tap holes to the rail end surface. Fix the bellows mounting plate with machine screws to the rail end surface through these tap holes. NSK processes the tap holes to the rail end surface when ordered with a linear guide.

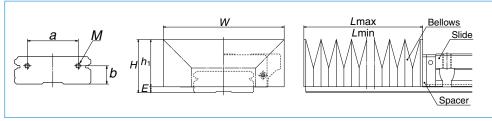


Fig. 7.8

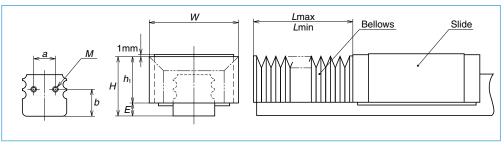


Fig. 7.9

Calculating length of bellows

- · The formula is as follows.
- · A bellows forms one block (BL) with six folds as shown in Fig. 7.10. The stroke is determined by multiplying by an integer of this BL.
- · Length when stretched to the maximum length:

Lmax = $7 \times P \times N$ umber of BL

- Length when contracted to the minimum length:
 - Lmin = 17 × Number of BL
- · Stroke: St = Lmax - Lmin
- The dimension of P and the number of BL are shown in the bellows dimension table of each series.

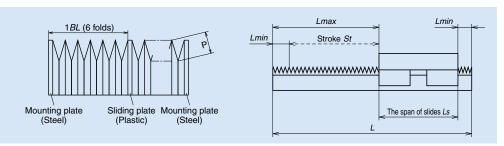


Fig. 7.10

A-3-8 Rust Prevention (Stainless Steel and Surface Treatment)

1. Stainless steel

NSK linear guide is available in stainless steel.

OStainless steel standard series

PU Series PE Series

LE Series Miniature LH Series LL Series

OAvailable in stainless steel

NH Series

NS Series LU Series

Select from the above when using in the environments which invite rust.

2. Surface treatment

(1) Recommended surface treatment

We recommend "low temperature chrome plating" and "fluoride low temperature chrome plating" for rust prevention because of the result of the humidity chamber test for antirust characteristics and their cost-effectiveness.

However, never apply any organic solvent to those treatments for degreasing because it has adverse effect on antirust characteristics.

Refer to the next page for the results of humidity chamber test.

Please consult NSK for other surface treatment.

OLow temperature chrome plating (Electrolytic rust prevention black treatment)

• Used to prevent corrosion, light reflection, and for cosmetic purpose.

OFluoride low temperature chrome plating

- Fluoroplastic coating is provided following the low temperature chrome plating.
- Resistance to corrosion is higher than electrolytic rust prevention film treatment.

(2) Rust prevention of fluoride low temperature chrome plating

The use environment of NSK linear guides is expanding from general industrial machines, semiconductor and liquid crystal manufacturing systems to aerospace equipment.

Among all measures to cope with environment, rust prevention is the most challenging. Such environment includes:

- Moisture for washing machines and other equipment
- Chemicals used in the wet processing of semiconductor and liquid crystal display manufacturing equipment

NSK has developed electrolytic rust prevention black film treatment (black chrome plating) which is added by fluororesin impregnating treatment. (Hereinafter referred as "Fluoride low temperature chrome plating") This surface treatment methods has proved its superiority as the rust prevention of linear guides which are used in the above equipment.

What is "Fluoride low temperature chrome plating?"

This is a type of black chrome plating which forms a black film (1 to 2 µm in thickness) on the metal surface. Fluoroplastic coating is added to the film to increase corrosion resistance.

- Accuracy control is easily manageable due to low temperature treatment and to the absence of hydrogen embritlement.
- Product accuracy is less affected due to the thin film which has high-corrosion resistance.
- This method is superior to other surface treatments in durability on the rolling surface.
- Inexpensive compared with products with other surface treatment and stainless steel products.

However, do not use organic solvent because it adversely affects antirust property of the plating.

Humidity chamber test

Table 8.1 Results of the humidity test

Table 6.1 Results of the numbers							
Test sample			Fluoride low temperature chrome plating	Hard chrome plating	Electroless nickel plating	Equivalent to	Standard steel
Characteristic		(Recommended)	(Reference)	(Reference)	SUS440C material		
	<u>6</u>	Тор	(Ground) B	(Ground) B	(Ground) A	(Ground) C	(Ground) D
		Side	(Ground) A	(Ground) A	(Ground) A	(Ground) C	(Ground) E
	Rusting	Bottom	(Ground) A	(Ground) A	(Ground) A	(Ground) C	(Ground) E
	ď.	End	(Machined) A	(Machined) C	(Machined) A	(Machined) C	(Machined) E
		Chamfer/grinding recess	(Drawn) A	(Drawn) D	(Drawn) A	(Drawn) C	(Drawn) E
Corrosion-resistant property	Trimedow tem	t conditions> esting chamber: High emperature, highly moist hamber de by DABAI ESPEC) emperature: 70°C elative humidity: 95% esting time: 96 h e to "ramp-up" and "ramp- n" conditions of the perature and the humidity np-up: 5 h np-down: 2 h		0		0	
		Film thickness	5 μm	0.5 – 7 μm	10 μm	_	

Rusting A: No rust

B: Not rusted, but slightly discolored

C: Spotty rust

D: Slightly rusted E: Completely rusted

Chemical corrosion resistance test

Table 8.2 Results of the corrosion resistance test

Test conditions Rail base material: Equivalent to SUS440C Chemical density: 1 mol/l

Fluoride low temperature Hard chrome plating None surface treatment chrome plating (reference) Immersed in solution for 24 hrs Nitric acid Immersed in solution for 24 hrs Fluoride Immersed in solution for 72 hrs Hydrochloric acid type washing solution HCl: H2O2: H2O =1:1:8 Hydrochloric acid (immersed) \bigcirc lack \bigcirc Sulfuric acid (immersed) \bigcirc \triangle Ammonia or sodium hydroxide

○: Normal △: Partial surface damage ▲: Overall surface damage x: Corroded

Surface treatment durability test

Peeling resistance of surface treatment

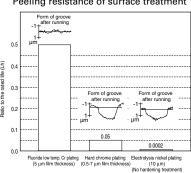


Fig. 8.1 Results of durability test

Total evaluation

Table 8.3 Evaluation

 \triangle : Not so good for use

	Rust prevention ability	Quality stability	Durability	Cost
Fluoride low temperature chrome plating (recommended)	0	0	0	0
Hard chrome plating (reference)	0	×	Δ	Δ
Electroless nickel plating (reference)	0	Δ	×	Δ
Material equivalent to SUS440C	0	0	0	Δ

O: Excellent O: Suitable in use

x: Problem in use

A-3-9 Special Environment

- A-3-9 Special Environment

 1. Heat-resistant specifications

 Standard linear guides use plastic for rolling element recirculation component. The maximum temperature in use for standard linear guides is 80°C.
- Use the linear guide with heat-resistant specifications under temperatures that exceed this limit.

Table 9.1 Comparison of materials: Standard and heat-resistant specifications

Component	Standard specification	Heat-resistant specification	
Rail	Special high carbon steel (equivalent to SUS440C/JIS)	Special high carbon steel (equivalent to SUS440C/JIS)	
Slide	Special high carbon steel (equivalent to SUS440C/JIS)	Special high carbon steel (equivalent to SUS440C/JIS)	
Rolling elements	SUJ2, SUS440C	SUJ2, SUS440C	
Retainer	Polyacetals	SUS304	
Retaining wire	SUS304	SUS304	
End cap	Polyacetals	SUS316L	
Return guide	Polyacetals	SUS316L	
End seal	Acrylonitril-butadiene rubber, SPC/JIS and stainless steel	Fluoro rubber, SPC/JIS and stainless steel	
Bottom seal	Acrylonitril-butadiene rubber, SPC/JIS and stainless steel	Fluoro rubber, SPC/JIS and stainless steel	

Heat resistant linear guides

NH Series NS Series LW Series LU Series LE Series

See page A66 for the availability.

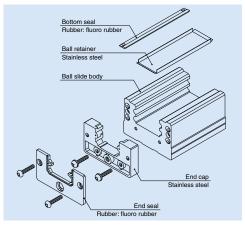
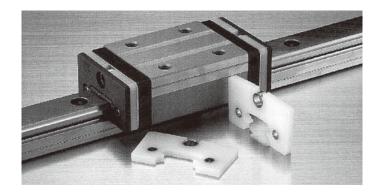


Fig. 9.1


2. Vacuum and clean specifications

- · Based on its abundant experience and technology, NSK manufactures linear guides that can be used in a vacuum or in clean environment. Please consult NSK for more details.
- ·Linear guide specifications vary for environmental conditions.
- For example, "all stainless steel plus special grease, or solid film lubricant is suitable" for vacuum environment.
- · NSK has low-dust generating grease "LG2" which is ideal for clean environment. Refer to page A43 for details.

A59 A60

"NSK linear guides for food processing equipment and medical devices" for sanitary environment

Used with NSK K1 for food processing equipment and medical devices and grease for food processing equipment.

What is "NSK K1[™]" for food processing equipment and medical devices?

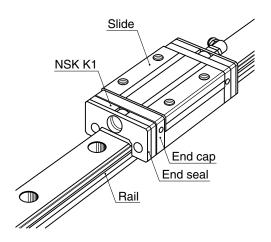
With an amazing innovation lubrication unit, the NSK K1 for food processing equipment and medical devices utilizing the US Food and Drug Administration (FDA) compliant material, provides reliability when used in food processing equipment and medical devices. The newly developed porous synthetic resin contains abundant lubricant.

With the basic function of highly praised NSK K1 lubrication unit for general industry, more sophisticated materials make it applicable in food and medical equipment.

It also offers easy installation: it is installed inside the standard end seal.

(1) Features

- 1) The highest grade of category H1 grease of USDA standard is used for NSK K1 lubrication unit.
- *category H1: Lubricants permitted for use where there is possibility of incidental food contact
- *USDA: USDA (The United States Department of Agriculture)
- <Features of grease for food processing machines>
- This grease is approved by USDA H1. (National Science Foundation [NSF] carries out certification for USDA.)
- · Superb water resistance and antirust capability
- Superb wear resistance
- · Applicable for a centralized oiling system
- 2) Appropriate volume of grease


A supply of appropriate volume of grease reduces grease draining and scattering, and maintains a clean environment.

(2) Available models

Table 9.2 shows available models.

Table 9.2

NH Series	NH15, NH20, NH25, NH30 and NH35
NS Series	NS15, NS20, NS25, NS30 and NS35
LW Series	LW17, LW21, LW27 and LW35
PU Series	PU09, PU12 and PU15
LU Series	LU09, LU12 and LU15
PE Series	PE09, PE12 and PE15
LE Series	LE09, LE12 and LE15
Miniature LH Series	LH12

Precautions for use

To maintain optimal performance of NSK K1 lubrication unit over a long time, please follow the instructions below:

1. Temperatures range for use: Maximum temperature in use: 50°C

Momentary maximum temperature in use: 80°C

2. Chemicals that should not come to contact:

Do not leave NSK K1 lubrication unit in organic solvent, white kerosene such as hexane, thinner which removes oil, and rust prevention oil which contains white kerosene.

Note: Water-type cutting oil, oil-type cutting oil and grease such as mineral-type and ester-type do not damage NSK K1 lubrication unit.

4. Specifications for special environments

Table 9.3 Linear guide specifications

Environment	Condition	NSK linear guide specifications				
Liivii oiiiiieiit	Condition	Rail, slide	Steel balls/rollers	Ball Recirculation component	Lubrication/surface treatment	Explanation Page No.
		Standard material	Standard material	Standard material	LG2 Grease, LGU Grease	D8
	Atmosphere,	Standard material	Otanidara materiar	Otanidara material	NSK K1 lubrication unit	D10
	normal temperature				LG2 Grease, LGU Grease	D8
Clean	normar temperature				NSK K1 lubrication unit	D10
		Martensitic stainless steel	Martensitic stainless steel Austenitic stainless stee	Fluoride low temperature chrome plating	D5	
	Atmosphere-Vacuum, normal temperature Atmosphere-Vacuum up to 200°C				Fluoride grease	
	Atmosphere–Vacuum, normal temperature				Fluoride grease	
	Atmosphere–Vacuum up to 200°C					
Vacuum	Atmosphere–Vacuum up to 300°C	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Molybdenum disulfide	
	High vacuum up to 500°C				Special silver film	D7
	\/	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel		
	Vapor, steam	Chandand make in	Charadand markanial	Standard material		D5
	A -: -! -!!!:	Standard material	Standard material		Fluoride low temperature chrome plating	D5
	Acid, alkali					D5
Corrosion	A . I II I. I		l Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
resistance	Acid, alkali, clean	Martensitic stainless steel			LG2 Grease, LGU Grease	D8
	Strong acid,				Fluoride low temperature chrome plating	D5
	strong alkali				Fluoride grease	
	Organic solvent			Fluoride grease		
	Atmosphere	Standard material	Standard material		FT 100K C	
U:-b	up to 150°C				ET-100K Grease	
High	Atmosphere Up to 200°C	Martanaitia atainlaas ataal	Martanaitia atainlaaa ataal	Austenitic stainless steel	Fluoride grease	
temperature	Atmosphere Up to 200°C,	-wartensinc stainless steer	Martensitic stainless steel		Fluorido avocas	
	Corrosion resistant				Fluoride grease	
Low temperature	-273°C and higher	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Solid lubricant	
Radiation	Atmoonhors	Standard material	Standard material	Standard material	Padiation registent	
resistance	Atmosphere	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Radiation resistant grease	
	Fine particles,	Standard material	Standard material	Standard material		D10
Foreign	wooden chips		Martensitic stainless steel	Austenitic stainless steel	NSK K1 lubrication unit	D10
matters	Water,	Martensitic stainless steel	Standard material	Standard material	TIND NOITEDITUUL LA AGNI	D10
	under water		Martensitic stainless steel	Austenitic stainless steel		D10

5. Lubrication and materials

5. Lubrication and materials
(1) Lubrication
Grease can be used for high rotation and magnetic field. However, grease evaporates or solidifies in special environment such as vacuum, high temperature, and low temperature. Solid lubricant is used when it is difficult to use grease. Functions of solid lubricant differ greatly by condition where it is used. It is important to select the most suitable solid lubrication for the environment.

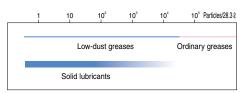


Fig. 9.2 Lubrication in clean environment

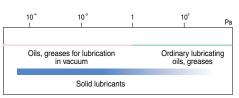


Fig. 9.3 Lubrication in vacuum

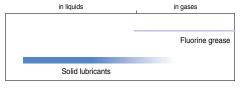


Fig. 9.4 Lubrication in corrosive environment

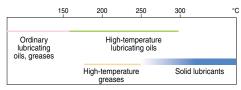


Fig. 9.5 Lubrication in high temperature

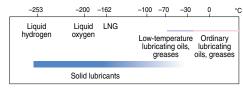


Fig. 9.6 Lubrication in low temperature

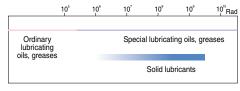


Fig. 9.7 Lubrication in radioactive environment

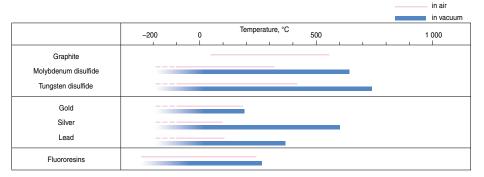


Fig. 9.8 Temperature range for using solid lubricants

(2) Materials

Iron type metals are used in vacuum, high temperature, and high speed environments as the basic material. We generally use nonmagnetic stainless steel for nonmagnetic materials.

Table 9.4 Characteristics of metal materials

Application	Type of steel	Linear expansivity ×10°/°C	Young's modulus GPa	Hardness * HB
For clean environment,	Martensitic stainless steel SUS440C	10.1	200	580
vacuum environment, corrosion resistance, low temperature, high temperature, radioactive resistance	Austenitic stainless steel SUS304	16.3	193	150
	Precipitation hardened stainless steel SUS630	10.8	200	277 – 363
Nonmagnetic	Nonmagnetic stainless steel	17.0	195	420

^{*)} Hardness of steel is usually indicated by Rockwell C Scale. For comparison, these figures are expressed by Brinell number.

6. Responsiveness of NSK linear guides for special environments

-8	Model No.			ent whic			
Series	wodel No.	Clean	Vacuum	Corrosion	High temp.	Hygienic	High dust proo
	NH15	0		0		0	
	NH20	0	0	0	0	0	
	NH25	0	0	0	0	0	
NH	NH30	0	0	0	0	0	
L	NH35	0		0	0	0	
	NH45	0		0	0		
	NH55	0		0			
	NH65	0		0			
	VH15	0		0			0
	VH20	0		0			0
	VH25	0		0			0
VH	VH30			0			0
	VH35			0			0
Ī	VH45	Ŏ		Õ			Ŏ
ı	VH55	Ŏ		Õ			0
T	TS15	Ŏ		Ŏ			
ı	TS20	Ŏ		Ŏ			
тѕ	TS25	Õ		Õ			
	TS30	Ŏ		Õ			
ı	TS35	1 0		Õ			
\neg	NS15	Ŏ	0	Õ	0	0	
ı	NS20	1 0	Ŏ	Õ	Õ	Õ	
ทร	NS25	T ŏ	ŏ	ŏ	ŏ	Ŏ	
	NS30	Ŏ	Õ	Ŏ	<u></u> *	Õ	
ı	NS35	Ŏ		Ŏ		Ŏ	
\neg	LW17	Ŏ		Õ	O*	Õ	
ı	LW21	Ŏ		Õ	<u></u> *	Õ	
LW	LW27	Ŏ		Õ	0	Ö	
	LW35	<u> </u>		Õ		Ö	
ı	LW50	1 0		Õ			
	PU05	1 0		Õ			
ŀ	PU07	Ŏ		Õ			
PU	PU09	Ŏ		Õ		0	
•	PU12	Ŏ		Õ		Õ	
ı	PU15	Ŏ		Õ		Õ	
_	LU05	Ŏ		Õ			
ŀ	LU07	T ŏ		Ŏ			
ŀ	LU09 L	1 8	0	0	0	0	
	LU09_R	1 0		0		0	
-0	LU12_L	1 0	0	0	0	0	
ŀ	LU12_L LU12_R	10		0		0	
ŀ		1 %	0	~	O*	0	
	LU15		\cup	\cup	○ *	\cup	

.85		Special	al environment which linear guide can tolerate				
Series	Model No.	Clean			High temp.		
	PE05	0		0			
	PE07	0		0			
PE	PE09	0		0		0	
	PE12	0		0		0	
	PE15	0		0		0	
	LE05	0		0			
	LE07	0	0	0	O*		
	LE09_L	0	0	0	O*	0	
LE	LE09_R	0		0		0	
LE	LE12_L	0	0	0	0	0	
	LE12_R	0		0		0	
	LE15_L	0	0	0	0	0	
	LE15AR	0		0		0	
Miniature LH	LH08	0		0			
atric	LH10	0		0			
ě	LH12	0	0	0	O*	0	
	RA15	0		0			
	RA20	0		0			
	RA25	0		0			
RA	RA30	0		0			
RΑ	RA35	0		0			
	RA45	0		0			
	RA55	0		0			
	RA65	0		0			
	LA25	0		0			
	LA30	0		0			
LA	LA35	0		0			
LA	LA45	0		0			
	LA55	0		0			
	LA65	0		0			
	HA25	0		0			
	HA30	0		0			
НΑ	HA35	0		0			
	HA45	0		0			
	HA55	0		0			
	HS15	0		0			
	HS20	Ŏ		Ó			
HS	HS25	Ŏ		Ŏ			
	HS30	Ŏ		Ó			
	HS35	Ŏ		Ó			

7. Precautions for handling

Please observe the following precautions to maintain high functions of NSK linear guide.

- Products are washed to remove oil, and wrapped in a way to protect them from moisture. Use the product as soon as possible after opening the package.
- After opening, store the products in a clean, air-tight container such as desiccater with desiccating agent (e.g. silica gel). Do not apply rust preventive oil or an antirust paper that vaporizes rust preventive agent.
- Wear plastic gloves and handle product in a clean place.

Note: Please refer to the catalog "CAT. No. E1258 SPACEA" for the details of special environmental use.

A65 A66

^{*)} Applicable except for the dust-proofing parts.

A-3-10 Arrangement and Mounting of Linear Guide

1. Arrangement

- · For NSK linear guides, the datum surfaces of the rail and of the slide are either marked with a "datum surface groove" or with an "arrow."
- In case that two or more linear guides are used together, one linear guide is designated as a reference side guide, and the rest is adjusting side guide(s). The reference side linear guide has its reference number, serial number, and "KL" mark on the opposite side of the datum surface (Fig. 10.1).
- · When the datum surfaces of the reference side rail and slides are pressed to their mounting datum surfaces respectively, the variation of distance (mounting width W2 or W3) between the datum surfaces of the rails and that of the slides must be a minimum and therefore, it is specified as the standard. (Figs. 10.2 and 10.3)
- The ways to indicate the datum surfaces of each series are shown in Table 10.1.

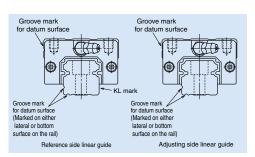


Fig. 10.1 Datum surface

Example of arrangement

· The arrangement of the linear guides must be determined taking into account the table mounting position (horizontal, vertical, inclined, or upside-down), strokes and the size of the machine base to which the table is mounted. Table 10.2 shows common arrangement examples and their properties (features/ precautions).

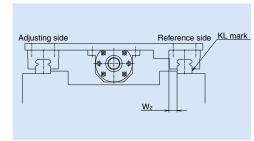


Fig. 10.2 Most common setting of the reference side rail

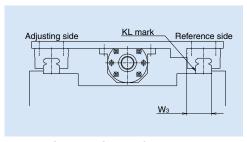


Fig. 10.3 Setting of the reference side rail in certain occasions

Table 10.1 Marks on the rail datum surfaces in each series

Model No. Material	Standard	LU05, 07, 09 PU05, 09, 12, 15 LE07, 09, 12	LU12, 15, NH15, NS15	PU07 LE05, 15 LE09, 12 (with a ball retainer) PE series LH08, 10, 12 LW17, 21 RA15
Special high carbon steel	B	547	B	
Stainless steel	B		B	B

Table 10.2 Arran	Table 10.2 Arrangement example				
Arrangement	Features/Precautions				
Mounting datum surface Table Machine base Adjusting side Datum surface M2 (Fixed side)	Easy for a highly-accurate installation (recommended arrangement)				
entable of the state of the sta	Easy in highly-accurate installation The lubricant oil may not be supplied to slides. When oil lubricant is used, special care is required to design the oil supply routing.				
Spacer for height adjustment W3 W3 Adjusting side Reference side	Slightly difficult for a highly-accurate installation The life of the linear guides is affected by the mounting accuracy. When oil lubricant is used, special care is required to design the oil supply routing.				
Spacer for height adjustment Adjusting side	Difficult for a highly-accurate installation When oil lubricant is used, special care is required to design the oil supply routing.				
Mounting datum of ball slide Table Datum side (Fixed side) Waz Machine base Adjusting side	Rather easy for a highly-accurate installation When oil lubricant is used, special care is required to design the oil supply routing.				
Datum side (Fixed side) Machine base Adjusting side Machine base Mounting datum of ball slide	Easy in highly-accurate installation if the linear guides are installed to the machine base first, and then hung them upside down along with the machine base. The slide may detach from the rail and fall down if the linear guide is damaged and rolling elements in the slide fall out. It is necessary to take preventive measures against the falling of the ball slide.				

2. Mounting accuracy

(1) Accuracy of the mounting base of machine

- The mounting accuracy of linear guide usually copies the accuracy of the machine base.
- However, when two or more slides are assembled to each rail, the table stroke becomes shorter than the mounting surface. This, along with the fact that the mounting error is evenly spread, contributes to a higher table accuracy than the mounting surface accuracy, reducing the error to about 1/3 in average (Fig. 10.4).

• Mounting error affects mainly three factors: life, friction and accuracy (Table 10.3).

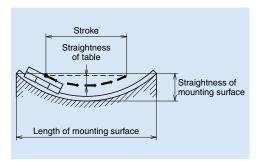


Fig. 10.4

Table 10.3 Influence of mounting error

Factor		Influence				
Life	Rail	 Large mounting error generates a force which twists the slide and reduces its life. It also distorts the contact point of the ball and the groove, and changes contact angle, thus lowering the table rigidity. 				
Friction	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NH and NS Series are affected very little by mounting error thanks to their small friction. (self aligning capability) However, because of off-set Gothic arch grooves, their friction suddenly soars once the mounting error exceeds a certain level. The mounting error severely affects friction of LA Series with heavy preload.				
Accuracy		 When the rigidity of four slides is equal, the theoretical straightness becomes 1/2 of the installation error "e₁". However, this value becomes slightly larger due to the deformation of the rail and the machine base. 				

(3) Permissible values of mounting error

 Among the three factors of life, friction, and accuracy, which are affected by the mounting error, NSK focuses on the life factor to determine the permissible mounting accuracy. The specifications are based on the following conditions.

For ball linear guides

- The permissible load per ball slide due to the mounting error is 10% of the basic dynamic load rating C_{50} .
- The rated life is 5 000 km.
- The rigidity of the machine base is infinite.

For roller linear guide

- The permissible load per roller slide due to the mounting error is 10% of the basic dynamic load rating C_{100} .
- The rated life is 10 000 km.
- The rigidity of the machine base is infinite.
- $C_{\rm so}$; Basic dynamic load rating for 50 km rated fatigue life
- C_{100} ; Basic dynamic load rating for 100 km rated fatigue life
- Figs. 10.5 and 10.6 are representing the mounting errors of e_1 and e_2 . Their permissible values are shown in the description of "5. Installation" of the each series.

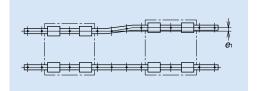


Fig. 10.5

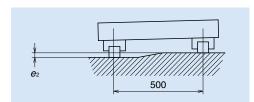
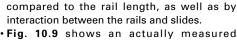



Fig. 10.6

A69 A70

(4) Running accuracy and the influence of even-off effect

· When mounting on a machine base, the linear guide is affected by the flatness of the mounting surface. However, in the case of two-rail/four-slide specification, which is most widely used, the straightness as a table unit is generally less than the straightness as a single component. This is due to the even-off effect generated by the shorter table stroke,

straightness of the table which uses NSK linear guides. In this case, the final straightness of the table is about 1/5 of the straightness of the mounting surface.

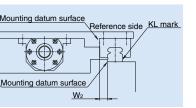


Fig. 10.7

Fig. 10.8

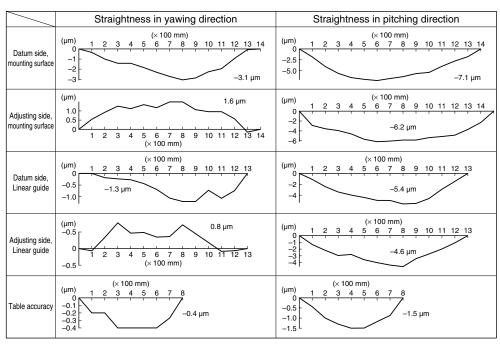


Fig. 10.9 Straightness of the table equipped with linear guide

3. Installation

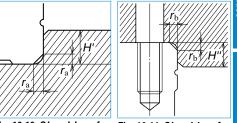
(1) Shoulder height of the mounting surface of the machine base and corner radius r

- · Figs. 10.10 and 10.11, show shoulder height of the mounting surface of the machine base and the size of corner radius. These figures are relevant when the linear guide is pressed to the shoulder of the machine base or table (the raised section from where the mounting surface begins), and horizontally secured to it. Recommended sizes are shown in the clause of "Shoulder height and corner radius r" of each series introduction.
- · The shoulder should be thick (wide) enough, so it is not deformed by the pressing force.

(2) Tightening torque of the bolt

- Table 10.4 shows tightening torque of the bolt when the rail is secured to the fixture of race way grinding machine.
- Apply same torque in this table when securing the rail to the machine base. Equal accuracy at the time of grinding can be obtained.

Table 10.4 Bolt tightening torque (Bolt material: High carbon chromium steel)


			Unit: N⋅m
Bolt size	Tightening torque	Bolt size	Tightening torque
M2.3	0.38	M10	43
M2.5	0.58	M12	76
M3	1.06	M14	122
M4	2.5	M16	196
M5	5.1	M18	265
M6	8.6	M22	520
M8	22	_	_

(3) Installation procedures

- · There are two installation ways depending on the accuracy requirement.
 - a. Installation with high accuracy
 - b. Accuracy is not high, but easy to install
- · For both methods, wipe off the rust preventive oil applied to the linear guide. Remove burrs and small bumps on the machine base and table mounting surface with an oilstone (Fig. 10.12).

Apply machine oil or similar oil with low viscosity to the mounting surface to increase the rust preventive effect.

· Linear guides are precision products. Handle them with care.

the rail datum surface

Fig. 10.10 Shoulder for Fig. 10.11 Shoulder for the slide datum surface

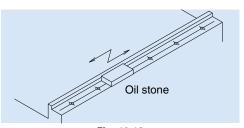


Fig. 10.12

A71 A72

1) Highly accurate installation

A) Rail installation procedures

a) When the machine base has a shoulder for the reference side rail.

[1] Confirm that the rail is reference side rail, and the datum surface of the rail comes to face to face with the shoulder of the machine base. Keep the slides on the rail, and carefully place the rail on the machine base on its mounting surface. Loosely tighten the bolts. At this time, press the rail from sideways to make the rail tightly contact to the shoulder of the machine base. When using a shoulder plate, refer to **Table 10.4** for the bolt tightening torque (**Fig. 10.13**).

Refer to "4. Various methods to press linear guide sideways."

[2] For final tightening of the bolts to secure the rail, tighten the bolt on either end of the rail, then proceed to other end.

If the datum surface is on the left side as shown in Fig. 10.14, tighten the bolt at the farthest end first, then proceed to the near end

This way, creates a bolt rotating force that presses the rail against the shoulder. (Therefore, the rail is pressed sufficiently tight against the shoulder by merely pressing the rail by hand. However, if there is a possibility applying a lateral impact load, it is necessary to use a shoulder plate to prevent the rail from slipping.)

- [3] If the mounting surface of the machine base where the adjusting side rail is installed also has a shoulder, repeat the steps [1] [2].
- [4] If there is no shoulder on the mounting surface of the machine base for the adjusting side rail: Secure a measuring table to the slides of the reference side rail (Fig. 10.15). Use this to adjust the parallelism of the adjusting side rail. Check parallelism of the adjusting side rail with a dial indicator from one end of the rail, tightening the bolts one

The measuring table is more stable if secured to two slides, but one slides is sufficient.

Parallelism between two rails can also be checked by the same method in **Fig. 10.15** when there is a shoulder on the surface where the adjusting side rail is installed.

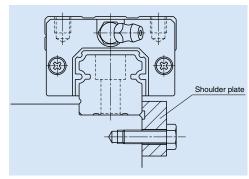


Fig. 10.13 Pressing the rail from sideways

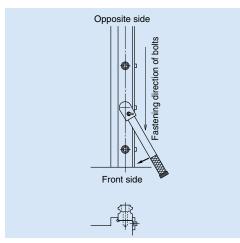


Fig. 10.14 Rail installation

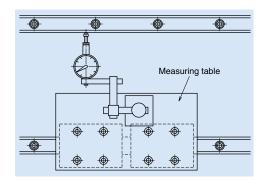


Fig. 10.15 Measuring parallelism

b) When the machine base does not have a shoulder on the side where the reference side rail is installed

- [1] Carefully place the reference side rail on its mounting surface of the machine base. Loosely tighten the bolts. Do not tighten the bolts all the way, but stop tightening when the bolt enters halfway into the bolt hole. This makes the proceeding steps easier.
- [2] Place the straight edge almost parallel to the reference side rail which is temporarily secured by the bolts. (At both ends of the rail and straight edge, the distance between them shall be almost same.)
- [3] Once the position of the straight edge is determined, use it as the reference. With a dial indicator, check parallelism with the rail, and adjust the rail if necessary. Then tighten the bolts.

Ensure that the straight edge does not move while the bolts are being tightened.

This procedure should be carried out starting from one end of the rail to the other end (**Fig. 10.16**).

- [4] Finally tighten all bolts with specified torque.
- [5] There are two ways for installation of adjusting side rail:
 - 1. Based on the straight edge which is used for reference side rail installation
 - 2. Based on the reference side rail which is installed prior to the adjusting side rail. In both cases, use a dial indicator to measure

parallelism. Other procedures are the same as [1] - [4] above, and the [4] for the case where there is

B) Procedures for slide installation

a shoulder on the machine base.

a) When the table has a shoulder

- [1] Arrange the slides so that locations match to their mounting section of the table. Carefully place the table on the slides. Loosely tighten all bolts.
- [2] While pressing the table from sideways, further tighten the bolts which secure the slides on the reference side, so the table shoulder and the slide's mounting datum surface are sufficiently tightly pressed.

If a shoulder plate is provided, first tighten the bolts of the plate, then further tighten the bolts to the slides (**Fig. 10.17**).

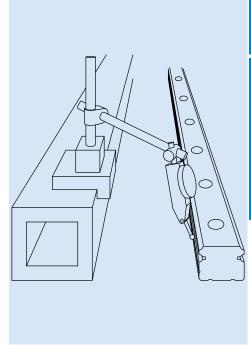


Fig. 10.16

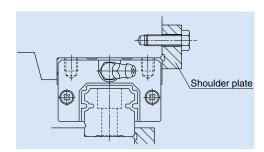


Fig. 10.17 Pressing slide from sideways

- [3] Then, further tighten the bolts for slides on the adjusting side rail.
 - Move the table by hand to confirm that there is no abnormality such as excessive friction force during stroking. (This confirms that the correct installation steps were taken.)
- [4] Finally, tighten all bolts with standard torque.

b) When table does not have a shoulder

- [1] Arrange the slides so that locations match to their mounting section of the table. Carefully place the table on the slides. Loosely tighten bolts to secure the slides.
- [2] Since the table does not have a shoulder. immediately tighten the bolts further to secure slides.
- [3] Move the table by hand to confirm that there is no abnormality. Finally, tighten all bolts with the specified torque.

2) Easy installation

- [1] Carefully place the reference side rail on the machine base. Then tighten the bolts to the specified torque.
- [2] Loosely tighten the bolts on the adjusting side rail.
- [3] Tighten the slides on the reference side rail and one slide on the adjustment side rail with the specified torque. Leave the rest of the slide on the adjusting side rail loosely tightened (Fig. 10.18).
- [4] While moving the table with each pitch of the bolt for rail: With the specified torque, tighten the rail mounting bolt which is located immediately adjacent to the slide on the adjusting side rail that had been firmly tightened.
 - Take this procedure from one end to the other.
- [5] Return the table to the original position once. Then, tighten the rest of the slides on the adjusting side to the specified torque. By the same procedure as in [4], tighten the rest of the rail mounting bolts to the specified torque. Move the table to check any abnormality such as large friction force.

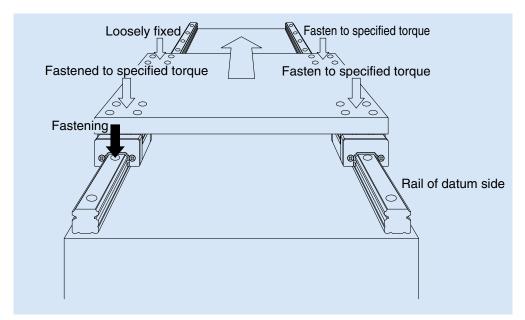


Fig. 10.18 Easy installation

(4) Various methods to press linear guide sideways

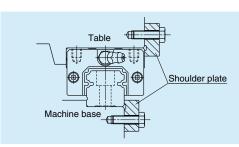
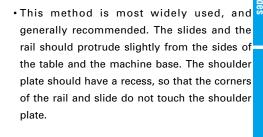



Fig. 10.19 Recommended method

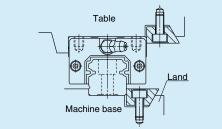



Fig. 10.20 Installation that requires caution

limited space.

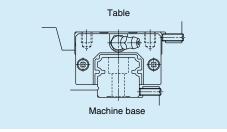
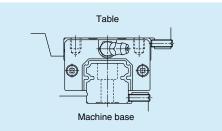



Fig. 10.21

· Press a needle roller with a taper section of the head of a slotted pan head screw. Watch out for the position of the screw.

• The bolt that presses rail must be thin due to

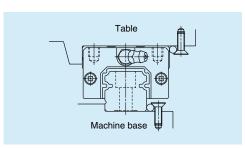


Fig. 10.22

A75 A76

4. Assembly random-matching type linear guide

- Slides of random-matching type are assembled on a provisional rail (an inserting tool) when it is delivered (Fig. 10.23).
- NSK standard grease is packed into the slide, allowing immediate use.

Assembly procedures of a random-matching type linear guide

Follow steps as described below.

- (1) Wipe off the rust preventive oil from the rail and slide.
- (2) Please match a groove mark for the datum surface of slide and rail to set a desired assembling state W₂ or W₃.
- (3) Align the provisional rail to the rail in the bottom and side surfaces. Press the provisional rail lightly against the rail, and move the slide over the rail (Fig. 10.23).

Provisional rail Surface B Surface B Surface B Surface B Confirm alphabetical code and numerals.

Fig. 10.23 Inserting slide into the rail

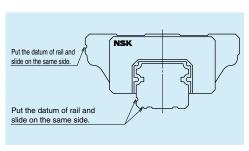


Fig. 10.24

5. Butting rail specification

- A rail which requires the length that exceeds the machine capacity manufactured maximum length comes in butting specification.
- The rails with butting specification are marked with alphabet (A, B, C ...) and an arrow on the opposite side of the mounting datum surface.
 Use the alphabets and arrows for assembly order and direction of the rail (Fig. 10.25).

The random-matching rails for butting specification are only marked with the arrows.

- The pitch of the rail mounting hole on the butting section should be as F in Fig. 10.26.
 When two rails are used in parallel, the butted sections should not align. This is to avoid change in the running accuracy of the table at the butted sections.
- We recommend shifting the butting sections more than the length of a slide. If the higher running accuracy is required, consider installing the slides into the table so that they do not simultaneously pass the butting sections.

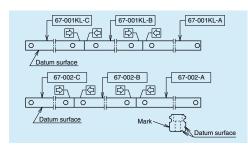


Fig. 10.25

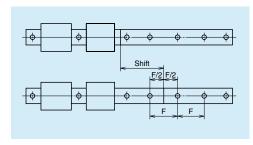


Fig. 10.26

6. Handling preloaded assembly

- In case of the preloaded assembly (not random-matching type), do not remove slides from the rail as a general rule.
- If it is unavoidable to remove slides from the rail, make certain to use a provisional rail (a jig used to insert a slide to the rail) as shown in Fig. 10.27.
- The provisional rails for each series and sizes are available.
- Pay due attention to the assembly mark when returning the slide back to the rail. Follow the cautions described below.

Mark for assembling ball slide and rail

- Rails of preloaded assembly (not randommatching type) are marked with a reference number and a serial number on the opposite of the datum surface.
- Slides to be combined are also marked with the same serial number (the reference number is not marked).
- Furthermore, slides are marked with an arrow.
 Slides should be positioned with their arrows facing each other.
- In case that the slides had to be removed from the rail, confirm their serial numbers and the directions of arrows for re-assembly (Fig. 10.28).
- When two or more rails are used in a single set, serial numbers are in sequence if their reference numbers are the same. The linear guide with smallest serial number has the "KL" mark (Fig. 10.29).
- When two or more rails of different reference number are used in a single set, the rails and slides have the same serial number. In this case, when slides are removed from the rail, it is unclear which rail each slide was previously installed on. When removing ball slides from the rail for an unavoidable reason (Fig. 10.30), sufficient precaution is required.

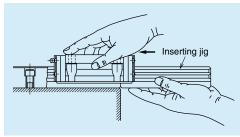


Fig. 10.27

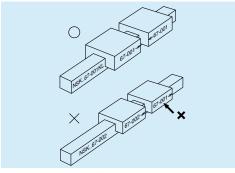


Fig. 10.28

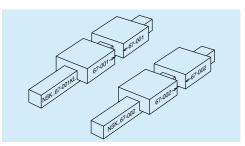


Fig. 10.29 When two rails have the same reference number

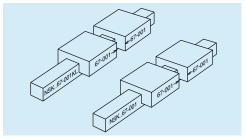
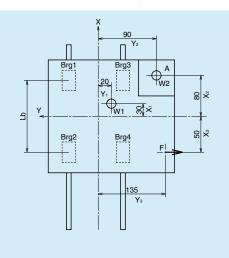



Fig. 10.30 When two rails have different reference number

A-3-11 Drills to Select Linear Guide

1. Single axis material handling system

This section explains the selection of linear guide, life calculation, and deformation at load acting point for a single axis material handling system equipped with linear guides.

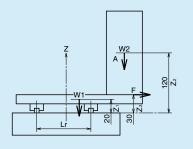


Fig. 11.1 Single axis material handling system

The work load is applied only to one way of stroke. Assume that the load is acting in full stroke as the condition of acting load is unknown.

Specification of the single axis material handling system

Table weight	W1: 150 (N)
Weight of the work	W2:200(N)
Acting load	F : 200 (N)

Ball slide span $L_{\rm b}$: 100 (mm) Rail span $L_{\rm r}$: 90 (mm)

Load point coordinates from the table center (mm)

Load	X axis	Y axis	Z axis
W1	30	-20	20
W2	80	-90	120
F	-50	-135	30

Stroke: 1 000 mm (1 cycle: 2 000 mm)

 $\begin{array}{lll} \text{Environment} & : 10-30 \ (^{\circ}\text{C}) \\ \text{Travel speed} & : 12 \ (\text{m/min}) \\ \text{Time to reach travel speed} & : 0.25 \ (\text{sec}) \\ \text{Operating hour} & : 16 \ (\text{hr/day}) \\ \end{array}$

(1) Selection of linear guide model

Select a type of linear guide from "A-1-2 Structure and Characteristics of Linear Guide." Since this material handling system has two rails and four ball slides, NH, NS, and PU Series are suitable.

Here, we temporary select PU15 because of the dimensions of mounting space.

(2) Calculating life

Calculate life of the selected PU15AL based on "A-3-2 Rating Life and Basic Load Rating."

Linear guide PU15AL

Basic dynamic load rating $C_{100}:4400$ (N) Basic static load rating $C_{0}:6600$ (N)

Load conditions of the linear guide

Table weight W1 : 150 (N)
Weight of the work W2 : 200 (N)
Applied load F : 200 (N)
Rail span L_r : 90 (mm)
Ball slide span L_b : 100 (mm)

From the time to reach travel speed and the travel speed, the table acceleration is 0.8 m/sec². Therefore, it is not necessary to take into account inertial force brought about by the table mass.

Calculation of the load applied to ball slide

Calculate two occasions:

1. There is the work mounted on the table.

2. No work mounted on the table.

From Pattern 4 on page A19 in Table 2.2

When a work is mounted on the table Vertical loads

$$M1 = \sum_{j=1}^{n} (F_{yj} \cdot Z_{yj}) + \sum_{k=1}^{n} (F_{zk} \cdot Y_{zk})$$

$$= F \cdot Z_3 + W1 \cdot Y_1 + W2 \cdot Y_2$$

$$= -200 \times 30 + 150 \times (-20) + 200 \times (-90)$$

$$= -27 \cdot 000 \cdot (N \cdot mm)$$

$$M2 = \sum_{i=1}^{n} \{ F_{xi} \cdot (Z_{xi} - Z_b) \} + \sum_{k=1}^{n} (F_{zk} \cdot X_{zk})$$

$$= W1 \cdot X_1 + W2 \cdot X_2$$

$$= 150 \times 30 + 200 \times 80$$

$$= 20 500 \text{ (N·mm)}$$

$$F_{r1} = \frac{\sum_{k=1}^{n} F_{zk}}{4} + \frac{M1}{2 \cdot L} + \frac{M2}{2 \cdot \ell}$$

$$= \frac{W1 + W2}{4} + \frac{M1}{2 \cdot L_r} + \frac{M2}{2 \cdot L_b}$$

$$= \frac{150 + 200}{4} + \frac{-27000}{2 \times 90} + \frac{20500}{2 \times 100}$$

$$= 40 \text{ (N)}$$

Similarly

$$F_{r_2} = -165(N)$$

$$F_{r3} = 340(N)$$

$$F_{r4} = 135(N)$$

Lateral loads

$$M3 = -\sum_{i=1}^{n} \left\{ F_{xi} \cdot (Y_{xi} - Y_b) \right\} + \sum_{j=1}^{n} \left(F_{yj} \cdot X_{yj} \right)$$
$$= F \cdot X_3$$
$$= -200 \times (-50)$$
$$= 10\ 000\ (N \cdot mm)$$

A79 A80

$$F_{s1} = F_{s3} = \frac{\sum_{j=1}^{n} F_{yj}}{4} + \frac{M3}{2 \cdot 1}$$
$$= \frac{F}{4} + \frac{M3}{2L_b}$$
$$= \frac{-200}{4} + \frac{10\ 000}{2 \times 100}$$
$$= 0\ (N)$$

Similarly

$$F_{s2} = F_{s4} = -100(N)$$

No work mounted on the table Vertical load

$$M1 = \sum_{j=1}^{n} (F_{yj} \cdot Z_{yj}) + \sum_{k=1}^{n} (F_{zk} \cdot Y_{zk})$$
$$= F \cdot Z_3 + W1 \cdot Y_1$$
$$= -200 \times 30 + 150 \times (-20)$$
$$= -9 \ 000 \ (N \cdot mm)$$

$$M2 = \sum_{i=1}^{n} \{ F_{xi} (Z_{xi} - Z_b) \} + \sum_{k=1}^{n} (F_{zk} \cdot X_{zk})$$

= $W1 \cdot X_1$
= 150×30
= 4500 (N·mm)

$$F_{r1} = \frac{\sum_{k=1}^{n} F_{2k}}{4} + \frac{M1}{2 \cdot L} + \frac{M2}{2 \cdot I}$$

$$= \frac{W1}{4} + \frac{M1}{2 \cdot L_r} + \frac{M2}{2 \cdot L_b}$$

$$= \frac{150}{4} + \frac{-9000}{2 \times 90} + \frac{4500}{2 \times 100}$$

$$= 10 \text{ (N)}$$

Similarly

$$F_{r2} = -35 \text{ (N)}$$

$$F_{r3} = 110 \text{ (N)}$$

$$F_{r4} = 65 (N)$$

Lateral loads

$$M3 = -\sum_{j=1}^{n} \left\{ F_{xj} \cdot (Y_{xj} - Y_b) \right\} + \sum_{j=1}^{n} \left(F_{yj} \cdot X_{yj} \right)$$
$$= F \cdot X_3$$
$$= -200 \times (-50)$$
$$= 10\ 000\ (\text{N-mm})$$

$$F_{s1} = F_{s3} = \frac{\sum_{j=1}^{n} F_{yj}}{4} + \frac{M3}{2 \cdot 1}$$
$$= \frac{F}{4} + \frac{M3}{2 \cdot L_b}$$
$$= \frac{-200}{4} + \frac{10\ 000}{2 \times 100}$$
$$= 0\ (N)$$

Similarly

$$F_{s2} = F_{s4} = -100 \text{ (N)}$$

For calculation, take into consideration the positive or negative signs (+ or -) for load point coordinates.

Calculation of dynamic equivalent load Use "A-3-2.2 3. Calculation of dynamic equivalent load."

It matches Position 4 in "Table 2.3 Loads in the arrangement of linear guides." Ball slide loads that must be considered are vertical and lateral direction loads.

In case of PU15AL.

Vertical direction dynamic equivalent load

 $F_r = F_r$ Lateral direction dynamic equivalent load

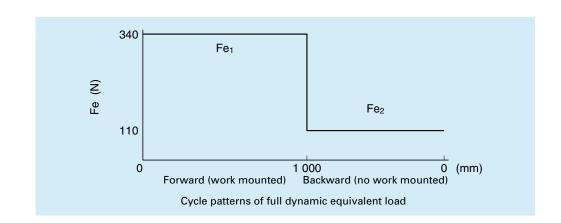
 $F_{so} = F_{s} \cdot \tan \alpha = F_{s}$

Use the formula for full dynamic equivalent load (page A23) to calculate F_a .

Results are shown in the table below.

Unit: N

Work mounted	Slide1	Slide2	Slide3	Slide4
$F_{r} (F_{r1} - F_{r4})$	40	– 165	340	135
$F_{\rm se} (F_{\rm s1} - F_{\rm s4})$	0	– 100	0	- 100
F _e	40	215	340	185
No work mounted	Slide1	Slide2	Slide3	Slide4
$F_{r} \left(F_{r1} - F_{r4} \right)$	10	– 35	110	65
$F_{\rm se} (F_{\rm s1} - F_{\rm s4})$	0	- 100	0	- 100
F _e	10	118	110	133


Based on the results of calculations, a ball slide that bears the maximum dynamic equivalent load shall be taken as the representative of the linear guides for further life calculation. For this case, we take the Slide3.

Therefore;

Work mounted $F_{e1} = 340$ (N) No work mounted $F_{e2} = 110$ (N)

Calculation of mean effective load

Based on "A-3-2.2 4. Calculation of mean effective load," calculate from the largest full dynamic equivalent loads.

Assuming that L is: $L = L_1 + L_2$.

$$Fm = \sqrt[3]{\frac{1}{L} \left(F_{e1}^{3} L_{1} + F_{e2}^{3} L_{2}\right)}$$

$$= \sqrt[3]{\frac{1}{2000} \left(340^{3} \times 1000 + 110^{3} \times 1000\right)}$$

$$= 273 \text{ (N)}$$

Determine various coefficients

Determine applicable coefficients from "A-3-2.2

5. Various coefficients."

Load factors

Use conditions are: Travel speed, 12 m/min; Acceleration, 0.8 m/sec² (0.082 G). As the load factor f_w is in the range of 1.0 to 1.5, use common value $f_w = 1.2$.

Hardness coefficient

The hardness of NSK linear guides is HRC58 to 62. Use a hardness coefficient $f_{\rm H} = 1$ and take the value of basic dynamic load rating as it is.

Calculate rating life

Use "A-3-2.2 6. Calculation of basic rating life."

The basic dynamic load rating (C_{100}) of linear auide PU15AL : 4 400 (N)

Mean effective load F_m : 273 (N)

Load factor f.,. : 1.2 Hardness coefficient f_{μ} : 1

Rating fatigue life
$$L = 100 \times \left(\frac{f_{\text{H}} \cdot C_{100}}{f_{\text{w}} \cdot F_{\text{m}}}\right)^{3}$$
$$= 100 \times \left(\frac{1 \times 4400}{1.2 \times 273}\right)^{3}$$

= approximately 242 280 (km)

Travel speed, 12 m/min; Operating hours, 16 hr/day.

Convert the above rating fatigue life into hours:

$$\frac{242\ 280 \times 1\ 000}{12 \times 60 \times 16}$$
 = approximately 21 030 (days)

Examine static load

Based on "A-3-2.2 7. Examination of static load," find out on which ball slide the static equivalent load P_0 becomes largest.

The basic static load rating (C_0) of linear guide PU15AL: 6 600 (N)

Ball slide No. 3 bears the largest load.

 P_0 at this time:

$$P_0 = F_c + F_c = 340$$

Therefore, static permissible load coefficient fs is:

$$fs = \frac{C_0}{P_0} = \frac{6600}{340} = 19.4$$

There is no problem at this value.

(3) Selection of accuracy grade and preload

Based on "A-3-4 3. Application examples of accuracy," select accuracy grade PN and preload Z1 for material handling system.

(4) Calculation of deformation

Calculate deformation by the weight of the mounted work W2. From "Rigidity of PU series," the rigidity of linear guide PU15AL with Z1 preload is:

$K_s = K_r = 45 \text{ (N/}\mu\text{m)} = 45 \text{ 000 (N/}\text{mm)}$

Deformation by the weight of the mounted work W_2 can be obtained as the difference in deformation when W_2 applies or does not apply.

From Pattern 4 in Table 2.2 (page A19) Work mounted:

$$\delta_{x1} = Y_d \cdot \frac{F_{s2} - F_{s1}}{L_b \cdot K_s} + Z_d \cdot \frac{F_{r1} - F_{r2}}{L_b \cdot K_r}$$

$$= -90 \times \frac{-100 - 0}{100 \times 45000} + 120 \times \frac{40 - (-165)}{100 \times 45000}$$

$$= 0.0075 \text{ (mm)} = 7.5 \text{ (um)}$$

Similarly,
$$\delta_{y1} = -0.0082 \text{ (mm)} = -8.2 \text{ (}\mu\text{m)}$$

 $\delta_{z1} = 0.0123 \text{ (mm)} = 12.3 \text{ (}\mu\text{m)}$

NSK

No work mounted:

$$\delta_{x2} = Y_{d} \cdot \frac{F_{s2} - F_{s1}}{L_{b} \cdot K_{s}} + Z_{d} \cdot \frac{F_{r1} - F_{r2}}{L_{b} \cdot K_{r}}$$

$$= -90 \times \frac{-100 - 0}{100 \times 45000} + 120 \times \frac{10 - (-35)}{100 \times 45000}$$

$$= 0.0032 \text{ (mm)} = 3.2 \text{ (µm)}$$

Similarly,
$$\delta_{v2} = -0.0023$$
 (mm) = -2.3 (μ m)

$$\delta_{22} = 0.0039 \text{ (mm)} = 3.9 \text{ (µm)}$$

Therefore, the difference in deformation by whether

there is a mounted work or not is as follows:

$$\delta_x = \delta_{x1} - \delta_{x2} = 7.5 - 3.2 = 4.3 \, (\mu m)$$

$$\delta_{v} = \delta_{v1} - \delta_{v2} = -8.2 - (-2.3) = -5.9 \, (\mu \text{m})$$

$$\delta_{z} = \delta_{z1} - \delta_{z2} = 12.3 - 3.9 = 8.4 \, (\mu m)$$

2. Machining center

The following is a calculation example of a horizontal type machining center. Arrangements of each axis are shown in Fig. 11.2 (front view) and Fig. 11.3 (side view).

Operating conditions

Dimensions and load conditions are:

X axis column's weight Wx: 7 500 (N)

Y axis spindle head's weight Wy: 2 500 (N) Wz: 5500(N) Z axis table's weight

X axis rail span XL,: 450 (mm)

X axis ball slide span

Y axis rail span

Y axis ball slide span

Z axis stroke: 500 (mm)

Z axis rail span Z axis ball slide span ZL: 660 (mm) ZL_b: 420 (mm)

XL_b: 310 (mm)

YL,: 410 (mm)

 $YL_s: 308 \, (mm)$

X axis stroke: 400 (mm) Y axis stroke: 350 (mm) Average rapid traverse speed: 15 (m/min)

[Max. 30 (m/min)]

Starting accelerating speed: 1 (G)

Milling speed : 2.5 (m/min)

Drilling speed : 0.8 (m/min)

Cutting load

Milling process Fx = Fy = 1000 (N)

Fz = 3000 (N)Drilling process

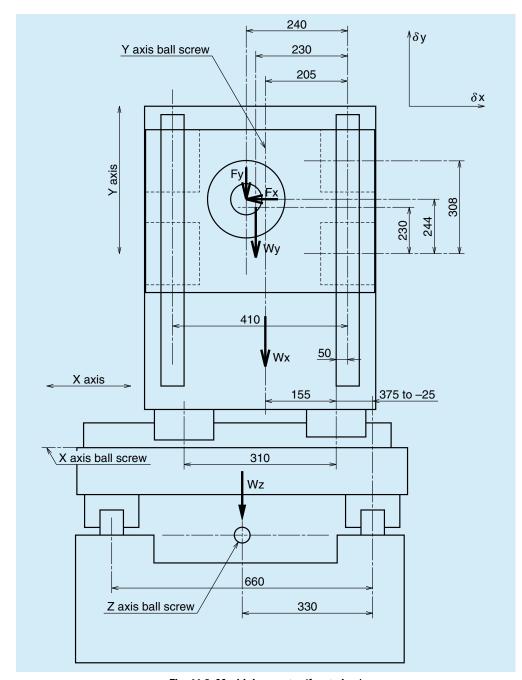


Fig. 11.2 Machining center (front view)

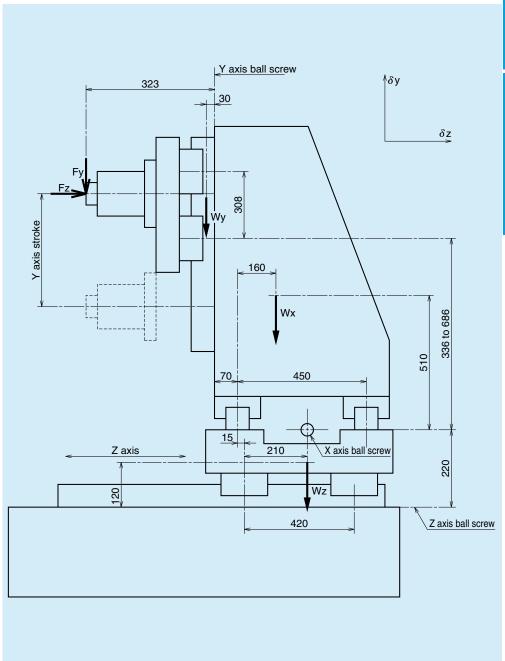


Fig. 11.3 Machining center (side view)

(1) Selection of linear guide model

From the operating conditions, the linear guide should be LA Series which is suitable for the machining center.

Select below temporarily from shaft diameter of ball screw:

X axis LA55

Y axis LA35

Z axis LA65

(2) Selection of accuracy grade and preload

For machining center, select accuracy grade P5 and preload Z3.

(3) Calculation of life expectancy

Examination shall be done in three cases, no cutting load, milling process, and drilling process.

Inertial force associated with the starting acceleration is not considered in this case. However, it must be calculated for more accurate figures.

Calculation of the loads that apply to the ball slide In case of no cutting load: Fx = Fy = Fz = 0 Calculate load on X, Y, Z axes using "Table 2.2" in "A-3-2.2 2. Calculating load to a ball slide." X axis: Loads to be considered Wx and Wy Y axis: Loads to be considered Wy

Z axis: Loads to be considered Wx, Wy, and Wz

nit:

Axis	Load direction	Slide1	Slide2	Slide3	Slide4
X axis	Vertical direction Fr	1 156	955	4 045	3 844
A dais	Lateral direction Fs	0	0	0	0
Y axis	Vertical direction Fr	122	-122	122	-122
1 4/15	Lateral direction Fs	102	-102	102	-102
Z axis	Vertical direction Fr	765	3 860	3 890	6 985
	Lateral direction Fs	0	0	0	0

In case of milling process: Fx = Fy = 1000 (N) Similarly.

X axis: Loads to be considered Wx, Wy, Fx, and Fy Y axis: Loads to be considered Wy, Fx, and Fy Z axis: Loads to be considered Wx, Wy, Wz, Fx,

and *F*y

The table below shows the calculation of each load coordinates at stroke end which imposes most strict condition.

					Unit: N
Axis	Load direction	Slide1	Slide2	Slide3	Slide4
X axis	Vertical direction Fr	2 277	-1 039	6 539	3 224
A dais	Lateral direction Fs	997	-997	997	-997
Y axis	Vertical direction Fr	252	-1 040	1 040	-252
1 0/13	Lateral direction Fs	54	-554	54	-554
Z axis	Vertical direction Fr	-771	3 796	4 453	9 020
2 0/15	Lateral direction Fs	486	-986	486	-986

In case of drilling process: Fz = 3 000 (N)

X axis: Loads to be considered Wx, Wy, and Fz
Y axis: Loads to be considered Wy and Fz
Z axis: Loads to be considered Wx, Wy, Wz, and
Fz

The table below shows calculation of each load coordinates at a stroke end which imposes most strict condition.

Unit: N

i	Axis	Load direction	Slide1	Slide2	Slide3	Slide4
	X axis	Vertical direction Fr	4 256	4 055	945	744
	Λ αλίδ	Lateral direction Fs	919	581	919	581
	Y axis	Vertical direction Fr	305	938	561	1 195
	1 0.115	Lateral direction Fs	102	-102	102	-102
	Z axis	Vertical direction Fr	4 872	-247	7 997	2 878
	Z axis	Lateral direction Fs	839	-839	839	-839

Calculation of dynamic equivalent load

Next, find dynamic equivalent load under each cutting condition. From "Table 2.3" in "A-3-2.2 3. Calculation of dynamic equivalent load," the necessary loads, Fr and Fse are, as the linear guide model is LA Series, obtained as follows.

Vertical dynamic equivalent load Fr = Fr Lateral dynamic equivalent load

Fse = Fs • tan α = Fs

From the above, calculate Fe using formulas for full dynamic equivalent loads shown in page A23. From calculation, the largest full dynamic equivalent loads are as follows.

Axis	Largest full dynamic equivalent load Fe (N)				
	No cutting load	For milling process	For drilling process		
X axis	4 045	7 038	4 716		
Y axis	173	1 317	1 246		
Z axis	6 985	9 513	8 417		

Calculation of full dynamic equivalent load taking account of preload

It is necessary to include the amount of preload for the calculation of rating life when Z3 preload is specified. Consider each preload and calculate full dynamic equivalent load. Calculate Fep using formulas in "A-3-3 6. Load and rating life when the preload is taken into

account"

Preload P (X axis linear guide LA55): 8 100 (N) Preload P (Y axis linear guide LA35): 3 450 (N) Preload P (Z axis linear guide LA65): 13 800 (N)

From the above, the full dynamic equivalent loads taking preload into account are smaller than the load at which preload is relieved.

Axis	Largest	full dynamic equivalent loa	d Fe (N)
	No cutting load	For milling process	For drilling process
X axis	10 336	12 104	10 724
Y axis	3 542	4 171	4 131
Z axis	17 663	19 138	18 494

Calculation of mean effective load

Calculate the mean effective loads from full dynamic equivalent loads. If duty cycle in the cutting process is not clear, set the mean effective load to 70% of the largest full dynamic equivalent load in all processes.

Therefore,

X axis: $12\ 104 \times 0.7 = 8\ 473\ (N)$ Y axis: $4\ 171 \times 0.7 = 2\ 920\ (N)$ Z axis: $19\ 138 \times 0.7 = 13\ 397\ (N)$

Determine various coefficients

Determine them based on "A-3-2.2 5. Various coefficients."

For this case the factors are following.

Load coefficient $f_{\rm w}$: 1.5

Hardness coefficient f_{H} : 1

Calculation of rating life

Based on the calculated loads and various coefficients, calculate the rating life from "A-3-2.2

6. Calculation of rating life."

Basic dynamic load rating C₁₀₀

(X axis linear guide LA55): 111 000 (N)

Basic dynamic load rating C₁₀₀

(Y axis linear guide LA35): 49 000 (N)

Basic dynamic load rating C₁₀₀

(Z axis linear guide LA65): 206 000 (N)

Load coefficient f_w: 1.5 Hardness coefficient f_H : 1

Rating fatigue life $L = 100 \times \left| \frac{f_H \cdot C_{100}}{f_W \cdot F_W} \right|$

From this,

In case of X axis Lx = 66617 (km)

In case of Y axis $L_{Y} = 140012$ (km)

In case of Z axis Lz = 107722 (km)

In case of roller linear guides, refer to "A-3-2.2 6.

Calculation of rating life" (page A25).

Examination of static loads based on "A-3-2.2 7" Basic static load rating C_0

(X axis linear guide LA55): 215 000 (N)

Basic static load rating Co

(Y axis linear guide LA35): 98 000 (N)

Basic static load rating Co

(Z axis linear guide LA65): 420 000 (N)

Examine a case of high-load milling process with large load.

X axis
$$fs = \frac{C_0}{P_0} = \frac{C_0}{(F_r + F_s)} = \frac{215\ 000}{(6\ 539 + 997)} = 28.5$$

Similarly,

Y axis $f_{S} = 61.5$

Z axis fs = 42.0

Therefore, there is no problem.

(4) Calculation of deformation

Calculate deformation at the processing points. (The stroke position is the stroke end positions on Y axis and X axis.)

Rigidity of X axis linear guide LA55Z3: 1 400 (N/µm) Rigidity of Y axis linear guide LA35Z3: 825 (N/µm) Rigidity of Z axis linear guide LA65Z3: 1 730 (N/µm)

Calculate using Pattern 4 in Table 2.2.

		_			
Load conditions	Deformation	Deform	Deformation of each axis (µm)		
Load Conditions	direction	X axis	Y axis	Z axis	(µm)
Table weight	δ×	-0.2	-0.1	-3.1	-3.4
alone	δγ	-4.6	-0.3	-4.2	-9.1
aione	δz	-4.3	-0.1	-4.9	-9.3
	δx	-9.9	-1.3	-6.7	-17.9
Milling process	δγ	-6.4	-1.7	-5.2	-13.3
	δz	-6.1	-0.4	-7.7	-14.2
	δx	-0.9	-0.3	-4.6	-5.8
Drilling process	δγ	1.4	0.8	2.8	5.0
	δz	5.5	1.2	7.6	14.3

Therefore, deformation at processing points at time of milling is:

 $\delta x = -17.9 - (-3.4) = -14.5 (\mu m)$

 $\delta y = -13.3 - (-9.1) = -4.2 (\mu m)$

 $\delta z = -14.2 - (-9.3) = -4.9 (\mu m)$

Deformation at processing points at time of drilling is:

 $\delta x = -5.8 - (-3.4) = -2.4 (\mu m)$

 $\delta y = 5.0 - (-9.1) = 14.1 (\mu m)$

 $\delta z = 14.3 - (-9.3) = 23.6 (\mu m)$

If a rating life of this long period is not required, select a smaller linear guide model, and calculate the life again.

To reduce deformation at the processing point, select a linear guide model with higher rigidity, and then calculate the life again.

A-3-12 Reference

The articles in "Motion & Control (NSK Technical Journals)" which refer to NSK linear guides are listed in the table below for user convenience.

"Motion & Control" is compiled to introduce NSK products and its technologies.

For inquiries and orders of "Motion & Controls," please contact your local NSK sales offices, or Representatives.

Table 12.1 Motion & Control (NSK Technical Journal): Articles relating to linear guides (1997 -)

Issue No.	Date of Publication	Articles related to linear guides
No.5	Dec. 1998	Development of the NSK K1 Seal for Linear Guides
No.8	May. 2000	NSK Linear Guides for High-Temperature Environments
No.9	Oct. 2000	Recent Developments in Highly Precise NSK Linear Guides
No.9	Oct. 2000	High-Performance Seals for NSK Linear Guides
No.11	Oct. 2001	Development of the NSK S1 Series [™] Ball Screws and Linear Guides
INO. I I	Oct. 2001	High Load Capacity Mini LH Series of NSK Linear Guides
No.12	Apr. 2002	NSK Linear Guides & Ball Screws Equipped with NSK K1™ Lubrication Unit
No.12	Apr. 2002	NSK S1 Series [™] NSK Linear Guides and Ball Screws
No.13	Oct. 2002	Translide [™] -New Rolling Element Linear Motion Bearing-
No.14	May. 2003	New Generation of NSK Linear Guides Miniature PU Series
No.15	Dec. 2003	Ultra-Precision NSK Linear Guides for Machine Tools-the HA Series
No.16	Aug. 2004	Numerical analysis Technology & NSK Linear Guides for Machine Tools
No.16	Aug. 2004	NSK RA Series Roller Guide
No.18	Aug. 2005	New Generation of NSK linear Guides Miniature PU Series/PE Series
No.20	Aug. 2007	V1 Series of Highly Dust-Resistant NSK Linear Guides
		Technological Trends of NSK Linear Guides for Industrial Machines
No.21	Dec.2009	Highly Accurate HS Series of Ultra-Precision NSK Linear Guides
		Linear Guides for Food Machine and Medical Devices
		Technological Trends of NSK Linear Guides for Industrial Machines
No.22	Mar. 2011	High-Accuracy HS Series of Ultra-Precision NSK Linear Guides
		NSK Linear Guides for Food Processing Equipment and Medical Devices
No.23	Jun. 2013	Technological Trends in Linear Motion Rolling Guides for Machine Tools
No.24	Dec. 2014	Slight-Preload Type RA Series Roller Guides of NSK Linear Guides

A89 A90

inear Guides.

NSK

A-4 NSK Linear Guide™

1. Structure of NSK Linear Guides

By avoiding structural complexity, and by reducing the number of components, we not only enhanced the precision of linear guides, but also are able to keep costs low. We have added NSK's patented unique structural feature to the original invention (**Fig. 1**). This contributes to higher precision and lower prices.

NSK linear guides consist of a rail and a slide (**Fig. 2**). The balls or rollers roll on the race way surface, and are scooped up by the end caps attached to both ends of the slide. Then, the balls or rollers go through a passage made in the slide and circulate back to the other end.

2. Characteristics of NSK Linear Guides

The use of a unique offset Gothic arch groove (Fig. 3) allows the ball type of NSK linear guides to satisfy groove designs required for specific purposes.

This unique groove design facilitates precise measurement of the ball groove, thus enabling the stable and highly accurate production of the slides and the rails for random matching. (Fig. 4)

On top of that, we have developed and marketed the NSK Roller Guides, representing the culmination of NSK's analysis technology and tribology.

Such technologies ensure the features of NSK linear guides outlined below.

(1) High precision and quality

 High precision and quality come from our superb production and measuring technologies, strengthened by extensive experience in antifriction rotary bearings and ball screw production. Our quality assurance extends to the smallest components.

(2) High reliability and durability

- · Logical simplicity in shape, along with stable processing, maintains high precision and reliability.
- Super-clean materials, our advanced heat treatment and processing technologies increase product durability.

(3) Abundant in type for any purpose

Various series are available, and their slide models and size categories are standardized to satisfy any
requirement. Our technology, polished by abundant experience in the use of special materials and
surface treatments, meets the customer's most demanding expectations.

(4) Development of random-matching parts for short delivery time

The adoption of the Gothic arch groove which makes measuring easy, and a new reliable quality control
method has made random-matching of the rails and the ball or roller slides possible. The parts are
stocked as standard products, thereby reducing delivery time.

(5) Patented static load carrying capacity (shock-resistance)

• When a super-high load (impact) is applied, our Gothic arch groove spreads the load to surfaces which usually do not come into contact in the ball type NSK linear guides. This increases impact load resistance (Fig. 5).

(6) Lineup of extremely high-load capacity series

• The LA series provides a top class high-load capacity for the ball linear guides through a unique load carrying configuration with three ball recirculation circuits on the one side.

By installing rollers that are the largest possible diameter and length, the NSK roller linear guides have realized the world's highest load capacity, far superior to the roller linear guides of other companies.

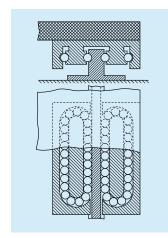


Fig. 1 • French Patent in 1932. • Inventor: Gretsh (German)

NSK added its patented technology to the invention in Fig. 1, and improved the linear guide structure and realized low cost design.

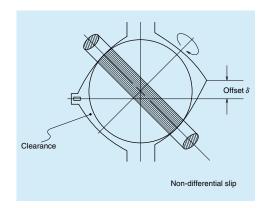


Fig. 3 Two contact point at offset Gothic arch groove

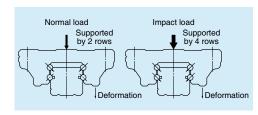


Fig. 5 Shock-resistance

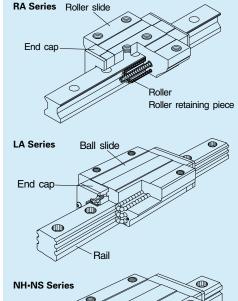


Fig. 2 Structure of NSK linear guides

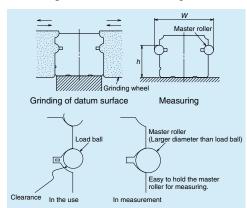


Fig. 4 Processing and measuring grooves

Measuring grooves accuracy is easy. You can obtain highly accurate results for all types of NSK series. This is why you can purchase rails and slides separately for random matching.

3. Types and Characteristics of NSK Linear Guides

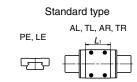
Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure
High vertical load carrying capacity type			AN BN			
	Self-aligning type	NH	AL BL		+ + +	
High vertical loa	Self		EM GM			
				n-load type N, AL L1	EM =	L ₁

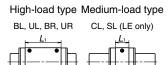
Note: For customers who have used the former LH or SH series, NH series is recommended as a substitute. Please confirm the correlation between NH series and former ones on the comparative table at A321.

Characteristics	Applications	Page
The NH series is applicable to a wide range of uses from general industrial use to high-accuracy application. Random-matching of rails and ball slides is available as a standard. The contact angle between the ball and ball groove is set at 50 degrees. This design increases the load carrying capacity against the vertical directions, which is the main load acting direction in most operations. The DF contact structure greatly absorbs the installation error in the perpendicular direction to the rail. Balls make contact at two points thanks to the offset Gothic arch groove. This keeps friction to a minimum. High resistance against shock load due to the unique load-carrying structure. Gothic arch groove renders measuring of ball grooves accurate and easy. Standardized random-matching type allows separate purchase of rails and ball slides. Stainless steel standard type is also available for small sizes (NH15 to NH30).	Cartesian type robots Robots that remove plastic molds from injection machine Material handling equipment Food processing machines Packaging/packing machines Printing machines Woodworking machines Paper manufacturing machines Measuring equipment Inspecting equipment Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Electric discharge machines Laser cutting machines Press machines Tool grinders Flat surface grinders Machining centers Automatic tool changers	A113
Super-high-load type BN, BL L1	GM L1	

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure
			AN BN			
High vertical load carrying capacity type	Self-aligning type	VH	AL BL		↓ → ↑	
High vertical loa	Self		EM GM			
			ŀ	High-load type AN, AL	EM	L:
Four-way equal load carrying capacity type	Standard type	TS	AN		→ ; ← 1	

Characteristics	Applications	Page
The VH series delivers outstanding dust-proof functionality and thus ensures long operating life under contaminated environments. Random-matching of rails and ball slides is available as a standard. The contact angle between the ball and the raceway is set at 50 degrees. This design increases the load carrying capacity against vertical directions, which is the main load acting direction in most operations. The DF contact structure greatly absorbs the installation error in the perpendicular direction to the rail. Thanks to the offset Gothic arch groove, balls make contacts at two points. This keeps friction to a minimum. High resistance against shock load due to the unique load carrying structure. Gothic arch groove renders measuring groove accurate and easy. Standardized random-matching type allows separate purchase of rails and ball slides. Penetration of fine contaminants is less than 1/10 of the existing products. Operating life under contaminated environments is more than 5 times longer.	Automotive manufacturing equipment Press machines Machine tools loader/un-loader Tire molding machines Woodworking machines Automatic doors	A133
Super-high-load type BN, BL L1	GM L,	
 The TS series is suitable for transfer equipment. The newly developed manufacturing processes contribute to low cost. Standardized random-matching type allows separate purchase of rails and ball slides. 	Automotive manufacturing equipment Press machines Loader/unloader of machine tools Tire molding machines Woodworking machines Automatic doors	A151


ear
Gui
疲


Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure	Characteristics Applications	Page
High vertical load carrying capacity type	Self-aligning type	NS	NS EM High-load type AL L1 EM L1			The NS series is low in height, and is applicable to a wide range of uses from general industrial use to high-accuracy application. Random-matching of rails and ball slides is available as a standard. Compact and low profile. The contact angle between the ball and the groove is set at 50 degrees. This design increases the load carrying capacity against vertical directions, which is the main load direction prevalent in most operations. The DF contact structure greatly absorbs the installation error in the perpendicular direction of the rail. Thanks to the offset Gothic arch groove, balls make contacts at two points. This keeps friction to a minimum. High resistance against shock load due to the unique load carrying structure. Gothic arch groove renders measuring groove accurate and easy. Standardized random-matching type allows separate purchase of rails and ball slides. Stainless steel type is also available. CL CL CL Cattesian type robots Robots that remove plastic mol from injection machine Material handling equipment Food processing machines Packaging/packing machines Woodworking machines Woodworking machines Neasuring equipment Inspection equipment Semiconductor manufacturing equipment LCD manufacturing equipment Medium-load type CL Medium-load type CL Medium-load type		
High ve	y type						High-moment rigidity and low profile products are most suited for a single rail linear guideway system. Random-matching of rails and ball slides is available as a standard. • Semiconductor manufacturing equipment • LCD manufacturing equipment	
	High moment capacity	LW	EL		↓ ↑ 1		 The wide rail contributes to a high rolling moment carrying capacity and to great moment rigidity of a single rail linear guideway system. Balls contact at two points in the Gothic arch groove, thus keeping friction to a minimum. High resistance against shock load Standardized random-matching type allows separate purchase of rails and ball slides. Conveyor systems Medical equipment Microscope XY stages 	A175

Note: For customers who have used the former LS or SS series, NS series is recommended as a substitute. Please confirm the correlation between NS series and former ones on the comparative table at A321.

A97 A98

Characteristics	Applications	Page
Low inertia and low dust generation miniature series. Low dust generation and highly smooth operation Super-compact size Stainless steel is the standard material. A ball retainer is a standard equipment. Standardized random-matching type allows separate purchase of rails and ball slides.	Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages Microscope XY stages Conveying system of optical fibers Miniature robots Computer peripherals	A191
 Miniature series Extremely compact size Stainless steel is the standard material. A ball retainer is a standard equipment. Standardized random-matching type allows separate purchase of rails and ball slides. 	Pneumatic equipment the standard material. a standard equipment. ndom-matching type allows	A201
Wide rail miniature with low inertia and low dust generation. Low dust generation and highly smooth operation Super-compact size Stainless steel is the standard material. A ball retainer is a standard equipment. Standardized random-matching type allows separate purchase of rails and ball slides.	Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages Microscope XY stages Conveying optical fibers Miniature robots	A213
Miniature wide series Super-small size in wide rail type Stainless steel is the standard material. A ball retainer is a standard equipment. Standardized random-matching type allows separate purchase of rails and ball slides.	Computer peripherals Pneumatic equipment	A223

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure
	Standard type	PU	AL AR TR UR BL		↓ →	
	₽	LU	AL TL AR TR BL UL		↓ →	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩
Miniature type	capacity type	PE	AR TR UR BR		↓ →	₩ ₩ ,
	High moment capacity type	LE	AL TL AR TR BL UL CL SL		↓ → ?	
				Standard type AL, TL, AR, TR PU, LU L:	High-load type BL, UL, UR	

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure
Miniature type	Self-aligning type	LH	AN		↓ ←	\$60
	Lightweight type	LL	PL		↓ → □ ←	

Characteristics	Applications	Page
 High vertical load carrying capacity and selfaligning type miniature series The contact angle between the ball and ball groove is set at 50 degrees. This design increases the load carrying capacity against the vertical directions, which is the main load acting direction in most operations. The DF contact structure greatly absorbs the installation error in the perpendicular direction to the rail. Balls make contact at two points thanks to the offset Gothic arch groove. This keeps friction to a minimum. High resistance against shock load due to the unique load-carrying structure. Gothic arch groove renders measuring of ball grooves accurate and easy. A ball retainer is a standard equipment. (LH10~12) Stainless steel type is standard. 	Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages Microscope XY stages Miniature robots Computer peripherals Pneumatic equipment	A237
The LL series is a compact and lightweight miniature linear guide for press molding. Rails and ball slides are made of thin steel plate, and thus making them very light. Stainless steel is the standard material.	Platter pen headsRobot handsPneumatic equipment	A247

A101 A102

Ca	Category		Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure
sity type			AN BN			45°
Four-way equal load carrying capacity type	Super-rigid type	RA	AL BL			
Four-way equa	63		EM GM			
y type			AN BN		+ • • • • • • • • • • • • • • • • • • •	\$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50
Four-way equal load carrying capacity type	Super-rigid type	LA	AL BL			
	Super-		EL GL			
Fou			FL HL			

Characteristics	Applications	Page
The RA series roller guides have realized the world highest load capacity. Super-high rigidity and smooth motion contribute to higher performance of machine tools. Unique and optimum design of rollers and other component facilitate the high-load capacity and high rigidity. High-performance seals, a standard feature in the roller guides, maintain the initial performance for a prolonged time. The installation of retaining piece achieves smooth motion. Standardized random-matching type allows separate purchase of rails and roller slides.	 Machining centers NC lathes Heavy cutting machine tools Gear cutters Electric discharge machines Press machines Various types of grinders 	
High-load type AN, AL	EM L ₁	A253
Super-high-load type BN, BL L:	GM L ₁	
As well as providing a low friction operation, the LA series provides a top class high-load capacity for the ball linear guides. The series is most suited for machine tools. The contact angle between the ball and the raceway is set at 45 degrees. This makes load carrying capacity and rigidity equal in vertical and lateral directions. Six-row ball grooves support the load from vertical and lateral directions, enhancing rigidity and increasing load carrying capacity. Appropriate friction Best suited for machine tools.	Machining centers NC lathes Heavy cutting machine tools Gear cutters Electric discharge machines Press machines Various types of grinders	
	EL, FL	A273
Super-high-load type BN, BL L1 C	SL, HL	

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure
type			AN		_	
carrying capacity 1	Super rigidity, high-precision type	НА	AL		+ + +	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
Four-way equal load carrying capacity type	Super rigidity, hi		EM		-	*
				AN, AL	L,	
oacity type	on type		AL		•	
High vertical load carrying capacity type	Self-aligning, super-precision type	HS	EM		→	
High	Š			AL	L,	

Characteristics	Applications	Page
The HA Series ball guide with high-precision and high-load carrying capacity, featuring highmotion accuracy equivalent to hydrostatic linear bearings. Ball passage vibration has been reduced to one-third of conventional models by ultra-long ball slides and specification of new design. The contact angle between the ball and the raceway is set at 45 degrees. This makes load carrying capacity and rigidity equal in vertical and lateral directions. High motion accuracy is realized by the feature of super-finished ball groove (optional). End seals, bottom seals, and inner seals of high dust-proof specification are the standard equipment. Best suited for high-grade machine tools.	Die molding machines High precision processing machine Heavy cutting machine tools Gear cutters Press machines Various types of NC grinders	A293
The HS Series ball guide with high-precision featuring high-motion accuracy equivalent to hydrostatic linear bearings. Ball passage vibration has been reduced to one-third of conventional models by ultra-long ball slides and specification of new design. The contact angle between the ball and the raceway is set at 50 degrees. The load carrying capacity against vertical directions, which is the main load acting direction in most operations, increases by this design. The DF contact structure greatly absorbs the installation error in the perpendicular direction of rail. Thanks to the offset Gothic arch groove, balls make contacts at two points, thus keeping friction low.	High precision processing machines Electric discharge machines Various types of NC grinders LCD manufacturing equipment	A307

4. Guide to Technical Services

(1) CAD drawing data

NSK offers CAD data for linear guides. Please download it from the website of NSK.

NSK website

http://www.nsk.com

- · Data in drawings are filed in the actual size (some parts are simplified). You can use these data without processing.
- · Drawings are three-views projection.
- · Dimension lines are omitted to render the data as standard drawing for database.

Data offered by CAD

NSK linear guides

NH Series

VH Series

TS Series

NS Series

LW Series

PU Series

LU Series PE Series

LE Series

Miniature LH Series

RA Series

LA Series

HA Series

HS Series

(2) Telephone consultation with NSK engineers

This catalog contains technical explanation for each section. However, some descriptions and explanations may be insufficient due to page limitation, etc. To amend this shortcoming, NSK offers telephone assistance. NSK engineers are pleased to help you. Our local offices are listed in the last part of this catalog. Call local NSK office or Representative in your area.

5. Linear Guides: Handling Precautions

NSK linear guides are high quality and are easy to use. NSK places importance on safety in design. For maximum safety, please follow precautions as outlined below.

(1) Lubrication

- a. If your linear guide is rust prevention specification, thoroughly wipe the rust prevention oil and put lubricant inside of slide before using. For seal lubrication products, put lubricant on the rail.
- b. Do not mix greases of different brands.
- c. If your linear guide is rust prevention specifications, put lubricant inside of slide before using.

(2) Handling

Do not drop.

Do not give impact.

- a. Slides for random-matching are installed to the provisional rail when they leave the factory. Handle the slide with care during installation to the rail.
- b. Do not disassemble the linear guide unless absolutely necessary. Not only does it allow dust to enter, but it lessens precision.
- c. The slide may move by simply leaning the rail. Make sure that the slide does not disengage from
- d. Standard end cap is made of plastic. Beating it or hitting it against an object may cause damage.

(3) Precautions in use

Do not contaminate. | Temperature limitation.

Do not hang upside down.

- a. Make every effort not to allow dust and foreign objects to enter.
- b. Please apply splash guard or bellows to the linear guide to prevent sticking resolvent or coolant when it contains corrosive material.
- c. The temperature of the place where linear guides are used should not exceed 80°C (excluding heatresistant type linear guides). A higher temperature may damage the plastic end cap.
- d. If the user cuts the rail, thoroughly remove burrs and sharp edges on the cut surface.
- e. When hanging upside-down (e.g. the rail is installed upside-down on the ceiling in which the slide faces downward), should the end cap be damaged, causing the balls or rollers to fall out, the slide may be detached from the rail and fall. For such use, take measures including installing a safety device.

(4) Storage

Store in the correct position.

a. Linear guide may bend if the rail is stored in inappropriate position. Place it on a suitable surface, and store it in a flat position.

6. Design Precautions

The following points must be heeded in examining the life.

In case of oscillating stroke

- If the balls or rollers do not rotate all the way, but only halfway, and if this minute stroke is repeated, lubricant disappears from the contact surface of balls or rollers and raceways. This generates "fretting," a premature wear. Fretting cannot be entirely prevented in such a case but it can be mitigated.
- We recommend anti-fretting grease for oscillating stroke operations. Even in a case using a standard grease, the life can be markedly prolonged by adding a normal stroke travel (about the slide length) once every several thousand cycles.

When applying pitching or yawing moment

- Load applied to the ball or roller rows inside the slide is inconsistent if pitching or yawing moment load is applied. Loads are heavy on the balls or rollers on each end of the row.
- In such a case, a heavy load lubricant grease or oil is recommended. Another countermeasure is using one size larger model of linear guide to reduce the load per ball or roller.
- Moment load is insignificant for 2-rail, 4-slide combination which is commonly used.

When an extraordinary large load is applied during stroke

- If an extraordinary large load is applied at certain position of the stroke, calculate not only the life based on the mean effective load, but also the life based on the load in this range.
- When an extraordinary heavy load is applied and thus the application of high tensile stress to fixing bolts of the rails and slides is foreseen, the strength of the bolts should be considered.

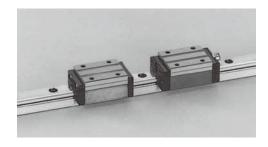
When calculated life is extraordinarily short (Less than 3 000 km in calculated life.)

- In such a case, the contact pressure to the balls or rollers and the rolling contact surface is extraordinarily high.
- When a linear guide is operated under such state continually, the life is significantly affected by the loss of lubrication and the presence of dust, and thus the actual life becomes shorter than calculated.
- It is necessary to reconsider the number of slides, the arrangement of slides, and the type of model in order to reduce the load to the slide.
- It is necessary to consider preload for calculation of rating life when selecting Z3 (medium preload) or Z4 (heavy preload) as a preload. For the calculation of full dynamic equivalent loads that consider preload, see "A-3-3 6" on page A31. Please consult NSK for details.

Application at high speed

- The standard maximum allowable speed of a linear guide under normal conditions is 100 m/min.
 However, the maximum allowable speed can be affected by accuracy of installation, temperature, external loading etc.
- The end cap with high speed specification must be used when operating speed exceeds the permissible speed. In such a case, please consult NSK.

A109 A110


A-5 Technical Description and Dimension Table for NSK Linear Guides

1. NH Series	A113
2. VH Series	A133
3. TS Series	A151
4. NS Series	A157
5. LW Series	A175

A-5-1 General Industrial Use

A111 A112

A-5-1.1 NH Series

1. Features

(1) Improve rating life dramatically

Based on the LH series characterized by reliability and performance, a significant increase in durability has been attained. New ball groove geometry is introduced, which has been developed by utilizing NSK's state-of-theart tribological and analytical technologies. Due to the optimized distribution of contact surface pressures, the rating life has dramatically increased.

As compared with the LH Series, the load rating capacity of the NH series has increased to 1.3 times, while the life span has increased to twice*1. These features enable you to design a machine with a longer life and downsize the machine. Thus, your design capability is greatly enhanced.

*1: Representative values of series.

(2) Ball circulation path with excellent high-speed property

By reexamining the design practice for the ball circulation path, we have attained smooth ball circulation and reduced noise level. So, NH series is suited for high-speed applications compared with the LH Series.

(3) All mounting dimensions are the same as those for the LH and SH Series

Regarding the mounting dimensions (mounting parts' dimensions), such as the mounting height, mounting width, mounting hole diameter/pitch of the linear guide, etc., the mounting dimensions of the NH Series remain the same as those of the conventional LH series and SH series. So, the new NH Series linear guides can be used without making any design changes.

(4) High self-aligning capability (rolling direction)

A113

Same as the DF combination in angular contact

bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, and thus reducing moment rigidity.

This increases the capacity to absorb errors in installation.

(5) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, and thus increasing load carrying capacity as well as rigidity in vertical direction.

(6) High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is generally carried by the top ball rows, where balls are contacting at two points. Because of this design, the bottom ball rows will carry load when a large impact load is applied vertically as shown in Fig. 3. This assures high resistance to the impact load.

(7) High accuracy

As showing in Fig. 4, fixing the master rollers to the ball grooves is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

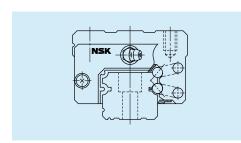


Fig. 1 NH Series

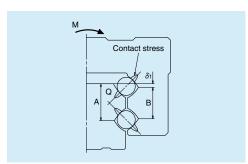


Fig. 2 Enlarged illustration of the offset Gothic arch groove

Note: For customers who have used the former LH or SH series, NH series is recommended as a substitute. Please confirm the correlation between NH series and former ones on the comparative table at A321

(8) Easy to handle, and designed with safety in mind.

Balls are retained in the retainer, therefore they do not fall out when the ball slide is withdrawn from the rail.

(9) Abundant models and sizes

Each size of NH Series has various models of ball slides, rendering the linear guide available

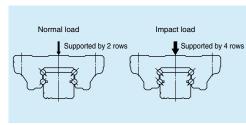


Fig. 3 When load is applied

for numerous uses.

(10) Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates rasi delivery.

High precision grade and medium preload (Special high-carbon steel products)

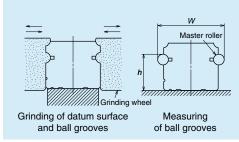


Fig. 4 Rail grinding and measuring

2. Ball slide shape

Z. Dali Si	ide silape		
Ball slide Model	Shape/installation method	High-load type	ower row, Ball slide length) Super-high-load type
Model		Standard	Long
AN BN		AN	BN L ₁
AL BL		AL	BL L ₁
EM GM		EM L ₁	GM L ₁

3. Accuracy and preload

(1) Running parallelism of ball slide Table 1 Unit: µm

Offic. prin								
	Prel	oaded assen	ing)	Random-matching type				
Rail length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	High precision PH	Normal grade PC	
- 50	2	2	2	4.5	6	2	6	
50 – 80	2	2	3	5	6	3	6	
80 – 125	2	2	3.5	5.5	6.5	3.5	6.5	
125 – 200	2	2	4	6	7	4	7	
200 – 250	2	2.5	5	7	8	5	8	
250 – 315	2	2.5	5	8	9	5	9	
315 – 400	2	3	6	9	11	6	11	
400 - 500	2	3	6	10	12	6	12	
500 – 630	2	3.5	7	12	14	7	14	
630 - 800	2	4.5	8	14	16	8	16	
800 – 1 000	2.5	5	9	16	18	9	18	
1 000 – 1 250	3	6	10	17	20	10	20	
1 250 – 1 600	4	7	11	19	23	11	23	
1 600 – 2 000	4.5	8	13	21	26	13	26	
2 000 – 2 500	5	10	15	22	29	15	29	
2 500 – 3 150	6	11	17	25	32	17	32	
3 150 – 4 000	9	16	23	30	34	23	34	

(2) Accuracy standard

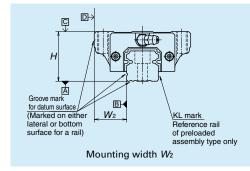
The preloaded assembly has five accuracy grades; Ultra precision P3, Super precision P4, High precision P5, Precision P6 and Normal PN grades, while the random-matching type has High precision PH and Normal PC grade.

Tolerance of preloaded assembly

	Table 2						
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN		
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15	±80 25		
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20	±100 30		
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	A Shown in Table 1, Fig. 5 , and Fig. 6						

Tolerance of random-matching type

,	P -						
Table 3 Unit: μ							
Accuracy grade	High prec	ision grade PH	Normal	grade PC			
Characteristics Model No.	NH15, 20, 25, 30, 35	NH45, 55, 65	NH15, 20, 25, 30, 35	NH45, 55, 65			
Mounting height H	±20	±30	±20	±30			
Variation of mounting height H	15①	20①	15①	20①			
	30②	35②	30②	35②			
Mounting width W_2 or W_3	±30	±35	±30	±35			
Variation of mounting width W ₂ or W ₃	20	20	25	30			
Running parallelism of surface C to surface A	See Table 1, Fig. 5 and Fig. 6						


Note: ① Variation on the same rail ② Variation on multiple rails

(3) Combinations of accuracy and preload

Table 4

out NSK K1 lubrication unit	Ultra precision	Super precision	The boundary				
out NSK K1 lubrication unit			High precision	Precision grade	Normal grade	High precision	Normal grade
	P3	P4	P5	P6	PN	PH	PC
With NSK K1 lubrication unit		K4	K5	K6	KN	KH	KC
With NSK K1 for food and medical equipment		F4	F5	F6	FN	FH	FC
Fine clearance					\circ	_	_
Z0				0	0		
Slight preload					\circ		_
Z1					0		
Medium preload	0					_	_
Z3	0		0				
andom-matching type with fine clearance	_	_	_	_	_	_	
ZT							
andom-matching type with slight preload	_	_	_	_	_		
ZZ	_				_		0
ndom-matching type with medium preload ZH	_	_	_	_	_	0	0
a	Z0 Slight preload Z1 Medium preload Z3 Indom-matching type with fine clearance ZT Indom-matching type with slight preload ZZ Indom-matching type with medium preload	Slight preload Z1 Medium preload Z3 Indom-matching type with fine clearance ZT Indom-matching type with slight preload ZZ dom-matching type with medium preload	Slight preload Z1 Medium preload Z3 Indom-matching type with fine clearance ZT Indom-matching type with slight preload ZZ dom-matching type with medium preload ZZ	Slight preload Z1 Medium preload Z3 Indom-matching type with fine clearance ZT Indom-matching type with slight preload ZZ dom-matching type with medium preload ZZ	Slight preload Z1 Medium preload Z3 Indom-matching type with fine clearance ZT Indom-matching type with slight preload ZZ dom-matching type with medium preload ZZ	Slight preload Z1 Medium preload Z3 Indom-matching type with fine clearance ZT Indom-matching type with slight preload ZZ dom-matching type with medium preload ZZ Indom-matching type with medium preload ZZ	Z0 Slight preload Z1 Medium preload Z3 ndom-matching type with fine clearance ZT ndom-matching type with slight preload ZZ dom-matching type with medium preload ZZ

(4) Assembled accuracy

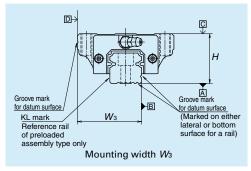
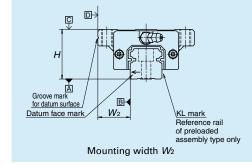



Fig. 5 Special high carbon steel

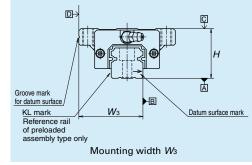


Fig. 6 Stainless steel

(5) Preload and rigidity

We offer six levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with random-matching type of Medium preload ZH, Slight preload ZZ and Fine clearance ZT.

Preload and rigidity of preloaded assembly

Table 5

Table 5									
		Preload (N)		Rigidity (N/μm)					
	Model No.			Vertical direction		Lateral direction			
	Model No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload		
		Z1	Z3	Z1	Z3	Z1	Z3		
	NH15 AN, EM	78	490	137	226	98	186		
	NH20 AN, EM	147	835	186	335	137	245		
be	NH25 AL, AN, EM	196	1 270	206	380	147	284		
High-load type	NH30 AL, AN	245	1 570	216	400	157	294		
oac	NH30 EM	294	1 770	265	480	186	355		
놑	NH35 AL, AN, EM	390	2 350	305	560	216	390		
٠	NH45 AL, AN, EM	635	3 900	400	745	284	540		
	NH55 AL, AN, EM	980	5 900	490	910	345	645		
	NH65 AN, EM	1 470	8 900	580	1 070	400	755		
Ф	NH15 BN, GM	98	685	196	345	137	284		
type	NH20 BN, GM	196	1 080	265	480	196	355		
	NH25 BL, BN, GM	245	1 570	294	560	216	400		
<u>P</u>	NH30 BL, BN, GM	390	2 260	360	665	265	480		
igh	NH35 BL, BN, GM	490	2 940	430	795	305	570		
uper-high-load	NH45 BL, BN, GM	785	4 800	520	960	370	695		
adr	NH55 BL, BN, GM	1 180	7 050	635	1 170	440	835		
งั	NH65 BN, GM	1 860	11 300	805	1 480	550	1 040		
		•	•						

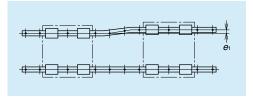
Note: Clearance for Fine clearance Z0 is 0 to 3µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15µm.

· Clearance and preload of random-matching type

	Unit: µm		
Model No.	Fine clearance ZT	Slight preload ZZ	Medium preload ZH
NH15	-4 — 15	-4 — 0	<i>−</i> 7 — <i>−</i> 3
NH20		-5 — O	-8 — -3
NH25		-5 — O	−9 — −4
NH30		-7 — 0	−12 − − 5
NH35	-5 — 15	-7 — 0	−12 — −5
NH45		-7 — 0	-14 <i>-</i> -7
NH55	NH55 NH65	-9 — O	-18 <i>-</i> -9
NH65		-9 — O	−19 — −10

Note: Minus sign denotes that a value is an amount of preload (elastic deformation of balls).

4. Maximum rail length

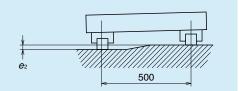

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grades. Table 7 Length limitations of rails

								,	זווונ. ווווווו
Series	Size Material	15	20	25	30	35	45	55	65
NH	Special high carbon steel	2 980	3 960	3 960	4 000	4 000	3 990	3 960	3 900
	Stainless steel	1 800	3 500	3 500	3 500				

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error



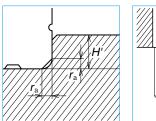

Fig. 7

Fig. 8

Table 8 Unit: μm									
Value	Preload		Model No.						
value	Freioau	NH15	NH20	NH25	NH30	NH35	NH45	NH55	NH65
Darminaible values of	Z0, ZT	22	30	40	45	55	65	80	110
Permissible values of	Z1, ZZ	18	20	25	30	35	45	55	70
parallelism in two rails e ₁	Z3, ZH	13	15	20	25	30	40	45	60
Permissible values of	Z0, ZT				375µm/	500mm			
parallelism (height) in two rails e2	Z1, ZZ, Z3, ZH				330µm/	500mm			

Table 8

(2) Shoulder height of the mounting surface and corner radius r

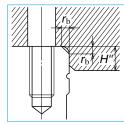


Fig. 9 Shoulder for the rail datum surface

Fig. 10 Shoulder for the ball slide datum surface

Table 9

П	ni	٠+	m

Model No.	Corner radius	s (maximum)	Shoulder height		
iviouei ivo.	r _a	$r_{\rm b}$	H'	H"	
NH15	0.5	0.5	4	4	
NH20	0.5	0.5	4.5	5	
NH25	0.5	0.5	5	5	
NH30	0.5	0.5	6	6	
NH35	0.5	0.5	6	6	
NH45	0.7	0.7	8	8	
NH55	0.7	0.7	10	10	
NH65	1	1	11	11	

6. Maximum allowable speed

Size

Series

NH

An indication of the standard maximum allowable speed aiming at 10,000km operation with NH series under normal conditions is shown in Table 10. However, the maximum allowable speed can be affected by accuracy of installation, operating temperature, external load, etc. If the operation is made exceeding the permissible distance and speed, please consult NSK.

Та	Un	it: m/mi	n					
15	20	25	30	35	45	55	65	
300						00	150	

7. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 11 and Table 11 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

When you require stainless lubrication accessories, please ask NSK.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 12)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of $M6 \times 1$, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

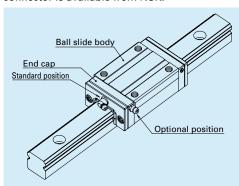


Fig. 12 Mounting position of lubrication accessories

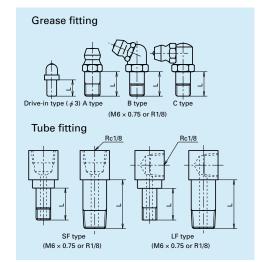


Fig. 11 Grease fitting and tube fitting

		Table 11		Unit: mm
Model	Dust-proof		ension L	
No.	specification	Grease fitting		fitting
INO.	specification	/Drive-in type	SF type	LF type
	Standard	5	-	-
NH15	With NSK K1	10	-	_
NHIS	Double seal	*	-	_
	Protector	*	-	_
	Standard	5	_	_
NILIOO	With NSK K1	12	-	-
NH20	Double seal	10	-	-
	Protector	10	-	_
	Standard	5	5	5
NULOE	With NSK K1	12	12	12
NH25	Double seal	10	9	9
	Protector	10	9	9
	Standard	5	6	6
NU 100	With NSK K1	14	12	13
NH30	Double seal	12	10	11
	Protector	12	10	11
	Standard	5	6	6
NH35	With NSK K1	14	12	13
IVH35	Double seal	12	10	11
	Protector	12	10	11
	Standard	8	13.5	17
NH45	With NSK K1	18	20	21.5
IVH45	Double seal	14	16	17
	Protector	14	13.5	17
	Standard	8	13.5	17
AU155	With NSK K1	18	20	21.5
NH55	Double seal	14	16	17
	Protector	14	13.5	17
	Standard	8	13.5	17
NULOF	With NSK K1	20	22	25.5
NH65	Double seal	16	18	19
	Protector	16	13.5	17

*) A connector is required for this model. Please contact NSK.

8. Dust-proof components

(1) Standard specification

The NH Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends, and bottom seals at the bottom.

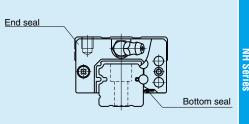


Fig. 13

Table 12 Seal friction per ball slide (maximum value)

Tuble 12 Ocal motion per ban snac (maximum value)						Unit: N		
Series Size	15	20	25	30	35	45	55	65
NH	8	9	10	10	12	17	22	29

(2) NSK K1[™] lubrication unit

Table 13 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

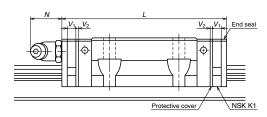


Table 13

Unit: mm

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V ₂	Protruding area of the grease fitting N
NULLE	Standard	AN, EM	55	65.6			(5)
NH15	Long	BN, GM	74	84.6	4.5	0.8	(5)
NULIOO	Standard	AN, EM	69.8	80.4	4.5	0.0	(4.4)
NH20	Long	BN, GM	91.8	102.4	4.5	0.8	(14)
NULOF	Standard	AL, AN, EM	79.0	90.6	F 0	0.0	(4.4)
NH25	Long	BL, BN, GM	107	118.6	5.0	0.8	(14)
	Standard	AL, AN	85.6	97.6		1.0	(14)
NH30	Standard	EM	98.6	110.6	5.0		
	Long	BL, BN, GM	124.6	136.6			
NULOF	Standard	AL, AN, EM	109	122			(4.4)
NH35	Long	BL, BN, GM	143	156	5.5	1.0	(14)
NULAE	Standard	AL, AN, EM	139	154	0.5	1.0	(15)
NH45	Long	BL, BN, GM	171	186	6.5	1.0	(15)
NUISE	Standard	AL, AN, EM	163	178	0.5	4.0	(4.5)
NH55	Long	BL, BN, GM	201	216	6.5	1.0	(15)
NULOE	Standard	AN, EM	193	211	0.0	4.0	(4.0)
NH65	Long	BN, GM	253	271	8.0	1.0	(16)

Notes: 1) NSK K1 for food and medical equipments are available for NH15 to NH35.

2) Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V, × Number of NSK K1) + (Thickness of the protective cover, $V_2 \times 2$)

IVIII Delles

(3) Double seal

Use a double seal set as showing in **Table 14**, when installing an extra seal to completed standard products. (Fig. 14)

When installing a grease fitting after the installation of double seals, a connector as showing in **Fig.14** is required.

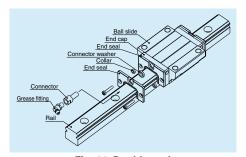


Fig. 14 Double seal

Table 14 Double-seal set

Model No.	Referer	nce No. With connector	Increased thickness V ₃
	Without confidential	WILLI COLLIECTOL	(mm)
NH15	LH15WS-01	*	2.5
NH20	LH20WS-01	LH20WSC-01	2.5
NH25	LH25WS-01	LH25WSC-01	2.8
NH30	LH30WS-01	LH30WSC-01	3.6
NH35	LH35WS-01	LH35WSC-01	3.6
NH45	LH45WS-01	LH45WSC-01	4.3
NH55	LH55WS-01	LH55WSC-01	4.3
NH65	LH65WS-01	LH65WSC-01	4.9

(4) Protector

Use a protector set as showing **Table 15**, when installing a protector to completed standard products. (**Fig.15**)

When installing a grease fitting after the installation of protectors, a connector as showing in Fig.15 is required.

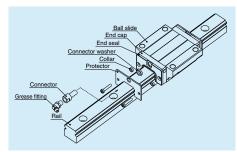


Fig. 15 Protector

Table 15 Protector set

Model No.	Refere	Increased thickness V ₄	
Model No.	Without connector	With connector	(mm)
NH15	LH15PT-01	*	2.7
NH20	LH20PT-01	LH20PTC-01	2.9
NH25	LH25PT-01	LH25PTC-01	3.2
NH30	LH30PT-01	LH30PTC-01	4.2
NH35	LH35PT-01	LH35PTC-01	4.2
NH45	LH45PT-01	LH45PTC-01	4.9
NH55	LH55PT-01	LH55PTC-01	4.9
NH65	LH65PT-01	LH65PTC-01	5.5

^{*)} For installation of a connector to a drive-in type grease fitting, contact NSK.

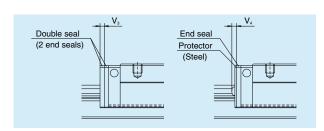


Fig. 16

(5) Cap to plug the rail mounting bolt hole Table 16 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity	
WIOGCI IVO.	secure rail	reference No.	/case	
NH15	M4	LG-CAP/M4	20	
NH20	M5	LG-CAP/M5	20	
NH25	M6	LG-CAP/M6	20	
NH30, NH35	M8	LG-CAP/M8	20	
NH45	M12	LG-CAP/M12	20	
NH55	M14	LG-CAP/M14	20	
NH65	M16	LG-CAP/M16	20	

(7) Bellows

- A bellows fastener kit, which includes one of bellows faster, two of M₁ set screws, two of M₂ set screws, and two collars for M₂ set screws as showing Fig. 7.7 on page A55, is supplied with ellows for the ends.
- Middle bellows are supplied with four set screws and four collars.
- Use a bellows fastener kit as showing Table 18, when installing bellows to completed standard products.
- When NSK K1, double seals or protectors are used, the set screws of bellows fastener kit are unable to use.

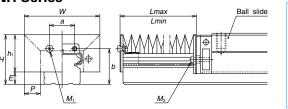
Please contact NSK for details.

 Bellows fastener is available only for the horizontal mounting positions. For other mounting positions, sliding plate is required (see Fig. 7.10 on page A56).

For fixing to the rail, make tap holes to the rail end surface. Fix the bellows mounting plate to the rail end surface through these tap holes by using a machine screw. NSK processes a tap hole to the rail end face when ordered with a linear guide.

(6) Inner seal

Inner seal is only available for models shown in the table below.


Table 17

Series	Model No.
NH	NH20, NH25, NH30, NH35, NH45, NH55, NH65

Table 18 Bellows fastner kit reference No.

Model No.	Kit reference No.
NH20	LH20FS-01
NH25	LH25FS-01
NH30	LH30FS-01
NH35	LH35FS-01
NH45	LH45FS-01
NH55	LH55FS-01
NH65	LH65FS-01

Dimension tables of bellows NH Series

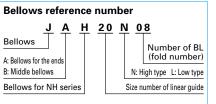


Fig. 17 Dimensions of bellows

Table 19 Dimensions of bellows

Unit: mm

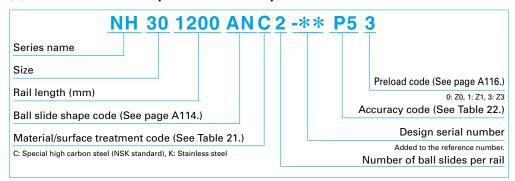
Model No.	Н	h ₁	Ε	W	Р	а	b	BL minimum length	M₁Tap x depth	M₂Tap x depth
JAH20N	29.5	24.5	5	48	10	13	22	17	M3 × 5	M2.5 × 16
JAH25L	35	28	7	51	10	16	26	17	M3 × 5	M3 × 18
JAH25N	39	32	/	61	15	10	20	17	IVIO X D	1VIS X 10
JAH30L	41	32	9	60	12	18	31	17	M4 × 6	M4 × 22
JAH30N	44	35	9	66	15	10	31	17	1V14 X 0	1V14 X ZZ
JAH35L	47	37.5	9.5	72	15	24	34	17	M4 × 6	M4 × 23
JAH35N	54	44.5	9.5	82	20	24	34	17	1014 × 0	1014 X Z3
JAH45L	59	45	14	83	15	32	44.5	17	M5 × 8	M5 × 28
JAH45N	69	55	14	103	25	32	44.5	17	IVID X 8	IVID X 28
JAH55L	69	54	15	101	20	40	50.5	17	M5 × 8	M5 × 30
JAH55N	79	64	13	121	30	40	50.5	17	O X CIVI	IVIO X 30
JAH65N	89	73	16	131	30	48	61	17	M6×8	M6 × 35

Table 20 Numbers of folds (BL) and lengths of bellows

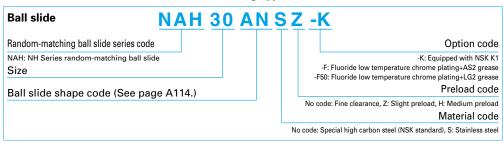
Unit: mm

Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
iviodei ivo.	Lmin	34	68	102	136	170	204	238	272	306	340
JAH20N	Stroke	106	212	318	424	530	636	742	848	954	1 060
JAHZUN	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
IVIIOEI	Stroke	106	212	318	424	530	636	742	848	954	1 060
JAH25L	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAH25N	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAHZJIN	<u>L</u> max	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH30L	Stroke	134	268	402	536	670	804	938	1 072	1 206	1 340
JAHSUL	Lmax	168	336	504	672	840	1 008	1 176	1 344	1 512	1 680
JAH30N	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAHSUN	<u>L</u> max	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH35L	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAHSSL	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH35N	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
JAHSSIN	<u>L</u> max	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
JAH45L	Stroke	176	352	528	704	880	1 058	1 232	1 408	1 584	1 760
JAI 145L	<u>L</u> max	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH45N	Stroke	316	632	948	1 264	1 580	1 896	2 212	2 528	2 844	3 160
JAH43N	<u>L</u> max	350	700	1 050	1 400	1 750	2 100	2 450	2 800	3 150	3 500
JAH55L	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
JAHOSE	<u>L</u> max	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
JAH55N	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
MICCIAC	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200
JAH65N	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
JAHOSIN	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200

Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of even number BL on the both sides, then by dividing the sum by 2.


A123 A124

9. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

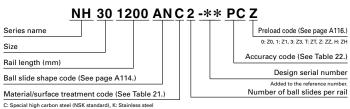
Rail	N1H 30 1200 L C	<u>N -** PC Z</u>
Random-matching rail series c N1H: NH Series random-match Size		Preload code (See page A116.) T. Fine clearance Z: Slight preload (common rail for slight or medium preload) Accuracy code
Rail length (mm)		PH: High precision grade random-matching type PC: Normal grade random-matching type
Rail shape code: L		Design serial number
L: Standard Material/surface treat	ment code (See Table 21.)	Added to the reference number. *Butting rail specification
		N: Non-butting. L: Butting specification
		*Please consult with NSK for butting rail specification.

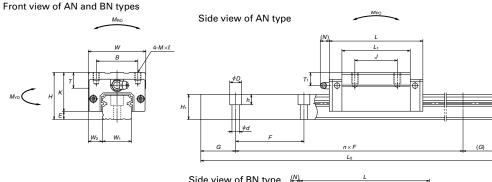
The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only preload codes of "fine clearance T", "slight preload Z" and "medium preload H" are available (refer to page A116).

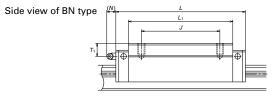
Table 21 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel (NH15 to NH30 only)
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special

Note: High-precision grade and medium preload of random-matching type are not available in stainless steel.


Table 22 Accuracy code


Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Ultra precision grade	P3	K3	F3
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
High precision grade (random-matching type)	PH	KH	FH
Normal grade (random-matching type)	PC	KC	FC


Note: Refer to pages A38 and A61 for NSK K1 lubrication unit.

A125 A126

10. Dimensions NH-AN (High-load type / Standard) NH-BN (Super-high-load type / Long)

	As	ssemb	ly		Ball slide											
Model No.	Height	Height		Width	Length					Grease	fittin	ıg	Width	Height		
iviouei ivo.	Н	Ε	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	<i>T</i> ₁	N	W₁	H ₁
NH15AN NH15BN	1 72 1	4.6	9.5	34	55 74	26	26	M4×0.7×6	39 58	23.4	8	φ 3	8.5	3.3	15	15
NH20AN NH20BN	30	5	12	44	69.8 91.8	32	36 50	M5×0.8×6	50 72	25	12	M6×0.75	5	11	20	18
NH25AN NH25BN	40	7	12.5	48	79 107	35	35 50	M6×1×9	58 86	33	12	M6×0.75	10	11	23	22
NH30AN NH30BN	45	9	16	60	85.6 124.6	40	40 60	M8×1.25×10	59 98	36	14	M6×0.75	10	11	28	26
NH35AN NH35BN	55	9.5	18	70	109 143	50	50 72	M8×1.25×12	80 114	45.5	15	M6×0.75	15	11	34	29
NH45AN NH45BN	70	14	20.5	86	139 171	60	60 80	M10×1.5×17	105 137	56	17	Rc1/8	20	13	45	38
NH55AN NH55BN	80	15	23.5	100	163 201	75	75 95	M12×1.75×18	126 164	65	18	Rc1/8	21	13	53	44
NH65AN NH65BN	90	16	31.5	126	193 253	76	70 120	M16×2×20	147 207	74	23	Rc1/8	19	13	63	53

Notes: 1) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type

Ball slide

NAH 30 AN S Z -K

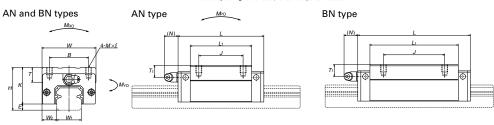
Random-matching ball slide series code

NAH: NH Series random-matching ball slide
Size

Ball slide shape code (See page A114.)

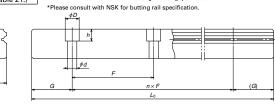
Option code

**C: Equipped with NSK K1


-F: Fluoride low temperature chrome plating-4SZ grease
-Freshoride low temperature chrome plating-4SZ grease
-Preload code

No code: Fine clearance, Z: Slight preload. H. Medium preload

Material code


No code: Secial high carbon steel (NSK standards, S: Sulnies steel)

No code: Secial high carbon steel (NSK standards, S: Sulnies steel)

Reference number for rail of random-matching type

Rail	N1H30 1200 L C	<u> </u>
Random-matching N1H: NH Series ran Size	rail series code	Preload code (See page A116.) E Fine clearance. Z: Slight preload (common rail for medium preload) Accuracy code
Rail length (n	nm)	PH: High precision grade. PC: Normal grade Design serial number
Rail shape co	de: L	Added to the reference number. *Butting rail specification
L: Standard Material/surfa	ace treatment code (See Table 21.)	N: Non-butting. L: Butting specification
		*Please consult with NSK for butting rail specification.

				-			20				→	Ur	nit: mm	
Rail					Basic load rating									
Pitch	Mounting	G	Max.	2)Dyn	amic	Static		Ball	Rail					
	bolt hole		length L_{0max} .	[50km]	[100km]	C_0	M _{BO}	٨	1 _{PO}	M _{YO}		slide		
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	C ₁₀₀ (N)	(N)	·	One slide Two slides		One slide	Two slides	(kg)	(kg/m)	
60	4.5×7.5×5.3	20	2 980	14 200	11 300	20 700	108	94.5	575	79.5	480	0.18	1.6	
00	4.027.020.0		(1800)	18 100	14 400	32 000	166	216	1 150	181	965	0.26	1.0	
60	CVO EVO E	20	3 960	23 700	18 800	32 500	219	185	1 140	155	955	0.33	2.6	
60	6×9.5×8.5	20	(3500)	30 000	24 000	50 500	340	420	2 230	355	1 870	0.48	2.6	
60	7110	20	3 960	33 500	26 800	46 000	360	320	1 840	267	1 540	0.55	2.6	
60	7×11×9	20	(3 500)	45 500	36 500	71 000	555	725	3 700	610	3 100	0.82	3.6	
- 00	01410	20	4 000	41 000	32 500	51 500	490	350	2 290	292	1 920	0.77	5.2	
80	9×14×12	20	(3500)	61 000	48 500	91 500	870	1 030	5 600	865	4 700	1.3	5.2	
00	01 41 2	20	4 000	62 500	49 500	80 500	950	755	4 500	630	3 800	1.5	7.2	
80	9×14×12	20	4 000	81 000	64 500	117 000	1 380	1 530	8 350	1 280	7 000	2.1	1.2	
105	14×20×17	22.5	3 990	107 000	84 500	140 000	2 140	1 740	9 750	1 460	8 150	3.0	12.3	
105	14820817	22.5	3 990	131 000	104 000	187 000	2 860	3 000	15 600	2 520	13 100	3.9	12.3	
120	16×23×20	30	3 960	158 000	125 000	198 000	3 600	3 000	16 300	2 510	13 700	4.7	16.9	
120	10x23x20	30	3 900	193 000	153 000	264 000	4 850	5 150	26 300	4 350	22 100	6.1	10.9	
150	18×26×22	35	3 900	239 000	190 000	281 000	6 150	4 950	27 900	4 150	23 400	7.7	24.2	
130	10XZ0XZZ	သပ	3 900	310 000	246 000	410 000	8 950	10 100	51 500	8 450	43 500	10.8	24.3	

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{so} ; the basic dynamic load rating for 50 km rated fatigue life C_{loo} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

³⁾ High-precision grade and medium preload of random-matching type are available for high-carbon steel products.

NH-AL (High-load type / Standard) NH-BL (Super-high-load type / Long)

NH 30 1200 AL C 2 -** PC Z

Series name

Size

Rail length (mm)

Ball slide shape code (See page A114.)

Material/surface treatment code (See Table 21.)

C: Special high carbon steel (NSK standard), K: Stainless steel

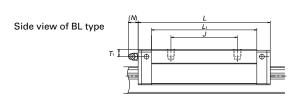
Front view of AL and BL types Side view of AL type

MED

W

A-M×L

B


A-M×L

A-M×L

A-M×L

B

A-M×L

	Assembly				Ball slide											
Model No.	Height		Width	Length		Mour	nting hole				Grease	fittin	g	Width	Height	
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	<i>T</i> ₁	N	W ₁	H ₁
NH25AL NH25BL	36	7	12.5	48	79 107	35	35 50	M6×1×6	58 86	29	12	M6×0.75	6	11	23	22
NH30AL NH30BL	42	9	16	60	85.6 124.6	40	40 60	M8×1.25×8	59 98	33	14	M6×0.75	7	11	28	26
NH35AL NH35BL	48	9.5	18	70	109 143	50	50 72	M8×1.25×8	80 114	38.5	15	M6×0.75	8	11	34	29
NH45AL NH45BL	60	14	20.5	86	139 171	60	60 80	M10×1.5×10	105 137	46	17	Rc1/8	10	13	45	38
NH55AL NH55BL	70	15	23.5	100	163 201	75	75 95	M12×1.75×13	126 164	55	15	Rc1/8	11	13	53	44

Notes: 1) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

A129

Reference number for ball slide of random-matching type

Ball slide

NAH 30 AL S Z -K

Random-matching ball slide series code

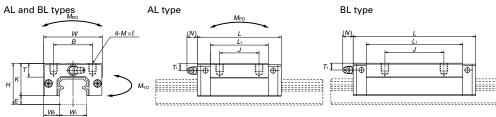
NAH: NH Series random-matching ball slide
Size

Ball slide shape code (See page A114.)

Option code

A: Equipped with NSK K1

4: Fluoride low temperature chrome plating-4SZ grease


-F50: Fluoride low temperature chrome plating-4SZ grease

Preload code

No code: Fine clearance, Z: Slight preload. H. Medium preload

Material code

No code: Soecial high carbon steel (NSK standard). S Sulnies steel

Reference number for rail of random-matching type

Rail N1H30 1200 L C N -** PC Z

Random-matching rail series code

N1H: NH Series random-matching rail
Size

Rail length (mm)

Rail shape code: L

L: Standard

Material/surface treatment code (See Table 21.)

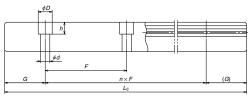
Preload code (See page A116.)

Fina clearance.
Accuracy code

Prit-ligh precision grade

Pc: Normal grade

Design serial number.


Added to the reference number.

*Butting rail specification

N: Non-butting. L: Butting specification.

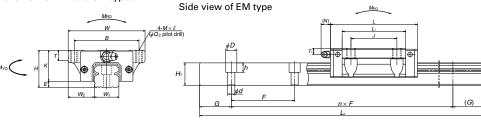
*Please consult with NSK for butting rail specification.

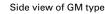
Unit: mm

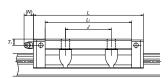
Rail				Basic load rating									Weight		
Pitch	Mounting	G	Max. length	2)Dyn	amic	Static		Static		Ball slide	Rail				
	bolt hole		L_{0max} .	[50km]	[100km]	C_{\circ}	M_{RO}	Λ	1 _{PO}	Λ	1 _{YO}				
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)		
60	7×11×9	20	3 960	33 500	26 800	46 000	360	320	1 840	267	1 540		3.6		
	,,,,,,,,,		(3500)	45 500	36 500	71 000	555	725	3 700	610	3 100	0.69			
80	9×14×12	20	4 000	41 000	32 500	51 500	490	350	2 290	292	1 920	0.69	5.2		
	0/11/1/2	[(3500)	61 000	48 500	91 500	870	1 030	5 600	865	4 700	1.16	0.2		
80	9×14×12	20	4 000	62 500	49 500	80 500	950	755	4 500	630	3 800	1.2	7.2		
00	3714712	20	4 000	81 000	64 500	117 000	1 380	1 530	8 350	1 280	7 000	1.7	1.2		
105	14×20×17	22.5	3 990	107 000	84 500	140 000	2 140	1 740	9 750	1 460	8 150	2.2	12.3		
103	105 14x20x17	22.5	3 330	131 000	104 000	187 000	2 860	3 000	15 600	2 520	13 100	2.9	12.0		
120	16×23×20	30	3 960	158 000	125 000	198 000	3 600	3 000	16 300	2 510	13 700	3.7	16.9		
120	10/23/20	30	3 300	193 000	153 000	264 000	4 850	5 150	26 300	4 350	22 100	4.7	10.5		

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life. The basic static load rating shows static permissible load.


³⁾ High-precision grade and medium preload of random-matching type are available for high-carbon steel products.


NH-EM (High-load type / Standard) NH-GM (Super-high-load type / Long)


NH 30 1200 EM C 2 -** PC Z Series name Preload code (See page A116.) 0: Z0. 1: Z1. 3: Z3. T: ZT. Z: ZZ. H: ZH Size Accuracy code (See Table 22.) Rail length (mm) Design serial number Ball slide shape code (See page A114.) Added to the reference number Material/surface treatment code (See Table 21.) Number of ball slides per rail

C: Special high carbon steel (NSK standard), K: Stainless steel

Front view of EM and GM types

	As	sem	bly					Ball	slide								
Model No.	Height			Width	Length	Length Mounting hole							Grease	fittin	g	Width	Height
wioder No.	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	Q_2	L ₁	К	Т	Hole size	<i>T</i> ₁	N	W_1	H ₁
NH15EM NH15GM	24	4.6	16	47	55 74	38	30	M5×0.8×7	4.4	39 58	19.4	8	φ 3	4.5	3.3	15	15
NH20EM NH20GM	30	5	21.5	63	69.8 91.8	53	40	M6×1×9.5	5.3	50 72	25	10	M6×0.75	5	11	20	18
NH25EM NH25GM	36	7	23.5	70	79 107	57	45	M8×1.25×10 (M8×1.25×11.5)	6.8	58 86	29	11 (12)	M6×0.75	6	11	23	22
NH30EM NH30GM	42	9	31	90	98.6 124.6	72	52	M10×1.5×12 (M10×1.5×14.5)	8.6	72 98	33	11 (15)	M6×0.75	7	11	28	26
NH35EM NH35GM	48	9.5	33	100	109 143	82	62	M10×1.5×13	8.6	80 114	38.5	12	M6×0.75	8	11	34	29
NH45EM NH45GM	60	14	37.5	120	139 171	100	80	M12×1.75×15	10.5	105 137	46	13	Rc1/8	10	13	45	38
NH55EM NH55GM	70	15	43.5	140	163 201	116	95	M14×2×18	12.5	126 164	55	15	Rc1/8	11	13	53	44
NH65EM NH65GM	90	16	53.5	170	193 253	142	110	M16×2×24	14.6	147 207	74	23	Rc1/8	19	13	63	53

Notes: 1) Parenthesized dimensions are for items made of stainless steel.

Reference number for ball slide of random-matching type

NAH 30 EM S Z -K Ball slide Random-matching ball slide series code

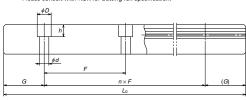
NAH: NH Series random-matching ball slide

Ball slide shape code (See page A114.)

-K: Equipped with NSK K1
-F: Fluoride low temperature chrome plating+AS2 grease
-F50: Fluoride low temperature chrome plating+LG2 grease Preload code No code: Fine clearance, Z: Slight preload, H: Medium prelo Material code

No code: Special high carbon steel (NSK standard), S: Stainl EM and GM types EM type GM type 4-M × ℓ

Reference number for rail of random-matching type


N1H30 1200 L C N -** PC Z Rail

Random-matching rail series code N1H: NH Series random-matching rail Size Rail length (mm) Rail shape code: L Material/surface treatment code (See Table 21.)

Accuracy code Design serial number Added to the reference number. *Butting rail specification

N: Non-butting. L: Butting specification
*Please consult with NSK for butting rail specification.

Unit: mm

Rail						Basi		We	ight				
Pitch	Mounting	G	Max. length	3)Dyn	amic	Static			Ball	Rail			
	bolt hole		L_{omax} .	[50km]	[100km]	C_{\circ}	$M_{\scriptscriptstyle{\mathrm{RO}}}$	<i>\\</i>	1 _{PO}	Λ	1 _{YO}	slide	
F	$d \times D \times h$	(reference)	() for stainless	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	4.5×7.5×5.3	20	2 980 (1 800)	14 200 18 100	11 300 14 400	20 700 32 000	108 166	94.5 216	575 1 150	79.5 181	480 965	0.17 0.25	1.6
60	6×9.5×8.5	20	3 960 (3 500)	23 700 30 000	18 800 24 000	32 500 50 500	219 340	185 420	1 140 2 230	155 355	955 1 870	0.45 0.65	2.6
60	7×11×9	20	3 960 (3 500)	33 500 45 500	26 800 36 500	46 000 71 000	360 555	320 725	1 840 3 700	267 610	1 540 3 100	0.63 0.93	1 .3 D
80	9×14×12	20	4 000 (3 500)	47 000 61 000	37 500 48 500	63 000 91 500	600 870	505 1 030	3 150 5 600	425 865	2 650 4 700	1.2 1.6	5.2
80	9×14×12	20	4 000	62 500 81 000	49 500 64 500	80 500 117 000	950 1 380	755 1 530	4 500 8 350	630 1 280	3 800 7 000	1.7 2.4	7.2
105	14×20×17	22.5	3 990	107 000 131 000	84 500 104 000	140 000 187 000	2 140 2 860	1 740 3 000	9 750 15 600	1 460 2 520	8 150 13 100	3 3.9	12.3
120	16×23×20	30	3 960	158 000 193 000	125 000 153 000	198 000 264 000	3 600 4 850	3 000 5 150	16 300 26 300		13 700 22 100	5 6.5	16.9
150	18×26×22	35	3 900	239 000 310 000	190 000 246 000	281 000 410 000	6 150 8 950	4 950 10 100	27 900 51 500	4 150 8 450	23 400 43 500		24.3


³⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

²⁾ External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

C_{so,} the basic dynamic load rating for 50 km rated fatigue life C_{ion} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

⁴⁾ High-precision grade and medium preload of random-matching type are available for high-carbon steel products.

A-5-1.2 VH Series

1. Features

(1) High-performance end seals

High-performance end seals with a multi-lip structure prevent the entry of various foreign matters.

(2) NSK K1[™] lubrication unit (standard)

Outstanding lubrication support of NSK K1 further improves sealing capability and durability. Additional NSK K1 units can be mounted for specific usage conditions and environments.

(3) Tapped holes on a rail bottom surface (optional)

In addition to standard mounting bolt holes (counterbores on a rail top surface), a specification for tapped holes on a rail bottom surface for enhanced sealing capability is available for the VH Series. (Refer to the dimension table.)

(4) High self-aligning capability (rolling direction)

Same as the DF combination in angular contact bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, reducing moment rigidity.

This increases the capacity to absorb errors in installation.

(5) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, thus increasing load carrying capacity as well as rigidity in vertical direction.

(6) High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is generally carried by the top rows, at where balls are contacting at two points. Because of this design, the bottom rows will carry load when a large impact load

is applied vertically as shown in Fig. 3. This assures high resistance to the impact load.

(7) High accuracy

As showing in Fig. 4, fixing the master rollers to the ball grooves is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

(8) Random matching type

Random-matching of rails and ball slides are available.

(9) Improve rating life dramatically

New ball groove geometry is introduced,

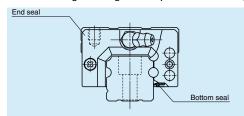


Fig. 1 VH Series

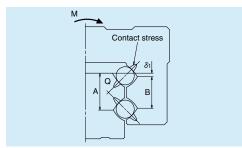


Fig. 2 Enlarged illustration of the offset Gothic arch groove

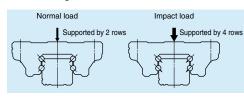


Fig. 3 When load is applied

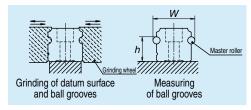


Fig. 4 Rail grinding and measuring

NSK

which has been developed by utilizing NSK's state-of-the-art tribological and analytical technologies. Due to the optimized distribution of contact surface pressures, the rating life has dramatically increased. As compared with the conventional products, the load rating capacity has increased to 1.3 times, while the life span has increased to twice*1.

*1: Representative values of series.

Comparison with NSK standard products

Less than 1/10 the level of fine contaminants

Results of dust-proof tests reveal that the entry of fine contaminants is reduced to less than one-tenth of existing standard series due to improvements in sealing capability.

Test sample : VH30AN Speed · 16.7 mm/sec Contaminant : Graphite powder

(average grain size: 0.037 mm) +

Grease

Operating life under contaminated environments is more than 5 times longer

Durability test with rubber fragments

Extreme durability tests under contaminated environments using rubber fragments show that durability of the VH Series extended more than five times longer than the existing standard series, as shown in the graph.

: VH30AN, preload code Z1 Test sample (preload of 245 N) Rail orientation : Horizontal (wall mount)

Speed : 500 mm/sec Lubrication : AS2 grease

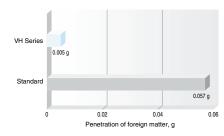
(prepacked AS2 only) : Rubber fragments Contaminant

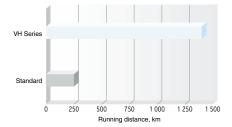
Durability test with fine wood particles

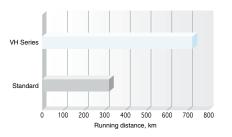
Extreme durability tests in a contaminated environment with fine wood particles show that durability of the VH Series is more than doubled

compared to the standard series, as shown in the graph.

Test sample : VH30AN


Rail orientation


(preload of 3 200 N) : Horizontal (wall mount)


Speed : 400 mm/sec Lubrication : AS2 grease

(prepacked AS2 only)

Contaminant : Fine wood particles

Before the passage of ball slide (Heavily contaminated with wood particle)

After the passage of ball slide (All contaminant particles are swept away)

The data shown in the catalog are the results of our tests, and no warranty is given to sealing performance on actual usage on machinery. Sealing performance is affected by usage environment and lubrication conditions. Dust covers and other measures to keep machinery free of dust are recommended.

2. Ball slide shape

Ball slide Model	Shape/installation method	Type (Upper row, Rating: Lo High-load type Standard	ower row, Ball slide length) Super-high-load type Long
AN BN		AN L1	BN L ₁
AL BL		AL L1	BL
EM GM		EM L ₁	GM L ₁

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1 Unit: µm Random-Preloaded assembly (not random matching) matching type Rail length Normal grade Normal grade KN KC Ultra Super High Precision (mm) precision K3 precision K4 precision K5 grade K6 KC over or less 4.5 50 -80 – 3.5 5.5 6.5 6.5 125 – 200 -2.5 250 -2.5 315 - 400 400 -500 – 3.5 630 - 800 4.5 2.5 800 - 10001 000 - 1 250 1 250 – 1 600 1600 - 2000 4.5 2 000 – 2 500 2 500 - 3 150 3 150 – 4 000

(2) Accuracy standard

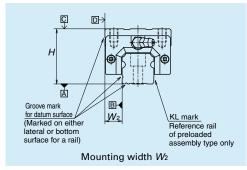
The preloaded assembly has five accuracy grades; Ultra precision K3, Super precision K4, High precision K5, Precision K6, and Normal KN grades, while the random-matching type has Normal KC grade only.

Tolerance of preloaded assembly

Table 2 Unit: μ							
Accuracy grade Characteristics	Ultra precision K3	Super precision K4	High precision K5	Precision grade K6	Normal grade KN		
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15	±80 25		
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20	±100 30		
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1, Fig. 5 and Fig. 6						

Tolerance of random-matching type: Normal grade KC

	Table 3	Unit: µm
Model No. Characteristics	VH15, 20, 25, 30, 35	VH45, 55
Mounting height H	±20	±30
Variation of mounting height H	15① 30②	20① 35②
Mounting width W_2 or W_3	±30	±35
Variation of mounting width W ₂ or W ₃	25	30
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1, Fi	g. 5 and Fig. 6


Note: 1 Variation on the same rail 2 Variation on multiple rails

(3) Combinations of accuracy and preload

Table 4

Table 4									
	Accuracy grade								
	Ultra precision	Super precision	High Precision	Precision grade	Normal grade	Normal grade			
h NSK K1 lubrication unit	K3	K4	K5	K6	KN	KC			
Fine clearance						_			
Z0)						
Slight preload			\circ			_			
Z1	0	0)						
Medium preload					_	_			
Z3	0))		_				
Random-matching type with fine clearance	_	_	_	_	_				
ZT									
Random-matching type with slight preload ZZ	_	_	_	_	_	0			
	th NSK K1 lubrication unit Fine clearance Z0 Slight preload Z1 Medium preload Z3 Random-matching type with fine clearance ZT Random-matching type with slight preload	th NSK K1 lubrication unit Fine clearance Z0 Slight preload Z1 Medium preload Z3 Random-matching type with fine clearance ZT Random-matching type with slight preload	Ultra precision Super precision th NSK K1 lubrication unit K3 K4 Fine clearance Z0	Accuracy Ultra precision Super precision High Precision th NSK K1 lubrication unit K3 K4 K5 Fine clearance C0 C0 Slight preload C1 C0 Medium preload C23 C0 Random-matching type with fine clearance C1 C1 Random-matching type with slight preload C1 Random-matchin	Accuracy grade Ultra precision Super precision High Precision Precision grade th NSK K1 lubrication unit K3 K4 K5 K6 Fine clearance C20 C30 C30	Accuracy grade Ultra precision Super precision High Precision Precision grade Normal grade th NSK K1 lubrication unit K3 K4 K5 K6 KN Fine clearance C3 C3 C4 Slight preload C4 C4 Z1 Z1 C4 Medium preload C5 C4 Z3 C5 C6 Random-matching type with fine clearance C7 C4 Random-matching type with slight preload C4 C4 Random-matching type with slight preload C4 Random-matching type with slight prel			

(4) Assembled accuracy

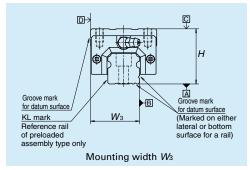
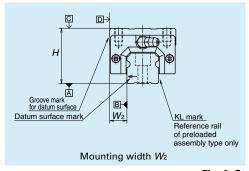



Fig. 5 Special high carbon steel

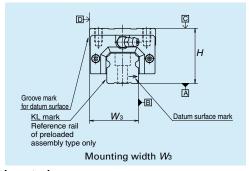


Fig. 6 Stainless steel

(5) Preload and rigidity

We offer five levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with random-matching type of Fine clearance ZT and Slight preload ZZ.

· Preload and rigidity of preloaded assembly

	Table 5									
	Preload (N) Rigidity (N/µm)									
	Model No.	Preio	au (IV)	Vertical of	direction	Lateral	direction			
	Model No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload			
		Z1	Z3	Z1	Z3	Z1	Z3			
	VH15 AN, EM	78	490	137	226	98	186			
•	VH20 AN, EM	147	835	186	335	137	245			
type	VH25 AN, AL, EM	196	1 270	206	380	147	284			
ad t	VH30 AN, AL	245	1 570	216	400	157	294			
High-load	VH30 EM	294	1 770	265	480	186	355			
jg.	VH35 AN, AL, EM	390	2 350	305	560	216	390			
_	VH45 AN, AL, EM	635	3 900	400	745	284	540			
	VH55 AN, AL, EM	980	5 900	490	910	345	645			
type	VH15 BN, GM	98	685	196	345	137	284			
	VH20 BN, GM	196	1 080	265	480	196	355			
oac	VH25 BN, BL, GM	245	1 570	294	560	216	400			
౼	VH30 BN, BL, GM	390	2 260	360	665	265	480			
įį	VH35 BN, BL, GM	490	2 940	430	795	305	570			
Super-high-load	VH45 BN, BL, GM	785	4 800	520	960	370	695			
S	VH55 BN, BL, GM	1 180	7 050	635	1 170	440	835			

Note: Clearance for Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

However, Z0 of PN grade is 0 to 15 μm.

· Preload of random-matching type

	Table 6	Unit: µm
Model No.	Fine clearance	Slight preload
wiodei No.	ZT	ZZ
VH15	-4 - 15	-4 - 0
VH20		- 5 - 0
VH25		- 5 - 0
VH30	_5 – 15	−7 − 0
VH35	-5 - 15	−7 − 0
VH45		−7 − 0
VH55		-9 - 0

Note: Minus sign denotes that a value is an amount of preload (elastic deformation of balls).

4. Maximum rail length

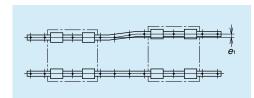

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

	Table 7 Length limitations of rails Unit: mm									
Series	Size									
Series	Material	15	20	25	30	35	45	55		
VH	Special high carbon steel	2 000	3 960	3 960	4 000	4 000	3 990	3 960		
VΠ	Stainless steel	1 800	3 500	3 500	3 500					

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

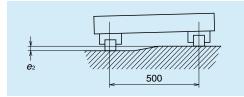


Fig. 7

Fig. 8

Table 0								Unit: µm
Value	Droload	Model No.						
	Preload	VH15	VH20	VH25	VH30	VH35	VH45	VH55
D : 111 1 6	Z0, ZT	22	30	40	45	55	65	80
Permissible values of parallelism in two rails <i>e</i> ₁	Z1, ZZ	18	20	25	30	35	45	55
parallelistri iri two ralis e ₁	Z3	13	15	20	25	30	40	45
Permissible values of	Z0, ZT		375 µm/500 mm					

330 µm/500 mm

Table 8

(2) Shoulder height of the mounting surface and corner radius r

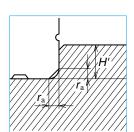
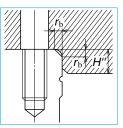



Fig. 9 Shoulder for the

rail datum surface

parallelism (height) in two rails e₂ Z1, ZZ, Z3

g.	10	Sho	oulder	for	the	ball
		slid	le datu	m s	urfa	ce

			Unit: mm		
Model No.	Corner radiu	s (maximum)	Shoulder height		
wouer ivo.	$r_{\rm a}$	$r_{\rm b}$	H'	H"	
VH15	0.5	0.5	4	4	
VH20	0.5	0.5	4.5	5	
VH25	0.5	0.5	5	5	
VH30	0.5	0.5	6	6	
VH35	0.5	0.5	6	6	
VH45	0.7	0.7	8	8	
VH55	0.7	0.7	10	10	

T . . .

(3) Specification for tapped holes on a rail bottom surface

- · Special high carbon steel is available for this specification.
- Applicable accuracy grades are precision grade (K6) and normal grades (KN and KC) only.
- The minimum rail length for production is 400 mm.
- · The tapping pitch is the same as the pitch for regular mounting bolt holes. Please refer to the dimension table.

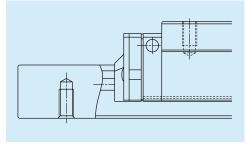


Fig. 11

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 12 and Table 10 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

Please ask NSK for stainless lubrication accessories.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 13)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of $M6 \times 1$, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

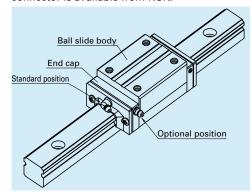


Fig. 13 Mounting position of lubrication accessories

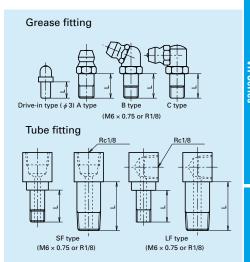


Fig. 12 Grease fitting and tube fitting

			Unit: mm				
Model	Dust-proof	Dimension L					
No.	specification	Grease fitting	Tube	fitting			
NO.	specification	/Drive-in type	SF type	LF type			
	Standard*	10	-	-			
VH15	Double seal	**	_	_			
	Protector	**	-	_			
	Standard*	12	-	-			
VH20	Double seal	18	_	_			
	Protector	18	-	-			
	Standard*	12	15	16			
VH25	Double seal	18	23	24.5***			
	Protector	18	17	18			
	Standard*	14	18	17.5			
VH30	Double seal	22	25	24.5			
	Protector	22	19.5	19			
	Standard*	14	15	15			
VH35	Double seal	22	25	24.5			
	Protector	22	21.5	22			
	Standard*	18	22	21.5			
VH45	Double seal	22	32	32			
	Protector	28	28	30			
	Standard*	18	20	20			
VH55	Double seal	22	32	32			
	Protector	28	28	30			

*) NSK K1 units are mounted as a standard specification for VH series.

**) A connector is required for grease fitting. Please contact

***) Only available for AN and BN type ball slides.

7. Dust-proof components

(1) Standard specification

To keep foreign matters from entering inside the ball slide, VH Series has an end seal on both ends, and bottom seals at the bottom.

Two NSK K1, one at each end, are installed as the standard equipment.

15

11

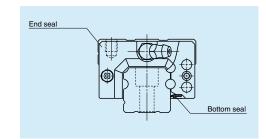


Fig. 14

Table 11 Seal friction per ball slide (maximum value) 25

14

13

11 3	ilue (Illax	Unit: N		
	30	35	45	55
	17	23	33	44

(2) Double seal and protector

Size

Series

VΗ

For VH Series, double-seal and protector can be installed only before shipping from the factory. Please consult NSK when you require them.

Table 12 shows the ball slide length when a double seal set and a protector are installed.

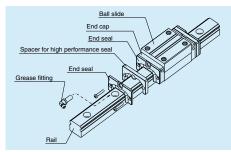


Fig. 15 Double seal

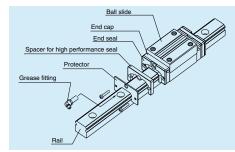


Fig. 16 Protector

Table 12 Dimension of installing dust-proof optional components

Unit: mm

Model No.	Ball slide	Ball slide		Ball slide length L	
woder no.	length	model	Standard	Double seal installation	Protector installation
VH15	Standard type	AN, EM	70.6	81.6	77
VIII	Long type	BN, GM	89.6	100.6	96
VH20	Standard type	AN, EM	87.4	100.4	94.2
VHZU	Long type	BN, GM	109.4	122.4	116.2
VH25	Standard type	AN, AL, EM	97	110	104.4
VIIZO	Long type	BN, BL, GM	125	138	132.4
	Standard type	AN, AL	104.4	120.4	114.8
VH30	Staridard type	EM	117.4	133.4	127.8
	Long type	BN, BL, GM	143.4	159.4	153.8
VH35	Standard type	AN, AL, EM	128.8	144.8	139.2
งกรอ	Long type	BN, BL, GM	162.8	178.8	173.2
VH45	Standard type	AN, AL, EM	161.4	180.4	174.2
VH45	Long type	BN, BL, GM	193.4	212.4	206.2
VH55	Standard type	AN, AL, EM	185.4	204.4	198.2
VHSS	Long type	BN, BL, GM	223.4	242.4	236.2

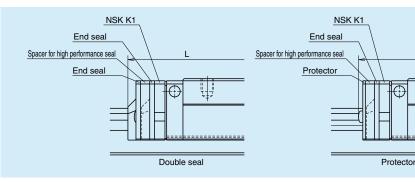


Fig. 17

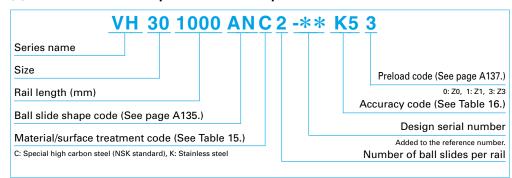
(3) Cap to plug the rail mounting bolt hole Table 13 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity			
Wiodel No.	secure rail	reference No.	/case			
VH15	M4	LG-CAP/M4	20			
VH20	M5	LG-CAP/M5	20			
VH25	M6	LG-CAP/M6	20 20			
VH30, VH35	M8	LG-CAP/M8				
VH45	M12	LG-CAP/M12	20			
VH55	M14	LG-CAP/M14	20			

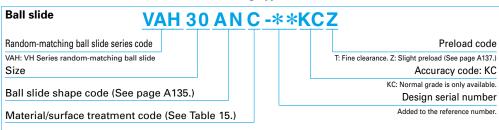
(4) Inner seal

The availability of inner seal is limited to the models shown below.

Table 14


Series	Model No.
VH	VH20, VH25, VH30, VH45, VH55

8. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

V1H30 1000 L C	N -** PC Z
Random-matching rail series code	Preload code (See page A137.)
V1H: VH Series random-matching rail Size	T: Fine clearance. Z: Slight preload Accuracy code: PC
Rail length (mm)	PC: Normal grade is only available. Design serial number
Rail shape code: L	Added to the reference number. *Butting rail specification
Material/surface treatment code (See Table 15.)	N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.

The reference number coding for the assembly of random-matching type is the same as that of preloaded assembly. However, the preload code of "fine clearance T" and "slight preload Z" is only applicable (refer to page A137).

Table 15 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard) + counterbores on a rail top surface
K	Stainless steel + counterbores on a rail top surface
D	Special high carbon steel with surface treatment + counterbores on a rail top surface
Н	Stainless steel with surface treatment + counterbores on a rail top surface
V	Special high carbon steel (NSK standard) + tapped holes on a rail bottom surface
W	Special high carbon steel with surface treatment + tapped holes on a rail bottom surface
Z	Other, special

Table 16 Accuracy code

Accuracy	Standard (with NSK K1)
Ultra precision grade	К3
Super precision grade	K4
High precision grade	K5
Precision grade	K6
Normal grade	KN
Normal grade (random-matching type)	КС

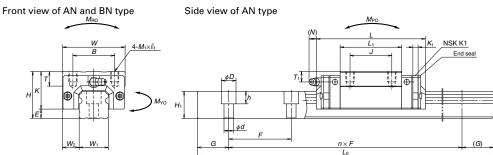
Note: Refer to page A38 for NSK K1 lubrication unit.

A143 A144

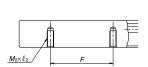
9. Dimensions VH-AN (High-load type / Standard) VH-BN (Super-high-load type/ Long)

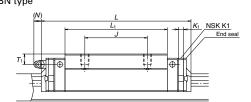
VH 30 1000 ANC 2 -** KC Z

Series name


Size

Preload code (See page A137.)
0: 20, 1: 21, 3: 23, 1: 21, 2: 22
Accuracy code (See Table 16.)


Ball slide shape code (See page A135.)


Material/surface treatment code (See Table 15.)
C: Special high carbon steel (NSK standard), K: Stainless steel

Number of ball slides per rail

Specification for tapped holes on a rail Side view of BN type bottom face

	A:	ssem	bly		Ball slide												
Model No	Height			Width	Length		Mo	unting hole					Gre	ase 1	itting	Width	Height
Wiodel No	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	<i>K</i> ₁	Hole size	<i>T</i> ₁	N	W_1	H_1
VH15AN VH15BN	1 78 1	4.6	9.5	34	70.6〈 77〉 89.6〈 96〉	26	26	M4×0.7×6	39 58	23.4	8	4.5	ø 3	8.5	1 〈 8.2〉	15	15
VH20AN VH20BN	30	5	12	44	87.4〈 94.2〉 109.4〈116.2〉	32	36 50	M5×0.8×6	50 72	25	12	4.5	M6×0.75	5	11.1 (12.3)	20	18
VH25AN VH25BN	40	7	12.5	48	97 (104.4) 125 (132.4)	35	35 50	M6×1×9	58 86	33	12	5	M6×0.75	10	9.6 (12.9)	23	22
VH30AN VH30BN	45	9	16	60	104.4 (114.8) 143.4 (153.8)	40	40 60	M8×1.25×10	59 98	36	14	5	M6×0.75	10	11.4 (14.2)	28	26
VH35AN VH35BN	55	9.5	18	70	128.8 (139.2) 162.8 (173.2)	50	50 72	M8×1.25×12	80 114	45.5	15	5.5	M6×0.75	15	10.9 (13.7)	34	29
VH45AN VH45BN	70	14	20.5	86	161.4 (174.2) 193.4 (206.2)	60	60 80	M10×1.5×17	105 137	56	17	6.5	Rc1/8	20	12.5 (14.1)	45	38
VH55AN VH55BN	ı en i	15	23.5	100	185.4 (198.2) 223.4 (236.2)	75	75 95	M12×1.75×18	126 164	65	18	6.5	Rc1/8	21	12.5 (14.1)	53	44

Notes: 1) Figure inside () is the dimension when equipped with the protector.

- 2) VH Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.
- 3) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type

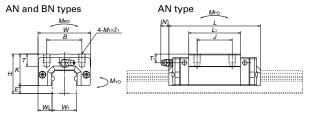
Ball slide

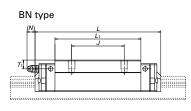
VAH 30 AN C -**KCZ

Random-matching ball slide series code

VAH: VH Series random-matching ball slide
Size

Ball slide shape code (See page A135.)

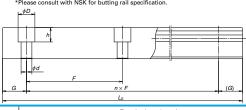

Material/surface treatment code (See Table 15.)


Preload code (See page A137.)

T: Fine clearance. 2: Slight preload
Accuracy code: KC

KC: Normal grade is only available.
Design serial number

Added to the reference number.



Reference number for rail of random-matching type

Rail	V1H30 1000 L	<u>CN -** PC Z</u>
Random-matching ra	ail series code	Preload code (See page A137.)
V1H: VH Series rand	om-matching rail	T: Fine clearance. Z: Slight preload
Size		Accuracy code: PC
Rail length (mi	m)	PC: Normal grade is only available. Design serial number
Rail shape cod	e: L	Added to the reference number.
L: Standard		*Butting rail specification
Material/surfac	ce treatment code (See Table 15.)	N: Non-butting. L: Butting specification
		*Please consult with NSK for butting rail specification.

Unit:	mm

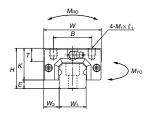
	Rail					Basic load rating										
Pitch		Tapped hole	G	Max. length	4)Dyn	amic	Static		Static r	nomen	t (N·m)		Ball	Rail		
	bolt hole			L_{0max} .	[50km]	[100km]	C_{0}	M _{RO}	N	1 _{PO}	٨	1 _{YO}	slide			
F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(reference)	() for stainless	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)		
60	4.5×7.5×5.3	M5×0.8×8	20	2 000	14 200	11 300	20 700	108	94.5	575			0.18	1 1 6		
	110/(/10/(010	1110/(0.0/(0		[1 800]	18 100	14 400	32 000	166	216	1 150	181	965	0.26			
60	6×9.5×8.5	M6×1×10	20	3 960	23 700	18 800	32 500	219	185	1 140	155	955	0.33	2.6		
00	023.326.3	IVIOXIXIO	20	[3 500]	30 000	24 000	50 500	340	420	2 230	355	1 870	0.48	2.0		
60	7×11×9	M6×1×12	20	3 960	33 500	26 800	46 000	360	320	1 840	267	1 540	0.55	3.6		
00	/ / / / / / / /	IVIOXIXIZ	20	[3 500]	45 500	36 500	71 000	555	725	3 700	610	3 100	0.82	3.0		
80	9×14×12	M8×1.25×15	20	4 000	41 000	32 500	51 500	490	350	2 290	292	1 920	0.77	5.2		
-00	9X14X12	1010 × 1.25 × 15	20	[3 500]	61 000	48 500	91 500	870	1 030	5 600	865	4 700	1.3	5.2		
80	9×14×12	M8×1.25×17	20	4 000	62 500	49 500	80 500	950	755	4 500	630	3 800	1.5	7.2		
80	3/14/12	1010×1.25×17	20	4 000	81 000	64 500	117 000	1 380	1 530	8 350	1 280	7 000	2.1	1.2		
105	14/20/17	M12×1.75×24	22.5	3 990	107 000	84 500	140 000	2 140	1 740	9 750	1 460	8 150	3.0	12.3		
100	14820817	IVITZX1.75XZ4	22.5	3 990	131 000	104 000	187 000	2 860	3 000	15 600	2 520	13 100	3.9	12.3		
120	16×23×20	M14×2×24	30	3 960	158 000	125 000	198 000	3 600	3 000	16 300	2 510	13 700	4.7	16.9		
120	10/23/20	6×23×20 IVI14×2×24 30		0×23×20 IVI14×2×24 3		3 900	193 000	153 000	264 000	4 850	5 150	26 300	4 350	22 100	6.1	10.9

⁴⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

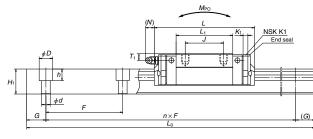
A145 A146

 C_{∞} ; the basic dynamic load rating for 50 km rated fatigue life C_{∞} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

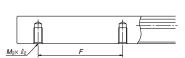
VH-AL (High-load type / Standard) VH-BL (Super-high-load type / Long)

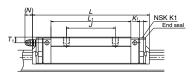

VH 30 1000 AL C 2 -** KC Z

Series name
Size
Rail length (mm)
Ball slide shape code (See page A135.)
Material/surface treatment code (See Table 15.)
C: Special high carbon steel (NSK standard), K: Stainless steel


Preload code (See page A137.)
0: 20, 1: 21, 3: 23, 1: 21, 2: 22
Accuracy code (See Table 16.)

Design serial number.
Added to the reference number.
Number of ball slides per rail


Front view of AL and BL type


Side view of AL type

Specification for tapped holes on a rail bottom face

Side view of BL type

	A	ssem	bly		Ball slide												
Model No	Height			Width	dth Length		Mounting hole						Gre	ase '	fitting I	Width	Height
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	K ₁	Hole size	<i>T</i> ₁	N	W_1	H ₁
VH25AL VH25BL	36	7	12.5	-	1125 (132.4)	35	35 50	M6×1×6	58 86	29	12	5	M6×0.75	6	9.6 (12.9)	23	22
VH30AL VH30BL	42	9	16	60	104.4 (114.8) 143.4 (153.8)	40	40 60	M8×1.25×8	59 98	33	14	5	M6×0.75	7	11.4 (14.2)	28	26
VH35AL VH35BL	48	9.5	18	70	128.8 (139.2) 162.8 (173.2)	1 5(1	50 72	M8×1.25×8	80 114	38.5	15	5.5	M6×0.75	8	10.9 (13.7)	34	29
VH45AL VH45BL	60	14	20.5		1193 4770b 71	60	60 80	M10×1.5×10	105 137	46	17	6.5	Rc1/8	10	12.5 (14.1)	45	38
VH55AL VH55BL	70	15	23.5	100	185.4 (198.2) 223.4 (236.2)	75	75 95	M12×1.75×13	126 164		15	6.5	Rc1/8	11	12.5 (14.1)	53	44

Notes: 1) Figure inside () is the dimension when equipped with the protector.

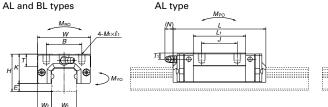
- 2) VH Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.
- 3) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

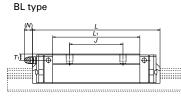
Reference number for ball slide of random-matching type

Ball slide

VAH 30 AL C -**KCZ

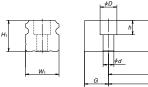
Random-matching ball slide series code

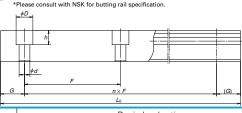

VAH: VH Series random-matching ball slide
Size


Preload code (See page A137.)

T. Fine clearance. Z: Slight preload
Accuracy code: KC

KC: Normal grade is only available.
Design serial number

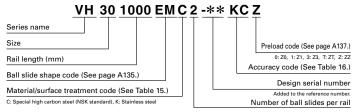

Added to the reference number.



Reference number for rail of random-matching type

Rail	<u>V1H30 1000 L</u>	<u> CN -** PC Z</u>
Random-matching	rail series code	Preload code (See page A137.)
V1H: VH Series ran	dom-matching rail	T: Fine clearance. Z: Slight preload
Size		Accuracy code: PC
Rail length (n	nm)	PC: Normal grade is only available. Design serial number
Rail shape co	de: L	Added to the reference number.
L: Standard		*Butting rail specification
Material/surfa	ace treatment code (See Table 15.)	N: Non-butting. L: Butting specification
		*Please consult with NSK for butting rail specification.
		-

Unit:	mm

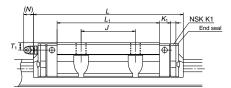

	Rail					Basic load rating								ight
Pitch		Tapped hole	G	Max. length	4)Dyn	4)Dynamic			Static r	t (N·m)		Ball	Rail	
	bolt hole			L_{0max} .	[50km]	[100km]	C _o	M_{RO}	N	1 _{PO}	N	1 _{YO}	slide	
F	d×D×h	$M_2 \times \text{pitch} \times \ell_2$	(reference)	() for stainless	C ₅₀ (N)	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	7×11×9	M6×1×12	20	3 960	33 500	26 800	46 000	360	320	1 840	267	1 540	0.46	3.6
00	/ / / / / / / /	101021212	20	[3 500]	45 500	36 500	71 000	555	725	3 700	610	3 100	0.69	3.0
80	9×14×12	M8×1.25×15	20	4 000	41 000	32 500	51 500	490	350	2 290	292	1 920	0.69	5.2
- 00	9814812	1010 × 1.25 × 15	20	[3 500]	61 000	48 500	91 500	870	1 030	5 600	865	4 700	1.16	5.2
80	9×14×12	M8×1.25×17	20	4 000	62 500	49 500	80 500	950	755	4 500	630	3 800	1.2	7.2
80	3/14/12	1010×1.25×17	20	4 000	81 000	64 500	117 000	1 380	1 530	8 350	1 280	7 000	1.7	1.2
105	14220217	M12×1.75×24	22.5	2 000	107 000	84 500	140 000	2 140	1 740	9 750	1 460	8 150	2.2	12.3
100	14820817	IVI12X1.75X24	22.5	3 990	131 000	104 000	187 000	2 860	3 000	15 600	2 520	13 100	2.9	12.3
120	16×23×20	M14×2×24	30	2 060	158 000					16 300				16.9
120	10/23/20	1011472724	30	3 960	193 000	153 000	264 000	4 850	5 150	26 300	4 350	22 100	4.7	10.9

⁴⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{so} , the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

A147 A148

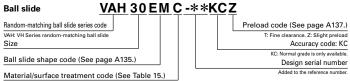
VH-EM (High-load type / Standard) VH-GM (Super-high-load type / Long)

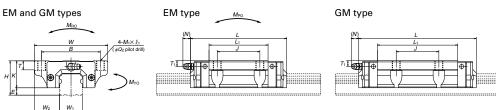


Front view of EM and GM type Side view of EM type $\frac{4-M_1 \times \ell_1}{(\phi Q_2 \text{ pilot drill})}$ NSK K1 End seal (G)

Specification for tapped holes on a rail

Side view of GM type

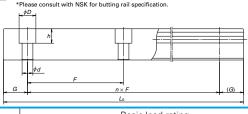



	Assembly Ball slide																	
Model No.	Height Width Length			Length		Mounting hole							Gr	ease	fitting	Width	Height	
Wiodel No.								$Q_1 \times \ell_1$						Hole				
	Н	E	W_2	W	L	В	J	$M_1 \times \text{pitch} \times \ell_1$	Q_2	L_1	Κ	Τ	K ₁	size	T_1	Ν	W_1	H_1
VH15EM VH15GM	24	4.6	16	47	70.6 〈 77〉 89.6 〈 96〉	38	30	M5×0.8×7	4.4	39 58	19.4	8	4.5	ø 3	4.5	1 〈 8.2〉	15	15
VH20EM VH20GM	30	5	21.5	63	87.4 (94.2) 109.4 (116.2)	53	40	M6×1×9.5	5.3	50 72	25	10	4.5	M6×0.75	5	11.1 (12.3)	20	18
VH25EM VH25GM	36	7	23.5	70	97 (104.4) 125 (132.4)	57	45	M8×1.25×10 [M8×1.25×11.5]	6.8	58 86	29	11 [12]	5	M6×0.75	6	9.6 (12.9)	23	22
VH30EM VH30GM	42	9	31	90	117.4 (127.8) 143.4 (153.8)	72	52	M10×1.5×12 [M10×1.5×14.5]	8.6	72 98	.5.5	11 [15]	5	M6×0.75	7	11.4 (14.2)	28	26
VH35EM VH35GM	48	9.5	33	100	162.8(1/3.2)	82	1		8.6	114	38.5	12	5.5	M6×0.75	8	10.9 (13.7)	34	29
VH45EM VH45GM	60	14	37.5	120	161.4 (174.2) 193.4 (206.2)	100	80	M12×1.75×15	10.5	105 137	46	13	6.5	Rc1/8	10	12.5 (14.1)	45	38
VH55EM VH55GM	70	15	43.5	140	185.4 (198.2) 223.4 (236.2)	116	95	M14×2×18	12.5	126 164	55	15	6.5	Rc1/8	11	12.5 (14.1)	53	44

Notes: 1) Figure inside $\langle \ \rangle$ is the dimension when equipped with the protector.

- 2) Figure inside [] is applied to stainless products.
- 3) VH Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.
- 4) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type



Reference number for rail of random-matching type

Rail	V1H30 1000 L C	<u> N -** PC Z</u>
Random-matching	rail series code	Preload code (See page A137.)
V1H: VH Series ran	ndom-matching rail	T: Fine clearance. Z: Slight preload
Size		Accuracy code: PC
Rail length (r	nm)	PC: Normal grade is only available. Design serial number
Rail shape co	ode: L	Added to the reference number.
L: Standard		*Butting rail specification
Material/surf	ace treatment code (See Table 15.)	N: Non-butting. L: Butting specification
		*Please consult with NSK for butting rail specification.

Unit:	mm

	Rail					Basic load rating								
Pitch		Tapped hole	G	Max. length	5)Dyn	amic	Static	Static mom		nomen	t (N·m)		Ball	Rail
	bolt hole			L_{0max} .	[50km]	[100km]	C_{0}	M _{RO}	N	1 _{PO}	N	1 _{YO}	slide	
F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(reference)	() for stainless	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	4.5×7.5×5.3	M5×0.8×8	20	2 000 [1 800]	14 200 18 100	11 300 14 400	20 700 32 000	108 166	94.5 216	575 1 150			0.17 0.25	1.6
60	6×9.5×8.5	M6×1×10	20	3 960 [3 500]	23 700 30 000	18 800 24 000	32 500 50 500	219 340	185 420	1 140 2 230			0.45 0.65	1 7 h
60	7×11×9	M6×1×12	20	3 960 [3 500]	33 500 45 500	26 800 36 500	46 000 71 000	360 555	320 725	1 840 3 700	-	1 540 3 100	0.63 0.93	1 36
80	9×14×12	M8×1.25×15	20	4 000 [3 500]	47 000 61 000	37 500 48 500	63 000 91 500	600 870	505 1 030	3 150 5 600		2 650 4 700		5.2
80	9×14×12	M8×1.25×17	20	4 000	62 500 81 000	49 500 64 500	80 500 117 000	950 1 380	755 1 530	4 500 8 350		3 800 7 000	l .	7.2
105	14×20×17	M12×1.75×24	22.5	3 990	107 000 131 000	84 500 104 000	140 000 187 000		1 740 3 000	9 750 15 600		8 150 13 100		12.3
120	16×23×20	M14×2×24	30	3 960	158 000 193 000	125 000 153 000				16 300 26 300				16.9

⁵⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{so} ; the basic dynamic load rating for 50 km rated fatigue life C_{no} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

I S Series

A-5-1.3 TS Series

1. Features

(1) Inexpensive

Newly developed manufacturing process of rail and design of ball slide contribute to substantial cost reductions.

(2) High capacity

Optimum ball diameter for higher capacity design.

(3) High dust proof capability

Dust-tight high performance end seals, bottom seals, and inner seals are built-in as a standard feature. (Optional protector is available for protection against hot debris such as welding spatters or hard contaminants.)

(4) Maintenance free

NSK K1 lubrication unit is equipped as a standard specification for long-term maintenance-free operation.

(5) Rust prevention

NSK provides a lineup of products with antirust surface treatment for corrosive environments.

(6) Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery.

2. Ball slide shape

Ball slide Model	Shape / installation method	Туре
AN		AN

3. Accuracy and preload

- · Accuracy grade: Normal grade for transportation
- · Torelance of mounting height H: ±0.1 mm
- · Running parallelism: 100 µm or less
- · Running parallelism (height): 500 µm/500 mm
- · Permissible values of mounting error
- parallelism in two rails: 100 μm, parallelism (height) in two rails: 500 μm/500 mm
- · Clearance: 60 µm or less

4. Maximum rail length

A151

Table 1 shows the limitations of rail length.

Table 1 Length limitations of rails

	Tubic i Length		tions	oi ruii		t: mm
Series	Size Material	15	20	25	30*	35*
TS	Special high carbon steel	1 960	2 920	4 000	4 040	4 040

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. In such a case, please consult NSK.

*) The maximum length of a rail coated with fluoride low temperature chrome plate is 4 000 mm (G = 80).

5. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 1 and Table 2 show grease fittings and tube fittings.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. You may mount them on the side of end cap for an option. (Fig. 2)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of M6 \times 1, you require a connector for the connection to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

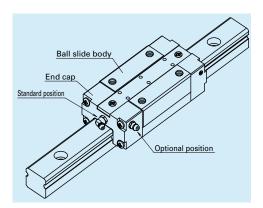


Fig. 2

6. Dust-proof components

(1) Standard specification

To keep contaminants from entering inside the ball slide, the TS Series has an end seal and NSK K1 on both ends, and bottom seals at the bottom. Also, the inner seal is a standard equipment. The series can be readily used in a normal environment.

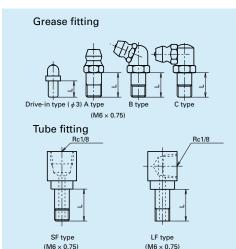


Fig. 1 Grease fitting and tube fitting

		Table 2	I	Unit: mm
Model	Dust-proof	Dime	ension L	
No.	specification	Grease fitting	Tube	fitting
INO.	specification	/Drive-in type	SF type	LF type
TS15	Standard*	5	_	_
	Protector	5	-	_
TS20	Standard*	5	_	_
1320	Protector	5	-	_
TS25	Standard*	5	6	6
1525	Protector	5	6	6
TCOO	Standard*	5	6	6
TS30	Protector	5	6	6
TCOF	Standard*	5	6	6
TS35	Protector	5	6	6

*) NSK K1 units are mounted as a standard specification for TS Series.

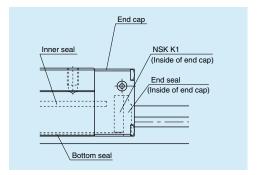


Fig. 3

(2) Protector

Please consult NSK as the protector for TS Series can be installed only before shipping from the factory.

Fig. 4 and Table 3 show the ball slide length when protector is installed.

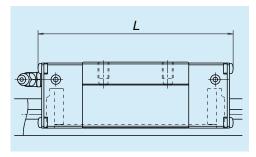


Fig. 4

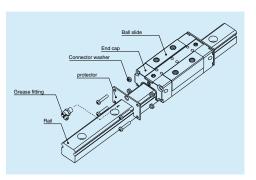


Fig. 5 Protector

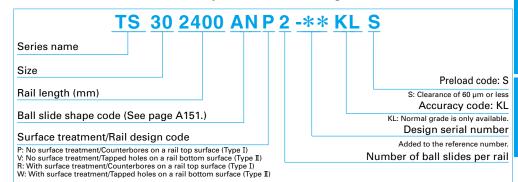
Table 3 Dimension when equipped with the protector

Model No.	Ball slide length L								
Wiodei No.	Standard length	Protector installation*							
TS15	72.2	77.6							
TS20	87	92.8							
TS25	100	106.4							
TS30	115	123.4							
TS35	135.8	144.2							

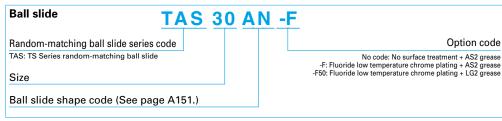
^{*)} The table shows the ball slide length when one protector is installed in both ends.

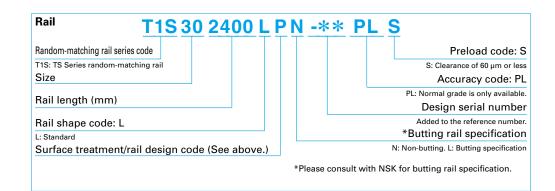
(3) Cap to plug the rail mounting bolt hole Table 4 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
wiodei No.	secure rail	reference No.	/case
TS15	M4	LG-CAP/M4	20
TS20	M5	LG-CAP/M5	20
TS25	M6	LG-CAP/M6	20
TS30, TS35	M8	LG-CAP/M8	20

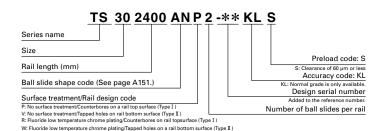

Note: Cap to plug the bolt hole for rail mounting is exclusive for rail design of type I.

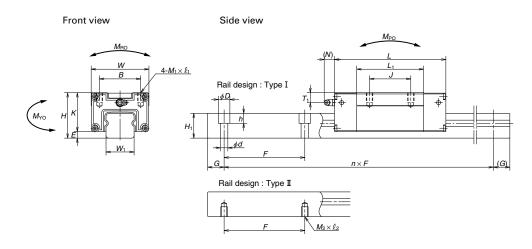
7. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.


Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for assembly of random-matching ball slide and rail




(2) Reference number for random-matching type

8. Dimensions

		Asse	mbly					Ball slic	le							
ı	Model No.	Height		Width	Length		Mou	inting hole			Grease	fitting	9	width	height	Pitch
		H _{±0.1}	Ε	W	L	В	J	$M_{\scriptscriptstyle 1} \times \operatorname{pitch} \times \ell_{\scriptscriptstyle 1}$	L ₁	К	Hole size	<i>T</i> ₁	N	W₁	H₁	F
	TS15AN	28	3	34	72.2	26	26	M4×0.7×6	39	25	φ3	6.5	5	15	14	120
	TS20AN	30	3	44	87	32	36	M5×0.8×8	50	27	M6×0.75	6.5	14	20	15	120
	TS25AN	40	4	48	100	35	35	M6×1×9	58	36	M6×0.75	9.5	14	23	20	120
	TS30AN	45	6.5	60	115	40	40	M8×1.25×10	70	38.5	M6×0.75	9.5	14	28	25	160
	TS35AN	55	8	70	135.8	50	50	M8×1.25×12	81.8	47	M6×0.75	12	14	34	30	160

Notes: 1) TS Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

Reference number for ball slide of random-matching type

Reference number for rail of random-matching type Rail T1S 30 1200 L PN -** PL S

Random-matching rail series code	Preload code: S
T1S: TS Series random-matching rail	S: Clearance of 60 µm or less
Size	Accuracy code: PL
Rail length (mm)	PL: Normal grade is only available. Design serial number
Rail shape code: L	Added to the reference number.
L: Standard	*Butting rail specification
Surface treatment/rail design code (See page A155.)	N: Non-butting. L: Butting specification
Carraco troatmontram accign code (coe page // reci)	*Please consult with NSK for butting rail specification.
Rail design : Type I	#D
H	Mexiz F ax F

Unit: mm

Rail		Basic load rating					We	ight					
Mounti	ng hole	G	Max. length	2)Dyr	namic	Static	S	Static n	nomer	nt (N∙m	۱)	Ball	Rail
Type I	Type Ⅱ		L_{0max} .	[50km]	[100km]	C _o	M_{RO}	N	1 _{PO}	N	1 _{YO}	slide	
$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(reference)	() for stainless	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
4.5×7.5×5.3	M4×0.7×6	20	1 960	9 800	7 800	11 800	92	63.5	585	63.5	585	0.21	1.5
6×9.5×8.5	M5×0.8×8	20	2 920	15 700	12 500	19 100	196	137	1 110	137	1 110	0.37	2.1
7×11×9	M6×1×9	20	4 000	21 800	17 300	26 000	320	217	1 730	217	1 730	0.47	3.4
9×14×12	M8×1.25×12	20	4 040*	31 000	24 800	37 500	565	395	2 810	395	2 810	0.77	5.3
9×14×12	M8×1.25×12	20	4 040*	46 500	37 000	53 000	970	635	4 750	635	4 750	1.3	7.7

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

C_{so}; the basic dynamic load rating for 50 km rated fatigue life C₁₀₀; the basic dynamic load rating for 100 km rated fatigue life

³⁾ Consult with NSK when using a TS Series in a single rail configuration.

^{*} Maximum length of fluoride low-temperature chrome plated products is 4 000 (G = 80).

A-5-1.4 NS Series

1. Features

(1) Improve rating life dramatically

Based on the LS series characterized by reliability and performance, a significant increase in durability has been attained. New ball groove geometry is introduced, which has been developed by utilizing NSK's state-of-the-art tribological and analytical technologies. Due to the optimized distribution of contact surface pressures, the rating life has dramatically increased.

As compared with the LS Series, the load rating capacity of the NS series has increased to 1.3 times, while the life span has increased to twice 1. These features enable you to design a machine with a longer life and downsize the machine. Thus, your design capability is greatly enhanced.

*1: Representative values of series.

A157

(2) Ball circulation path with excellent highspeed property

By reexamining the design practice for the ball circulation path, we have attained smooth ball circulation and reduced noise level. So, NS series is suited for high-speed applications compared with the LS Series.

(3) All mounting dimensions are the same as those for the LS and SS Series

Regarding the mounting dimensions (mounting parts' dimensions), such as the mounting height, mounting width, mounting hole diameter/pitch of the linear guide, etc., the mounting dimensions of the NS Series remain the same as those of the conventional LS series and SS series. So, the new NS Series linear guides can be used without making any design changes.

(4) High self aligning capability (rolling direction)

Same as the DF combination in angular contact bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, and thus reducing moment rigidity. This increases the capacity to absorb errors in installation.

(5) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, and thus increasing load carrying capacity as well as rigidity against the load in vertical direction.

(6) High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in **Fig. 2**. The vertical load is usually carried by top 2 rows, where balls are contacting at two points. Because of this design, the bottom rows will carry the load when a large impact load is applied as shown in **Fig. 3**. This assures high resistance to the impact load.

(7) High accuracy

As showing in **Fig. 4**, fixing the measuring rollers to the ball grooves is simple thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

(8) Easy to handle, and designed with safety in mind.

Balls are retained in the retainer and do not fall out when the ball slide is withdrawn from the rail.

(9) Abundant models and sizes come in series.

Each size of NS Series has several ball slide models, rendering the linear guide available for numerous uses. The NS Series also has standardized long stainless- steel rail (maximum 3 500 mm).

(10) Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery.

High precision grade and medium preload types are also available in random matching. (Special high-carbon steel products)

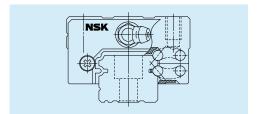


Fig. 1 NS Series

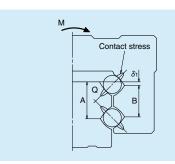


Fig. 2 Enlarged illustration of the offset Gothic arch groove

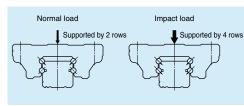


Fig. 3 When load is applied

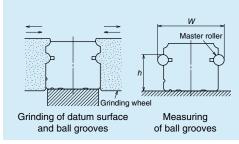


Fig. 4 Rail-grinding and measuring

2. Ball slide shape

Ball slide Model	Shape/installation method	Type (Upper row, Rating: L Medium-load type Standard	ower row, Ball slide length) High-load type Long
AL CL		CL L ₁	AL
EM JM		JM L ₁	EM L ₁

Note: High-precision grade and medium preload of random-matching type are not applicable to EL, JL, FL and KL models.

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1 Unit: μm

	Cinc pin						
	Prel	oaded asser	Random-ma	atching type			
Rail length (mm)	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	High precision PH	Normal grade PC
- 50	2	2	2	4.5	6	2	6
50 - 80	2	2	3	5	6	3	6
80 - 125	2	2	3.5	5.5	6.5	3.5	6.5
125 – 200	2	2	4	6	7	4	7
200 – 250	2	2.5	5	7	8	5	8
250 – 315	2	2.5	5	8	9	5	9
315 – 400	2	3	6	9	11	6	11
400 - 500	2	3	6	10	12	6	12
500 – 630	2	3.5	7	12	14	7	14
630 - 800	2	4.5	8	14	16	8	16
800 – 1 000	2.5	5	9	16	18	9	18
1 000 – 1 250	3	6	10	17	20	10	20
1 250 – 1 600	4	7	11	19	23	11	23
1 600 – 2 000	4.5	8	13	21	26	13	26
2 000 – 2 500	5	10	15	22	29	15	29
2 500 – 3 150	6	11	17	25	32	17	32
3 150 – 4 000	9	16	23	30	34	23	34

(2) Accuracy standard

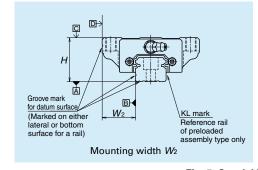
The preloaded assembly has five accuracy grades; Ultra precision P3, Super precision P4, High precision P5, Precision P6 and Normal PN grades, while the random-matching type has High-precision PH and Normal PC grade.

Tolerance of preloaded assembly

Table 2 Uni						
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15	±80 25	
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20	±100 30	
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1 , Fig. 5 and Fig. 6					

· Tolerance of random-matching type

Tolorance of random matering type	Table 3	Unit: µm
Model No. Characteristics	High precision grade PH	Normal grade PC
Mounting height H	±20	±20
Variation of mounting height H	15①	15①
	30②	30②
Mounting width W_2 or W_3	±30	±30
Variation of mounting width W_2 or W_3	20	25
Running parallelism of surface C to surface A	See Table 1, F	ig. 5 and Fig. 6


Notes: ① Variation on the same rail ② Variation on multiple rails

(3) Combinations of accuracy and preload

Table 4

	Table 4							
				Ad	curacy gra	de		
		Ultra precision	Super precision	High precision	Precision grade	Normal grade	High precision	Normal grade
Wi	thout NSK K1 lubrication unit	P3	P4	P5	P6	PN	PH	PC
Wi	th NSK K1 lubrication unit	К3	K4	K5	K6	KN	KH	KC
Wit	h NSK K1 for food and medical equipment	F3	F4	F5	F6	FN	FH	FC
	Fine clearance Z0	0	0	0	0	0	_	_
	Slight preload Z1	0	0	0	0	0	_	_
pad	Medium preload Z3	0	0	0	0	_	_	_
Preload	Random-matching type with fine clearance ZT	_	_	_	_	_	_	0
	Random-matching type with slight preload ZZ	_	_	_	_	_	0	0
	Random-matching type with medium preload ZH	_	_	_	_	_	0	0

(4) Assembled accuracy

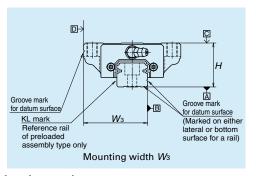
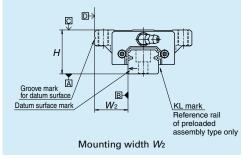



Fig. 5 Special high carbon steel

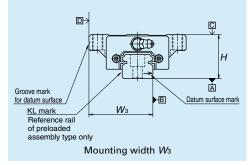


Fig. 6 Stainless steel

Unit: mm

A162

(5) Preload and rigidity

We offer six levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with random-matching type of Medium preload ZH, Fine clearance ZT and Slight preload ZZ.

Preload and rigidity of preloaded assembly

Table 5

	Table 5							
		Preload (N)		Rigidity (N/µm)				
	N4I - I NI -	Preio	ad (IN)	Vertical of	direction	Lateral	direction	
	Model No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload	
		Z1	Z3	Z1	Z3	Z1	Z3	
be	NS15 AL, EM	69	390	127	226	88	167	
t	NS20 AL, EM	88	540	147	284	108	206	
High-load type	NS25 AL, EM	147	880	206	370	147	275	
gh-l	NS30 AL, EM	245	1 370	255	460	186	345	
Ξ	NS35 AL, EM	345	1 960	305	550	216	400	
/pe	NS15 CL, JM	49	294	78	147	59	108	
ad t	NS20 CL, JM	69	390	108	186	78	137	
ا-ر	NS25 CL, JM	98	635	127	235	88	177	
Medium-load type	NS30 CL, JM	147	980	147	275	108	206	
Med	NS35 CL, JM	245	1 370	186	335	137	245	

Note: Clearance for Fine clearance Z0 is 0 to 3µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15µm.

· Clearance and preload of random-matching type

Table 6 Unit: μι									
Model No.	Fine clearance	Slight preload	Medium preload						
woder no.	ZT	ZZ	ZH						
NS15	-4 — 15	-4 — 0	-7 — <i>-</i> 3						
NS20	-4 — 15	-4 — 0	-7 —-3						
NS25	-5 — 15	-5 — O	-9 —-4						
NS30	-5 — 15	-5 — O	-9 —-4						
NS35	-5 — 15	-6 — 0	-10 — <i>-</i> 4						

Note: Minus sign denotes that a value is an amount of preload (elastic deformation of balls).

4. Maximum rail length

Material

Special high carbon steel

Stainless steel

Series

NS

Size

15

2 920

1 800

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Table 7 Length limitations of rails

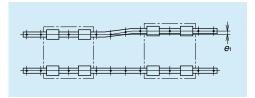
20

3 960

25

3 960

3 500


	O i ii c. i i i i i i
30	35
4 000	4 000
3 500	3 500

Unit: mm

3 500 Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

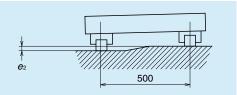
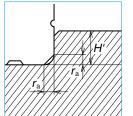


Fig. 7

Preload

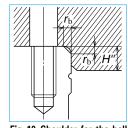
ZO, ZT

Fig. 8


			Οπι. μπ
	Model No.		
NS20	NS25	NS30	NS35
22	30	35	40
17	20	25	30

Z1, ZZ 15 parallelism in two rails e1 Z3, ZH 12 Z0, ZT 375 µm/500 mm Permissible values of parallelism (height) in two rails e₂ Z1, ZZ, Z3, ZH 330 µm/500 mm

Table 8


(2) Shoulder height of the mounting surface and corner radius r

NS15 20

Value

Permissible values of

011101								
Madal Na	Corner radius	s (maximum)	Shoulder height					
Model No.	r _a	$r_{\rm b}$	H'	H"				
NS15	0.5	0.5	4	4				
NS20	0.5	0.5	4.5	5				
NS25	0.5	0.5	5	5				
NS30	0.5	0.5	6	6				
NS35	0.5	0.5	6	6				

Table 9

Fig. 9 Shoulder for the rail datum surface

Fig. 10 Shoulder for the ball slide datum surface

6. Maximum allowable speed

An indication of the standard maximum allowable speed aiming at 10,000km operation with NS series under normal conditions is shown in Table 10. However, the maximum allowable speed can be affected by accuracy of installation, operating temperature, external load, etc. If the operation is made exceeding the permissible distance and speed, please consult NSK.

Table 10 Maximum allowable speed Unit: m/min

Size Series	15	20	25	30	35
NS			300		

7. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 11 and Table 11 show grease fittings and tube fittings.

We provide Iubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

When you require stainless lubrication accessories, please ask NSK.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 12)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of M6 \times 1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

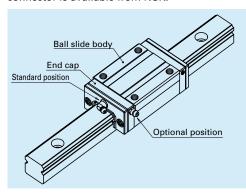


Fig. 12 Mounting position of lubrication accessories
A163

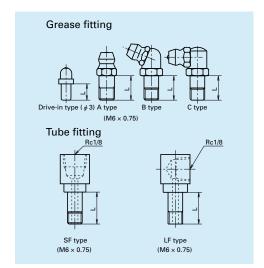


Fig. 11 Grease fitting and tube fitting

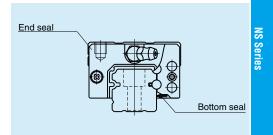
		Table 11		Unit: mm	
Model	Dust-proof	Dimension L			
No.	specification	Grease fitting	Tube	fitting	
INO.	specification	/Drive-in type	SF type	LF type	
	Standard	5	-	-	
NS15	With NSK K1	10	_	_	
11919	Double seal	*	_	_	
	Protector	*	-	_	
	Standard	5	-	_	
NS20	With NSK K1	10	-	_	
14520	Double seal	8	-	_	
	Protector	8	-	_	
-	Standard	5	6	6	
NS25	With NSK K1	12	11	11	
14325	Double seal	10	9	9	
	Protector	10	9	9	
	Standard	5	6	6	
NS30	With NSK K1	14	12	13	
14330	Double seal	12	10	11	
	Protector	12	10	11	
	Standard	5	6	6	
NS35	With NSK K1	14	12	13	
INOSS	Double seal	12	10	11	
	Protector	12	10	11	

*) A connector is required for this model. Please contact NSK.

8. Dust-proof components

(1) Standard specification

The NS Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends, and bottom seals at the bottom.



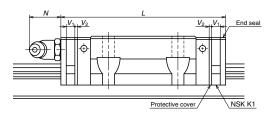

Fig. 13

Table 12 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	15	20	25	30	35
NS	8	9	9	9	10

(2) NSK K1[™] lubrication unit

Table 13 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

Table	13
-------	----

lnit:	
 THIL.	11111

	Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V ₂	Protruding area of the grease fitting N
	NS15	Standard	AL, EM	56.8	66.4	4.0	4.0	
	11212	Short	CL, JM	40.4	50	4.0	0.8	(5)
	NS20	Standard	AL, EM	65.2	75.8	4.5	4.5 0.8	(14)
	N520	Short	CL, JM	47.2	57.8	4.5 0.6	0.8	
	NS25	Standard	AL, EM	81.6	92.2	4.5	0.8	(14)
		Short	CL, JM	59.6	70.2	4.5 0.8		(14)
	NS30	Standard	AL, EM	96.4	108.4	5.0	1.0	(14)
	14230	Short	CL, JM	67.4	79.4	5.0	1.0	(14)
·	NS35	Standard	AL, EM	108	121		1.0	(4.4)
		Short	CL, JM	77	90	5.5	1.0	(14)

Note: Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V, × Number of NSK K1) + (Thickness of the protective cover, V, × 2)

(3) Double seal

Use a double seal set as showing in **Table 14**, when installing an extra seal to completed standard products. (Fig. 14)

When installing a grease fitting after the installation of double seals, a connector as showing Fig.14 is required.

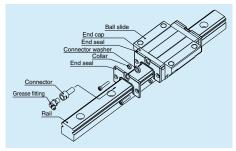


Fig. 14 Double seal

(4) Protector

Use a protector set as showing **Table 15**, when installing a protector to completed standard products. (**Fig.15**)

When installing a grease fitting after the installation of protectors, a connector as showing Fig.15 is required.

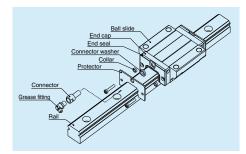


Fig. 15 Protector

Table 14 Double-seal set

Model No.	Model No.			
	Without connector	With connector	thickness V₃ (mm)	
NS15	LS15WS-01	*	2.8	
NS20	LS20WS-01	LS20WSC-01	2.5	
NS25	LS25WS-01	LS25WSC-01	2.8	
NS30	LS30WS-01	LS30WSC-01	3.6	
NS35	LS35WS-01	LS35WSC-01	3.6	

Table 15 Protector set

Model No.	Referer Without connector	Increased thickness V ₄ (mm)	
NS15	LS15PT-01	*	3
NS20	LS20PT-01	LS20PTC-01	2.7
NS25	LS25PT-01	LS25PTC-01	3.2
NS30	LS30PT-01	LS30PTC-01	4.2
NS35	LS35PT-01	LS35PTC-01	4.2

^{*)} For installation of a connector to a drive-in type grease fitting, contact NSK.

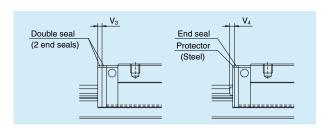


Fig. 16

(5) Cap to plug the rail mounting bolt hole Table 16 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
WIOGCI WO.	secure rail	reference No.	/case
NS15	M3	LG-CAP/M3	20
NS15	M4	LG-CAP/M4	20
NS20	M5	LG-CAP/M5	20
NS25, NS30	M6	LG-CAP/M6	20
NS35	M8	LG-CAP/M8	20

(6) Inner seal

Inner seal is only available for the models shown below.

Table 17

Series	Model No.
NS	NS20, NS25, NS30, NS35

(7) Bellows

- A bellows fastener kit, which includes one of bellows faster, two of M₁ set screws, two of M₂ set screws, and two collars for M₂ set screws as showing Fig. 7.7 on page A55, is supplied with bellows for the ends.
- Middle bellows are supplied with four set screws and four collars.
- Use a bellows fastener kit as showing Table 18, when installing bellows to completed standard products.
- When NSK K1, double seals or protectors are used, the set screws of bellows fastener kit are unable to use.

Please contact NSK for details.

 Bellows fastener is available only for the horizontal mounting positions. For other mounting positions, sliding plate is required (see Fig. 7.10 on page A56).

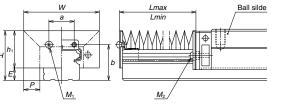

For fixing to the rail, make tap holes to the rail end surface. Fix the bellows mounting plate to the rail end surface through these tap holes by using a machine screw. NSK processes a tap hole to the rail end face when ordered with a linear guide.

Table 18 Bellows fastner kit reference No.

Model No.	Kit reference No.
NS15	LS15FS-01
NS20	LS20FS-01
NS25	LS25FS-01
NS30	LS30FS-01
NS35	LS35FS-01

A168

Dimension tables of bellows NS Series

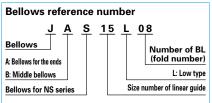


Fig. 17 Dimensions of bellows

Table	19	Dime	ensions	of	bellows

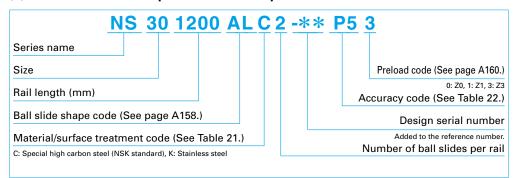
Unit: mm

Model No.	Н	h₁	Ε	W	Р	а	b	BL minimum length	<i>M</i> ₁Tap x depth	M₂Tap x depth
JAS15L	23.5	18.9	4.6	43	10	8	16.5	17	M3 × 5	M3 × 14
JAS20L	27	21	6	48	10	13	19.7	17	M3 × 5	M2.5 × 14
JAS25L	32	25	7	51	10	15	23.2	17	M3 × 5	M3 × 18
JAS30L	41	32	9	66	15	16	29	17	M4 × 6	M4 × 19
JAS35L	47	36.5	10.5	72	15	22	33.5	17	M4 × 6	M4 × 22

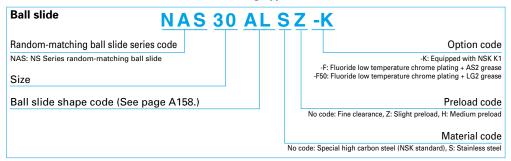
Table 20	Numbers of	t tolds (I	BL) and I	lengths (ot t	oellows
----------	------------	------------	-----------	-----------	------	---------

Unit: mm

Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
Wiodel No.	<i>L</i> min	34	68	102	136	170	204	238	272	306	340
JAS15L	Stroke	106	212	318	424	530	636	742	848	954	1 060
JASTOL	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
14 0201	Stroke	106	212	318	424	530	636	742	848	954	1 060
JAS20L	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
IACOEI	Stroke	106	212	318	424	530	636	742	848	954	1 060
JAS25L	<u>L</u> max	140	280	420	560	700	840	980	1 120	1 260	1 400
14.0001	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAS30L	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
IACOEI	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAS35L	<u>L</u> max	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100


Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of even number BL on the both side, then by dividing the sum by 2.

9. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

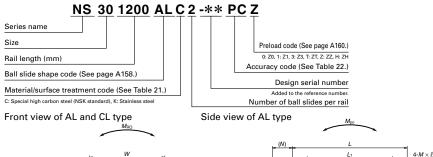
N1S30 1200 L C N -** PC Z										
Random-matching rail series code N1S: NS Series random-matching rail Size	Preload code (See page A160.) T: Fine clearance. Z: Slight preload (common rail for slight or medium preload) Accuracy code									
Rail length (mm)	PH: High precision grade random-matching type PC: Normal grade random-matching type Design serial number									
Rail shape code	Added to the reference number.									
L: Standard T: NS15 with mounting holes for M4	*Butting rail specification									
Material/surface treatment code (See Table 21.)	N: Non-butting. L: Butting specification									
	*Please consult with NSK for butting rail specification.									

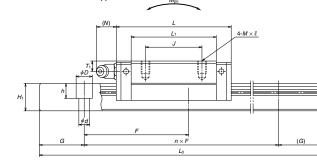
The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only preload codes of "fine clearance T" and "slight preload Z" are available (refer to page A160).

Table 21 Material/surface treatment code

Code	Description							
С	Special high carbon steel (NSK standard)							
K	Stainless steel							
D	Special high carbon steel with surface treatment							
Н	Stainless steel with surface treatment							
Z	Other, special							

Note: High-precision grade and medium preload of random-matching type are not available in stainless steel.


Table 22 Accuracy code


Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Ultra precision grade	P3	K3	F3
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
High precision grade (random-matching type)	PH	KH	FH
Normal grade (random-matching type)	PC	KC	FC

Note: Refer to pages A38 and A61 for NSK K1 lubrication unit.

A169 A170

10. Dimensions NS-CL (Medium-load type / Short) NS-AL (High-load type / Standard)

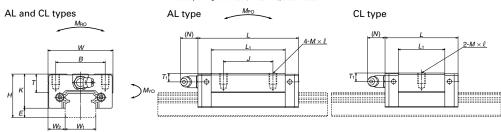
	A	ssemb	ly		Ball slide											
Model No.	Height			Width	Length		Mour	ting hole				Grease	fittin	g	Width	Height
Wiodel No.																
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	Τ	Hole size	T_1	Ν	W_1	H ₁
NS15CL NS15AL	24	4.6	9.5	34	40.4 56.8	26	— 26	M4×0.7×6	23.6 40	19.4	10	\$ 3	6	3	15	12.5
NS20CL NS20AL	28	6	11	42	47.2 65.2	32	— 32	M5×0.8×7	30 48	22	12	M6×0.75	5.5	11	20	15.5
NS25CL NS25AL	33	7	12.5	48	59.6 81.6	35	— 35	M6×1×9	38 60	26	12	M6×0.75	7	11	23	18
NS30CL NS30AL	42	9	16	60	67.4 96.4	40	— 40	M8×1.25×12	42 71	33	13	M6×0.75	8	11	28	23
NS35CL NS35AL	48	10.5	18	70	77 108	50	- 50	M8×1.25×12	49 80	37.5	14	M6×0.75	8.5	11	34	27.5

Notes: 1) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

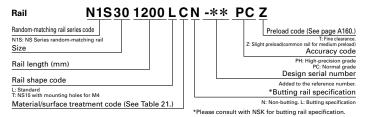
Reference number for ball slide of random-matching type

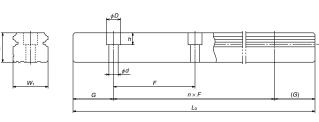
Ball slide

Random-matching ball slide series code
NAS: NS Series random-matching ball slide
Size


Ball slide shape code (See page A158.)

Defining the shape code (See page A158.)


Size


Preload code
No code: Seecial high carbon steel (NSK standard). S. Stainless steel

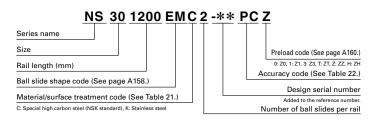
No code: Seecial high carbon steel (NSK standard). S. Stainless steel

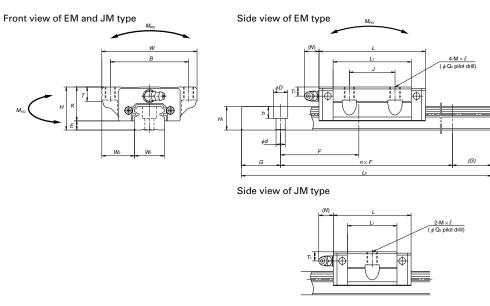
Reference number for rail of random-matching type

Unit: mm

Rail					Basic load rating						We	ight	
Pitch	Mounting	G	Max. length	2)Dyn	amic	Static		Static moment (N·m)				Ball	Rail
	bolt hole		L _{Omax} .	[50km]	[100km]	C 0	MRO	М	PO	М	YO	slide	
F	$d \times D \times h$	(reference)	() for stainless	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
	*3.5×6×4.5 4.5×7.5×5.3	20	2 920 (1 800)	7 250 11 200	5 750 8 850	9 100 16 900	45.5 84.5	24.5 77	196 470	20.5 64.5	165 395	0.14 0.20	1.4
60	6×9.5×8.5	20	3 960 (3 500)	10 600 15 600	8 400 12 400	13 400 23 500	91.5 160	46.5 133	330 755	39 111	279 630	0.19 0.28	2.3
60	7×11×9	20	3 960 (3 500)	17 700 26 100	14 000 20 700	20 800 36 500	164 286	91 258	655 1 470	76 217	550 1 230	0.34 0.51	3.1
80	7×11×9	20	4 000 (3 500)	24 700 38 000	19 600 30 000	29 600 55 000	282 520	139 435	1 080 2 650	116 365	905 2 220	0.58 0.85	4.8
80	9×14×12	20	4 000 (3 500)	34 500 52 500	27 300 42 000	40 000 74 500	465 865	220 695	1 670 4 000	185 580	1 400 3 350	0.86 1.3	7.0

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)


 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.


³⁾ High-precision grade and medium preload of random-matching type are available for special high carbon steel products.

^{*} Standard mounting hole of NS15 rail is for M3 bolts (Hole size: 3.5 × 6 × 4.5).

If you require mounting hole for M4 bolts (Hole size: $4.5 \times 7.5 \times 5.3$), please specify when ordering.

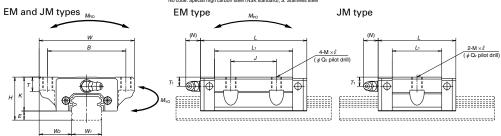
NS-JM (Medium-load type / Short) NS-EM (High-load type / Standard)

	A:	ssemb	oly					Ва	ll sli	de							
Model No.	Height			Width	Length		- 1	Mounting hole					Grease	fittin	g	Width	Height
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	$Q_{\scriptscriptstyle 2}$	L ₁	К	Т	Hole size	<i>T</i> ₁	Ν	W_1	H_1
NS15JM NS15EM	24	4.6	18.5	52	40.4 56.8	41	— 26	M5×0.8×7	4.4	23.6 40	19.4	8	ø 3	6	3	15	12.5
NS20JM NS20EM		6	19.5	59	47.2 65.2	49	— 32	M6×1×9 (M6×1×9.5)	5.3	30 48	22	10	M6×0.75	5.5	11	20	15.5
NS25JM NS25EM	33	7	25	73	59.6 81.6	60	— 35	M8×1.25×10 (M8×1.25×11.5)	6.8	38 60	26	11 (12)	M6×0.75	7	11	23	18
NS30JM NS30EM	42	9	31	90	67.4 96.4	72	— 40	N/10v1 Ev12	8.6	42 71	33	11 (15)	M6×0.75	8	11	28	23
NS35JM NS35EM		10.5	33	100	77 108	82	— 50	M10×1.5×13 (M10×1.5×14.5)	8.6	49 80	37.5	12 (15)	M6×0.75	8.5	11	34	27.5

Notes: 1) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

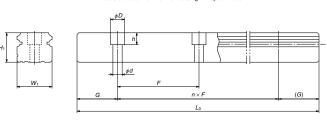
Reference number for ball slide of random-matching type

Ball slide


NAS 30 EM S Z -K

Random-matching ball slide series code
NAS: NS Series random-matching ball slide
Size

Ball slide shape code (See page A158.)


Preload code
No code: Fine clearance, Z: Slight preload, H: Medium preload
No code: Secial high carbon steel (NKK standard). S: Stainless steel

No code: Secial high carbon steel (NKK standard). S: Stainless steel

Reference number for rail of random-matching type

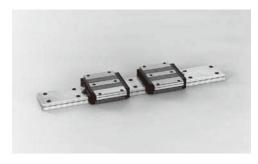
N1S301200LCN-** PCZ Rail Random-matching rail series code Preload code (See page A160.) N1S: NS Series random-matching rail T: Fine clearance. Z: Slight preload(common rail for medium preload) Accuracy code PH: High-precision grade PC: Normal grade Rail length (mm) Design serial number Rail shape code Added to the reference number. L: Standard T: NS15 with mounting holes for M4 *Butting rail specification Material/surface treatment code (See Table 21.) N: Non-butting. L: Butting specification *Please consult with NSK for butting rail specification

Unit: mm

Rail					Basic load rating							Weight	
Pitch	Mounting	G	Max. length	3)Dyn	amic	Static		Static	momen ⁻	t (N·m)		Ball	Rail
	bolt hole		L _{Omax} .	[50km]	[100km]	C 0	M _{RO}	М	PO	M _{YO}		slide	
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	*3.5×6×4.5 4.5×7.5×5.3	20	2 920 (1 800)	7 250 11 200	5 750 8 850	9 100 16 900	45.5 84.5	24.5 77	196 470	20.5 64.5	165 395	0.17 0.26	1.4
60	6×9.5×8.5	20	3 960 (3 500)	10 600 15 600	8 400 12 400	13 400 23 500	91.5 160	46.5 133	330 755	39 111	279 630	0.24 0.35	2.3
60	7×11×9	20	3 960 (3 500)	17 700 26 100	14 000 20 700	20 800 36 500	164 286	91 258	655 1 470	76 217	550 1 230	0.44 0.66	3.1
80	7×11×9	20	4 000 (3 500)	24 700 38 000	19 600 30 000	29 600 55 000	282 520	139 435	1 080 2 650	116 365	905 2 220	0.76 1.2	4.8
80	9×14×12	20	4 000 (3 500)	34 500 52 500	27 300 42 000	40 000 74 500	465 865	220 695	1 670 4 000	185 580	1 400 3 350	1.2 1.7	7

³⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

If you require mounting hole for M4 bolts (Hole size: $4.5 \times 7.5 \times 5.3$), please specify when ordering.


²⁾ Parenthesized dimensions are for items made of stainless steel

 C_{so} ; the basic dynamic load rating for 50 km rated fatigue life C_{loo} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

⁴⁾ High-precision grade and medium preload of random-matching type are available for special high carbon steel products.

^{*} Standard mounting hole of NS15 rail is for M3 bolts (Hole size: 3.5 × 6 × 4.5).

A-5-1.5 LW Series

1. Features

(1) Ideal for use of single rail

Thanks to the wide rail, rigidity and load carrying capacity are high against moment load from rolling direction. This makes the LW Series ideal for a single rail, compact linear guideway system.

(2) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, increasing load carrying capacity as well as rigidity in vertical direction.

(3) High resistance against impact load

Same as the NH and NS series, the offset Gothic arch grooves support a large load, such as an impact, by four rows.

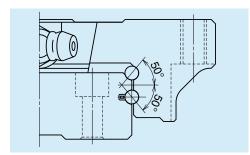


Fig. 1 Balls in contact

(4) High accuracy

Fixing master rollers to ball grooves is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

(5) Easy to handle, and designed with safety in mind.

Balls are retained in the retainer and do not fall out when a ball slide is withdrawn from the rail.

(6) Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery.

2. Ball slide shape

Ball slide Model	Shape / installation method	Туре
EL		EL

3. Accuracy and preload

(1) Running parallelism of ball slide

	Table 1 Unit: μm										
	Preloaded	assembly (not random	matching)	Random-matching type							
Rail length (mm) over or less	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC							
- 50	2	4.5	6	6							
50 – 80	3	5	6	6							
80 – 125	3.5	5.5	6.5	6.5							
125 – 200	4	6	7	7							
200 – 250	5	7	8	8							
250 – 315	5	8	9	9							
315 – 400	6	9	11	11							
400 – 500	6	10	12	12							
500 – 630	7	12	14	14							
630 - 800	8	14	16	16							
800 – 1 000	9	16	18	18							
1 000 – 1 250	10	17	20	20							
1 250 – 1 600	11	19	23	23							
1 600 – 2 000	13	21	26	26							
2 000 – 2 500	15	22	29	29							
2 500 – 3 150	17	25	32	32							
3 150 – 4 000	23	30	34	34							

(2) Accuracy standard

The preloaded assembly has three accuracy grades; High precision P5, Precision P6, and Normal PN grades, while the random-matching type has Normal PC grade only.

· Tolerance of preloaded assembly type

Ta	Unit: µm		
Accuracy grade Characteristics	High precision P5	Precision grade P6	Normal grade PN
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±20 7	±40 15	±80 25
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±25 10	±50 20	±100 30
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 2		

• Tolerance of random-matching type: Normal grade PC

Table 3		
Model No. Characteristics	LW17, 21, 27, 35, 50	
Mounting height H	±20	
Variation of mounting height H	15①	
	30②	
Mounting width W_2 or W_3	±30	
Variation of mounting width W_2 or W_3	25	
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1 and Fig. 2	

Note: 1 Variation on the same rail

2 Variation on multiple rails

A175 A176

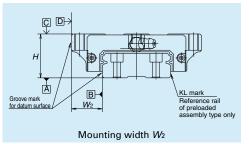

(3) Combination of accuracy and preload

Table 4

			Accurac	cy grade	
		High precision	High precision Precision grade		Normal grade
Wi	thout NSK K1 lubrication unit	P5	P6	PN	PC
With NSK K1 lubrication unit		K5	K6	KN	KC
With NSK K1 for food and medical equipment		F5	F6	FN	FC
	Fine clearance	0	0	0	_
	Z0				
_	Slight preload Z1	0	0	0	_
Preload	Medium preload Z3	0	0	_	_
<u>. </u>	Random-matching type with fine clearance ZT	_	_	_	0
	Random-matching type with slight preload ZZ	_	_	_	0

Note: Z3 medium preload is only applicable to models of LW35 and LW50.

(4) Assembled accuracy

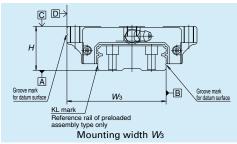


Fig. 2

(5) Preload and rigidity

We offer five levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with Random-matching type of Fine clearance ZT and Slight preload ZZ. Rigidities are for the median of the preload range.

· Preload and rigidity of preloaded assembly

Table 5

	Tubic o						
	Duele	ad (NI)		Rigidity	(N/µm)		
Model No.	Freio	Preload (N)		Vertical direction		Lateral direction	
	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload	
	Z1	Z3	Z1	Z3	Z1	Z3	
LW17 EL	0 – 245	-	156	-	112	-	
LW21 EL	0 – 294	-	181	-	130	_	
LW27 EL	0 – 390	-	226	-	167	_	
LW35 EL	0 – 490	785	295	440	213	315	
LW50 EL	0 – 590	1 470	345	600	246	425	

Note: Clearance for Fine clearance Z0 is 0 to 3µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15µm.

· Clearance and preload of random-matching type

	Table 6	Unit: µm
Madal Na	Fine clearance	Slight preload
Model No.	ZT	ZZ
LW17	- 3 – 15	-3.5 - 0
LW21	−3 − 15	-3.5 - 0
LW27	-4 - 15	-4 -0
LW35	- 5 – 15	-5 -0
LW50	– 5 – 15	−7 − 0

Note: Minus sign denotes elastic deformation of balls representing.

5. Installation

(1) Permissible values of mounting error

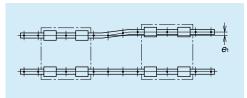


Fig. 3

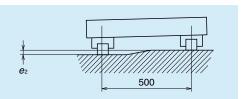
4. Maximum rail length

· Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Table 7 Length limitations of rails

					Unit	: mm
Series	Size					
•	Material	17	21	27	35	50
LW	Special high carbon steel	1 000	1 600	2 000	2 000	2 000

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.



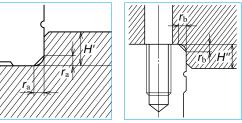

Fig. 4

Table 8

Unit: µm

Value	Preload			Model No.		
value	i reioau	LW17	LW21	LW27	LW35	LW50
Permissible values of	Z0, ZT	20	20	25	38	50
parallelism in two rails e1	Z1, ZZ	9	9	13	23	34
Permissible values of	Z0, ZT	100 μm/500 mm				
parallelism (height) in two rails $e_{\scriptscriptstyle 2}$	Z1, ZZ	45 μm/500 mm				

(2) Shoulder height of the mounting surface and corner radius r

Fig. 5	Shoulder	for the
	rail datum	surface

	/r _b ///////////////////////////////////
	}
Fire C	Chaulder for the hell

Fig. 6 Shoulder for the ball slide datum surface

		Table 9		Unit: mm	
Model No.	Corner radius (maximum)		Shoulder height		
Model No.	r _a	$r_{\rm b}$	H'	H"	
LW17	0.3	0.3	2.2	4	
LW21	0.3	0.3	2.5	5	
LW27	0.5	0.5	3.5	5	
LW35	0.5	0.8	3.5	5	
LW50	0.8	0.8	4	6	

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 7 and Table 10 show grease fittings and tube fittings.

We provide Iubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

Please ask NSK for stainless lubrication accessories.

	Table 10 Unit: mm							
Model	Dust-proof		ension L					
No.	specification	Grease fitting	Tube	fitting				
INO.	specification	/Drive-in type	SF type	LF type				
	Standard	5	-	_				
LW17	With NSK K1	10	-	_				
	Double seal	*	-	_				
	Protector	*	-	_				
LW21	Standard	5	-	_				
	With NSK K1	12	-	_				
	Double seal	10	-	_				
	Protector	10	-	_				
	Standard	5	5	5				
LW27	With NSK K1	12	12	12				
LVV2/	Double seal	10	9	9				
	Protector	10	9	9				
	Standard	5	6	6				
LW35	With NSK K1	14	14	13				
LVV35	Double seal	10	10	9				
	Protector	10	10	9				
	Standard	8	13.5	17				
LW50	With NSK K1	18	18	19				
LVV5U	Double seal	14	16	17				
	Protector	14	13.5	17				

^{*)} A connector is required for the grease fitting. Please contact NSK.

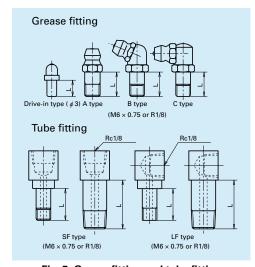


Fig. 7 Grease fitting and tube fitting

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We may mount them on a side of end cap for LW27, 35, and 50 as an option. (Fig. 8)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of M6 \times 1, you require a connector for a connection to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

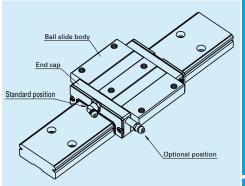


Fig. 8 Mounting position of lubrication accessories

A179 A180

7. Dust-proof components

(1) Standard Specification

The LW Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the series has an end seal on both ends and bottom seals at the bottom.

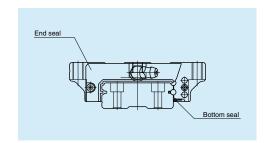


Fig. 9

Table 11 Seal friction per ball slide (maximum value) Unit: N

					OTHE. IV
Series Size	17	21	27	35	50
LW	6	8	12	16	20

(2) NSK K1[™] lubrication unit

Table 12 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

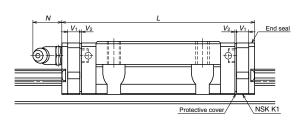


Table 12

Unit: mm

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V_2	Protruding area of the grease fitting N
LW17	Standard	EL	51.4	61.6	4.5	0.6	(5)
LW21	Standard	EL	58.8	71.4	5.5	0.8	(13)
LW27	Standard	EL	74	86.6	5.5	0.8	(13)
LW35	Standard	EL	108	123	6.5	1.0	(13)
LW50	Standard	EL	140.6	155.6	6.5	1.0	(14)

Note: 1) NSK K1 for food and medical equipments are available for the models of LW17 to LW35.

2) Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V_1 x Number of NSK K1) + (Thickness of the protective cover, V_2 x 2)

(3) Double seal

Use a double seal set as showing in Table 13, when installing an extra seal to completed standard products. (Fig. 10)

When installing a grease fitting after the installation of double seals, a connector as showing Fig.10 is required.

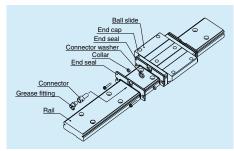


Fig. 10 Double seal

Table 13 Double-seal set

Model No.	Referer Without connector	Increased thickness V ₃ (mm)	
LW17	LW17WS-01	*	2.6
LW21	LW21WS-01	LW21WSC-01	2.8
LW27	LW27WS-01	LW27WSC-01	2.5
LW35	LW35WS-01	LW35WSC-01	3
LW50	LW50WS-01	LW50WSC-01	3.6

^{*)} For installation of a connector to a drive-in type grease fitting, contact NSK.

(4) Protector

Use a protector set as showing Table 14, when installing a protector to completed standard products. (Fig.11)

When installing a grease fitting after the installation of protectors, a connector as showing Fig.11 is required.

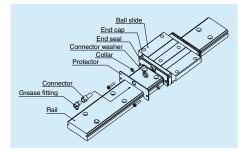


Fig. 11 Protector seal

Table 14 Protector set

	ъ.	Increased		
Model No.	Referer Without connector	thickness V ₄ (mm)		
LW17	LW17PT-01	*	3.2	
LW21	LW21PT-01	LW21PTC-01	3.2	
LW27	LW27PT-01	LW27PTC-01	2.9	
LW35	LW35PT-01	LW35PTC-01	3.6	
LW50	LW50PT-01	LW50PTC-01	4.2	

^{*)} For installation of a connector to a drive-in type grease fitting, contact NSK.

(5) Cap to plug the rail mounting bolt hole Table 15 Caps to plug rail bolt hole

		p.ug . u e.	
Model No.	Bolt to	Quantity	
Wiodel No.	secure rail	reference No.	/case
LW17, LW21, LW27	M4	LG-CAP/M4	20
LW35	M6	LG-CAP/M6	20
LW50	M8	LG-CAP/M8	20

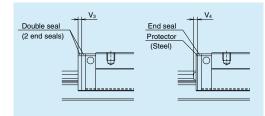
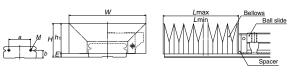



Fig. 12

(6) Bellows

· Make tap holes to the rail end face to fix the bellows mounting plate. NSK processes tap holes to the rail end face when ordered with a linear guide.

Dimension tables of bellows LW series

Bellows reference number

J A W 21 L 08

Bellows

A: Bellows for the ends
B: Middle bellows

Bellows for LW series

Bellows reference number

Number of BL (fold number)

N: High type L: Low type

Size number of linear guide

Fig. 13

Table 16 Dimensions of bellows

Unit:	mm
-------	----

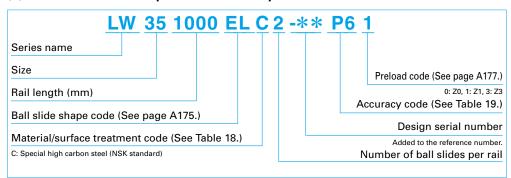
Model No.	Н	h ₁	Ε	W	Р	а	b	BL minimum length	Tap (<i>M</i>) x depth	
JAW17N	25.5	23	2.5	68	15	22	6	17	M3×6	
JAW21N	29	26	3	75	17	26	7	17	M3 × 6	
JAW27N	37	33	4	85	20 28		10	17	M3×6	
JAW35L	34	30	4	100	14	48	12	17	M4×8	
JAW35N	41	37	4	115	20	40	12	17	1014 × 0	
JAW50L	46.5	42	4.5		20	70	14	17	M4×8	
JAW50N	56.5	52	4.5	160	30	,0	14	17	IVI-4 × O	

Table 17 Numbers of folds (BL) and length of bellows

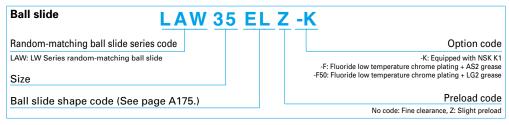
Unit: mm

Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
Model No.	Lmin	34	68	102	136	170	204	238	272	306	340
JAW17N	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAVVI/IV	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAW21N	Stroke	204	408	612	816	1 020	1 224	1 428	1 632	1 836	2 040
JAVVZIIV	Lmax	238	476	714	952	1 190	1 428	1 666	1 904	2 142	2 380
JAW27N	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
JAVVZ/IV	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
JAW35L	Stroke	162	324	486	648	810	972	1 134	1 296	1 458	1 620
JAVVSSL	Lmax	196	392	588	784	980	1 176	1 372	1 568	1 764	1 960
JAW35N	Stroke	218	436	654	872	1 090	1 308	1 526	1 744	1 962	2 180
JAVVJJIV	Lmax	252	504	756	1 008	1 260	1 512	1 764	2 016	2 268	2 520
JAW50L	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
JAVVOUL	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
JAW50N	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
JAVVSUN	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200

Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of even number BL on the both sides, then by dividing the sum by 2.


A183 A184

8. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

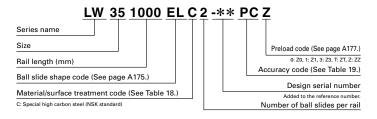
(2) Reference number for random-matching type

Rail L1W35 1	1000 L C N -** PC Z
Random-matching rail series code	Preload code (See page A177.)
L1W: LW Series random-matching rail Size	T: Fine clearance. Z: Slight preload Accuracy code: PC
Rail length (mm)	PC: Normal grade is only available. Design serial number
Rail shape code: L	Added to the reference number.
L: Standard	*Butting rail specification
Material/surface treatment code (See	e Table 18.) N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.

The reference number coding for the assembly of random-matching type is the same as that of preloaded assembly. However, only preload codes of "fine clearance T" and "slight preload Z" are available (refer to page A177).

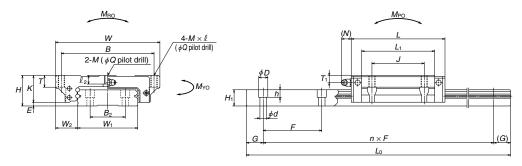
Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special

Table 19 Accuracy code


Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
Normal grade (random-matching type)	PC	KC	FC

Note: Refer to pages A38 and A61 for NSK K1 lubrication unit.

A185 A186


(9) Dimensions

LW-EL

Front view

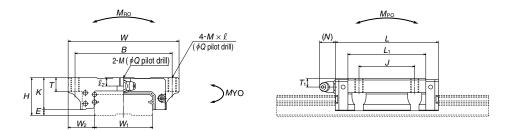
Side view

	As	seml	oly		Ball slide													
Model No.	Height	eight Width Leng					Mounting hole							Grease	fittin	g	Width	Height
Wiodel No.																		
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L2	Q	L ₁	K	T	Hole size	T_1	Ν	W_1	H_1
LW17EL	17	2.5	13.5	60	51.4	53	26	M4×0.7×6	3.2	3.3	35	14.5	6	φ 3	4	3	33	8.7
LW21EL	21	3	15.5	68	58.8	60	29	M5×0.8×8	3.7	4.4	41	18	8	M6×0.75	4.5	11	37	10.5
LW27EL	27	4	19	80	74	70	40	M6×1×10	6	5.3	56	23	10	M6×0.75	6	11	42	15
LW35EL	35	4	25.5	120	108	107	60	M8×1.25×14	9	6.8	84	31	14	M6×0.75	8	11	69	19
LW50EL	50	4.5	36	162	140.6	144	80	M10×1.5×18	14	8.6	108	45.5	18	Rc1/8	14	14	90	24

Reference number for ball slide of random-matching type

Random-matching ball slide series code
LAW: LW Series random-matching ball slide
LAW: LW Series random-matching ball slide

Ball slide shape code (See page A175.)

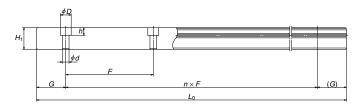

Option code

-K: Equipped with NSK 14.

-F: Fluoride low temperature chrome plating + ASZ grease
-F50: Fluoride low temperature chrome plating + LGZ grease

Preload code

No code: Fine clearance, Z: Slight preload



Reference number for rail of random-matching type

L1W35 1000 L C N -** PC Z Rail Random-matching rail series code Preload code (See page A177.) L1W: LW Series random-matching rail T: Fine clearance. Z: Slight preload Size Accuracy code: PC PC: Normal grade is only available. Rail length (mm) Design serial number Added to the reference number. Rail shape code: L *Butting rail specification N: Non-butting. L: Butting specification Material/surface treatment code (See Table 18.)

*Please consult with NSK for butting rail specification.

Unit: mm

F	Rail						Basic	c load ra	ating				Weight	
	Pitch		G	Max. length	1) Dy	namic	Static	Static moment (N·m)						Rail
		bolt hole		L_{0max} .	[50km]	[100km]	C 0	M_{RO}	M _{RO} M _{PO}		M _{YO}		slide	
$B_{\scriptscriptstyle 2}$	F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
18	40	4.5×7.5×5.3	15	1 000	5 600	4 450	11 300	135	44	288	37	242	0.2	2.1
22	50	4.5×7.5×5.3	15	1 600	6 450	5 150	13 900	185	65.5	400	55	335	0.3	2.9
24	60	4.5×7.5×5.3	20	2 000	12 800	10 200	26 900	400	171	970	143	815	0.5	4.7
40	80	7×11×9	20	2 000	33 000	26 400	66 500	1 690	645	3 550	545	2 990	1.5	9.6
60	80	9×14×12	20	2 000	61 500	48 500	117 000	3 900	1 530	8 200	1 280	6 900	4.0	15.8

Note: The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

1. PU Series	A191
2. LU Series	A201
3. PE Series	A213
4. LE Series	A223
5. Miniature LH	
Series	A237
6 II Series	Δ247

A-5-2 Liquid Crystal Display and Semiconductor

A189 A190

A-5-2.1 PU Series (Miniature type)

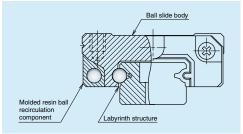


Fig. 1

1. Features

(1) Motion performance

Newly designed recirculation component facilitates smooth circulation of steel balls.

(2) Lightweight

The ball slide is fabricated to be approximately 20% lighter than LU Series by the application of resin to a part of its body.

(3) Reduced noise intensity

Resin components applied in ball circulating circuits reduce collision noise between steel balls and the inner wall of circulating circuits.

(4) Low dust generation

The structure is designed to prevent dust generation.

(5) Excellent dust-proofing

It is designed to minimize the clearance between the side of rails and the inner walls of the slide, and prevent foreign matters from entering the ball slide.

(6) High corrosion resistance

High corrosion-resistant martensite stainless steel is incorporated as a standard feature to provides excellent corrosion resistance.

(7) Easy to handle

Safety design includes a retainer that prevents steel balls from dropping out of the ball slide even when the slide is removed from the rail.

(8) Long-term maintenance-free

Superb features of NSK K1 Lubrication unit realize a long-term, maintenance-free operation.

(9) Fast delivery

Lineup of random-matching rails and ball slides facilitates fast delivery. (PU09 to PU15)

2. Ball slide shape

Ball slide Model	Shape/installation method	Type (Upper row, Rating: L Standard type Standard	ower row, Ball slide length) High-load type Long	- - -
AR TR AL UR BL BR		TR, AR, AL	UR, BL, BR	PU Series

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1

Unit: µm

	Preloaded assembly type (not random matching)							
Rail length (mm) over or less	Super precision P4	High precision Precision grade Normal grade P6 PN			Normal grade PC			
- 50	2	2	4.5	6	6			
50 – 80	2	3	5	6	6			
80 – 125	2	3.5	5.5	6.5	6.5			
125 – 200	2	4	6	7	7			
200 – 250	2.5	5	7	8	8			
250 – 315	2.5	5	8	9	9			
315 – 400	3	6	9	11	11			
400 – 500	3	6	10	12	12			
500 - 630	3.5	7	12	14	14			
630 – 800	4.5	8	14	16	16			
800 – 1 000	5	9	16	18	18			
1 000 – 1 250	6	10	17	20	20			

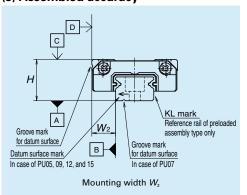
A191 A192

(2) Accuracy standard

The preloaded assembly has four accuracy grades; Super precision P4, High precision P5, Precision grade P6, and normal grade PN, while the random-matching type has Normal grade PC only.

Table 2 shows the accuracy standard for the preloaded assembly type while Table 3 shows the accuracy standard for the random-matching types.

· Tolerance of preloaded assembly


Table 2 Unit: μπ							
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN			
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 5	±15 7	±20 15	±40 25			
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 7	±20 10	±30 20	±50 30			
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 2						

• Tolerance of random-matching type: Normal grade PC

Tabl	e 3 Unit: μm
Model No. Characteristics	PU09, 12 and 15
Mounting height H	±20
Variation of mounting height H	15① 30②
Mounting width W_2 or W_3	±20
Variation of mounting width W_2 or W_3	20
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 2

Notes: ① Variation on the same rail ② Variation on multiple rails

(3) Assembled accuracy

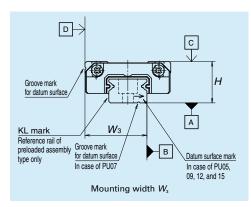


Fig. 2

Note: Please refer to page A67 for marks on the datum surfaces.

(4) Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0 for preloaded assembly type, along with Fine clearance ZT for random-matching type. Values for preload and rigidity of the preloaded assembly type are shown in **Table 4**. Rigidities are for the median of the preload range.

Preload and rigidity of preloaded assembly

Table 4						
		Preload	Rigidity			
Model No.		(N)	(N/µm)			
		Slight preload (Z1)	Slight preload (Z1)			
96	PU05TR	0 – 3	17			
tγ	PU07AR	0 - 8	22			
lard	PU09TR	0 – 10	30			
Standard type	PU12TR	0 – 17	33			
St	PU15AL	0 – 33	45			
ad	PU09UR	0 – 14	46			
High-load type	PU12UR	0 – 25	52			
Hig	PU15BL	0 – 51	75			

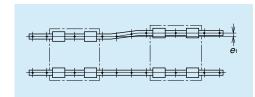
Note: Clearance of Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

Clearance of random-matching type

	Tab	le 5 Unit: μm
	Model No.	Fine clearance
	Wodel IVo.	ZT
ard	PU09TR	
nda ype	PU09TR PU12TR PU15AL PU09UR PU12UR PU15BI	3 or less
Sta	PU15AL	
bad	PU09UR	
Jh-lc type	PU12UR	5 or less
퍞	PU15BL	

4. Maximum rail length

Table 6 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.


Table 6 Length limitations of rails

	_				Unit	: mm
Series	Size					
	Material	05	07	09	12	15
PU	Stainless steel	210	375	600	800	1 000

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

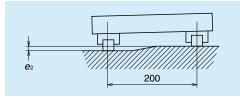
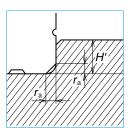



Fig. 3

Fig. 4

lable / Unit: μm							
Value	Duolood		Model No.				
Value	Preload	PU05	PU07	PU09	PU12	PU15	
Permissible values of	Z0, ZT	10	12	15	20	25	
parallelism in two rails e_1	Z1	7	10	13	15	21	
Permissible values of	Z0, ZT	150 μm/200 mm					
parallelism (height) in two rails e	71		90 µm/200 mm				

(2) Shoulder height of the mounting surface and corner radius r

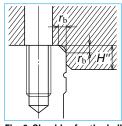


Fig. 5 Shoulder for the rail datum surface

Fig. 6 Shoulder for the ball slide datum surface

	Uı	nit: mm		
Model No.	Corner radiu	s (maximum)	Shoulde	r height
Model No.	ra	r _b	H'	H"*
PU05	0.2	0.2	0.7	2.3
PU07	0.2	0.3	1.2	2.5
PU09	0.3	0.3	1.9	2.6
PU12	0.3	0.3	2.5	3.4
PU15	0.3	0.5	3.5	4.4

^{*)} H" is the minimum recommended value based on the dimension T in dimension table.

6. Lubrication accessory

Model of PU15 can select drive-in type grease fitting as an option.

For the models of PU05 to PU12, apply grease directly to the ball grooves of rail using a point nozzle.

Drive-in type

7. Dust-proof components

(1) Standard specification

An end seal provided to both ends of a ball slide as a standard feature. Seal friction per standard ball slide is shown in **Table 9**.

Table 9 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	05	07	09	12	15
PU	0.3	0.3	0.5	0.5	0.5

(2) NSK K1[™] lubrication unit

Table 10 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

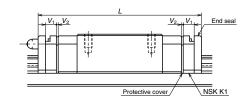
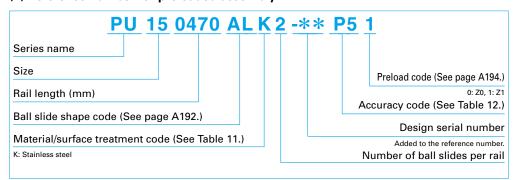


Table 10

Unit: mm

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length equipped with two NSK K1 <i>L</i>	Thickness of NSK K1, V ₁	Thickness of protective cover, V_2
PU05	Standard	TR	19.4	24.4	2	0.5
PU07	Standard	AR	23.4	29.4	2.5	0.5
DLIOO	Standard	TR	30	36.4	2.7	0.5
PU09	Long	UR	41	47.4	2.7	0.5
PU12	Standard	TR	35	42	3	0.5
PU12	Long	UR	48.7	55.7	3	0.5
DUITE	Standard	AL	43	51.2	2.5	0.0
PU15	Long	BL	61	69.2	3.5	0.6

Note: Ball slide length equipped with NSK K1 =


(Standard ball slide length) + (Thickness of NSK K1, $V_1 \times$ Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

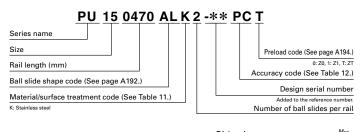
(2) Reference number for random-matching type

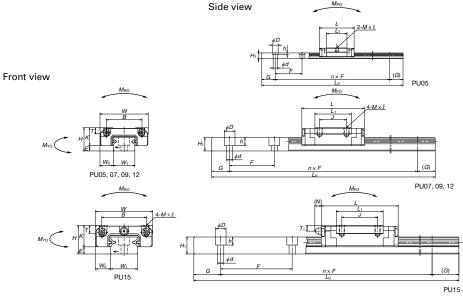
P1U 15 0470 I	RKN -** PC T				
Random-matching rail series code	Preload code (See page A194.)				
P1U: PU Series random-matching rail	T: Fine clearance				
Size	Accuracy code: PC				
Rail length (mm)	PC: Normal grade is only available.				
nan length (mm)	Design serial number				
Rail shape code	Added to the reference number.				
S: PU09, 12. R: PU15	*Butting rail specification				
	N: Non-butting. L: Butting specification				
Material/surface treatment code (See Table 11	*Please consult with NSK for butting rail specification.				

The reference number coding for the assembly of random-matching type is the same as that of preloaded assembly. However, only preload code of "fine clearance T" is available (refer to page A194).

Table 11 Material/surface treatment code

Code	Description			
K	Stainless steel			
Н	Stainless steel with surface treatment			
Z	Other, special			


Table 12 Accuracy code

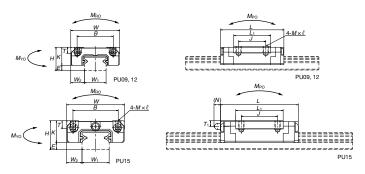

Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
Normal grade (random-matching type)	PC	KC	FC

Note: Refer to pages A38 and A61 for the NSK K1 lubrication unit.

9. Dimensions

PU-TR, AR, AL (Standard type / Standard) PU-UR, BL (High-load type / Long)

	А	ssemb	oly		Ball slide											
Model N	Height			Width	Length		Mour	nting hole				Oil	hole		Width	Height
Wiodelin	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	T ₁	N	<i>W</i> ₁	H ₁
PU05T	R 6	1	3.5	12	19.4	8	_	M2×0.4×1.5	11.4	5	2.3	\$ 0.9	1.5	_	5	3.2
PU07A	R 8	1.5	5	17	23.4	12	8	M2×0.4×2.4	13.3	6.5	2.45	\$ 1.5	1.8	_	7	4.7
PU09T PU09U	1 10	2.2	5.5	20	30 41	15	10 16	M3×0.5×3	19.6 30.6	1 / X	2.6	_	_	_	9	5.5
PU12T PU12U	- 1 13	3	7.5	27	35 48.7	20	15 20	M3×0.5×3.5	20.4 34.1	10	3.4	_	_	_	12	7.5
PU15A PU15B	1 16	4	8.5	32	43 61	25	20 25	M3×0.5×5	26.2 44.2	12	4.4	φ 3	3.2	(3.6)	15	9.5


Notes: 1) The ball slide of PU05TR has only two mounting tap holes in the center.

Reference number for ball slide of random-matching type PAU 15 AL S -K

Random-matching ball slide series code
PAU: PU Series random-matching ball slide
Size
Material code
Ball slide shape code (See page A192.)

Option code
-X: Equipped with NSK K1

Material code
S: Stainless steel

Reference number for rail of random-matching type

P1U15 0470 RKN -** PC T Rail Random-matching rail series code Preload code (See page A194.) P1U: PU Series random-matching rail T: Fine clearance Size Accuracy code: PC PC: Normal grade is only available. Rail length (mm) Design serial number Added to the reference number. Rail shape code *Butting rail specification S: PU09, 12. R: PU15 N: Non-butting. L: Butting specification Material/surface treatment code (See Table 11.) *Please consult with NSK for butting rail specification

 W_1 W_2 W_3 W_4 W_4 W_5 W_6 W_6 W_7 W_8 W_8

Unit: mm

Rail					Basic load rating				We	ight			
Pitch	Mounting bolt	G	Maximum	²⁾ Dyr	namic	Static		Static	momen	t (N·m)		Ball	Rail
	hole		length	[50km]	[100km]	C 0	M _{RO}	М	PO	М	YO	slide	
F	$d \times D \times h$	(reference)	L_{omax}	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100mm)
15	2.3×3.3×0.8	5	210	520	410	775	2.06	1.28	9.90	1.28	9.90	4	11
15	2.4×4.2×2.3	5	375	1 090	860	1 370	5.20	2.70	21.8	2.70	21.8	8	23
20	3.5×6×4.5	7.5	600	1 490	1 180	2 150	9.90	6.10	41.0	6.10	41.0	16	35
20	3.50004.5	7.5	000	2 100	1 670	3 500	16.2	15.6	88.0	15.6	88.0	25	30
25	3.5×6×4.5	10	800	2 830	2 250	3 500	21.1	11.4	73.5	11.4	73.5	32	65
25	3.50004.5	10	800	4 000	3 150	5 700	34.5	28.3	174	28.3	174	53	05
40	3.5×6×4.5	15	1 000	5 550	4 400	6 600	49.5	25.6	190	25.6	190	59	105
40	5.5/0/4.5	13	1 000	8 100	6 400	11 300	84.5	69.5	435	69.5	435	100	105

²⁾ The basic load rating comply with the ISO standard, (ISO 14728-1, 14728-2)

(JCIS: Japanese Camera Industrial Standard.)

C_{so}; the basic dynamic load rating for 50 km rated fatigue life C_{no} ; the basic dynamic load rating for 100 km rated fatigue life

³⁾ To fix rail of PU05TR, use M2 x 0.4 cross-recessed pan head machine screw for precision instrument.

⁽JCIS 10-70 No. 0 pan head machine screw No.1.)

A-5-2.2 LU Series (Miniature type)

(1) Super-small type

This compact guide owes its design to the single ball groove on both right and left sides (Gothic arch) .

(2) Equal load carrying capacity in vertical and lateral directions

The contact angle is set at 45 degrees, thus facilitating the equal load carrying capacity in vertical and lateral directions. This also provides equal rigidity in both directions.

(3) Stainless steel is also standardized

Items made of the martensitic stainless steel are available as standard.

(4) Some series have a ball retainer

Ball slide types AR and TR come with a ball retainer. Balls are retained in the retainer and do not fall out when the ball slide is withdrawn from the rail. (Ball slides of random-matching type as well as LU15 come with ball retainer.)

(5) Fast delivery

Random-matching of rails and ball slides are available. (LU09 to LU15)

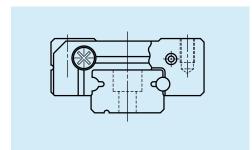


Fig. 1 LU Series

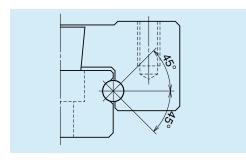


Fig. 2 Balls are in contact.

2. Ball slide shape

Ball slide Model	Shape/installation method	Type (Upper row, Rating: L Standard type Standard	ower row, Ball slide length) High-load type Long	- - - -
AL TL AR TR BL UL		AL, TL, TR, AR	BL, UL	Series

Specification	Detail	Ту	pe
Marria di anta	Normal	AL, AR	BL
Mounting hole	Large	TL, TR	UL
Ball retainer	Without	AL*, TL	BL*, UL
Dali retaillei	With	AR, TR	-

^{*)} LU15 is equipped with ball retainer

3. Accuracy and preload

(1) Running parallelism of ball slide

- 1	a	h	le	1

п	Init:	ıır

	Preloaded assembly type (not random matching) Random-matching type							
Rail length (mm)	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC			
- 50	2	2	4.5	6	6			
50 – 80	2	3	5	6	6			
80 – 125	2	3.5	5.5	6.5	6.5			
125 – 200	2	4	6	7	7			
200 - 250	2.5	5	7	8	8			
250 - 315	2.5	5	8	9	9			
315 - 400	3	6	9	11	11			
400 - 500	3	6	10	12	12			
500 - 630	3.5	7	12	14	14			
630 - 800	4.5	8	14	16	16			
800 – 1000	5	9	16	18	18			
1000 – 1250	6	10	17	20	20			

A201 A202

(2) Accuracy standard

The preloaded assembly type has four accuracy grades; Super precision P4, High precision P5, Precision P6, and Normal grade PN, while the random-matching type has Normal grade PC only.

Table 2 shows the accuracy standard for the preloaded assembly type, while Table 3 shows the accuracy standard for the random-matching type.

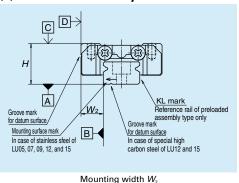

· Tolerance of preloaded assembly

Table 2 Unit: μr							
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN			
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 5	±15 7	±20 15	±40 25			
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 7	±20 10	±30 20	±50 30			
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Refer to Table 1 and Fig. 3						

Tolerance of random-matching type: Normal grade PC

Tabl	e 3 Unit: μm
Accuracy grade Characteristics	LU09, 12, 15
Mounting height H	±20
Variation of mounting height H	40
Mounting width W_2 or W_3	±20
Variation of mounting width W_2 or W_3	40
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Refer to Table 1 and Fig. 3

(3) Assembled accuracy

Mounting width W₃

Fig. 3

Note: Please refer to page A67 for marks on the datum surfaces.

(4) Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0, along with random-matching type of Fine clearance ZT. Values for preload and rigidity of the preloaded assembly type are shown in **Table 4**. Rigidities are for the median of the preload range.

Preload and rigidity of preloaded assembly

Table 4

Model No.		Preload	Rigidity	
		(N)	(N/µm)	
		Slight preload	Slight preload	
		(Z1)	(Z1)	
Standard type	LU05 TL	0 - 3	15	
	LU07 AL	0 - 8	22	
	LU09 AL, TL	0 – 12	26	
	LU09 AR, TR	0 – 10	30	
	LU12 AL, TL	0 – 17	33	
	LU12 AR, TR	0 – 17	33	
	LU15 AL	0 – 33	45	
High-load type	LU09 BL, UL	0 – 17	43	
	LU12 BL, UL	0 – 25	52	
	LU15 BL	0 – 51	75	

Note: Clearance of Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

However, the clearance of the Z0 of PN grade is 3 to 10 μm .

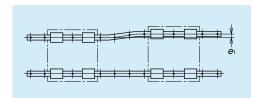
Clearance of random-matching type

Tab	le 5 Unit: μm
Model No.	Fine clearance ZT
LU09	
LU12	0 – 15
LU15	

4. Maximum rail length

Table 6 shows the limitations of rail length.

However, the limitations vary by accuracy grades.


Table 6 Length limitation of rails

	Unit	: mm				
Series	Size Material	05	07	09	12	15
LU	Special high carbon steel	-	_	1 200	1 800	2 000
LU	Stainless steel	210	375	600	800	1 000

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

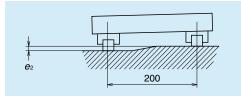


Fig. 4

Fig. 5

Table 8

0.2

0.3

0.3

0.3

0.5

Corner radius (maximum)

0.2

0.2

0.3

0.3

0.3

Unit: mm

3

Shoulder height

0.7

1.2

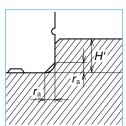
1.9

2.5

3.5

	Table 7 Unit: μm											
Value	Preload		Model No.									
	Freioau	LU05	LU07	LU09	LU12	LU15						
Permissible values of	Z0, ZT	10	12	15	20	25						
parallelism in two rails e_1	Z1	7	10	13	15	21						
Permissible values of	Z0, ZT	150 µm/200 mm										
parallelism (height) in two rails e2	Z1	90 μm/200 mm										

Model No LU05


LU07

LU09

LU12

LU15

(2) Shoulder height of the mounting surface and corner radius r

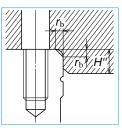


Fig. 6 Shoulder for the rail datum surface

Fig. 7 Shoulder for the ball slide datum surface

6. Lubrication accessories

There is no standard grease fitting for LU05 to LU15.

For the LU Series, apply grease directly to the ball grooves of rail using a point nozzle.

7. Dust-proof components

(1) Standard specification

End seal: Provided to both ends of the ball slide as a standard feature.

LU05TL, LU07AL, LU09AL, and LU09TL can install the end seal as an option.

• Seal friction per standard ball slide is shown in Table 9.

Table 9 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	05	07	09	12	15
LU	0.3	0.3	0.5	0.5	0.5

(2) NSK K1[™] lubrication unit

The installed dimensions of the NSK K1 lubrication unit are shown in Table 10.

Table 10

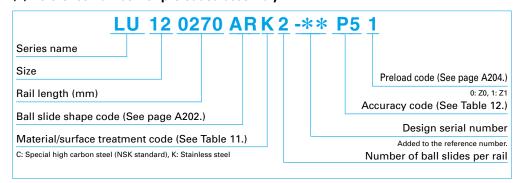
Unit: mm

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V.	Protective cover
LU05	Standard	TL	TL 18* 24.4		2.0	0.5
LU07	Standard	AL	20.4*	29.4	2.5	0.5
	Standard	AR, TR	30	36.4		
LU09	Standard	AL, TL	26.8*	34.2	2.7	0.5
	Long	BL, UL	41	47.4	2.7 0.5	
	Standard	AR, TR	35.2	42.2		
LU12	Standard	AL, TL	34	41	3.0	0.5
	Long	BL, UL	47.5	54.5		
LU15	Standard	AL	43.6	51.8	3.5	0.6
LUIS	Long	BL	61	69.2	3.5	0.6

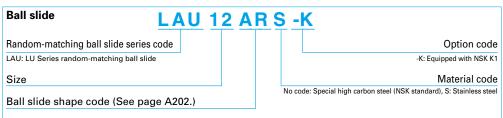
^{*)} Standard ball slide length of LU05TL, LU07AL, LU09AL and LU09TL does not include the thickness of the end seal (1.5 mm). However, it includes the height of the screw head for end cap installation (Included length – LU05, 0.8 mm; LU07, no projection; LU09, 1 mm)

Note: Ball slide length equipped with NSK K1 =

(Standard ball slide length) + (Thickness of NSK K1, V₁ × Number of NSK K1) +


(Thickness of the protective cover $V_2 \times 2$)

8. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

Random-matching rail series code L1U: LU Series random-matching rail Size	Preload code (See page A204.) T: Fine clearance
Size	A aguragu ag day BC
	Accuracy code: PC
Pail langth (mm)	PC: Normal grade is only available.
Rail length (mm)	Design serial number
Rail shape code	Added to the reference number.
L: Standard. R: LU09 and LU12 standard, equipped with ball retainer.	*Butting rail specification
S: LU09 and LU12 with ball retainer and mounting holes for M3 T: LU09 and LU12 without ball retainer and mounting holes for M3	N: Non-butting. L: Butting specification
Material/surface treatment code (See Table 11.) *Please con	sult with NSK for butting rail specification.

The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only the preload code of "Fine clearance T" is available (refer to page A204).

Table 11 Material/surface treatment code

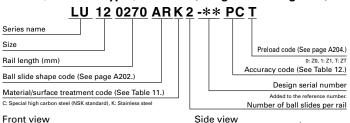
Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special

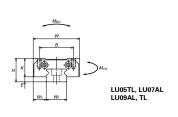
Table 12 Accuracy code

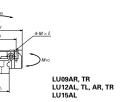
Accuracy	Standard (Without NSK K1)	With NSK K1
Super precision grade	P4	K4
High precision grade	P5	K5
Precision grade	P6	K6
Normal grade	PN	KN
Normal grade (random-matching type)	PC	KC

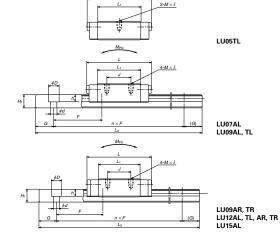
Note: Refer to page A38 for NSK K1 lubrication unit.

A207 A208


9. Dimensions


LU-AL (Standard type / Standard, LU15 is equipped with ball retainer)


LU-TL (Standard type / Standard, Large mounting hole)

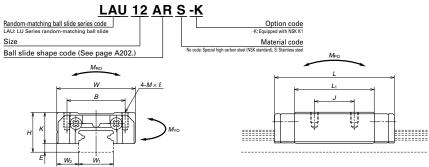

LU-AR (Standard type / Standard, With ball retainer)

LU-TR (Standard type / Standard, Large mounting hole, with ball retainer)

	Assembly				Ball slide								
Model No.	Height			Width	Length		Mour	nting hole			Width	Height	Pitch
Wiodel IVo.	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	$W_{\scriptscriptstyle 1}$	$H_{\scriptscriptstyle 1}$	F
LU05TL	6	1	3.5	12	18	8	_	M2×0.4×1.5	12	5	5	3.2	15
LU07AL	8	1.5	5	17	20.4	12	8	M2×0.4×2.4	13.6	6.5	7	4.7	15
LU09AL LU09TL	10	2.2	5.5	20	26.8	15	13 10	M2×0.4×2.5 M3×0.5×3	18	7.8	9	5.5	20
LU09AR LU09TR	10	2.2	5.5	20	30	15	13 10	M2×0.4×2.5 M3×0.5×3	20	7.8	9	5.5	20
LU12AL LU12TL	13	3	7.5	27	34	20	15	M2.5×0.45×3 M3×0.5×3.5	21.8	10	12	7.5	25
LU12AR LU12TR	13	3	7.5	27	35.2	20	15	M2.5×0.45×3 M3×0.5×3.5	21.8	10	12	7.5	25
LU15AL	16	4	8.5	32	43.6	25	20	M3×0.5×4	27	12	15	9.5	40

Notes 1) LU05TL, LU07AL, LU09TL, LU09AR, LU09TR, LU12AR and LU12TR come in stainless steel only.

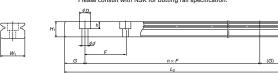
- 2) Ball slide of LU05TL has only two mounting tap holes in the center.
- 3) End seals of LU05TL, LU07AL, LU09AL and LU09TL are available on request.


Reference number for ball slide of random-matching type

Random matching with retainer: LU09 - 12 are AR/TR, LU15 is AL.

LAU-AR (With ball retainer)

LAU-TR (Large mounting hole, with ball retainer)


LAU-AL (LU15 is equipped with ball retainer)

Reference number for rail of random-matching type

<u> </u>	N - * * FC I
Random-matching rail series code	Preload code (See page A204.)
L1U: LU Series random-matching rail Size	T: Fine clearance Accuracy code: PC
Rail length (mm)	PC: Normal grade is only available.
Rail shape code	Design serial number
L: Standard. R:LU09 and LU12 standard equipped with ball retainer. S: LU09 and LU12 with ball retainer and mounting holes for M3 T: LU09 and LU12 without ball retainer and mounting holes for M3	Added to the reference number. *Butting rail specification
Material/surface treatment code (See Table 11.)	N: Non-butting. L: Butting specification

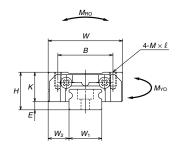
*Please consult with NSK for butting rail specification.

Unit: mm

Rail						Basic loa	nd rating				We	ight
Mounting bolt	G	Max. length	⁵Dyn	amic	Static		Static	moment	(N·m)		Ball	Rail
hole		L_{0max} .	[50km]	[100km]	C 0	M _{RO}	М	PO	М	YO	slide	
$d \times D \times h$	(reference)	() for stainless	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
2.3×3.3×1.5	5	— (210)	545	435	740	1.93	1.22	8.85	1.22	8.85	4	11
2.4×4.2×2.3	5	— (375)	1 090	865	1 370	4.90	2.66	18.6	2.66	18.6	10	23
2.6×4.5×3 3.5×6×4.5	7.5	1 200 (600)	1 760	1 400	2 220	10.2	6.10	38.5	6.10	38.5	17	35
2.6×4.5×3 3.5×6×4.5	7.5	— (600)	1 490	1 180	2 150	9.9	6.10	41.0	6.10	41.0	19	35
3×5.5×3.5 3.5×6×4.5	10	1 800 (800)	2 830	2 250	3 500	21.1	11.4	78.5	11.4	78.5	38	65
3×5.5×3.5 3.5×6×4.5	10	— (800)	2 830	2 250	3 500	21.1	11.4	81.5	11.4	81.5	38	65
3.5×6×4.5	15	2 000 (1 000)	5 550	4 400	6 600	49.5	25.6	193	25.6	193	70	105

⁴⁾ To fix rail of LU05TL, use M2 \times 0.4 cross-recessed pan head machine screw for precision instrument.

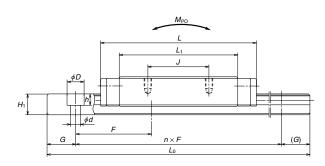
(JCIS 10-70 No. 0 pan head machine screw No.1.)


(JCIS: Japanese Camera Industrial Standard.)

5) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

LU-BL (High-load type / Long) LU-UL (High-load type / Long, large mounting hole)

LU 12 0270 BL K 2 -** P5 1 Series name Size Preload code (See page A204.) Rail length (mm) Accuracy code (See Table 12.) Ball slide shape code (See page A202.) Design serial number Material/surface treatment code (See Table 11.) Added to the reference number. C: Special high carbon steel (NSK standard), K: Stainless steel Number of ball slides per rail


Front view

	А	ssembl	У				Ва	ıll slide					
Model No.	Height			Width	Length		Mour	nting hole			Width	Height	Pitch
Wiodel No.	Н	E	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	<i>L</i> ₁	К	W_1	H_1	F
LU09BL	10	2.2	5.5	20	41	15	16	M2×0.4×2.5 M3×0.5×3	31.2	7.8	9	5.5	20
LU12BL LU12UL	13	3	7.5	27	47.5	20	20	M2.5×0.45×3 M3×0.5×3.5	35.3	10	12	7.5	25
LU15BL	16	4	8.5	32	61	25	25	M3×0.5×4	44.4	12	15	9.5	40

Notes 1) LU09UL is available only in stainless steel. 2) LU15BL is equipped with ball retainer.

Unit: mm

Rail					E	Basic loa	ad rating				We	ight
Mounting bolt	G	Max. length	3)Dyn	amic	Static		Static	momen	t (N·m)		Ball	Rail
hole		L_{0max} .	[50km]	[100km]	C 0	M_{RO}	М	PO	М	YO	slide	
$d \times D \times h$	(reference)	() for stainless	C ₅₀ (N)	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
2.6×4.5×3	7.5	1 200	2 600	2 070	3 900	17.9	17.2	98.0	17.2	98.0	29	35
3.5×6×4.5	7.5	(600)	2 000	2 0 7 0	3 900	17.9	17.2	96.0	17.2	96.0	29	35
3×5.5×3.5	10	1 800	4 000	3 150	5 700	34.5	28.3	169	28.3	169	59	65
3.5×6×4.5	10	(800)	4 000	3 150	5 150 5 700	5 700 34.5	20.0	100	20.3	109	33	
3.5×6×4.5	15	2 000 (1 000)	8 100	6 400	11 300	84.5	69.5	435	69.5	435	107	105

3) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2) C_{∞} , the basic dynamic load rating for 50 km rated fatigue life C_{∞} , the basic dynamic load rating for 100 km rated fatigue life

A-5-2.3 PE Series (Miniature wide type)

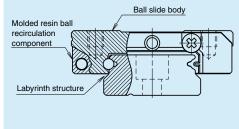


Fig. 1

1. Features

(1) Ideal for use of single rail

The PE Series linear guides are miniature and wide rail type. Thanks to the wide rail, load carrying capacity is high against moment load from rolling direction.

(2) Motion performance

Newly designed recirculation component facilitates smooth circulation of steel balls.

(3) Lightweight

The ball slide is fabricated to be approximately 20% lighter than that of the LE Series by the application of resin to a part of its body.

(4) Reduced noise intensity

Resin components applied in ball circulating circuits reduce collision noise between steel balls and the inner wall of circulating circuits.

(5) Low dust generation

The structure is designed to prevent dust generation.

(6) Excellent dust-proofing

It is designed to minimize the clearance between the side of rails and the inner walls of the slide, and prevent foreign matters from entering the ball slide.

(7) High corrosion resistance

High corrosion-resistant martensite stainless steel incorporated as a standard feature provides excellent resistance to corrosion.

(8) Easy to handle

Safety design includes a retainer that prevents steel balls from dropping out of the ball slide even when the slide is removed from the rail.

(9) Long-term maintenance-free

Equipped with NSK K1 Lubrication Unit realizes long-term, maintenance-free use.

(10) Fast delivery

Lineup of random-matching rails and ball slides in the series supports random matching and facilitates fast delivery. (PE09 to PE15)

2. Ball slide shape

Ball slide Model	Shape/installation method	Type (Upper row, Rating: L Standard type Standard	ower row, Ball slide length) High-load type Long	- - -
AR TR UR BR		AR, TR	UR, BR	Series

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1

Unit: um

					Orne. prii			
	Preload	Preloaded assembly type (not random matching) Random-matching ty						
Rail length (mm) over or less	Super precision High precision Precision grade Normal grade PS P6 PN		Normal grade PC					
- 50	2	2	4.5	6	6			
50 – 80	2	3	5	6	6			
80 – 125	2	3.5	5.5	6.5	6.5			
125 – 200	2	4	6	7	7			
200 – 250	2.5	5	7	8	8			
250 – 315	2.5	5	8	9	9			
315 – 400	3	6	9	11	11			
400 - 500	3	6	10	12	12			
500 - 630	3.5	7	12	14	14			
630 - 800	4.5	8	14	16	16			
800 – 1 000	5	9	16	18	18			
1 000 – 1 250	6	10	17	20	20			

A213 A214

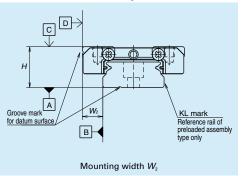
(2) Accuracy standard

The preloaded assembly type has four accuracy grades; Super precision P4, High precision P5, Precision P6, and Normal PN grades, while the random-matching type has Normal grade PC only.

Table 2 shows the accuracy standard for the preloaded assembly type while Table 3 shows the accuracy standard for the random-matching types.

· Tolerance of preloaded assembly

Table 2 Unit: μm					
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 5	±15 7	±20 15	±40 25	
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 7	±20 10	±30 20	±50 30	
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	\$	Shown in Table 1 a	ınd Fig. 2		


• Tolerance of random-matching type: Normal grade PC

Tabl	e 3 Unit: μm
Model No. Characteristics	PE09, 12 and 15
Mounting height <i>H</i>	±20
Variation of mounting height H	15① 30②
Mounting width W_2 or W_3	±20
Variation of mounting width W_2 or W_3	20
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 2

Note: ① Variation on the same rail ② Variation on multiple rails

(3) Assembled accuracy

A215

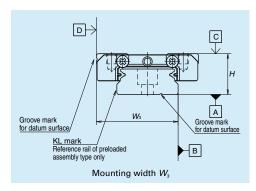


Fig. 2

NSK

(4) Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0, along with random-matching type of Fine clearance ZT. Values for preload and rigidity of the preloaded assembly types are shown in **Table 4**. Rigidities are for the median of the preload range.

Preload and rigidity of preloaded assembly

Table 4					
		Preload	Rigidity		
	Model No.	(N)	(N/µm)		
		Slight preload (Z1)	Slight preload (Z1)		
96	PE05AR	0 – 28	45		
tyk	PE07TR	0 – 29	46		
lard	PE09TR	0 – 37	61		
Standard type	PE12AR	0 – 40	63		
St	PE15AR	0 – 49	66		
ad	PE09UR	0 – 54	86		
High-load type	PE12BR	0 – 59	97		
Hig	PE15BR	0 – 75	114		

Note: Clearance of Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

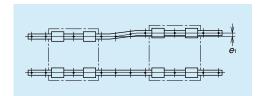
· Clearance of random-matching type

	Tab	le 5 Unit: μm
	Model No.	Fine clearance ZT
ard	PE09TR	
nda	PE12AR	3 or less
Standard type	PE15AR	
ad	PE09UR	
High-load type	PE12BR	5 or less
Ξ̈́	PE15BR	

4. Maximum rail length

Table 6 shows the limitations of rail length.

However, the limitations vary by accuracy grades.


Table 6 Length limitations of rails

	_				Unit	: mm
Series	Size					
Series	Material	05	07	09	12	15
PE	Stainless steel	150	600	800	1 000	1 200

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

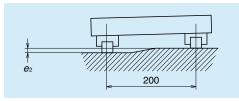
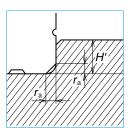



Fig. 3

Fig. 4

	Table 7 Unit: μm						
Value	Dualaad						
value	Preload	PE05	PE07	PE09	PE12	PE15	
Permissible values of	Z0, ZT	10	12	15	18	22	
parallelism in two rails e_1	Z1	5	7	10	13	17	
Permissible values of	Z0, ZT	50 μm/200 mm					
parallelism (height) in two rails e	Z1	35 µm/200 mm					

(2) Shoulder height of the mounting surface and corner radius r

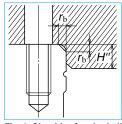


Fig. 5 Shoulder for the rail datum surface

Fig. 6 Shoulder for the ball slide datum surface

	Tab	le 8	Uı	nit: mm	
NA - N -	Corner radius	(maximum)	Shoulder height		
iouei ivo.	ra	r _b	Η'	H"*	
PE05	0.2	0.2	1.1	2.5	
PE07	0.2	0.3	1.7	3	
PE09	0.3	0.3	3.5	2.8	
PE12	0.3	0.3	3.5	3.2	
PE15	0.3	0.5	3.5	4.1	
	PE07 PE09 PE12		ra rb PE05 0.2 0.2 PE07 0.2 0.3 PE09 0.3 0.3 PE12 0.3 0.3	PE05 0.2 0.2 1.1 PE07 0.2 0.3 1.7 PE09 0.3 0.3 3.5 PE12 0.3 0.3 3.5	

^{*)} H" is the minimum recommended value based on the dimension T in dimension table.

6. Lubrication accessory

Model of PE15 can select drive-in type grease fitting as an option.

For the model of PE05 to PE12, apply grease directly to the ball grooves of rail using a point nozzle.

Drive-in type

NSK

7. Dust-proof components

(1) Standard specification

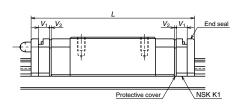

End seal: Provided to both ends of the ball slide as a standard feature. Seal friction per standard ball slide is shown in **Table 9**.

Table 9 Seal friction per ball slide (maximum value)

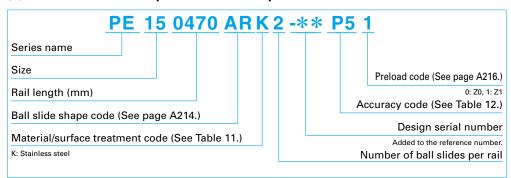
					Unit: N
Series Size	05	07	09	12	15
PE	0.4	0.4	0.8	1	1.2

(2) NSK K1[™] lubrication unit

Table 10 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

			Table 10			Unit: mm
Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length equipped with two NSK K1 <i>L</i>	Thickness of NSK K1, V ₁	Thickness of protective cover, V_2
PE05	Standard	AR	24.1	28.9	2	0.4
PE07	Standard	TR	31.1	37.1	2.5	0.5
PE09	Standard	TR	39.8	46.8	3	0.5
PEU9	Long	UR	51.2	58.2	3	0.5
PE12	Standard	AR	45	53	2.5	0.5
PEIZ	Long	BR	60	68	3.5	0.5
PE15	Standard	AR	56.6	66.2	4	0.8
FE15	Long	BR	76	85.6	4	0.8

Note: Ball slide length equipped with NSK K1 =


(Standard ball slide length) + (Thickness of NSK K1, $V_1 \times$ Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

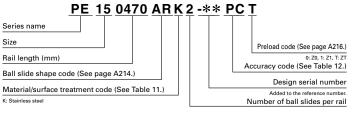
(1) Reference number for preloaded assembly

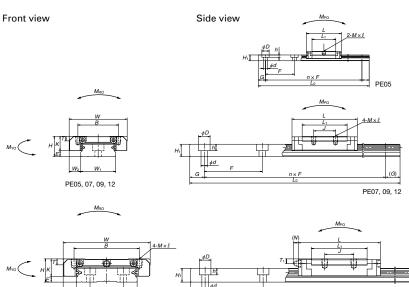
(2) Reference number for random-matching type

P1E 15 0470 P K N	-** <u>PC T</u>
Random-matching rail series code	Preload code (See page A216.)
P1E: PE Series random-matching rail	T: Fine clearance
Size	Accuracy code: PC
Rail length (mm)	PC: Normal grade is only available. Design serial number
Rail shape code	Added to the reference number.
R: PE09, 12. P: PE15	*Butting rail specification
Material/surface treatment code (See Table 11.)	N: Non-butting. L: Butting specification
*Ple	ease consult with NSK for butting rail specification.

Reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only preload code of "Fine clearance T" is available (refer to page A216).

Table 11 Material/surface treatment code

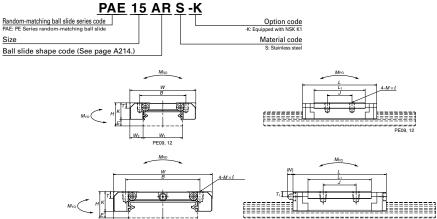

Code	Description			
K	Stainless steel			
Н	Stainless steel with surface treatment			
Z	Other, special			


Table 12 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
Normal grade (random-matching type)	PC	KC	FC

Note: Refer to pages A38 and A61 for NSK K1 lubrication unit.

9. Dimensions PE-AR, TR (Standard type / Standard) PE-UR, BR (High-load type / Long)


	Assembly Ball slide															
Model No.	Height		Width	Length		Mour	nting hole				Oil	hole		Width	Height	
WIOGCI IVO.		_									_					
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L_1	K	T	Hole size	<i>T</i> 1	N	W_1	H_1
PE05AR	6.5	1.4	3.5	17	24.1	13	_	M2.5×0.45×1.5	16.4	5.1	2.5	\$ 0.9	1.3	_	10	4
PE07TR	9	2	5.5	25	31.1	19	10	M3×0.5×2.8	20.8	7	3	ø 1.9	1.9	_	14	5.2
PE09TR	12	4	6	30	39.8	21	12	M3×0.5×3	26.6	8	2.8	φ 2	2.3		18	7.5
PE09UR		· ·			51.2	23	24	1110/1010/10	38		0	7 -				7.0
PE12AR	14	4	8	40	45	28	15	M3×0.5×4	31	10	3.2	φ 2.5	2.7	_	24	8.5
PE12BR			Ŭ	10	60	20	28	1410/(0.0/(1	46		0.2	Ψ 2.0	2,			0.0
PE15AR	16	4	9	60	56.6	45	20	M4×0.7×4.5	38.4	12	4.1	φ 3	3.2	(3.3)	42	9.5
PE15BR	13	7	J	00	76	70	35	101-70.774.0	57.8	12	7.1	Ψ 3	0.2	(0.0)	72	0.5

PE15

Notes: 1) Ball slide of PE05AR has only two mounting tap holes in the center.

PE15

Reference number for ball slide of random-matching type

Reference number for rail of random-matching type

P1E15 0470 PKN -** PC T Random-matching rail series code Preload code (See page A216.) P1E: PE Series random-matching rai T: Fine clearance Accuracy code: PC PC: Normal grade is only available. Rail length (mm) Design serial number Added to the reference number. Rail shape code *Butting rail specification R: PE09, 12. P: PE15 N: Non-butting. L: Butting specification Material/surface treatment code (See Table 11.) *Please consult with NSK for butting rail specification

Unit: mm

Rail			Basic load rating							We	ight			
	Pitch	Mounting bolt	G	Maximum	2)Dyn	amic	Static		Static moment (N·m)				Ball	Rail
		hole		length	[50km]	[100km]	C 0	M _{RO}	М	PO	М	YO	slide	
B_2	F	$d \times D \times h$	(reference)	L_{0max}	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
_	20	3×5×1.6	7.5	150	690	550	1 160	6.00	2.75	17.5	2.75	17.5	7	34
	30	3.5×6×3.2	10	600	1 580	1 260	2 350	16.7	7.20	46.0	7.20	46.0	19	55
	30	3.5×6×4.5	10	800	3 000	2 390	4 500	36.5	17.3	113	17.3	113	35	95
	30	3.3/0/4.3	10	000	4 000	3 150	6 700	54.5	37.5	210	37.5	210	50	33
	40	4.5×8×4.5	15	1 000	4 350	3 450	6 350	70.5	29.3	180	29.3	180	66	140
	40	4.57674.5	15	1 000	5 800	4 600	9 550	106	63.5	345	63.5	345	98	140
23	40	4.5×8×4.5	15	1 200	7 600	6 050	10 400	207	59.0	370	59.0	370	140	275
23	40	4.5/684.5	10	1 200	10 300	8 200	16 000	320	135	740	135	740	211	2/5

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2) $C_{\rm so}$, the basic dynamic load rating for 50 km rated fatigue life $C_{\rm 100}$, the basic dynamic load rating for 100 km rated fatigue life

³⁾ To fix rail of PE05AR, use M2.5 \times 0.45 cross-recessed pan head machine screw for precision instrument. (JCIS 10-70 No. 0 pan head machine screw No.3.)

⁽JCIS: Japanese Camera Industrial Standard.)

A-5-2.4 LE Series (Miniature wide type)

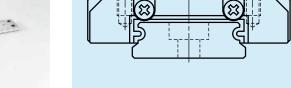


Fig. 1 LE Series

1. Features

(1) Ideal for use of single rail

The LE Series linear guides are miniature and wide rail type. Thanks to the wide rail, load carrying capacity is high against moment load from rolling direction.

(2) Equal load carrying capacity in vertical and lateral directions

Contact angle is set at 45 degrees, equally dispersing the load from vertical and lateral directions. This also provides equal rigidity in the two directions.

(3) Guides are super-thin.

Super-thin guides owe their design to the single ball groove on right and left sides (Gothic arch).

(4) High accuracy

Fixing the master rollers to the ball grooves is easy thanks to the Groove arch groove. This makes easy and accurate measuring of ball grooves.

(5) Stainless steel is standard.

Rails and ball slides are made of martensitic stainless steel.

(6) Ball retainer is available in some series.

Some series come with a ball retainer (ball slide shape: AR and TR). Balls are retained in the retainer and do not fall out when a ball slide is withdrawn from the rail (random-maching type ball slides come with a ball retainer).

(7) Fast delivery

Random matching of rails and ball slides are available. (LE09 to LE15)

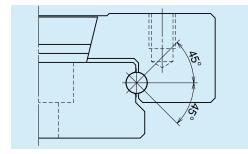


Fig. 2 Balls in contact

2. Ball slide shape

Ball slide			v, Rating: Lower row,	
	Shape/installation method	Medium-load type	Standard type	High-load type
Model	•	Short	Standard	Long
AL TL		CL, SL	AL, TL, AR, TR	BL, UL
AR TR BL UL CL SL		£1.	<u>L</u> 1	L ₁

Specification	Detail		Туре	
Mounting hole	Normal	CL*	AL, AR	BL*
Mounting hole	Large	SL*	TL, TR	UL*
Dell retainer	Without	CL, SL	AL, TL	BL, UL
Ball retainer	With	_	AR, TR	_

^{*} Only applicable to LE09

3. Accuracy and preload

(1) Running parallelism of ball slide

	Unit: µm			
	Random-matching type			
Rail length (mm)	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC
- 50	2	4.5	6	6
50 – 80	3	5	6	6
80 – 125	3.5	5.5	6.5	6.5
125 – 200	4	6	7	7
200 - 250	5	7	8	8

125 – 200	4	6	7	7
200 – 250	5	7	8	8
250 – 315	5	8	9	9
315 – 400	6	9	11	11
400 – 500	6	10	12	12
500 - 630	7	12	14	14
630 - 800	8	14	16	16
800 – 1 000	9	16	18	18
1 000 - 1 250	10	17	20	20

A223 A224

(2) Accuracy standard

The preloaded assembly type has three accuracy grades; High precision P5, Precision P6, and Normal PN grades, while the random-matching type has Normal grade PC only.

Table 2 shows the accuracy standard for the preloaded assembly type while **Table 3** shows the accuracy standard for the random-matching type.

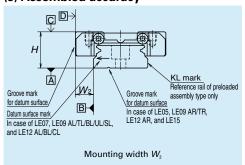

· Tolerance of preloaded assembly

	Table 2	Table 2			
Accuracy grade Characteristics	High precision P5	Precision grade P6	Normal grade PN		
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±15 7	±20 15	±40 25		
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±20 10	±30 20	±50 30		
Running parallelism of surface C to surface A Running parallelism of surface D to surface B					

• Tolerance of random-matching type: Normal grade PC

Table	e 3 Unit: μm
Accuracy grade Characteristics	LE09, 12, 15
Mounting height H	±20
Variation of mounting height H	40
Mounting width W₂ or W₃	±20
Variation of mounting width W_2 or W_3	40
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Refer to Table 1 and Fig. 3

(3) Assembled accuracy

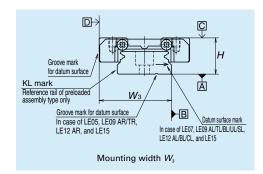


Fig. 3

NSK

(4) Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0 for the preloaded assembly type, along with Fine clearance ZT for the random-matching type. Values for preload and rigidity of the preloaded assembly type are shown in **Table 4**. Rigidities are for the median of the preload range.

Preload and rigidity of preloaded assembly

Table 4

		Preload	Rigidity	
	Model No.	(N)	(N/µm)	
	Model No.	Slight preload	Slight preload	
		(Z1)	(Z1)	
be	LE05 AL	0 – 23	36	
Standard type	LE07 TL	0 – 29	46	
larc	LE09 AL, TL, AR, TR	0 – 37	61	
anc	LE12 AL, AR	0 – 40	63	
St	LE15 AL, AR	0 – 49	66	
þ	LE05 CL	0 – 18	29	
Medium-load type	LE07 SL	0 – 16	28	
ium- type	LE09 CL, SL	0 – 21	33	
edi	LE12 CL	0 – 23	36	
Σ	LE15 CL	0 – 29	44	
р	LE07 UL	0 – 43	71	
-loa pe	LE09 BL, UL	0 – 54	86	
High-load type	LE12 BL	0 – 59	97	
Ī	LE15 BL	0 – 75	114	

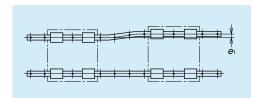
Note: The clearance of Fine clearance Z0 is 0 to 3 μm . Therefore, preload is zero. However, the clearance of the Z0 of PN grade is 3 to 10 μm .

Clearance of random-matching type

Та	able 5 Unit: μm
Model No.	Fine clearance ZT
LE09	
LE12	0 – 15
LE15	

4. Maximum rail length

Table 6 shows the limitations of rail length. The limitations vary by accuracy grades.


Table 6 Length limitation of rails

	able o Length		ution	0		: mm
Series	Size					
	Material	05	07	09	12	15
LE	Stainless steel	150	600	800	1 000	1 200

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

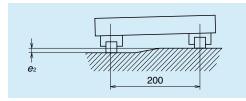
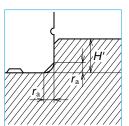



Fig. 4

Fig. 5

		Та	ıble 7			Unit: µm		
Value	Dualaad			Model No.				
value	Preload	LE05 LE07 LE09 LE12 LE1						
Permissible values of	Z0, ZT	10	12	15	18	22		
parallelism in two rails e_1	Z1	5	7	10	13	17		
Permissible values of	Z0, ZT		Ę	50 μm/200 mn	n			
parallelism (height) in two rails e	Z1		3	35 um/200 mn	n			

(2) Shoulder height of the mounting surface and corner radius r

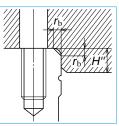


Fig. 6 Shoulder for the Fig. 7 Shoulder for the ball rail datum surface slide datum surface

		Table 8		Unit: mm				
lodel No.	Corner radius	s (maximum)	Shoulder height					
nouel No.	r _a	r _b	H'	H"				
LE05	0.2	0.2	1.1	2				
LE07	0.2	0.3	1.7	3				
LE09	0.3	0.3	3.5	3				
LE12	0.3	0.3	3.5	4				
LE15	0.3	0.5	3.5	5				

6. Lubrication accessories

Model of LE15AR can select drive-in type grease fitting as option.

There is no standard grease fitting for LE05 to LE12.

For the models of LE05 to LE15 except for LE15AR, apply grease directly to the ball grooves of rail, using a point nozzle.

Drive-in type

7. Dust-proof components

(1) Standard specification

End seal: Provided to both ends of the ball slide as a standard feature.

• Seal friction per standard ball slide is shown in Table 9.

	•	•			Unit: N
Series Size	05	07	09	12	15
LE	0.4	0.4	0.8	1.0	1.2

Table 9 Seal friction per ball slide (maximum value)

(2) NSK K1[™] lubrication unit

The installed dimensions of NSK K1 lubrication unit are shown in Table 10.

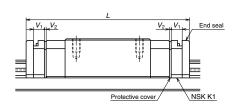
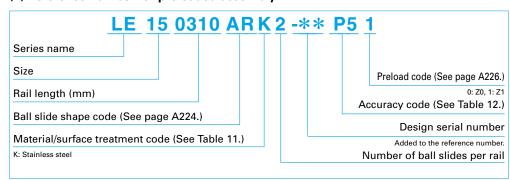


Table 10

Unit: mm

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V_2	
	Standard	TL	31	37			
LE07	Long	UL	42	48	2.5	0.5	
	Short	SL	22.4	28.4			
	Standard	AL, TL	39	46			
1.500	Standard	AR, TR	39.8	46.8		٥٦	
LE09	Long	BL, UL	50.4	57.4	3.0	0.5	
	Short	CL, SL	26.4	33.4			
	Standard	AL	44	52			
LE12	Standard	AR	45	53	3.5	0.5	
LEIZ	Long	BL	59	67	3.5	0.5	
	Short	CL	30.5	38.5			
	Standard	AL	55.0	64.6			
1.515	Standard	AR	56.6	66.2	4.0	0.0	
LE15	Long	BL	74.4	84	4.0	0.8	
	Short	CL	41.4	51			

Note: Ball slide length equipped with NSK K1 =


(Standard ball slide length) + (Thickness of NSK K1, V₁ × Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

L1E 15 0310 R K N	-** PC T
Random-matching rail series code	Preload code (See page A226.)
L1E: LE Series random-matching rail	T: Fine clearance
Size	Accuracy code: PC
Dail longth (name)	PC: Normal grade is only available.
Rail length (mm)	Design serial number
Rail shape code	Added to the reference number.
R: LE09 and LE12 standard, equipped with ball retainer	*Butting rail specification
Material/surface treatment code (See Table 11.)	N: Non-butting. L: Butting specification
*Ple	ase consult with NSK for butting rail specification.

The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only the preload code of "Fine clearance T" is available (refer to page A226).

Table 11 Material/surface treatment code

Code	Description
K	Stainless steel
Н	Stainless steel with surface treatment
Z	Other, special

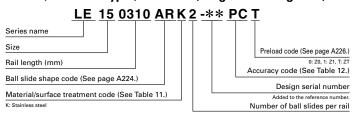
Table 12 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1
High precision grade	P5	K5
Precision grade	P6	K6
Normal grade	PN	KN
Normal grade (random-matching type)	PC	KC

Note: Refer to page A38 for NSK K1 lubrication unit.

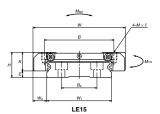
A229 A230

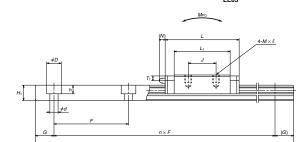
9. Dimensions


LE-AL (Standard type / Standard)

LE-TL (Standard type / Standard, large mounting hole)

LE-AR (Standard type / Standard, with ball retainer)


LE-TR (Standard type / Standard, large mounting hole, with ball retainer)


Side view

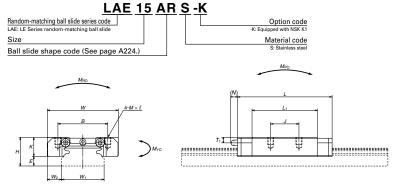
Front view

LE05, 07, 09, 12

LE07, 09, 12, 15

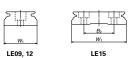
	А	ssembl	У				Bal	l slide			Grea	se fit	ting				
Model No.	Height			Width	Length	Mounting hole							Width	Height		Pitch	
Model No.											Hole						
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	size	T_1	Ν	W_1	H_1	B_2	F
LE05AL	6.5	1.4	3.5	17	24	13	1	M2.5×0.45×2	17	5.1	_	-	_	10	4	-	20
LE07TL	9	2	5.5	25	31	19	10	M3×0.5×3	21.2	7	_	_	_	14	5.2	_	30
LE09AL LE09TL	12	4	6	30	39	21	12	M2.6×0.45×3 M3×0.5×3	27.6	8	_	_	_	18	7.5	_	30
LE09AR LE09TR	12	4	6	30	39.8	21	12	M2.6×0.45×3 M3×0.5×3	27.6	8	_		_	18	7.5		30
LE12AL LE12AR	14	4	8	40	44 45	28	15	M3×0.5×4	31	10	_	_	_	24	8.5	_	40
LE15AL LE15AR	16	4	9	60	55 56.6	45	20	M4×0.7×4.5	38.4	12	— φ3	— 3.2	— 3	42	9.5	23	40

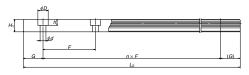
Notes: 1) Ball slide of LE05 has only two mounting tap holes.


NSK

Reference number for ball slide of random-matching type

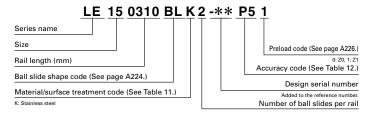
Random matching with retainer: LAE09AR/TR, LAE12AR, LAE15AR


LAE-AR (With ball retainer)

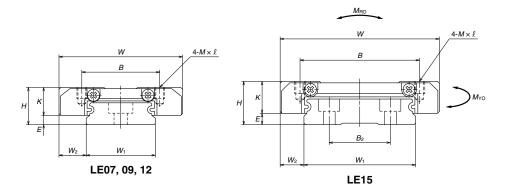

LAE-TR (Large mounting hole with ball retainer)

Reference number for rail of random-matching type

	5 7.
Rail L1E15 0310 R K	(N-** PCT
Random-matching rail series code LTE: LE Series random-matching rail Size	Preload code (See page A226.) T: Fine clearance Accuracy code: PC
Rail length (mm)	PC: Normal grade is only available. Design serial number
Rail shape code R: LE09 and LE12 standard equipped with ball retainer	Added to the reference number. *Butting rail specification
Material/surface treatment code (See Table 11.)	N: Non-butting. L: Butting specification

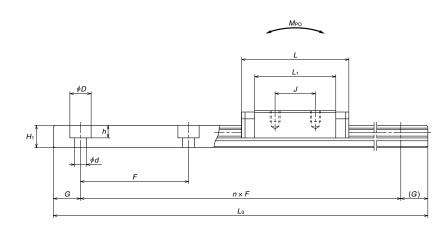


Unit: mm


Rail					Ва	sic load	rating				We	ight
Mounting bolt	G	Max.	2)Dyn	amic	Static		Static	momen	t (N·m)		Ball	Rail
hole		length	[50km]	[100km]	C_0	M_{RO}	М	PO	М	YO	slide	
$d \times D \times h$	(reference)	$L_{\scriptscriptstyle Omax}$	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
3×5×1.6	7.5	150	725	575	1 110	5.65	2.58	16.9	2.58	16.9	11	34
3.5×6×3.2	10	600	1 580	1 260	2 350	16.7	7.20	46.0	7.20	46.0	25	55
3.5×6×4.5	10	800	3 000	2 400	4 500	36.5	17.3	110	17.3	110	40	95
3.5×6×4.5	10	800	3 000	2 400	4 500	36.5	17.3	113	17.3	113	40	95
4.5×8×4.5	15	1 000	4 350	3 450	6 350	70.5	29.3	175 180	29.3	175 180	75	140
4.5×8×4.5	15	1 200	7 600	6 050	10 400	207	59.0	360 370	59.0	360 370	150	275

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2) $C_{\rm init}$ the basic dynamic load rating for 50 km rated fatigue life $C_{\rm init}$, the basic dynamic load rating for 100 km rated fatigue life 3) For fixing a rail of LEOSAL, use M2.5 × 0.45 cross-recessed pan head machine screw for precision instruments. (JCIS 10-70: No.0 pan head machine screw No.3) (JCIS: Japanese Camera Industrial Standard)

LE-BL (High-load type / Long) LE-UL (High-load type / Long, large mounting hole)

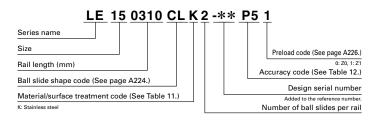


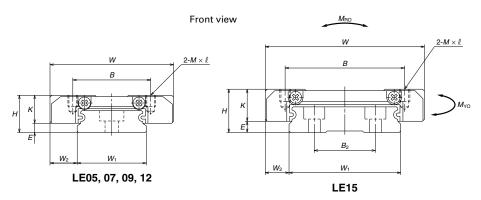
Front view

	А	ssemb	ly		Ball slide									
Model No	Height			Width	Length	Mounting hole					Width	Height		Pitch
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	Κ	W_1	H_1	B_2	F
LE07UL	9	2	5.5	25	42	19	19	M3×0.5×3	32.2	7	14	5.2	_	30
LE09BL LE09UL	12	4	6	30	50.4	23	24	M2.6×0.45×3 M3×0.5×3	39	8	18	7.5	_	30
LE12BL	14	4	8	40	59	28	28	M3×0.5×4	46	10	24	8.5	_	40
LE15BL	16	4	9	60	74.4	45	35	M4×0.7×4.5	57.8	12	42	9.5	23	40

Side view

Unit: mm

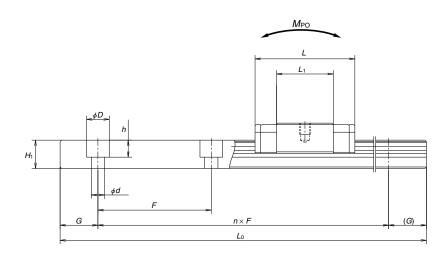

Rail					Ва	sic load	rating				We	ight
Mounting bolt	G	Max.	¹)Dyn	amic	Static		Static moment		Static moment (N·m)		Ball	Rail
hole		length	[50km]	[100km]	C 0	M _{RO}	М	PO	М	YO	slide	
$d \times D \times h$	(reference)	$L_{\scriptscriptstyle m 0max}$	C ₅₀ (N)	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
3.5×6×3.2	10	600	2 180	1 730	3 700	26.4	17.3	94.5	17.3	94.5	39	55
3.5×6×4.5	10	800	4 000	3 150	6 700	54.5	37.5	206	37.5	206	58	95
4.5×8×4.5	15	1 000	5 800	4 600	9 550	106	63.5	340	63.5	340	115	140
4.5×8×4.5	15	1 200	10 300	8 200	16 000	320	135	725	135	725	235	275


Note: 1) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

LE-CL (Medium-load type / Short) LE-SL (Medium-load type / Short, large mounting hole)



	Assembly				Ball slide									
Model No.	Height			Width	Length	h Mounting hole			Width	Height		Pitch		
WIOGCI IVO.	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	$W_{\scriptscriptstyle 1}$	H ₁	B_2	F
LE05CL	6.5	1.4	3.5	17	20	13	_	M2.5×0.45×2	13	5.1	10	4	_	20
LE07SL	9	2	5.5	25	22.4	19	_	M3×0.5×3	12.6	7	14	5.2	_	30
LE09CL LE09SL	12	4	6	30	26.4	21	_	M2.6×0.45×3 M3×0.5×3	15	8	18	7.5	_	30
LE12CL	14	4	8	40	30.5	28	_	M3×0.5×4	17.5	10	24	8.5		40
LE15CL	16	4	9	60	41.4	45	_	M4×0.7×4.5	24.8	12	42	9.5	23	40

Notes: 1) Ball slide of CL and SL types have only two mounting tap holes in the center.

Unit: mm

Rail			Basic load rating							Weight		
Mounting bolt	G	Max.	²⁾ Dynamic Static			Static moment (N·m)					Ball	Rail
hole		length	[50km]	[100km]	C_{0}	MRO	М	PO	М	YO	slide	
$d \times D \times h$	(reference)	$L_{ m 0max}$	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
3×5×1.6	7.5	150	595	470	835	4.25	1.51	10.0	1.51	10.0	8	34
3.5×6×3.2	10	600	980	775	1 170	8.35	2.01	18.5	2.01	18.5	17	55
3.5×6×4.5	10	800	1 860	1 480	2 240	18.2	4.85	41.0	4.85	41.0	25	95
4.5×8×4.5	15	1 000	2 700	2 140	3 150	35.0	8.15	67.0	8.15	67.0	50	140
4.5×8×4.5	15	1 200	5 000	3 950	5 650	113	19.4	162	19.4	162	110	275

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2) $\,$

A235 A236

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

³⁾ For fixing a rail of LE05CL, use cross-recessed pan head machine screw for precision instruments M2.5 x 0.45 (JCIS 10-70: Japan Camera Industry Association, No.0, class 3).

A-5-2.5 Miniature LH Series

1. Features

(1) High self-aligning capability (rolling direction)

Same as the DF combination in angular contact bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, and thus reducing moment rigidity.

This increases the capacity to absorb errors in installation.

(2) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, and thus increasing load carrying capacity as well as rigidity in vertical direction.

(3) High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is generally carried by the top ball rows, where balls are contacting at two points. Because of this design, the bottom ball rows will carry load when a large impact load is applied vertically as shown in Fig. 3. This assures high resistance to the impact load.

(4) High accuracy

As showing in **Fig. 4**, fixing the master rollers to the ball grooves is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

(5) High corrosion resistance

High corrosion-resistant martensite stainless steel is incorporated as a standard feature to provides excellent corrosion resistance.

(6) Easy to handle

Safety design includes a retainer that prevents steel balls from dropping out of the ball slide even when the slide is removed from the rail. (LH10-12)

(7) Long-term maintenance-free

Superb features of NSK K1 Lubrication unit realize a long-term, maintenance-free operation.

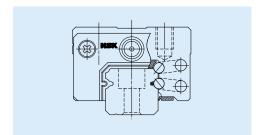


Fig. 1 LH Series



Fig. 2 Enlarged illustration of the offset Gothic arch groove

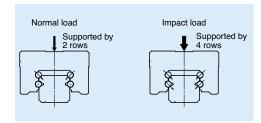


Fig. 3 When load is applied

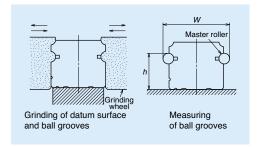
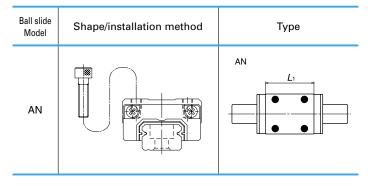



Fig. 4 Rail grinding and measuring

2. Ball slide shape

3. Accuracy and preload

(1) Running parallelism of ball slide

	Table 1							
		Preloaded	assembly					
Rail length (mm)	Super	High	Precision	Normal				
over or less	precision P4	precision P5	grade P6	grade PN				
- 50	2	2	4.5	6				
50 – 80	2	3	5	6				
80 – 125	2	2 3.5 5.5		6.5				
125 – 200	2	4	6	7				
200 – 250	2.5	5	7	8				
250 – 315	2.5	5	8	9				
315 – 400	3	6	9	11				
400 – 500	3	6	10	12				
500 – 630	3.5	7	12	14				
630 – 800	4.5	8	14	16				

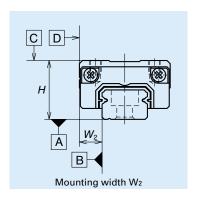
(2) Accuracy standard

The preloaded assembly has four accuracy grades; Super precision P4, High precision P5, Precision P6 and Normal PN grades.

11.36

· Tolerance of preloaded assembly

	Table 2			Unit: µm	
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±20 5	±40 7	±80 15	
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±10 ±15 ±25 ±50 5 7 10 20				
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Shown in T	able 1, Fig. 5		


A237 A238

(3) Combinations of accuracy and preload

Table 3

		Accuracy grade				
		Super precision	High precision	Precision grade	Normal grade	
Without NSK K1 lubrication unit		P4	P5	P6	PN	
With NSK K1 lubrication unit		K4	K5	K6	KN	
With NSK K1 for food and medical equipment		F4	F5	F6	FN	
Pre	Fine clearance Z0	0	0	0	0	
Preload	Slight preload Z1	0	0	0	0	

(4) Assembled accuracy

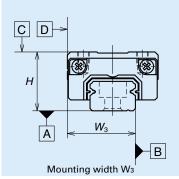


Fig. 5

(5) Preload and rigidity

We offer two levels of preload: Slight preload Z1 and Fine clearance Z0.

Preload and rigidity of preloaded assembly

Table 4

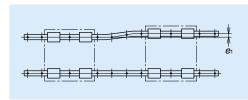
			Rigidity (N/µm)			
	Model No.	Preload (N)	Vertical direction	Lateral direction		
		Slight preload Z1	Slight preload Z1	Slight preload Z1		
LH08AN		5	33	23		
LH10AN		9	44	31		
LH12AN		22	68	47		

Note: Clearance for Fine clearance Z0 is 0 to 3µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 5µm.

NSK

4. Maximum rail length

Table 5 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grades.


Table 5 Length limitations of rails

	_		Un	it: mm
Series	Size			
Series	Material	08	10	12
LH	Stainless steel	375	600	800

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

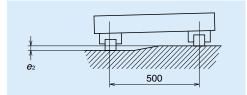
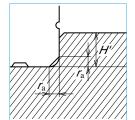



Fig. 6

Fig. 7

Table 6							
Value	Preload	Model No.					
value	Fieldau	LH08	LH10	LH12			
Permissible values of	Z0	9	12	19			
parallelism in two rails e_1	Z1	8	11	18			
Permissible values of	Z0	375µm/500		nm			
parallelism (height) in two rails e2	Z1	33	0µm/500m	nm			

(2) Shoulder height of the mounting surface and corner radius r

rail datum surface

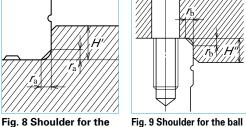


Fig. 9 Shoulder for the ball slide datum surface

		iubic /		Offic. IIIIII	
Model No.	Corner radiu	s (maximum)	Shoulder height		
woder no.	r _a	$r_{\rm b}$	H'	H"	
LH08	0.3	0.5	1.8	3	
LH10	0.3	0.5	2.1	4	
LH12	0.5	0.5	2.7	4	

Table 7

A239

Unit: mm

6. Lubrication accessory

Model of LH12 can select drive-in type grease fitting as an option.

For the models of LH08 to LH10, apply grease directly to the ball grooves of rail using a point nozzle.

Grease fitting

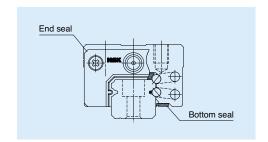
Fig. 10

7. Dust-proof components

(1) Standard specification

The LH Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends, and bottom seals at the bottom.

However, the bottom seals are not used to LH08 and 10.



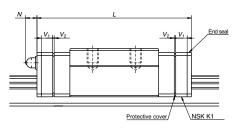

Fig. 11

Table 8 Seal friction per ball slide (maximum value)

				Unit: N
Series	Size	08	10	12
1	LH	0.5	1	1.5

(2) NSK K1[™] lubrication unit

Table 9 shows the dimension of linear guides equipped with the NSK K1 lubrication unit

Ta	L	-	•	

Unit: mm

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	thickness	cover	Protruding area of the grease fitting N
LH08	Standard	AN	24	31	3	0.5	_
LH10	Standard	AN	31	40	4	0.5	_
LH12	Standard	AN	45	54	4	0.5	(4)

Notes: 1) NSK K1 for food and medical equipment are available for LH12.

Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V₁ × Number of NSK K1) + (Thickness of the protective cover, V₂ × 2)

(3) Cap to plug the rail mounting bolt hole

Table 10 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
woder wo.	secure rail	reference No.	/case
LH12	M3	LG-CAP/M3	20

A241 A242

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

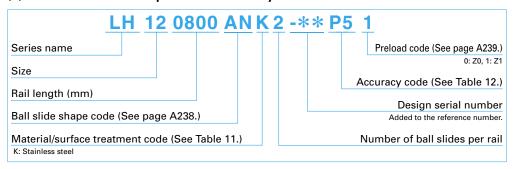
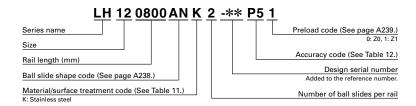
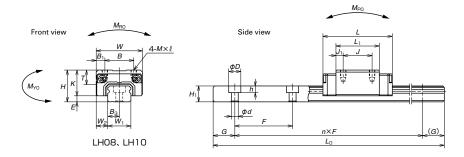


Table 11 Material/surface treatment code

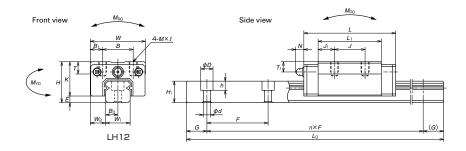
Code	Description					
K Stainless steel						
Н	Stainless steel with surface treatment					
Z	Other, special					


Table 12 Accuracy code


Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN

Note: Refer to pages A38 and A61 for NSK K1 lubrication unit.

A243 A244


9. Dimensions

	As	ssemb	ly		Ball slide											
	Height Width Length Mounting hole					Grease fitting		g	Width	Height						
Model No.																
	Н	Ε	VV_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	Τ	Hole size	<i>T</i> ₁	N	W_1	H_1
LH08AN	11	2.1	4	16	24	10	10	M2×0.4×2.5	15	8.9	_	_	_	_	8	5.5
LH10AN	13	2.4	5	20	31	13	12	M2.6×0.45×3	20.2	10.6	6	_	_	_	10	6.5
LH12AN	20	3.2	7.5	27	45	15	15	M4×0.7×5	31	16.8	6	φ 3	5	4	12	10.5

Notes: 1) LH08 does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

Unit: mm

	Rail			Basic load rating								Weight	
Pitch	Mounting					Ball	Rail						
	bolt hole		length	[50km]	[100km]	C_0	M_{RO}	M _{PO}		M _{Y□}		slide	
F	$d \times D \times h$	(reference)	$L_{ m 0max}$	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
20	2.4×4.2×2.3	7.5	375	1 240	985	2 630	7.25	4.55	32.5	3.8	27.2	13	31
25	3.5×6×3.5	10	600	2 250	1 790	4 500	16.2	10.5	73.0	8.8	61.0	26	44
40	3.5×6×4.5	15	800	5 650	4 500	11 300	47.5	41.5	254	35	214	82	88

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

C₅₀; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

A245 A246

A-5-2.6 LL Series

1. Features

(1) Super light-weight

This compact guide has a single ball groove on both right and left sides (Gothic arch). Rails and ball slides are made of stainless steel plate, therefore they are lightweight.

(2) Compact

The ball groove is made outside the ball slide to reduce overall size and to obtain high speed.

(3) High corrosion resistance

High corrosion resistant martensitic stainless steel is used as standard material.

Ball slide plate Circulator

Fig. 1 LL Series structure

2. Ball slide model

Ball slide model	Shape/installation method						
PL							

3. Accuracy and preload

(1) Accuracy standard

The LL Series has a Normal grade PN as the accuracy grade.

Table 1 shows the tolerance.

Table 1 Tolerance of Normal grade (PN)

Model No.
Characteristic

Mounting height

Running parallelism of surface D to surface B

Unit: μm

LL15

±20

Running parallelism of surface D to surface A

Running parallelism of surface D to surface B

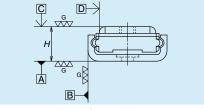


Fig. 2 Standard LL

(2) Preload

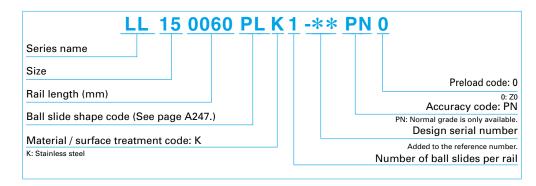
We offer clearance for the LL Series.

Table 2 shows the specification of clearance.

Table 2 Radial clearance

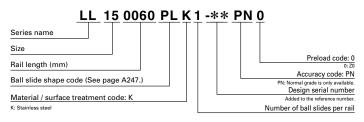
	Οπι. μπ
Model No.	Clearance
LL15	0 – 10

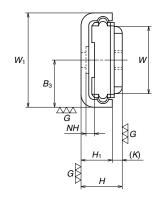
4. Maximum rail length


Table 3 Length limitation of rails
Unit: mm

					Offic	
Series	Size Material			15		
LL	Stainless steel	40	60	75	90	120

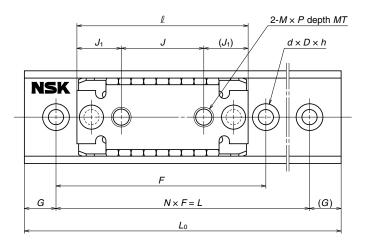
5. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.


Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

A247 A248

6. Dimensions



	Asse	mbly				Ball slide						
Model No.	Height		Width	Length		Mounting hole			Height	Pitch		
Model No.				,								
	Н	W_1	W	L	J	$M \times pitch$	MT	J_1	K	H_1	F	Ν
											30	1
											40	1
LL15	6.5	15	10.6	27	13	M3×0.5	1.2	7	1.5	5	30	2
											40	2
											50	2

Notes:

- 1) The LL Series does not have a ball retainer. Be aware that the balls fall out when the ball slide is withdrawn from the rail.
- 2) Seals are not available. Please provide the dust-prevention measures on the equipment.
- 3) Do not use an installation screw on the ball slide which exceeds the dimension MT (maximum screw-in depth) in the dimension table.
- 4) To fix the rail, use M2 \times 0.4 cross recessed machine screw for precision instrument. (JCIS10-70 No.0 pan head machine screw No.1)

(JCIS: Japanese Camera Industrial Standard)

Unit: mm

Rail	Basic load rating						Ball dia.	We	ight				
Mounting bolt				Length		5) Dynamic		Static moment		ment		Ball	Rail
hole					[50km]	[100km]	C ₀	M_{RO}	M_{PO}	M _{YO}	D_{w}	slide	
$d \times D \times h$	NH	Вз	G	L_{o}	C ₅₀ (N)	C ₁₀₀ (N)	(N)	(N·m)	(N·m)	(N·m)		(g)	(g)
2.4×5×0.4	1.2	7.5	5 10 7.5 5 10	40 60 75 90 120	880	700	785	7	3	3	2	6	9 11 13 16 21

5) C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

A249 A250

1. RA Series

A253

2. LA Series

A273

A-5-3 Machine Tools

A251 A252

A-5-3.1 RA Series

1. Features

(1) Super-high load capacity

By installing rollers that are the largest possible diameter and length within the existing standard cross-section dimension in a rational layout based on our advanced analysis technology, we have realized the world's highest load capacity,* far superior to conventional roller guides. Superlong life is achieved and impact load can be sufficiently handled.

* As of September 1, 2003; NSK's reserch and comparison on the existing products of the same sizes.

(2) Super-high rigidity

Using NSK's advanced analysis technology, we pursued a complete, optimal design, down to the detailed shape of roller slides and rails, thereby realizing super-high rigidity superior to that of competitor's roller guides.

(3) Super-high motion accuracy

NSK has developed its own unique method of simulating rolling element passage vibration and method of designing optimal roller slide specifications for damping roller passage vibration. These developments have dramatically enhanced roller slide motion accuracy for the RA series.

(4) Smooth motion

Installation of a retaining piece between rollers restrains the roller skew peculiar to roller slides, thereby achieving smooth motion.

(5) Low friction

Using rollers for rolling elements helps minimize dynamic friction.

(6) Random matching

Random-matching of rails and roller slides are available. (RA25 to RA65)

(7) Specification with highly dustproof V1 seal

Specification with newly developed, highly dustproof V1 seal which is the end seal with enhanced abrasion resistance is also available. (RA35 - 55)

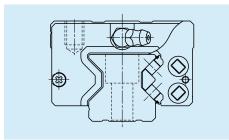


Fig. 1 RA Series

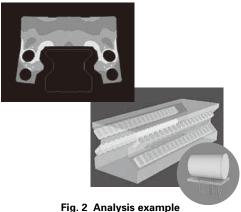


Fig. 3 Random-matching type

2. Roller slide shape

Roller slide	Shape/installation		wer row, Roller slide length)		
model	method	High-load type Standard	Super-high-load type Long		
		AN	BN		
AN BN		## ## ## ## ## ## ## ## ## ## ## ## ##	⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕		
AL BL		AL	BL		
EM GM		EM	GM		

3. Accuracy and preload

(1) Running parallelism of roller slide

Table 1

Table I									
Dail Ianath (mass)	Ultra precision P3	Super precision P4	High precision Ph	Precision grade P6					
Rail length (mm)	Preloaded assembly	Preloaded assembly	Preloaded assembly Random-matching type	Preloaded assembly					
- 50	2	2	2	4.5					
50 – 80	2	2	3	5					
80 – 125	2	2	3.5	5.5					
125 – 200	2	2	4	6					
200 – 250	2	2.5	5	7					
250 – 315	2	2.5	5	8					
315 – 400	2	3	6	9					
400 – 500	2	3	6	10					
500 – 630	2	3.5	7	12					
630 - 800	2	4	8	14					
800 – 1 000	2.5	4.5	9	16					
1 000 – 1 250	3	5	10	17					
1 250 – 1 600	4	6	11	19					
1 600 – 2 000	4.5	7	13	21					
2 000 – 2 500	5	8	15	22					
2 500 – 3 150	6	9.5	17	25					
3 150 – 3 500	9	16	23	30					

A253 A254

Roller Guide RA Series

(2) Accuracy standard

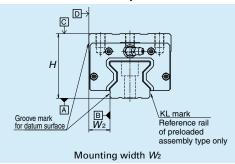
The preloaded assembly has four accuracy grades; Ultra precision P3, Super precision P4, High precision P5, and Precision P6 grades, while the random-matching type has High precision PH grade only.

Tolerance of preloaded assembly

Table 2 Unit: μm									
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6					
Mounting height H	±8	±10	±20	±40					
Variation of <i>H</i>	3	5	7	15					
(All roller slides on a set of rails)									
Mounting width W_2 or W_3	±10	±15	±25	±50					
Variation of W_2 or W_3	3	7	10	20					
(All roller slides on reference rail)									
Running parallelism of surface C to surface A Running parallelism of surface D to surface B									

· Tolerance of random-matching type

Table 3			
Accuracy grade Characteristics	High precision PH		
Mounting height H	±20		
Variation of mounting height H	15①		
	25②		
Mounting width W_2 or W_3	±25		
Variation of mounting width W ₂ or W ₃	20		
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1 and Fig. 4		


Note: 1 Variation on the same rail 2 Variation on multiple rails

(3) Combination of accuracy and preload

Table 4

			Tubic 4			
				Accuracy grade	•	
		Ultra precision	Super precision	High precision	Precision grade	High precision
Without NSK K1 lubrication unit		P3	P4	P5	P6	PH
	With NSK K1 lubrication unit	K3	K4	K5	K6	KH
	Slight preload Z1	0	0	0	0	_
ק ר	Medium preload Z3	0	0	0	0	_
Preload	Random-matching type with slight preload ZZ	_	_	_	_	0
٥	Random-matching type with medium preload ZH	_	_	_	_	0

(4) Assembled accuracy

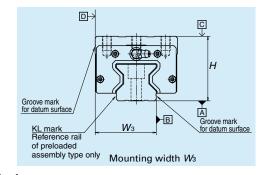


Fig. 4

NSK

(5) Preload and rigidity

Four types of preload are available: Medium preload Z3 and Slight preload Z1 for preloaded assembly, and Medium preload ZH and slight preload ZZ for Random-matching type.

Preload of preloaded assembly Table 5

	Model No.	Preload (N)		
		Slight preload (Z1)	Medium preload (Z3)	
	RA15 AN, AL, EM	_	1 030	
Ф	RA20 AN, EM	_	1 920	
ίχ	RA25 AN, AL, EM	880	2 920	
pe	RA30 AN, AL, EM	1 170	3 890	
High-load type	RA35 AN, AL, EM	1 600	5 330	
	RA45 AN, AL, EM	2 780	9 280	
	RA55 AN, AL, EM	3 800	12 900	
	RA65 AN, EM	6 500	21 000	
Ф	RA15 BN, BL, GM	_	1 300	
ξ	RA20 BN, GM	_	2 400	
pe	RA25 BN, BL, GM	1 060	3 540	
9	RA30 BN, BL, GM	1 430	4 760	
ig	RA35 BN, BL, GM	2 020	6 740	
r-h	RA45 BN, BL, GM	3 500	11 600	
Super-high-load type	RA55 BN, BL, GM	5 000	16 800	
Ñ	RA65 BN, GM	8 500	28 800	

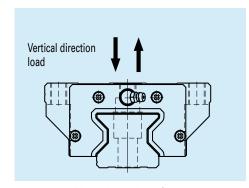
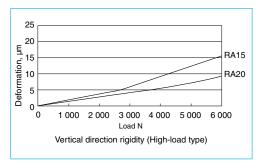
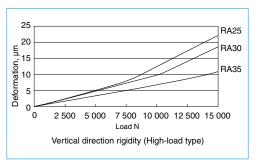




Fig. 5 Direction of load

· Rigidity of medium preload

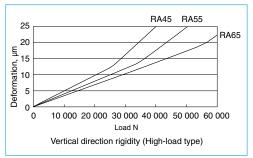
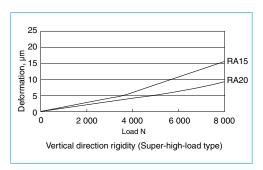
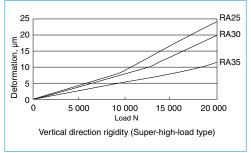




Fig. 6 Vertical direction theoretical rigidity line: High-load type (Roller slide shape: AN, AL, EM)

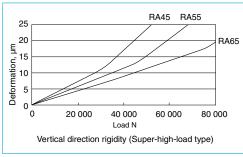
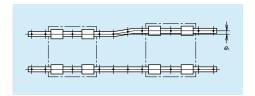


Fig. 7 Vertical direction theoretical rigidity line: Super-high-load type (Roller slide shape: BN, BL, GM)

4. Maximum rail length


Table 5 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grades.

Unit: mm										
Series Size	15	20	25	30	35	45	55	65		
RA	2 000	3 000	3 900	3 900	3 900	3 650	3 600	3 600		

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

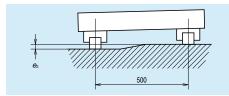
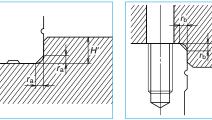



Fig. 8

Fig. 9

	Table 7 Unit: μm									
Value	Preload	Model No.								
value	Freioau	RA15	RA20	RA25	RA30	RA35	RA45	RA55	RA65	
Permissible values of	Z1, ZZ	_	_	14	18	21	27	31	49	
parallelism in two rails e ₁	Z3 , ZH	5	7	9	11	13	17	19	30	
Permissible values of	Z1, ZZ	_	_		290 µm / 500 mm					
parallelism (height) in two rails e_2	Z3 , ZH	150 μm / 500 mm								

(2) Shoulder height of the mounting surface and corner radius r

rail datum surface

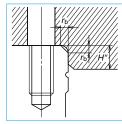


Fig. 10 Shoulder for the Fig. 11 Shoulder for the roller slide datum surface

			Table 8		Unit: mm	
	Model No.	Corner radiu	s (maximum)	Shoulder height		
iviouei ivo.		$r_{\rm a}$	$r_{\rm b}$	H'	H"	
	RA15	0.5	0.5	3	4	
	RA20	0.5	0.5	4	5	
	RA25	0.5	1	4	5	
	RA30	1	1	5	6	
	RA35	1	1	5	6	
	RA45	1.5	1	6	8	
	RA55	1.5	1.5	7	10	
	RA65	1.5	1.5	11	11	

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 14 and Table 11 show grease fittings and tube fittings.

(2) Mounting position of lubrication accessories

- The standard position of grease fittings and tube fittings is the end face of roller slide.
 We can mount them on a side of end cap for an option. (Fig. 12) Please consult NSK for installation of grease or tube fittings to the roller slide body or the side of end cap.
- A lubrication hole can also be provided on the top of the end cap. Fig.13, Table 9 and Table 10 show the mounting position. A spacer is required for AN and BN shape roller slides. The spacers are available from NSK.
- When using a piping unit with thread of M6 x 1, you require a connector to connect it to a grease fitting mounting hole with M6 x 0.75. The connectors are available from NSK.

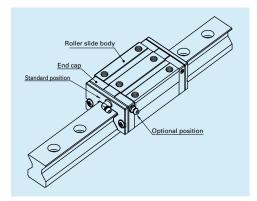


Fig. 12 Mounting position of lubrication accessories

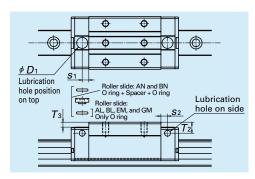


Fig.13 Top and side lubrication hole positions

Unit: mm

Unit: mm

	Га	ble :	9 7	Гор	and	side	lu	bricat	tion	hol	e p	ositio	ns
--	----	-------	-----	-----	-----	------	----	--------	------	-----	-----	--------	----

									Offic. Iffili
Model No.	Roller slide model	Grease fitting size	S_2	<i>T</i> ₂	O ring (JIS)	Spacer	D_1	S_1	T ₃
RA15		φ 3	4	7	P5	Necessary	8.2	4.4	4.2
RA20		φ 3	4	4	P6	_	9.2	5.4	0.2
RA25		M6×0.75	6	10	P7	Necessary	10.2	6	4.5
RA30	AN, BN	M6×0.75	5	10	P7	Necessary	10.2	6	3.5
RA35		M6×0.75	5.5	15	P7	Necessary	10.2	7	7.4
RA45		Rc 1/8	7.2	20	P7	Necessary	10.2	7.2	10.4
RA55		Rc 1/8	7.2	21	P7	Necessary	10.2	7.2	10.4
RA65		Rc 1/8	7.2	19	P7	_	10.2	7.2	0.4

Table 10 To	p and side	lubrication	hole positions
-------------	------------	-------------	----------------

Model No.	Roller slide model	Grease fitting size	S_2	<i>T</i> ₂	O ring (JIS)	<i>D</i> ₁	S_1	T ₃
RA15	AL, BL, EM, GM	φ 3	4	3	P5	8.2	4.4	0.2
RA20	EM, GM	φ 3	4	4	P6	9.2	5.4	0.2
RA25		M6×0.75	6	6	P7	10.2	6	0.4
RA30		M6×0.75	5	7	P7	10.2	6	0.4
RA35	AL, BL, EM, GM	M6×0.75	5.5	8	P7	10.2	7	0.4
RA45		Rc 1/8	7.2	10	P7	10.2	7.2	0.4
RA55		Rc 1/8	7.2	11	P7	10.2	7.2	0.4
RA65	EM, GM	Rc 1/8	7.2	19	P7	10.2	7.2	0.4

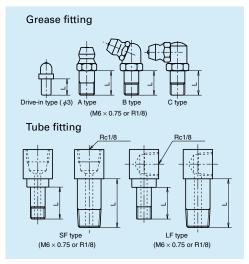


Fig. 14 Grease fitting and tube fitting

7. Dust-proof components

(1) Standard specification

The RA series is equipped with end, inner* and bottom seals to prevent foreign matter from entering the inside of the roller slide. Under normal applications, the RA series can be used without modification.

For severe usage conditions, optional rail covers** are available. Contact NSK for information on how to mount the cover.

- *) Inner seals for the models of RA15 and RA20 are available as options.
- **) The rail cover is available to the models of RA25 to RA65.

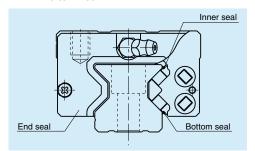


Fig. 15

No. Dust-proof Grease fitting Tube fitting Standard SF type LF type Standard S			Table 11		Unit: mm
No. Specification Grease fitting Tube fitting Standard SF type LF type LF type SF type LF type	Madal	Dust proof	Dime	ension L	
Standard Standard			Grease fitting	Tube	fitting
RA15 With NSK K1	INO.	specification	/Drive-in type	SF type	LF type
RA15 Double seal 8		Standard	5	-	_
Double seal 8	D A 1 E	With NSK K1	10	-	-
RA20 RA20 With NSK K1 Double seal Protector Standard BRA25 RA25 RA25 RA26 RA30 With NSK K1 Double seal Protector Standard Standard Standard Standard Standard Standard Standard Standard Standard Frotector Standard Standard Standard Standard Standard RA35 With NSK K1 Double seal Protector Standard Standard Standard RA35 With NSK K1 Double seal Protector Standard RA35 Nith NSK K1 Standard RA35 Double seal Standard RA35 Nith NSK K1 RA35 Double seal Standard RA35 Nith NSK K1 Standard RA35 Nith NSK K1 Standard RA35 Nith NSK K1 RA35 Double seal Standard RA35 Nith NSK K1 RA35 Double seal Standard RA35 Nith NSK K1 RA35 Double seal RA35 Nith NSK K1 RA35 Double seal RA35 Nith NSK K1 RA35 Double seal RA35 RA35	nA IS	Double seal	8	_	-
RA20 With NSK K1 10 - -		Protector	8	_	_
RA20 Double seal 8		Standard	5	_	_
Double seal 8	RA20	With NSK K1	10	_	_
RA25 RA36 RA36 RA37 RA37 RA38 RA39 RA39 RA39 RA39 RA39 RA39 RA39 RA39		Double seal	8	-	-
RA25 With NSK K1 12 12 12 12 12 12 12		Protector	10	-	-
RA25 Double seal 10 9 9 9		Standard	5	5	5
Double seal 10	DAGE	With NSK K1	12	12	12
RA30 RA30 Standard 5	RA25	Double seal	10	9	9
RA30 With NSK K1 14 14 15 15 16 17 17 Standard 8 13.5 17 With NSK K1 18 20 21.5 17 With NSK K1 20 20 21.5 17 With NSK K1 20 20 20 20 20 20 20 20 20 20 20 20 20		Protector	10	9	9
RA30 Double seal 12 12 11		Standard	5	6	6
Double seal 12 12 11	D 4 20	With NSK K1	14	14	15
RA35 RA35 Standard 5	nA30	Double seal	12	12	11
RA35 With NSK K1		Protector	12	10	11
RA35 Double seal 12 12 11 11 12 12 11 11 12 11 11 11 12 11 11 11 12 11		Standard	5	6	6
Double seal 12 12 11	DAGE	With NSK K1	14	14	15
RA45 Standard 8 13.5 17 With NSK K1 18 20 21.5 Double seal 14 16 17 Protector 14 16 17 Standard 8 13.5 17 With NSK K1 18 20 21.5 Double seal 14 16 17 Protector 14 16 17 Standard 8 13.5 17 With NSK K1 20 20 20 Double seal 14 18 17	nA35	Double seal	12	12	11
RA45 With NSK K1 18 20 21.5 Double seal 14 16 17 Protector 14 16 17 Standard 8 13.5 17 With NSK K1 18 20 21.5 Double seal 14 16 17 Protector 14 16 17 Standard 8 13.5 17 With NSK K1 20 20 20 With NSK K1 20 20 20 Double seal 14 18 17		Protector	12	10	11
RA45 Double seal 14 16 17		Standard	8	13.5	17
Double seal 14 16 17	DA4E	With NSK K1	18	20	21.5
RA55 Standard 8 13.5 17 With NSK K1 18 20 21.5 Double seal 14 16 17 Protector 14 16 17 Standard 8 13.5 17 With NSK K1 20 20 20 Double seal 14 18 17	nA45	Double seal	14	16	17
RA55 With NSK K1 18 20 21.5 Double seal 14 16 17 Protector 14 16 17 Standard 8 13.5 17 With NSK K1 20 20 20 Double seal 14 18 17		Protector	14	16	17
Double seal 14 16 17		Standard	8	13.5	17
Double seal 14 16 17	DAFE	With NSK K1	18	20	21.5
Standard 8 13.5 17 With NSK K1 20 20 20 Double seal 14 18 17	nAoo	Double seal	14	16	17
RA65 With NSK K1 20 20 20 Double seal 14 18 17		Protector	14	16	17
Double seal 14 18 17		Standard	8	13.5	17
Double seal 14 18 17	DACE	With NSK K1	20	20	20
Protector 14 16 17	KA65	Double seal	14	18	17
		Protector	14	16	17

Fig. 16 Rail cover

Table 12 Seal friction per roller slide (maximum value)

			•		•			Unit: N
Series	15	20	25	30	35	45	55	65
RA	4	5.5	5	5	6	8	8	14

A259 A260

(2) NSK K1[™] lubrication unit

Table 12 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

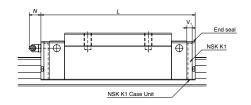


Table 13

Unit: mm

Model No.	Roller slide length	Roller slide model	Standard roller slide length	With two NSK K1	Thickness of NSK K1 V ₁	Protruding area of the grease fitting N	
RA15	Standard	AN, AL, EM	70	79	4.5	(3)	
nAib	Long	BN, BL, GM	85.4	94.4	4.5	(3)	
RA20	Standard	AN, EM	86.5	95.5	4.5	(3)	
nazu	Long	BN, GM	106.3	115.3	4.5	(3)	
RA25	Standard	AN, AL, EM	97.5	107.5	5	(11)	
naz5	Long	BN, BL, GM	N, BL, GM 115.5 125.5		5	(11)	
RA30	Standard	AN, AL, EM	110.8	122.8	6	(11)	
nA30	Long	BN, BL, GM	135.4	147.4	0	(11)	
RA35	Standard	ard AN, AL, EM 123.8		136.8	6.5	(11)	
nA35	Long	BN, BL, GM	152	165	0.5	(11)	
RA45	Standard	AN, AL, EM	154	168	7	(1.4)	
nA45	Long	BN, BL, GM	190	204	/	(14)	
RA55	Standard	AN, AL, EM	184	198	7	(1.4)	
nAbb	Long	BN, BL, GM	234	248		(14)	
DAGE	Standard	AN, EM	228.4	243.4	7.5	(1.4)	
RA65	Long	BN, GM	302.5	317.5	7.5	(14)	

Note: Roller slide length equipped with NSK K1 = (Standard roller slide length) + (Thickness of NSK K1 Case Unit × Number of NSK K1 Case Unit)

(3) Double seal and protector

For RA Series, double seal and protector can be installed only before shipping from the factory. **Table 14** shows the increased thickness when end seal and protector are installed.

	Table 14	Unit: mm
Model No.	Thickness of end seal	Thickness of protector
woder no.	V_3	V_4
RA15	3	2.7
RA20	3	3.3
RA25	3.2	3.3
RA30	3.4	3.6
RA35	3.4	3.6
RA45	4	4.2
RA55	4	4.2
RA65	5	5.5

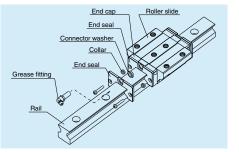


Fig. 17 Double seal

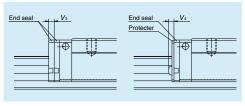


Fig. 19

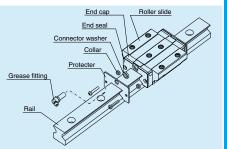


Fig. 18 Protector

(4) Rail cover

When the rail cover is used, use the cover bracket to secure the rail cover. **Fig.20** shows the dimensions for the cover bracket. The required room at the end of the rail is:

- Inside: 10.5 mm or less
- Outside: 4 mm or less (Common to the models of RA25 to RA65)

Please confirm the interference with your machine at the stroke end.

- Machine stroke
- · Room for the end of the rail

The height of the rail with the rail cover is shown in **Table 15**.

Table 15 Height of rails equipped with rail cover

Standard height H Model No. Cover installation RA25 24 24.25 RA30 28 28.25 RA35 31 31.25 RA45 38 38.3 RA55 43.5 43.8 RA65 55 55.3

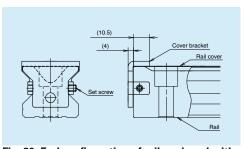


Fig. 20 End configuration of rail equipped with the rail cover

(5) Cap to plug the rail mounting bolt hole

Table 16 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity		
woder No.	secure rail	reference No.	/case		
RA15	M4	LG-CAP/M4	20		
RA20	M5	LG-CAP/M5	20		
RA25	M6	LG-CAP/M6	20		
RA30, RA35	M8	LG-CAP/M8	20		
RA45	M12	LG-CAP/M12	20		
RA55	M14	LG-CAP/M14	20		
RA65	M16	LG-CAP/M16	20		

(6) Specification with highly dustproof V1 seal

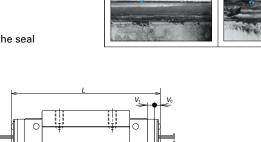
RA35, RA45, and RA55 also have the specification with newly developed, highly dustproof V1 seal which is the end seal with enhanced abrasion resistance.

Highly dustproof V1 Seal made of new materials and in a new shape for better abrasion resistance prevents foreign matter getting into the roller slide for a long period.

Inner seal and bottom seal are equipped as standard. In addition, outstanding lubrication effects by NSK K1 further improves the durability. The bolt hole caps whose shape is partly changed eliminate building up of foreign matter in and around the rail mounting holes and prevent foreign matter from entering into the roller slide. Otherwise, the rail cover with higher dustproofness can be selected.

See A262 for the details of the rail cover.

Durability test under extreme conditions - no lubrication

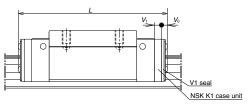

With this new material, even if lubrication is poor, damage such as roughening of surfaces will not occur.

Test sample: RA35

Operation without lubrication on the seal

Feed speed: 500 mm/sec

Table 17 shows the dimension for roller slide with V1 seal.


Luburication unit NSK K1™

Highly dustproof V1 seal

V1 seal

Average speed 29.7m/min Approx. 40 km/day

Conventional end seal

Since the sealing property (resistance to foreign matter) is affected by usage or the lubrication environment, please conduct an evaluation test for your particular application.

				Table 17			Unit: mm
Model No.	Roller slide length	Roller slide type	Standard roller slide length <i>L</i>	Roller slide length equipped with V1 seal <i>L</i>	Roller slide length equipped with V1 seal and NSK K1 <i>L</i>	Thickness of V1 seal	Thickness of K1 case unit
RA35	Standard	AN, AL, EM	123.8	127.8	140.8	3.4	6.5
nA35	Long	BN, BL, GM	152	156	169	3.4	0.5
RA45	Standard	AN, AL, EM	154	159.2	173.2	4	7
Long		BN, BL, GM	190	195.2	209.2	4	,
RA55	Standard	ndard AN, AL, EM 184		189.2	203.2	4	7
HASS	Long	BN, BL, GM	234	239.2	253.2	4	′

8. Dynamic friction

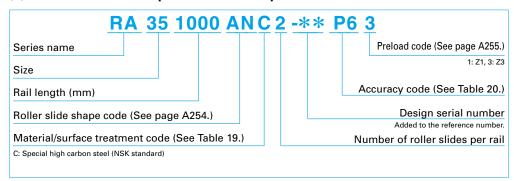
- Dynamic friction indications per roller slide are shown in table 18.
- These values are assumed under actual condition with standard specification (two end seals, inner seal and bottom seal equipped) packed with standard grease (NSK Grease AS2)
- · Dynamic friction varies with grease.

Table 18 Dynamic friction

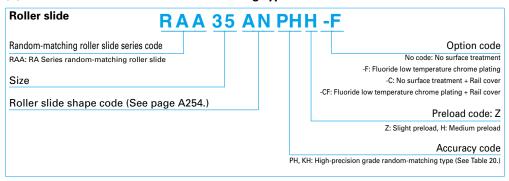
	,	Unit: N
Model No.	High-load type	Super-high-load type
RA15	21	24
RA20	22	28
RA25	27	34
RA30	33	42
RA35	42	53
RA45	56	69
RA55	80	95
RA65	120	138

Note: Values in Table 18 are indications. Please refer to them.

A263 A264


A266

9. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

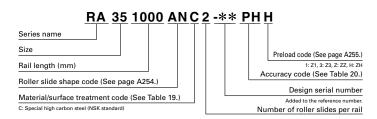
R1A35 1000 L C N	-** PH Z
Random-matching rail series code	Preload code: Z
R1A: RA Series random-matching rail	Z: Common for slight and medium preload (See page A255.)
Size	Accuracy code (See Table 18.)
Pail langth /mm\	PH: High-precision grade random-matching type
Rail length (mm)	Design serial number
Rail shape code: L	Added to the reference number.
L: Standard	*Butting rail specification
Material/surface treatment code (See Table 19.)	N: Non-butting. L: Butting specification
*PI	ease consult with NSK for butting rail specification.

The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, the applicable preload codes are "slight preload Z" and "medium preload H". (See page A255.)

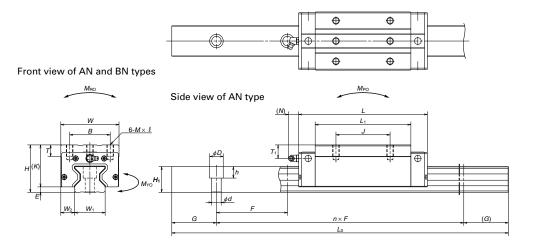
Table 19 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Р	Special high carbon steel with V1 seal
R	Special high carbon steel with surface treatment and V1 seal
Z	Other, special

Note: P and R are not available for randommatching slides and rails.


Table 20 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1					
Ultra precision grade	P3	K3					
Super precision grade	P4	K4					
High precision grade	P5	K5					
Precision grade	P6	K6					
High precision grade (Random-matching type)	PH	КН					


Note: Refer to pages A38 for NSK K1 lubrication unit.

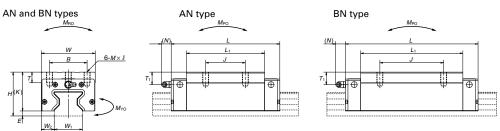
10. Dimensions RA-AN (High-load type / Standard)

RA-BN (Super-high-load type / Long)

Top view of AN and BN

	A:	ssemb	oly					Rolle	r slide							
Model No.	Height			Width	Width Length Mou		ounting hole	ounting hole			Grease fitting		ıg	Width	Height	
Model No.	Н	Ε	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	L,	К	Т	Hole size	T.	N	W ₁	H,
RA15AN RA15BN	28	4	9.5	34	70 85.4	26	26	M4×0.7×6	44.8 60.2	24	8	φ3	8	3	15	16.3
RA20AN RA20BN	30	5	12	44	86.5 106.3	32	36 50	M5×0.8×6	57.5 77.3	25	12	φ 3	4	3	20	20.8
RA25AN RA25BN	40	5	12.5	48	97.5 115.5	35	35 50	M6×1×9	65.5 83.5	35	12	M6×0.75	10	11	23	24
RA30AN RA30BN	45	6.5	16	60	110.8 135.4	40	40 60	M8×1.25×11	74 98.6	38.5	14	M6×0.75	10	11	28	28
RA35AN RA35BN	55	6.5	18	70	123.8 152	50	50 72	M8×1.25×12	83.2 111.4	48.5	15	M6×0.75	15	11	34	31
RA45AN RA45BN	70	8	20.5	86	154 190	60	60 80	M10×1.5×17	105.4 141.4	62	17	Rc1/8	20	14	45	38
RA55AN RA55BN	80	9	23.5		184 234	75	75 95	M12×1.75×18	128 178	71	18	Rc1/8	21	14	53	43.5
RA65AN RA65BN	90	13	31.5	126	228.4 302.5	76	70 120	M16×2×20	155.4 229.5	77	22	Rc1/8	19	14	63	55

Notes: 1) Select either one of two F dimensions, the standard or the parenthesized semi-standard dimension, for the pitch of rail fixing bolt holes. If not specified, the standard dimension of F is applied.

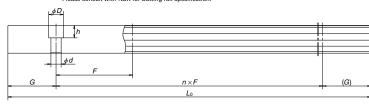

Roller slide
RAA 35 AN PH H -F

Random-matching roller slide series code
RAA: RA Series random-matching roller slide
Size
Roller slide shape code (See page A254.)

Roller slide shape code (See page A254.)

Roller slide shape code (See page A254.)

Reference number for roller slide of random-matching type

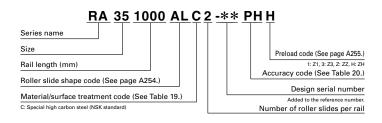

PH, KH: High-precision grade random-matching type (See Table 20.)

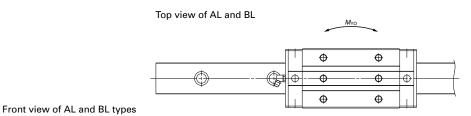
Reference number for rail of random-matching type Rail R1A35 1000 L CN -** PH Z

Random-matching rail series code
Ri 1A: RA Series random-matching rail
Size
Rail length (mm)
Rail shape code: L
L: Standard
Material/surface treatment code (See Table 19.)

Preload code: Z
2: Common for slight and medium preload (See RZES.)
Accuracy code
PH: High-precision grade random-matching type
Design serial number
Added to the reference number.
*Butting rail specification
N: Non-butting. L: Butting specification
*Please consult with NSK for hutting rails precification
*Please consult with NSK for hutting rails precification

Unit: mm


Rail						Bas	sic load ra	ating				We	ight
Pitch	Mounting	G	Maximum	³)Dyn	3)Dynamic			Static	moment	(N·m)		Roller	Rail
	bolt hole		length	[50km]	[100km]	C 0	M _{RO}	М	PO	M _{YO}		slide	
F	$d \times D \times h$	(reference)	L_{0max}	C ₅₀ (N)	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60 (30)	4.5×7.5×5.3	20	2 000	12 600 16 000	10 300 13 000	27 500 37 000	260 350	210 375	1 320 2 130	210 375	1 320 2 130		1.6
60 (30)	6×9.5×8.5	20	3 000	23 600 29 500	19 200 24 000	52 500 70 000	665 890	505 900	3 100 5 000	505 900	3 100 5 000		2.6
30 (60)	7×11×9	20	3 900	36 000 43 500	29 200 35 400	72 700 92 900	970 1 240	760 1 240	4 850 7 200	760 1 240	4 850 7 200	0.60 0.91	3.4
40 (80)	9×14×12	20	3 900	47 800 58 500	38 900 47 600	93 500 121 000	1 670 2 170	1 140 1 950	7 100 11 500	1 140 1 950	7 100 11 500	1.0 1.3	4.9
40 (80)	9×14×12	20	3 900	65 500 82 900	53 300 67 400	129 000 175 000	2 810 3 810	1 800 3 250	11 000 17 800	1 800 3 250	11 000 17 800	1.6 2.1	6.8
52.5 (105)	14×20×17	22.5	3 650	114 000 143 000	92 800 116 000	229 000 305 000	6 180 8 240	4 080 7 150	24 000 39 000	4 080 7 150	24 000 39 000		10.9
60 (120)	16×23×20	30	3 600	159 000 207 000	129 000 168 000	330 000 462 000	10 200 14 300	7 060 13 600	41 000 72 000	7 060 13 600	41 000 72 000		14.6
75 (150)	18×26×22	35	3 600	259 000 355 000	210 000 288 000	504 000 756 000	19 200 28 700	12 700 28 600	78 500 153 000	12 700 28 600	78 500 153 000	9.3	22.0

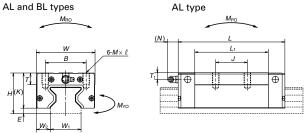

²⁾ The random-matching type is available for the models of RA25 to RA65.

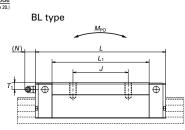
 C_{50} , the basic dynamic load rating for 100 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

³⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2) C_{50} ; the basic dynamic load rating for 50 km rated fatigue life

RA-AL (High-load type / Standard) RA-BL (Super-high-load type / Long)

	As	ssemb		Roller slide												
Model No.				Width Length Mounting hole				ounting hole				Grease	fittin	g	Width	Height
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	<i>L</i> ₁	K	Т	Hole size	<i>T</i> ₁	N	W_1	H_1
RA15AL RA15BL	24	4	9.5	34	70 85.4	26	26	M4×0.7×5.5	44.8 60.2	20	8	φ3	4	3	15	16.3
RA25AL RA25BL	36	5	12.5	48	97.5 115.5	35	35 50	M6×1×8	65.5 83.5	31	12	M6×0.75	6	11	23	24
RA30AL RA30BL	42	6.5	16	60	110.8 135.4		40 60	M8×1.25×11	74 98.6	35.5	14	M6×0.75	7	11	28	28
RA35AL RA35BL	48	6.5	18	70	123.8 152	50	50 72	M8×1.25×12	83.2 111.4	41.5	15	M6×0.75	8	11	34	31
RA45AL RA45BL	60	8	20.5	86	154 190	60	60 80	M10×1.5×16	105.4 141.4	52	17	Rc1/8	10	14	45	38
RA55AL RA55BL	70	9	23.5	100	184 234	75	75 95	M12×1.75×18	128 178	61	18	Rc1/8	11	14	53	43.5


Notes: 1) Select either one of two F dimensions, the standard or the parenthesized semi-standard dimension, for the pitch of rail fixing bolt holes. If not specified, the standard dimension of F is applied.


Reference number for roller slide of random-matching type

Roller slide
RAA 35 AL PH H -F

Random-matching roller slide series code
RAA: RA Series random-matching roller slide
Size
Roller slide shape code (See page A254.)

Preload code: Z
Sight preload, H: Medium preload
PH, KIH High-precision grade random-matching rolle 20.

Reference number for rail of random-matching type Rail R1A35 1000 L CN -** PH Z

Random-matching rail series code
Rita: RA Series random-matching rail
Size

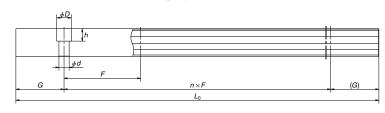
Rail length (mm)

Rail shape code: L

L: Standard

Material/surface treatment code (See Table 19.)

Read to the reference number.


*Please consult with NSk for butting rail specification

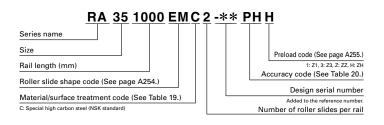
*Please consult with NSk for butting rail specification

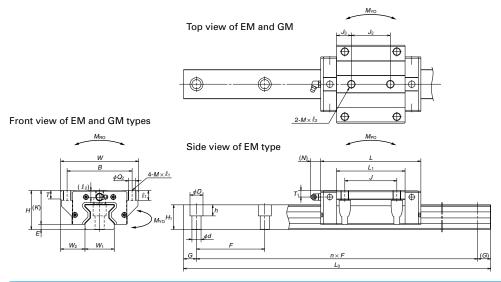
*Please consult with NSk for butting rail specification

(G)

Unit: mm

Rail	Rail				Basic load rating								ight
Pitch	Mounting	G	Maximum	3)Dyna	amic	Static		Static	moment	(N·m)		Roller	Rail
	bolt hole length		length	[50km] [100km]		C 0	M _{RO}	М	MPO		YO	slide	
F	$d \times D \times h$	(reference)	L_{0max}	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60 (30)	4.5×7.5×5.3	20	2 000	12 600 16 000	10 300 13 000	27 500 37 000	260 350	210 375	1 320 2 130	210 375	1 320 2 130	0.17 0.25	1.6
30 (60)	7×11×9	20	3 900	36 000 43 500	29 200 35 400	72 700 92 900	970 1 240	760 1 240	4 850 7 200	760 1 240	4 850 7 200	0.45 0.80	3.4
40 (80)	9×14×12	20	3 900	47 800 58 500	38 900 47 600	93 500 121 000	1 670 2 170	1 140 1 950	7 100 11 500	1 140 1 950	7 100 11 500	0.85	4.9
40 (80)	9×14×12	20	3 900	65 500 82 900	53 300 67 400	129 000 175 000	2 810 3 810	1 800 3 250	11 000 17 800	1 800 3 250	11 000 17 800	1.2 1.7	6.8
52.5 (105)	14×20×17	22.5	3 650	114 000 143 000	92 800 116 000	229 000 305 000	6 180 8 240	4 080 7 150	24 000 39 000	4 080 7 150	24 000 39 000	2.5 3.4	10.9
60 (120)	16×23×20	30	3 600	159 000 207 000	129 000 168 000	330 000 462 000	10 200 14 300	7 060 13 600	41 000 72 000	7 060 13 600	41 000 72 000	4.1 5.7	14.6
0) Th -)) The granders weakling to be in smiletal from the grandels of DAGE to DAGE												


²⁾ The random-matching type is available for the models of RA25 to RA55.


 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

³⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life

RA-EM (High-load type / Standard) RA-GM (Super-high-load type / Long)

Assembly Roller slide																
Model No.	Height		Width	Length			Ν	Nounting hole					Grease f	ittir	ng	
Model No.	Н	Ε	W_2	W	L	В	J	J_2	$M \times \text{pitch} \times \ell_1(\ell_2)$	Q_2	<i>L</i> ₁	Κ	Т	Hole size	<i>T</i> ₁	N
RA15EM RA15GM	24	4	16	47	70 85.4	38	30	26	M5×0.8×8.5 (6.5)	4.4	44.8 60.2	20	8	φ 3	4	3
RA20EM RA20GM	30	5	21.5	63	86.5 106.3	53	40	35	M6×1×9.5 (8)	5.3	57.5 77.3	25	10	φ 3	4	3
RA25EM RA25GM	36	5	23.5	70	97.5 115.5	57	45	40	M8×1.25×10 (11)	6.8	65.5 83.5	31	11	M6×0.75	6	11
RA30EM RA30GM	42	6.5	31	90	110.8 135.4	72	52	44	M10×1.5×12 (12.5)	8.6	74 98.6	35.5	11	M6×0.75	7	11
RA35EM RA35GM	48	6.5	33	100	123.8 152	82	62	52	M10×1.5×13 (7)	8.6	83.2 111.4	41.5	12	M6×0.75	8	11
RA45EM RA45GM	60	8	37.5	120	154 190	100	80	60	M12×1.75×15 (10.5)	10.5	105.4 141.4	52	13	Rc1/8	10	14
RA55EM RA55GM	70	9	43.5	140	184 234	116	95	70	M14×2×18 (13)	12.5	128 178	61	15	Rc1/8	11	14
RA65EM RA65GM	90	13	53.5	170	228.4 302.5	142	110	82	M16×2×24 (18.5)	14.6	155.4 229.5	77	22	Rc1/8	19	14

Notes: 1) Select either one of two F dimensions, the standard or the parenthesized semi-standard dimension, for the pitch of rail fixing bolt holes. If not specified, the standard dimension of F is applied.

Reference number for roller slide of random-matching type

Roller slide
RAA 35 EM PH H -F

Random-matching roller slide series code
RAA: RA Series random-matching roller slide
Size
Roller slide shape code (See page A254.)

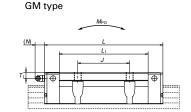
Size
Roller slide shape code (See page A254.)

Preload code: Z
Z: Slight preload, H: Medium preload.
Accuracy code
PH, KI: High-precision grade random-matching type (See table 20.)

EM and GM types

EM type

W

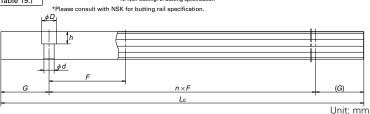

B

4-M× ½

(£2)

H/KN

EM type

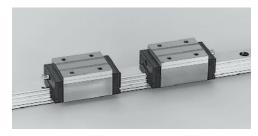

Reference number for rail of random-matching type

Rail R1A35 1000 L C N -** PH Z

Random-matching rail series code
R1A: RA Series random-matching rail
Size Preload code: Z
Z: Common for slight and medium preload (See A259)
Accuracy code
Rail length (mm)
Rail shape code: L
L: Standard
Material/surface treatment code (See Table 19.)

PH: High-precision grade random-matching type.
Design serial number
*Butting rail specification
N: Non-butting. L: Butting specification
*Please consult with NSK for butting rail specification
*Please consult with NSK for butting rail specification

	Cina iiiii														
			Rail				Basic load rating							Weight	
Width	Height	Pitch			G Maximum ³⁾ Dynamic		amic	Static	Static moment (N·m)			n)	Roller	Rail	
			bolt hole		length	[50km]	[100km]	C 0	M _{RO}	М	PO	M	YO	slide	
VV_1	H_1	F	$d \times D \times h$	(reference)	$L_{\scriptscriptstyle 0max}$	C ₅₀ (N)	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
15	16.3	60 (30)	4.5×7.5×5.3	20	2 000	12 600 16 000	10 300 13 000	27 500 37 000	260 350		1 320 2 130				1.6
20	20.8	60 (30)	6×9.5×8.5	20	3 000	23 600 29 500	19 200 24 000	52 500 70 000	665 890	505 900	3 100 5 000				2.6
23	24	30 (60)	7×11×9	20	3 900	36 000 43 500	29 200 35 400	72 700 92 900	970 1 240		4 850 7 200				3.4
28	28	40 (80)	9×14×12	20	3 900	47 800 58 500	38 900 47 600	93 500 121 000	1 670 2 170	1 140 1 950	7 100 11 500		7 100 11 500		4.9
34	31	40 (80)	9×14×12	20	3 900	65 500 82 900	53 300 67 400	129 000 175 000	2 810 3 810		11 000 17 800		11 000 17 800		6.8
45	38	52.5 (105)	14×20×17	22.5	3 650	114 000 143 000	92 800 116 000	229 000 305 000	6 180 8 240		24 000 39 000		24 000 39 000		10.9
53	43.5	60 (120)	16×23×20	30	3 600	159 000 207 000	129 000 168 000		10 200 14 300	7 060 13 600			41 000 72 000		14.6
63	55	75 (150)	18×26×22	35	3 600	259 000 355 000	210 000 288 000	504 000 756 000		12 700 28 600			78 500 153 000		22.0


²⁾ The random-matching type is available for the models of RA25 to RA65.

³⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

A-5-3.2 LA Series

1. Features

(1) High rigidity and high load carrying capacity

A set of three ball grooves is made on both sides of ball slide and a rail. This contributes to the increased rigidity and load carrying capacity. The top and bottom groove are formed in the circular arc with a closer radius of ball, which ensures great rigidity and load carrying capacity. With the Gothic arch center groove, rigidity and load carrying capacity are further increased.

(2) Moderate friction

A well-balanced combination of 2-point contacts at the top and bottom grooves and 4 points contact at the center groove provides moderate friction while ensuring rigidity by appropriate preload.

(3) Four-way equal load distribution

The contact angle of balls is set at 45 degrees in all grooves, thereby dispersing the load equally to four rows irrespective of load direction. This realizes equal rigidity and load carrying capacity in vertical and lateral directions and provides well-balanced design.

(4) Strong against shock load

Load from any direction, vertical and lateral, is received by four ball rows at all times. The number of the ball rows which receive the load is larger than in other linear guides, making this series stronger against shock load.

(5) High accuracy

As showing in Fig. 4, fixing the measuring rollers is easy thanks to the Gothic arch groove of the central ball groove. This benefits an accurate and measuring of ball groove for a highly precise and stable manufacturing.

(6) The dust protection design

The rail's cross section is designed as simple as possible, thereby improving the sealing efficiency combined with the enhanced sealing function. In addition, optional inner seals are available.

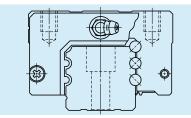


Fig. 1 LA Series



Fig. 2 Super rigidity design

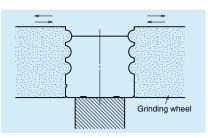


Fig. 3 Rail grinding

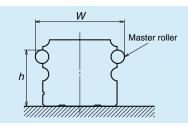


Fig. 4 Measuring groove accuracy

2. Ball slide shape

	Shape/installation		Type (Upper row, Rating: L	ower row, Ball slide length)
Ball slide			High-load type	Super-high-load type
Model	method		Standard	Long
AN BN		AN	L1	BN L ₁
AL BL		AL	L ₁	BL <u>L</u> 1
EL GL		EL	Li	GL L1
FL HL		FL	Li	HL L1

3. Accuracy and preload

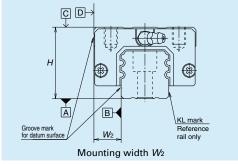
(1) Running parallelism of ball slide

Table 1

Unit: um

		Onit: µm										
	Р	reloaded assembly (ı	not random matchin	g)								
Rail length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6								
- 50	2	2	2	4.5								
50 - 80	2	2	3	5								
80 – 125	2	2	3.5	5.5								
125 – 200	2	2	4	6								
200 – 250	2	2.5	5	7								
250 – 315	2	2.5	5	8								
315 – 400	2	3	6	9								
400 - 500	2	3	6	10								
500 - 630	2	3.5	7	12								
630 - 800	2	4.5	8	14								
800 – 1 000	2.5	5	9	16								
1 000 – 1 250	3	6	10	17								
1 250 – 1 600	4	7	11	19								
1 600 – 2 000	4.5	8	13	21								
2 000 – 2 500	5	10	15	22								
2 500 – 3 150	6	11	17	25								
3 150 – 4 000	9	16	23	30								

A273 A274


LA Series

(2) Accuracy standard

The LA Series has four accuracy grades: Ultra precision P3, Super precision P4, High precision P5, and Precision grade P6.

	Table	2		Unit: µm
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Shown in Tabl	e 1 and Fig. 5	

(3) Assembled accuracy

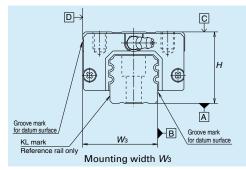


Fig. 5

4. Preload and rigidity

Table 3 shows preload and rigidity of LA Series.

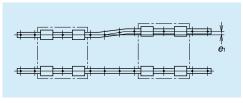
The LA Series has two types of preload specification: Medium preload Z3 and Heavy preload Z4.

Table 3

	N4I - I NI -	Preloa	ad (N)	Rigidity (N/µm)		
	Model No.	Medium preload Z3	Heavy preload Z4	Medium preload Z3	Heavy preload Z4	
	LA25 AL, AN, EL, FL	1 670	2 110	475	550	
/be	LA30 AL, AN, EL, FL	2 450	3 150	705	835	
ad ty	LA35 AL, AN, EL, FL	3 450	4 300	825	970	
High-load type	LA45 AL, AN, EL, FL	5 050	6 350	1 100	1 240	
Hig	LA55 AL, AN, EL, FL	8 100	10 200	1 400	1 540	
	LA65 AN, EL, FL	13 800	18 800	1 730	2 030	
be	LA25 BL, BN, GL, HL	2 260	2 840	700	820	
d ty	LA30 BL, BN, GL, HL	3 250	4 050	1 000	1 180	
-loa	LA35 BL, BN, GL, HL	4 450	5 650	1 200	1 400	
high	LA45 BL, BN, GL, HL	6 150	7 750	1 450	1 640	
uper-high-load type	LA55 BL, BN, GL, HL	9 550	12 100	1 840	2 020	
Su	LA65 BN, GL, HL	18 000	24 400	2 450	2 840	

NSK

4. Maximum rail length


Table 4 shows the limitations of rail length. However, the limitations vary by accuracy grades.

Unit: mm											
Series Size	25	30	35	45	55	65					
LA	3 960	4 000	4 000	3 990	3 960	3 900					

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

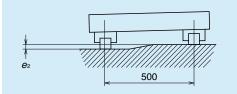


Fig. 6

Fig. 7

			Table 5				Unit: µm		
Value	Preload	Model No.							
value	Freioau	LA25	LA30	LA35	LA45	LA55	LA65		
Permissible values of	Z3	15	17	20	25	30	40		
parallelism in two rails e ₁	Z4	13	15	17	20	25	30		
Permissible values of parallelism (height) in two rails e ₂	l 72 71	185 μm/500 mm							

(2) Shoulder height of the mounting surface and corner radius r

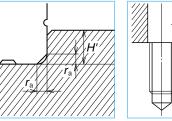


Fig. 8 Shoulder for the rail datum surface

		rı		
			//г ь	*///* */H"\
	\\			
Fia. 9	Sho	ulde	r for	the ball

Fig. 9 Shoulder for the bal slide datum surface

		Table 6		Unit: mm		
Model No.	Corner radiu	s (maximum)	Shoulder height			
Model No.	r _a	$r_{\rm b}$	H'	H"		
LA25	0.5	0.5	5	5		
LA30	0.5	0.5	6	6		
_LA35	0.5	0.5	6	6		
LA45	0.7	0.7	8	8		
LA55	0.7	0.7	10	10		
LA65	1	1	11	11		

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 10 and Table 7 show grease fittings and tube fittings.

(2) Mounting position of lubrication accessories

- The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 11).
- Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.
- When using a piping unit with thread of M6 x 1, you require a connector to connect to a grease fitting mounting hole with M6 x 0.75.
 The connector is available from NSK.

		Table 7	ı	Unit: mm		
Model	Dust sus of			O		
No.		Cuasas fitting	Tube	fitting		
INO.	specification	Grease Illing	SF type	LF type		
	Standard	5	5	5		
LA25	With NSK K1	14	12	12		
LAZ5	Double seal	10	9	9		
	Protector	10	Dimension L Tube fitting Stype LF	9		
	Standard	5	6	6		
LA30	With NSK K1	14	12	13		
	Double seal	12	10	11		
	Protector	12	11	11		
	Standard	5	6	6		
LA35	With NSK K1	14	12	13		
	Double seal	12	10	11		
	Protector	12	11	11		
	Standard	8	13.5	17		
LA45	With NSK K1	18	22	21.5		
LA45	Double seal	14	18	17		
	Protector	14	16	17		
	Standard	8	13.5	17		
LA55	With NSK K1	18	22	21.5		
LASS	Double seal	14	18	17		
	Protector	14	16	17		
	Standard	8	13.5	17		
LA65	With NSK K1	22	24	25.5		
LAGS	Double seal	16	20	19		
	Protector	16	16	17		

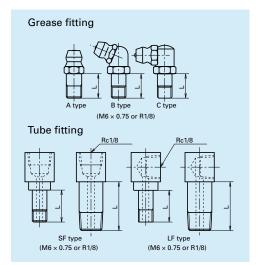


Fig. 10 Grease fitting and tube fitting

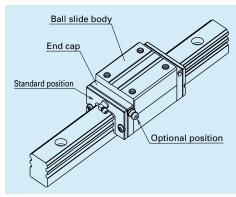


Fig. 11 Mounting position of lubrication accessories

7. Dust-proof components

(1) Standard Specification

The LA Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends, and bottom seals at the bottom.

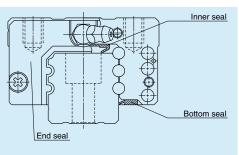
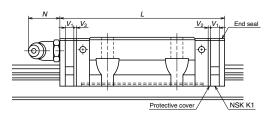



Fig. 12

Table 8	Seal frict	tion per b	all slide (maximun	n value)	Unit: N
Series Size	25	30	35	45	55	65
LA	11	11	12	17	17	23

(2) NSK K1™ lubrication unit

Table 9 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

Table 9

Unit: mm

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V ₂	Protruding area of the grease fitting N
LA25	Standard	AL, AN, EL, FL	79.8	91.8	5.0	1.0	(14)
LAZS	Long	BL, BN, GL, HL	107.8	119.8	5.0	1.0	(14)
1.420	Standard	AL, AN, EL, FL 100.2 113.2		5.5	1.0	(14)	
LA30	Long	BL, BN, GL, HL	126.2	139.2	5.5	1.0	(14)
LA35	Standard	AL, AN, EL, FL	110.6	123.6		1.0	(1.4)
LA35	Long	BL, BN, GL, HL	144.6	157.6	5.5	1.0	(14)
LA45	Standard	AL, AN, EL, FL	141.4	156.4	6.5	1.0	(1E)
LA45	Long	BL, BN, GL, HL	173.4	188.4	6.5	1.0	(15)
LA55	Standard	AL, AN, EL, FL	165.4	180.4	6.5	1.0	(1E)
LASS	Long	BL, BN, GL, HL	203.4	218.4	0.5	1.0	(15)
LACE	Standard	AN, EL, FL	196.2	214.2	0.0	1.0	(10)
LA65	Long	BN, GL, HL	256.2	274.2	8.0	1.0	(16)

Note: Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V_1 × Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

(3) Double seal and protector

For the LA Series, a double seal and a protector can be installed only before shipping from the factory. Please consult with NSK when the double seal and the protectors are required.

Table 10 shows the increased thickness of V₃ and V4 when end seals and protectors are installed (Fig. 15).

Table 10

Unit: mm

	Thickness	Thickness				
Model No.	of end seal: V ₃	of protector: V ₄				
LA25	3.2	3.6				
LA30	4.4	4.2				
LA35	4.4	4.2				
LA45	5.5	4.9				
LA55	5.5	4.9				
LA65	6.5	5.5				

(4) Cap to plug the rail mounting bolt hole Table 11 Caps to plug rail bolt hole

Bolt to	Сар	Quantity
secure rail	reference No.	/case
M6	LG-CAP/M6	20
M8	LG-CAP/M8	20
M12	LG-CAP/M12	20
M14	LG-CAP/M14	20
M16	LG-CAP/M16	20
	secure rail M6 M8 M12 M14	secure rail reference No. M6 LG-CAP/M6 M8 LG-CAP/M8 M12 LG-CAP/M12 M14 LG-CAP/M14

Ball slide End cap End seal Connector washe Collar

Fig. 13 Double seal

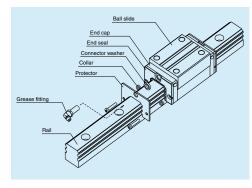


Fig. 14 Protector

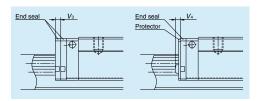


Fig. 15

(5) Bellows

Make tap holes to the rail end face to fix the bellows mounting plate.

NSK processes tap holes to the rail end face when ordered with a linear guide.

Dimension tables of bellows LA Series

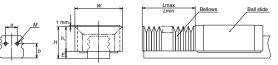


Fig. 16 Dimensions of bellows

Bellows reference number A A 30 L 08 Bellows Number of BL (fold number) A: Bellows for the ends N: High type L: Low type B: Middle bellows Size number of linear guide Bellows for LA series

Table 12 Dimensions of bellows

Unit: mm

Model No.	Н	$h_{\scriptscriptstyle 1}$	Ε	W	Р	а	b	Length of BL	Tap (M) × depth
JAA25L	35	29.5	5.5	55	12	12	13.8	17	M3×5
JAA25N	39	33.5	5.5	61	15	12	13.8	17	M3 × 5
JAA30L	41	33.5	7.5	60	12	14	17.5	17	M4×6
JAA30N	44	36.5	7.5	66	15	14	17.5	17	M4×6
JAA35L	47	39.5	7.5	72	15	15	18.8	17	M4×6
JAA35N	54	46.5	7.5	82	20	15	18.8	17	M4×6
JAA45L	59	49	10	93	20	25	22.5	17	M5×8
JAA45N	69	59	10	113	30	25	22.5	17	M5 × 8
JAA55L	69	57	12	101	20	35	27.1	17	M5×8
JAA55N	79	67	12	121	30	35	27.1	17	M5 × 8
JAA65N	89	75	14	131	30	40	33.3	17	M6 × 12

Table 12	Niumbaua	of folds (RI	\ and langth	of bollows
IANIE TR	Numbers	S Of folds (BL) and length	Of DellOWS

Unit: mm

Tuno	Model No.	Length of BL	2	4	6	8	10	12	14	16	18	20
Type	iviouei ivo.	Lmin	34	68	102	136	170	204	238	272	306	340
	14 4 0 5 1	Stroke	134	268	402	536	670	804	938	1 072	1 206	1 340
Low type	JAA25L	Lmax	168	336	504	672	840	1 008	1 176	1 344	1 512	1 680
I Cala Acces	14 4051	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
High type	JAA25N	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
1	14 4 2 0 1	Stroke	134	268	402	536	670	804	938	1 072	1 206	1 340
Low type	JAA30L	Lmax	168	336	504	672	840	1 008	1 176	1 344	1 512	1 680
I Cala Acces	14 4 0 0 1	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
High type	JAA30N	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
Low type	JAA35L	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
Low type		Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
I Cala Acces	14 4051	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
High type	JAA35N	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
1	100451	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
Low type	JAA45L	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
I Carla da una	1004501	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
High type	JAA45N	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200
1		Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
Low type	JAA55L	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
I Cala Acces	14 4 5 5 1	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
High type	JAA55N	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200
Low/high	IV VCEVI*	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
type	JAA65N*	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200

^{*} Bellows for LA65 is for both low and high types.

Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of the even number BL on the both sides, then by dividing the sum by 2.

A279 A280

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

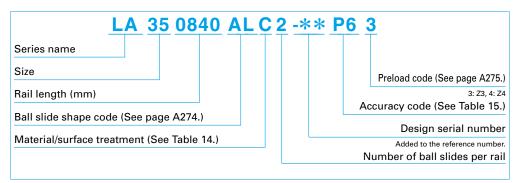


Table 14 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special

Table 15 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1
Ultra precision grade	P3	K3
Super precision grade	P4	K4
High precision grade	P5	K5
Precision grade	P6	K6

Note: Refer to pages A38 for NSK K1 lubrication unit.

A281 A282

9. Dimensions

LA-AL (High-load type / Standard) LA-BL (Super-high-load type / Long)

Material/surface treatment (See Table 14.)

LA 35 0840 ALC 2 -** P6 3

Series name

Size

Rail length (mm)

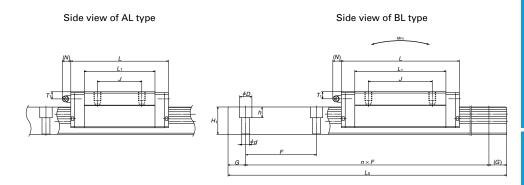
Ball slide shape code (See page A274.)

M_{RO}

W

4-M×L

Myo


Front view of AL and BL types

		A	ssemb	ly					Ball slid	le							
,	Model No.	Height			Width	Length		Mour	nting hole				Grease	fitting	9	Width	Height
1	viouei ivo.	Н	Ε	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	T	Hole size	<i>T</i> ₁	N	W_1	H ₁
ĺ	LA25AL	36	5.5	12.5	48	79.8	35	35	M6×1×7	58	30.5	8	M6×0.75	6	11	23	22
	LA25BL	30	5.5	12.5	40	107.8		50	IVIOX IX7	86		0	1010×0.75	0	' '	23	22
	LA30AL	42	7.5	16	60	100.2	40	40	M8×1.25×10	72	34.5	11	M6×0.75	6.5	11	28	28
	LA30BL	42	7.5	10	00	126.2		60	100.71.23.710	98		' '	1010.70.73	0.5	''	20	20
	LA35AL	48	7.5	18	70	110.6	50	50	M8×1.25×10	80	40.5	15	M6×0.75	8	11	34	30.8
	LA35BL	p	7.5	10	70	144.6		72	100.41.23.410	114		13	1010×0.75	O		34	30.8
	LA45AL					141.4		60		105							
	LA45BL	60	10	20.5	86	173.4	60	80	M10×1.5×16	137	50	17	Rc1/8	10	13	45	36
	LA55AL					165.4		75		126							
	LA55BL	70	12	23.5	100	203.4	75	95	M12 × 1.75×16	164	58	18	Rc1/8	11	13	53	43.2

Design serial number

Added to the reference number.
Number of ball slides per rail

Notes: 1) LA Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

Unit: mm

Rail						Basic lo	ad ratin	g				We	ight
Pitch	Mounting	G	Max.	2)Dyn	amic	Static		Static r	momen	t (N·m)		Ball	Rail
	bolt hole		length	[50km]	[100km]	C 0	MRO	М	PO	М	ΥO	slide	
F	$d \times D \times h$	(reference)	$L_{\scriptscriptstyle Omax}$	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	7×11×9 20	20	3 960	30 000	23 900	50 000	290	410	2 490	410	2 490	0.5	3.7
			40 500	32 500	77 000	445	935	5 000	935	5 000	0.8	0.7	
80	80 9×14×12 20	20	4 000	47 000	37 000	77 500	535	820	4 800	820	4 800	0.8	5.8
		20	20 4000	58 000	46 000	105 000	725	1 470	8 050	1 470	8 050	1.2	3.0
80	9×14×12	4×12 20	4 000	61 500	49 000	98 000	845	1 130	6 750	1 130	6 750	1.3	7.7
	0/11/12		1 000	80 500	64 000	143 000	1 240	2 330	12 500	2 330	12 500	1.6	7.7
105	14×20×17	22.5	3 990	91 000	72 000	148 000	1 840	2 210	12 900	2 210	12 900	2.5	12.0
	14/20/17	22.5	3 330	111 000	88 000	197 000	2 460	3 850	20 600	3 850	20 600	3.2	12.0
120	16×23×20	30	3 960	139 000	111 000	215 000	3 150	3 800	22 000	3 800	22 000	3.9	17.2
120	10×23×20	30	3 9 60	172 000	137 000	292 000	4 250	6 800	36 000	6 800	36 000	5.1	17.2

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2) $\,$

 $[\]mathcal{C}_{\text{\tiny{50}}}$; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

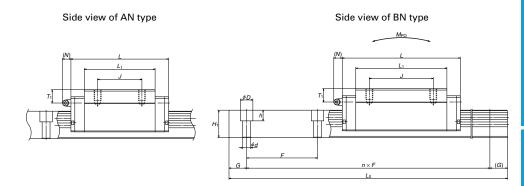
LA-AN (High-load type / Standard) LA-BN (Super-high-load type / Long)

Material/surface treatment (See Table 14.)

LA 35 0840 ANC 2 -** P6 3 Series name Size Rail length (mm) Ball slide shape code (See page A274.)

M_{RO} W 4-M×£

Front view of AN and BN types


	A:	ssemb	oly					Ball slid	le							
Model No.	Height			Width	Length		Mour	nting hole				Grease	fitting	2	Width	Height
Wiodol Wo.	Н	Ε	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	<i>T</i> ₁	N	W₁	H ₁
LA25AN	40	5.5	12.5	48	79.8	35	35	M6×1×10	58	34.5	12	M6×0.75	10	11	23	22
LA25BN					107.8		50		86							
LA30AN					100.2		40		72							
LA30BN	45	7.5	16	60	126.2	40	60	M8×1.25×11	98	37.5	14	M6×0.75	9.5	11	28	28
LA35AN					110.6		50		80							
LA35BN	55	7.5	18	70	144.6	50	72	M8×1.25×12	114	47.5	15	M6×0.75	15	11	34	30.8
LA45AN					141.4		60		105							
LA45BN	70	10	20.5	86	173.4	60	80	M10×1.5×16	137	60	17	Rc1/8	20	13	45	36
LA55AN					165.4		75		126							
LA55BN	80	12	23.5	100	203.4	75	95	M12×1.75×18	164	68	18	Rc1/8	21	13	53	43.2
LA65AN			0.1.5	105	196.2	7.0	70	1440 0 45	147			D 1/6	10	4.5		
LA65BN	90	14	31.5	126	256.2	76	120	M16×2×19	207	76	22	Rc1/8	19	13	63	55

Design serial number

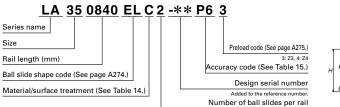
Added to the reference number.

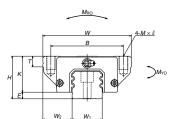
Number of ball slides per rail

Notes: 1) LA Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

10.00		
Init	r. n	nm .

Rail						Basic Ic	ad ratin	ıg				We	ight
Pitch	Mounting	G	Max. length	2)Dyn		Static			momen	t (N·m)		Ball	Rail
	bolt hole		Ü	[50km]	[100km]	C_0	M _{RO}		PO		YO	slide	
F	d×D×h	(reference)	L_{0max}	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	7×11×9	20	3 960	30 000	23 900	50 000	290	410	2 490	410	2 490	0.6	3.7
	771170		0 000	40 500	32 500	77 000	445	935	5 000	935	5 000	0.9	0.7
80	9×14×12	20	4 000	47 000	37 000	77 500	535	820	4 800	820	4 800	0.9	5.8
80	9x14x12	20	4 000	58 000	46 000	105 000	725	1 470	8 050	1 470	8 050	1.3	5.8
80	9×14×12	20	4 000	61 500	49 000	98 000	845	1 130	6 750	1 130	6 750	1.5	7.7
80	9x14x12	20	4 000	80 500	64 000	143 000	1 240	2 330	12 500	2 330	12 500	2.1	7.7
105	14×20×17	00.5	3 990	91 000	72 000	148 000	1 840	2 210	12 900	2 210	12 900	3.0	12.0
105	14x20x17	22.5	3 990	111 000	88 000	197 000	2 460	3 850	20 600	3 850	20 600	3.9	12.0
100	10 00 00	0.0	0.000	139 000	111 000	215 000	3 150	3 800	22 000	3 800	22 000	4.7	47.0
120	16×23×20	30	3 960	172 000	137 000	292 000	4 250	6 800	36 000	6 800	36 000	6.1	17.2
150	102022	٥٦	2 000	260 000	206 000	420 000	7 300	9 050	51 000	9 050	51 000	7.7	25.0
150	18×26×22	35	3 900	340 000	269 000	615 000	10 700	18 700	95 000	18 700	95 000	10.8	25.9


²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)


 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

LA-EL (High-load type / Standard) LA-GL (Super-high-load type / Long)

Front view of EL and GL types

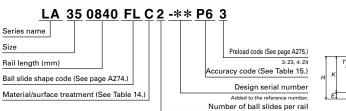
	A:	Assembly Ball slide														
Model No.	Height			Width	Length		Mour	iting hole				Grease	fittin	g	Width	Height
	Н	Ε	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	<i>T</i> ₁	N	W_1	H_1
LA25EL					79.8				58							
LA25GL	36	5.5	23.5	70	107.8	57	45	M8×1.25×12	86	30.5	11	M6×0.75	6	11	23	22
LA30EL	40		0.4		100.2	70		M40 4 5 40	72	l	4.4	MO 0.75	0.5	4.4	00	00
LA30GL	42	7.5	31	90	126.2	72	52	M10×1.5×16	98	34.5	11	M6×0.75	6.5	11	28	28
LA35EL					110.6				80		4.0	140 0 75				00.0
LA35GL	48	7.5	33	100	144.6	82	62	M10×1.5×15	114	40.5	12	M6×0.75	8	11	34	30.8
LA45EL					141.4				105			5				
LA45GL	60	10	37.5	120	173.4	100	80	M12×1.75×18	137	50	13	Rc1/8	10	13	45	36
LA55EL	7.0	10	40.5		165.4		0.5		126		4-	D 15		10		
LA55GL	70	12	43.5	140	203.4	116	95	M14×2×21	164	58	15	Rc1/8	11	13	53	43.2
LA65EL					196.2				147							
LA65GL	90	14	53.5	170	256.2	142	110	M16×2×24	207	76	22	Rc1/8	19	13	63	55

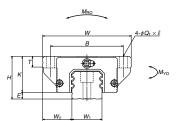
Notes: 1) LA Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

Side view of EL type	Side view of GL type	
	Moo	
	How the second s	(G)

ш	nı	+٠	m	m

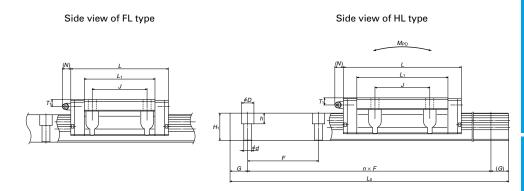
Rail						Basic Id	ad ratir	na		Basic load rating									
Pitch	Mounting	G	Max.	2)Dyn	amic	Static	Jaa ratii		momen	t (N·m)		Ball	ight Rail						
	bolt hole		length	[50km]	[100km]	C 0	M _{RO}	М	PO	M	Yo	slide	riun						
F	$d \times D \times h$	(reference)	$L_{ m 0max}$	C ₅₀ (N)	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)						
60	7×11×9	20	3 960	30 000	23 900	50 000	290	410	2 490	410	2 490	0.8	3.7						
00	721120	20	0 000	40 500	32 500	77 000	445	935	5 000	935	5 000	1.1	0.7						
80	9×14×12	20	4 000	47 000	37 000	77 500	535	820	4 800	820	4 800	1.3	5.8						
00	0/14/12	20	7 000	58 000	46 000	105 000	725	1 470	8 050	1 470	8 050	1.8	0.0						
00	01410	20	4 000	61 500	49 000	98 000	845	1 130	6 750	1 130	6 750	1.9	7.7						
80	9×14×12	20	4 000	80 500	64 000	143 000	1 240	2 330	12 500	2 330	12 500	2.6	7.7						
105	14×20×17	22.5	3 990	91 000	72 000	148 000	1 840	2 210	12 900	2 210	12 900	3.3	12.0						
105	14220017	22.5	3 990	111 000	88 000	197 000	2 460	3 850	20 600	3 850	20 600	4.3	12.0						
120	16×23×20	30	3 960	139 000	111 000	215 000	3 150	3 800	22 000	3 800	22 000	5.5	17.2						
120	10x23x20	30	3 960	172 000	137 000	292 000	4 250	6 800	36 000	6 800	36 000	7.2	17.2						
150	18×26×22	35	3 900	260 000	206 000	420 000	7 300	9 050	51 000	9 050	51 000	11.0	25.9						
150	10XZ0XZZ	35	3 900	340 000	269 000	615 000	10 700	18 700	95 000	18 700	95 000	15.5	25.9						


²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)


 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

LA-FL (High-load type / Standard) LA-HL (Super-high-load type / Long)


Front view of FL and HL types

	A:	ssemb	ly		Ball slide											
Model No.	Height			Width	Length		Mour	nting hole				Grease	fittin	g	Width	Height
	Н	Ε	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	<i>T</i> ₁	N	W₁	H_1
LA25FL LA25HL	36	5.5	23.5	70	79.8 107.8	57	45	7×10	58 86	30.5	11	M6×0.75	6	11	23	22
LAZSIIL																
LA30FL	42	7.5	31	90	100.2 126.2	72	52	9×12	72 98	34.5	11	M6×0.75	6.5	11	28	28
LA35FL LA35HL	48	7.5	33	100	110.6 144.6	82	62	9×13	80 114	40.5	12	M6×0.75	8	11	34	30.8
LA45FL LA45HL	60	10	37.5	120	141.4 173.4	100	80	11×15	105 137	50	13	Rc1/8	10	13	45	36
LA55FL LA55HL	70	12	43.5	140	165.4 203.4	116	95	14×18	126 164	58	15	Rc1/8	11	13	53	43.2
LA65FL LA65HL	90	14	53.5	170	196.2 256.2	142	110	16×23	147 207	76	22	Rc1/8	19	13	63	55

Notes: 1) LA Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

Haite name

								Un	it: mm				
Rail						Basic lo	oad ratir	ng				We	ight
Pitch	Mounting	G	Max.	2)Dyn	amic	Static		Static	momen	t (N·m)		Ball	Rail
	bolt hole		length	[50km]	[100km]	C_0	M_{RO}	М	PO	М	YO	slide	
F	$d \times D \times h$	(reference)	L_{0max}	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	7×11×9	20	3 960	30 000	23 900	50 000	290	410	2 490	410	2 490	0.8	3.7
	771170			40 500	32 500	77 000	445	935	5 000	935	5 000	1.1	0.7
80	9×14×12	20	4 000	47 000	37 000	77 500	535	820	4 800	820	4 800	1.3	5.8
80	9×14×12	20	4 000	58 000	46 000	105 000	725	1 470	8 050	1 470	8 050	1.8	5.8
				61 500	49 000	98 000	845	1 130	6 750	1 130	6 750	1.9	
80	9×14×12	20	4 000	80 500	64 000	143 000	1 240	2 330	12 500	2 330	12 500	2.6	7.7
105	14×20×17	22.5	3 990	91 000	72 000	148 000	1 840	2 210	12 900	2 210	12 900	3.3	12.0
105	14x20x17	22.5	3 990	111 000	88 000	197 000	2 460	3 850	20 600	3 850	20 600	4.3	12.0
100	100000	20	2.000	139 000	111 000	215 000	3 150	3 800	22 000	3 800	22 000	5.5	17.0
120	16×23×20	30	3 960	172 000	137 000	292 000	4 250	6 800	36 000	6 800	36 000	7.2	17.2
450	10, 00, 00	0.5	0.000	260 000	206 000	420 000	7 300	9 050	51 000	9 050	51 000	11.0	05.0
150	18×26×22	35	3 900	340 000	269 000	615 000	10 700	18 700	95 000	18 700	95 000	15.5	25.9

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 $C_{\rm so}$, the basic dynamic load rating for 50 km rated fatigue life $C_{\rm noo}$, the basic dynamic load rating for 100 km rated fatigue life

1. HA Series

A293

2. HS Series

A307

A-5-4 High-Precision Machine and High-Precision Measuring Equipment

A291 A292

0.12 um

0.37 µm

A-5-4.1 HA Series

1. Features

(1) High motion accuracy

High motion accuracy is achieved in both narrow and wide ranges by the adoption of ultra-long ball slides and the optimum design of the ball recirculation component.

(2) Ball passage vibration reduced to one-third of our conventional models

Our extensive performance tests show ball passage vibration has been reduced to one-third of our conventional models, dramatically improving straightness in table unit.

(3) Installation of rail with greater accuracy

Increased counterbore depth of the rail mounting hole reduces rail deflection, which is caused by bolt tightening when fixing the rail to the mounting base to 50% or less. This feature restrains the pitching motion of ball slide whose frequency matches to the mounting hole pitch.

In addition, the length of mounting hole pitch has been reduced by one-half of the conventional models, so the rail can be more accurately installed in position.

(4) High rigidity and load capacity with lower friction

High rigidity, high load capacity and low friction are achieved by increasing the number of balls.

(5) Compact design

Reduced body size enables more compact machinery.

(6) Four-way equal load distribution

Contact angle is set at 45 degrees in all grooves, dispersing the load to four ball rows irrespective of load direction. This realizes equal rigidity and load carrying capacity in vertical and lateral directions and provides well-balanced design.

(7) Strong against shock load

Load from any direction, vertical and lateral,

is received by four ball rows at all times. The number of the ball row which receives the load is larger than in other linear guides, making this series stronger against shock load.

(8) High accuracy at manufacturing

Fixing the measuring rollers to the ball grooves is easy thanks to the Gothic arch groove. Ball-groove measuring is accurate and simple. This benefits a highly precise and stable manufacturing.

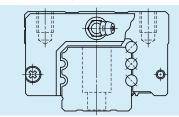


Fig. 1 HA Series

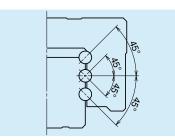


Fig. 2 Super rigidity design

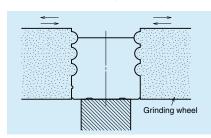


Fig. 3 Rail grinding

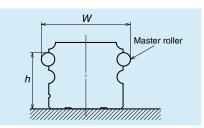


Fig. 4 Measuring groove accuracy

Measurement results of ball passage vibration

Ball passage vibration can translate into posture changes in the ball slide which result from ball passage (circulation). In the HA Series, this vibration has been substantially reduced to one-third of conventional models.

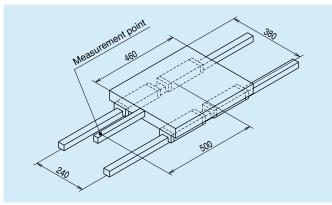


Fig. 5 Schematic view of measurement of ball passage vibration

HA Series

Model No.: HA30
Preload: Z3
Table disconsisted 400 constant 200 cm

Table dimensions: 460 mm imes 380 mm

Conventional Series

Model No.: LA30 Preload: Z3

Table dimensions: 460 mm × 380 mm

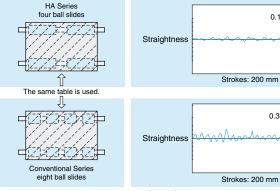
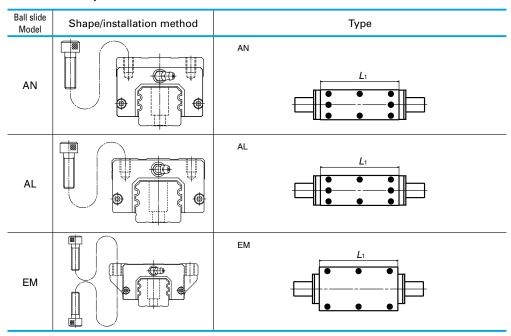
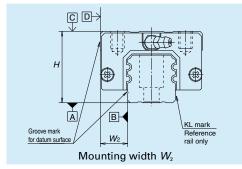



Fig. 6 Measurement results of HA Series and conventional Series

2. Ball slide shape

3. Accuracy and preload

(1) Running parallelism of ball slide


	Tabl	e 1	Unit: µm						
	Pre	Preloaded assembly							
Rail length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5						
- 200	2	2	4						
200 – 250	2	2.5	5						
250 – 315	2	2.5	5						
315 - 400	2	3	6						
400 - 500	2	3	6						
500 - 630	2	3.5	7						
630 - 800	2	4.5	8						
800 – 1 000	2.5	5	9						
1 000 – 1 250	3	6	10						
1 250 – 1 600	4	7	11						
1 600 – 2 000	4.5	8	13						
2 000 – 2 500	5	10	15						
2 500 – 3 150	6	11	17						
3 150 – 4 000	9	16	23						

(2) Accuracy standard

Three accuracy grades are available: Ultra precision P3, Super precision P4 and High precision P5.

	lable 2		Unit: µm
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Refer to Table 1 and Fig . 7	

(3) Assembled accuracy

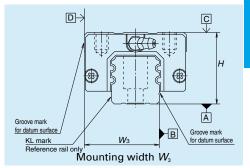


Fig. 7

(4) Preload and rigidity

Slight preload Z1 and Medium preload Z3 are available for preload, which can be selected for specific applications.

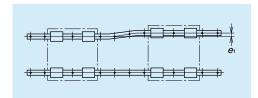
Table 3

NAI - I NI -	Preloa	ad (N)	Rigidity (N/μm)				
Model No.	Slight preload (Z1)	Medium preload (Z3)	Slight preload (Z1)	Medium preload (Z3)			
HA25	735	2 990	635	1 030			
HA30	1 030	4 400	880	1 270			
HA35	1 470	6 100	1 030	1 620			
HA45	1 960	8 150	1 230	2 060			
HA55	3 150	13 100	1 520	2 450			

4. Maximum rail length

Table 4 shows the limitations of rail length.

However, the limitations vary by accuracy grades.

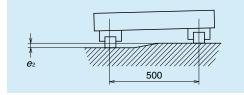

Tab	ails	Unit: mm			
Series Size	25	30	35	45	55
HA	3 960	4 000	4 000	3 990	3 960

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

parallelism (height)

(1) Permissible values of mounting error



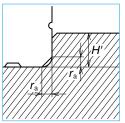

Fig. 8

Fig. 9

Table 5

lable 5 Unit: μm						
Value	Preload	Model No.				
value	Freioau	HA25	HA30	HA35	HA45	HA55
Permissible values of	Z1	20	20	23	26	34
parallelism in two rails e1	Z3	15	14	17	19	25
Permissible values of	71 70	050 /500				
parallelism (height) in two rails e2	Z1,Z3		2	250 µm/500 mn	n	

(2) Shoulder height of the mounting surface and corner radius r

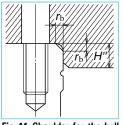


Fig. 10 Shoulder for the rail datum surface

Fig. 11 Shoulder for the ball slide datum surface

			Unit: mm	
Model No.	Corner radius (maximum)		Shoulde	er height
woder No.	r _a	$r_{\rm b}$	H'	H"
HA25	0.5	0.5	5	5
HA30	0.5	0.5	6	6
HA35	0.5	0.5	6	6
HA45	0.7	0.7	8	8
HA55	0.7	0.7	10	10

6. Lubrication components

Refer to pages A38 and D13 for linear guide lubrication.

(1) Types of lubrication accessories

Fig. 12 and Table 7 show grease fittings and

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

When you require stainless lubrication accessories, please ask NSK.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on the side of end cap for an option. (Fig. 13)

Please consult NSK for installation of grease or tube fittings to the ball slide body or the side of end cap.

When using a piping unit with thread of $M6 \times 1$, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

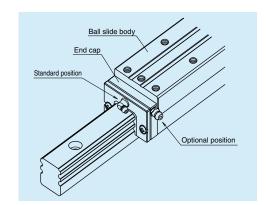


Fig. 13 Mounting position of lubrication accessories

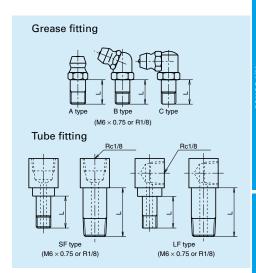


Fig. 12 Grease fitting and tube fitting

Table 7

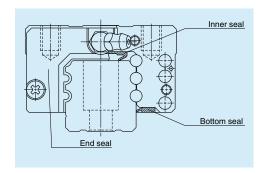
ш	-	. + -	m

Model	Dust-proof	Dimension L				
	specification	Grease fitting	Tube fitting			
No. sp	specification	Grease many	SF type	LF type		
	Standard	5	5	5		
HA25	With NSK K1	14	12	12		
пА25	Double seal	10	9	9		
	Protector	10	9	9		
	Standard	5	6	6		
HA30	With NSK K1	14	12	13		
Double seal		12	10	11		
	Protector	12	11	11		
	Standard	5	6	6		
HA35	With NSK K1	14	12	13		
пАЗЗ	Double seal	12	10	11		
	Protector	12	11	11		
	Standard	8	13.5	17		
HA45	With NSK K1	18	22	21.5		
HA45	Double seal	14	18	17		
	Protector	14	16	17		
	Standard	8	13.5	17		
HA55	With NSK K1	18	22	21.5		
пАээ	Double seal	14	18	17		
	Protector	14	16	17		

7. Dust-proof components

(1) Standard Specification

The HA Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends, bottom seals at the bottom, and an inner seal in inside.



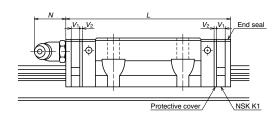

Fig. 14

Table 8 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	25	30	35	45	55
HA	17	17	19	21	22

(2) NSK K1[™] lubrication unit

Table 9 shows the dimensions of linear guides equipped with the NSK K1 lubrication unit.

Tal	ble	9
-----	-----	---

U	Jnit:	mm
U	ınıt:	mm

Model No.	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V_2	Protruding area of the grease fitting N
HA25	AN, EM	147.8	159.8	5.0	1.0	(14)
HA30	AN, EM	177.2	190.2	5.5	1.0	(14)
HA35	AN, AL, EM	203.6	216.6	5.5	1.0	(14)
HA45	AN, AL, EM	233.4	248.4	6.5	1.0	(15)
HA55	AN,AL, EM	284.4	299.4	6.5	1.0	(15)

Note: Ball slide length equipped with NSK K1 =

(Standard ball slide length) + (Thickness of NSK K1, $V_1 \times$ Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

(3) Double seal and protector

For the HA Series, double seal and protectors can be installed only before shipping from the factory. Please consult with NSK when you require dust tight protection.

Table 10 shows the increased thickness of V_3 , and V_4 when the end seal and the protector are installed.

	Table 10	Unit: mm
Model No.	Thickness	Thickness
woder No.	of end seal: V ₃	of protector: V ₄
HA25	3.2	3.6
HA30	4.4	4.2
HA35	4.4	4.2
HA45	5.5	4.9
HA55	5.5	4.9

(4) Caps to plug the rail mounting bolt hole

Table 11 Caps to plug rail bolt hole

Madal Na	Bolt to	Сар	Quantity
	secure rail	reference No.	/case
HA25	M6	LG-CAP/M6	20
HA30, HA35	M8	LG-CAP/M8	20
HA45	M12	LG-CAP/M12	20
HA55	M14	LG-CAP/M14	20
	HA25 HA30, HA35 HA45	Model No. secure rail HA25 M6 HA30, HA35 M8 HA45 M12	Model No. secure rail reference No. HA25 M6 LG-CAP/M6 HA30, HA35 M8 LG-CAP/M8 HA45 M12 LG-CAP/M12

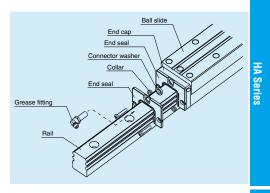


Fig. 15 Double seal

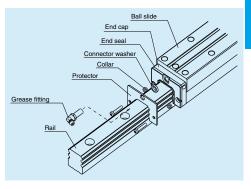


Fig. 16 Protector

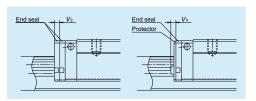


Fig. 17

A299 A300

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

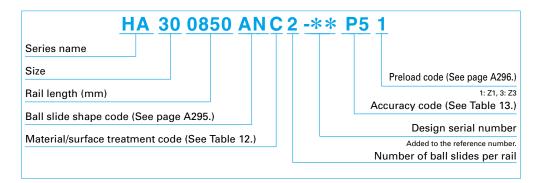
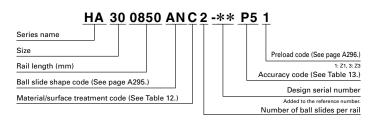
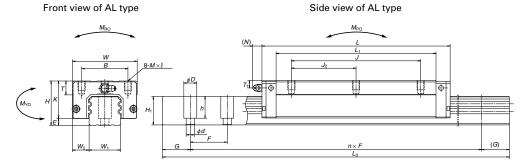


Table 12 Material/surface treatment code

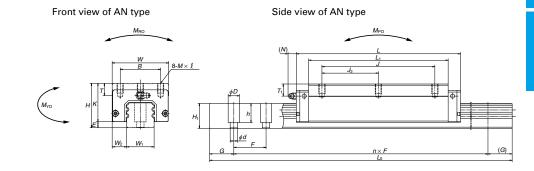
Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special


Table 13 Accuracy code


Accuracy	Standard (Without NSK K1)	With NSK K1
Ultra precision grade	P3	К3
Super precision grade	P4	K4
High precision grade	P5	K5

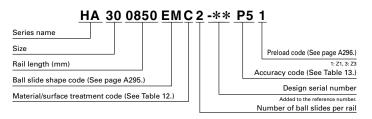
Note: Refer to page A38 for NSK K1 lubrication unit.

A301 A302

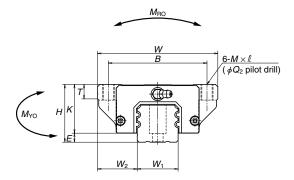

9. Dimensions HA-AN HA-AL

	A:	ssemb	oly						Ball slid	de						R	ail
Model No.	Height			Width	Vidth Length Mounting hole			ng hole				Grease	fittin	g	Width	Height	
Model No.		_				_				١.		_	11-1:				
	Н	Ε	W_2	W	L	В	J	J_2	$M \times \text{pitch} \times \ell$	L_1	K	Τ	Hole size	T_1	Ν	$W_{\scriptscriptstyle 1}$	H_1
HA25AN	40	5.5	12.5	48	147.8	35	100	50	M6×1.0×10	126	34.5	12	M6×0.75	10	11	23	22
HA30AN	45	7.5	16	60	177.2	40	120	60	M8×1.25×11	149	37.5	14	M6×0.75	9.5	11	28	28
HA35AN	55	7.5	18	70	203.6	50	140	70	M8×1.25×12	173	47.5	15	M6×0.75	15	11	34	30.8
HA35AL	48	7.5	10	/0	203.0	50	140	/ 0	M8×1.25×10	173	40.5	15	1010×0.75	8	11	34	30.0
HA45AN	70	10	20 E	86	233.4	60	160	00	M10×1.5×16	107	60	17		20	10	45	36
HA45AL	60	10	20.5	80	233.4	60	160	80	IVI I UX I .5X I O	197	50	17	Rc1/8	10	13	45	36
HA55AN	80	12	23.5	100	284.4	75	206	102	M12×1.75×18	245	68	18	Rc1/8	21	13	53	43.2
HA55AL	70	12	23.5	100	204.4	75	200	103	M12×1.75×16	240	58	10	nc1/6	11	13	55	43.2

Notes: 1) The HA Series does not have a ball retainer. Be aware that the balls fall out when a ball slide is withdrawn from the rail.

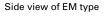

Unit: mm

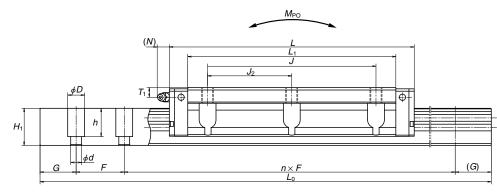
	Rail				Basic load							Weigh		
Pitch	Mounting	G	Maximum	²)Dyn	amic	Static		Static r	momen	t (N·m)		Ball	Rail	
	bolt hole		length	[50km] [100km]		C 0	M_{RO}	M _{PO}		M	YO	_{yo} slide		
F	$d \times D \times h$	(reference)	L_{0max}	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)	
30	7×11×16.5	20	3 960	54 000	43 000	115 000	670	2 060	10 100	2 060	10 100	1.2	3.7	
40	9×14×21	20	4 000	79 500	63 500	166 000	1 140	3 550	17 400	3 550	17 400	1.8	5.8	
40	9×14×23.5	20	4 000	111 000	88 000	226 000	1 950	5 650	27 100	5 650	27 100	3.0	7.7	
	0X14X20.0	20	7 000	111 000	00 000	220 000	1 330	0 000	27 100	0 000	27 100	2.6	7.7	
52.5	14×20×27	22.5	3 990	147 000	117 000	295 000	3 700	8 450	40 500	8 450	40 500	6.0	12.0	
	14/20/27	22.0	0 000	147 000	117 000	200 000	0 700	0 430	+0 000	0 400	+0 000	5.0	12.0	
60	16×23×32.5	30	3 960	232 000	184 000	445 000	6 500	15 400	75 000	15 400	75 000	9.4	17.2	
00	10/20/02.0	00	0 000	202 000	104 000	440 000	0 300	10 400	75 000	15 400	75 000	7.8	17.2	


A303 A304

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2) C_{100} , the basic dynamic load rating for 50 km rated fatigue life C_{100} , the basic dynamic load rating for 100 km rated fatigue life

HA-EM




Front view of EM type

	Д	Assembly Ball slide											R	ail				
Model No.	Height			Width	h Length Mounting hole								Grease	fittin	g	Width	Height	
iviodei No.	Н	Ε	W_2	W	L	В	J	J_2	$M \times \text{pitch} \times \ell$	Q_2	L ₁	К	Т	Hole size	<i>T</i> ₁	N	$W_{\scriptscriptstyle 1}$	H ₁
HA25EM	36	5.5	23.5	70	147.8	57	100	50	M8×1.25×10	6.8	126	30.5	11	M6×0.75	6	11	23	22
HA30EM	42	7.5	31	90	177.2	72	120	60	M10×1.5×12	8.6	149	34.5	11	M6×0.75	6.5	11	28	28
HA35EM	48	7.5	33	100	203.6	82	140	70	M10×1.5×13	8.6	173	40.5	12	M6×0.75	8	11	34	30.8
HA45EM	60	10	37.5	120	233.4	100	160	80	M12×1.75×15	10.5	197	50	13	Rc1/8	10	13	45	36
HA55EM	70	12	43.5	140	284.4	116	206	103	M14×2×18	12.5	245	58	15	Rc1/8	11	13	53	43.2

Notes: 1) HA Series does not have a ball retainer. Be aware that the balls fall out when a ball slide is withdrawn from the rail.

Unit: mm

	Rail				Basic load rating								
Pitch	Mounting	G Maximum		²)Dyn	amic	Static		Static r	momen	t (N·m)		Ball	Rail
	bolt hole		length	[50km]	[100km]	C 0	M_{RO}	M _{RO} M _{PO}		M _{YO}		slide	
F	$d \times D \times h$	(reference)	L_{omax}	C ₅₀ (N)	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
30	7×11×16.5	20	3 960	54 000	43 000	115 000	670	2 060	10 100	2 060	10 100	1.6	3.7
40	9×14×21	20	4 000	79 500	63 500	166 000	1 140	3 550	17 400	3 550	17 400	2.6	5.8
40	9×14×23.5	20	4 000	111 000	88 000	226 000	1 950	5 650	27 100	5 650	27 100	3.8	7.7
52.5	14×20×27	22.5	3 990	147 000	117 000	295 000	3 700	8 450	40 500	8 450	40 500	6.6	12.0
60	16×23×32.5	30	3 960	232 000	184 000	445 000	6 500	15 400	75 000	15 400	75 000	11	17.2

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

A305 A306

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

A-5-4.2 HS Series

1. Features

(1) High motion accuracy

High motion accuracy is achieved in both narrow and wide ranges by adopting ultralong ball slides and optimum design features for the ball recirculation component.

(2) Ball passage vibration reduced to one-third of our conventional models

Tests show ball passage vibration has been reduced to one-third of our conventional models, dramatically improving straightness in table unit.

(3) Installation of rail with greater accuracy

Increased counterbore depth of the rail mounting hole reduces rail deflection, which is caused by bolt tightening when fixing the rail to the mounting base, to 50% or less. This feature restrains the pitching motion of ball slide whose frequency matches to the mounting hole pitch.

In addition, the mounting hole pitch has been reduced by one-half of the conventional models, so the rail can be more accurately installed in position.

(4) High rigidity and load capacity with lower friction

High rigidity, high load capacity and low friction are achieved by increasing the number of balls.

(5) Compact design

Reduced body size enables more compact machinery.

(6) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, increasing load carrying capacity as well as rigidity against the load in vertical direction.

(7) High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is usually carried by top two ball rows at where balls are contacting at two points. Because of this design, the bottom ball rows will carry the load when a large impact load is applied as shown in Fig. 3. This

assures high resistance to the impact load.

(8) High accuracy at manufacturing

As showing in **Fig. 4**, fixing the measuring rollers to the ball groove is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

(9) Improve rating life dramatically

New ball groove geometry is introduced, which has been developed by utilizing NSK's state-of-the-art tribological and analytical technologies. Due to the optimized distribution of contact surface pressures, the rating life has dramatically increased.

As compared with the conventional products, the load rating capacity has increased to 1.3 times, while the life span has increased to twice*1.

*1: Representative values of series.

Fig. 1 HS Series

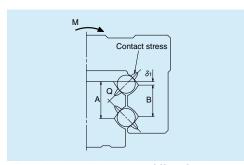


Fig. 2 Enlarged illustration: Offset Gothic arch

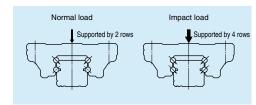


Fig. 3 When load is applied

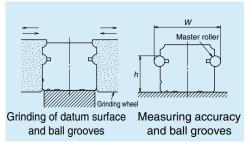


Fig. 4 Rail-grinding and measuring

Measurement results of ball passage vibration

HS Series

Model No.: HS30

Model No.: LS30

Preload: 71

Table dimensions: 460 mm × 380 mm

Table dimensions: 460 mm × 380 mm

Conventional Series

Preload: Z1

Ball passage vibration can translate into posture changes in the ball slide which result from ball passage (circulation). In the HS Series, this vibration has been substantially reduced to one-third of conventional models.

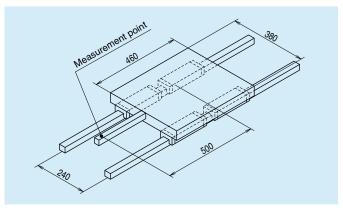


Fig. 5 Schematic view of measurement of ball passage vibration

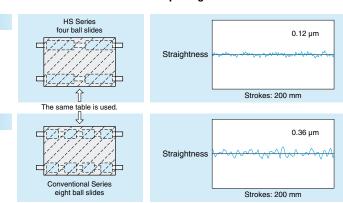
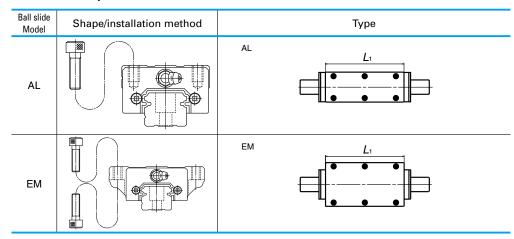
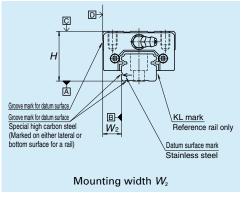



Fig. 6 Measurement results of HS Series and conventional Series

2. Ball slide shape

3. Accuracy and preload

(1) Running parallelism of ball slide


Preloaded assembly Rail length (mm) Ultra precision Super precision High precision P5 - 200 2 2 4 200 - 250 2 2.5 5 250 - 315 2 2.5 5 315 - 400 2 3 6 400 - 500 2 3 6 500 - 630 2 3.5 7 630 - 800 2 4.5 8 800 - 1 000 2.5 5 9 1 000 - 1 250 3 6 10 1 250 - 1 600 4 7 11 1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15 2 500 - 3 150 6 11 17 3 150 - 4 000 9 16 23		Table 1 Unit: μm								
(mm) Ottra over or less P3 precision P3 precision P4 precision P5 precision<				Pre	loaded ass	em	bly			
200 - 250 2 2.5 5 250 - 315 2 2.5 5 315 - 400 2 3 6 400 - 500 2 3 6 500 - 630 2 3.5 7 630 - 800 2 4.5 8 800 - 1 000 2.5 5 9 1 000 - 1 250 3 6 10 1 250 - 1 600 4 7 11 1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15 2 500 - 3 150 6 11 17	(n	nm)		P3		P4		P5		
250 - 315 2 2.5 5 315 - 400 2 3 6 400 - 500 2 3 6 500 - 630 2 3.5 7 630 - 800 2 4.5 8 800 - 1 000 2.5 5 9 1 000 - 1 250 3 6 10 1 250 - 1 600 4 7 11 1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15 2 500 - 3 150 6 11 17		- 200	2		2		4			
315 - 400 2 3 6 400 - 500 2 3 6 500 - 630 2 3.5 7 630 - 800 2 4.5 8 800 - 1 000 2.5 5 9 1 000 - 1 250 3 6 10 1 250 - 1 600 4 7 11 1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15 2 500 - 3 150 6 11 17	200	- 250	2		2.5		5			
400 - 500 2 3 6 500 - 630 2 3.5 7 630 - 800 2 4.5 8 800 - 1 000 2.5 5 9 1 000 - 1 250 3 6 10 1 250 - 1 600 4 7 11 1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15 2 500 - 3 150 6 11 17	250	- 315	2		2.5		5			
500 - 630 2 3.5 7 630 - 800 2 4.5 8 800 - 1 000 2.5 5 9 1 000 - 1 250 3 6 10 1 250 - 1 600 4 7 11 1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15 2 500 - 3 150 6 11 17	315	- 400	2		3		6			
630 - 800 2 4.5 8 800 - 1 000 2.5 5 9 1 000 - 1 250 3 6 10 1 250 - 1 600 4 7 11 1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15 2 500 - 3 150 6 11 17	400	- 500	2		3		6			
800 - 1 000 2.5 5 9 1 000 - 1 250 3 6 10 1 250 - 1 600 4 7 11 1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15 2 500 - 3 150 6 11 17	500	- 630	2		3.5		7			
1 000 - 1 250 3 6 10 1 250 - 1 600 4 7 11 1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15 2 500 - 3 150 6 11 17	630	- 800	2		4.5		8			
1 250 - 1 600 4 7 11 1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15 2 500 - 3 150 6 11 17	800	- 1 000	2.5		5		9			
1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15 2 500 - 3 150 6 11 17	1 000	- 1 250	3		6		10			
2 000 - 2 500 5 10 15 2 500 - 3 150 6 11 17	1 250	- 1 600	4		7		11			
2 500 – 3 150 6 11 17	1 600	- 2 000	4.5		8		13			
	2 000	- 2 500	5		10		15			
3 150 – 4 000 9 16 23	2 500	- 3 150	6		11		17			
	3 150	-4000	9		16		23			

(2) Accuracy Standard

Three accuracy grades are available: Ultra precision P3, Super precision P4 and High precision P5.

	Table 2		Unit: µm
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Refer to Table 1 and Fig . 7	7

(3) Assembled accuracy

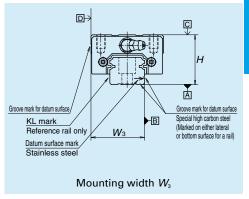


Fig. 7

(4) Preload and rigidity

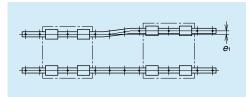
Slight preload Z1 and Medium preload Z3 are available for preload, which can be selected for specific applications.

	Table 5										
	Prolo	ad (N)	Rigidity (N/μm)								
Model No.	1 1610	au (IV)	Vertical	direction	Lateral direction						
	Slight preload (Z1)		Slight preload (Z1)	Medium preload (Z3)	Slight preload (Z1)	Medium preload (Z3)					
HS15	98	785	260	530	173	355					
HS20	147	1 030	305	600	212	415					
HS25	245	1 620	385	735	263	505					
HS30	390	2 550	505	965	345	665					
HS35	590	3 550	610	1 140	415	780					

4. Maximum rail length

Table 4 shows the limitation. The dimension in parenthesis is for stainless steel products. However, the limitations vary by accuracy grades.

Table 4 Length limitation of rails


Unit: mm

Series Size	15	20	25	30	35
HS	2 000 (1 700)	3 960 (3 500)	3 960 (3 500)	4 000 (3 500)	4 000 (3 500)

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

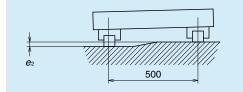


Fig. 8

Preload

Z1

Z3

Z1, Z3

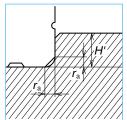

Fig. 9

	Table 5			Unit: µm
		Model No.		
HS15	HS20	HS25	HS30	HS35
18	20	26	31	37
12	14	18	22	26

330 µm/500 mm

(2) Shoulder height of the mounting surface and corner radius r

Table 5

Value

Permissible values of

parallelism in two rails e1

Permissible values of

parallelism (height) in two rails e2

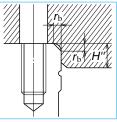


Fig. 10 Shoulder for the Fig. 11 Shoulder for the ball rail datum surface

slide datum surface

Table 6

				Unit: mm
Model No.	Corner radius	s (maximum)	Shoulde	r height
wouer ivo.	$r_{\rm a}$	$r_{\rm b}$	H	H"
HS15	0.5	0.5	4	4
HS20	0.5	0.5	4.5	5
HS25	0.5	0.5	5	5
HS30	0.5	0.5	6	6
HS35	0.5	0.5	6	6

6. Lubrication components

Refer to pages A38 and D13 for linear guide lubrication.

(1) Types of lubrication accessories

Fig. 12 and Table 7 show grease fittings and

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

When you require stainless lubrication accessories, please ask NSK.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on the side of end cap for an option. (Fig. 13)

Please consult NSK for installation of grease or tube fittings to the ball slide body or the side of end cap.

When using a piping unit with thread of $M6 \times 1$, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

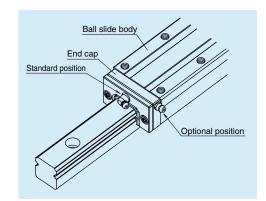


Fig. 13 Mounting position of lubrication accessories

Grease fitting Drive-in type (\$\phi 3) A type $(M6 \times 0.75)$ Tube fitting $(M6 \times 0.75)$

Fig. 12 Grease fitting and tube fitting

		Table 7		Unit: mm		
Model	Duet sucof	Dime	ension L			
No.	Dust-proof specification	Grease fitting	Tube	fitting		
INO.	specification	/Drive-in type	SF type	LF type		
	Standard	5	-	-		
LIC1E	With NSK K1	10	_	_		
HS15	Double seal	*	_	_		
	Protector	*	-	_		
	Standard	5	-	-		
nesu	With NSK K1	10	-	-		
пого	Double seal	8	-	-		
HS25	Protector	8	-	-		
	Standard	5	6	6		
HC2E	With NSK K1	12	11	11		
пого	Double seal	10	9	9		
	Protector	10	9	9		
	Standard	5	6	6		
HS30	With NSK K1	14	12	13		
позо	Double seal	12	10	11		
	Protector	12	10	11		
	Standard	5	6	6		
HS35	With NSK K1	14	12	13		
	Double seal	12	10	11		
	Protector	12	10	11		

^{*)} A connector is required for this model. Please contact NSK.

A312

7. Dust-proof components

(1) Standard Specification

The HS Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends.



Fig. 14

Table 8 Seal friction per ball slide (maximum): end seal only

					Unit: N
Series Size	15	20	25	30	35
HS	3	3	3	3	4

(2) NSK K1[™] lubrication unit

Refer to Table 9 for dimension of linear guides equipped with the NSK K1 lubrication unit.

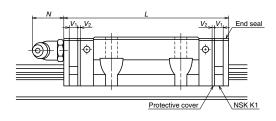


Table 9

	1. 1.	
ı	Jnit.	mm

Model No.	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 <i>L</i>	Per NSK K1 thickness V ₁	Protective cover thickness V_2	Protruding area of the grease fitting N
HS15	AL, EM	106	115.6	4.0	0.8	(5)
HS20	AL, EM	119.7	130.3	4.5	0.8	(14)
HS25	AL, EM	148	158.6	4.5	0.8	(14)
HS30	AL, EM	176.1	188.1	5.0	1.0	(14)
HS35	AL, EM	203.6	216.6	5.5	1.0	(14)

Note: Ball slide length equipped with NSK K1 =

(Standard ball slide length) + (Thickness of NSK K1, $V_1 \times$ Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

(3) Double seal and protector

For the HS Series, double seal and protectors can be installed only before shipping from the factory. Please consult with NSK when you require dust tight protection.

Table 10 shows the increased thickness of V_3 and V_4 when the end seal and the protector are installed.

Table 10

Unit: mm

Model No.	Thickness	Thickness
woder ivo.	of end seal: V ₃	of protector: V4
HS15	2.8	3
HS20	2.5	2.7
HS25	2.8	3.2
HS30	3.6	4.2
HS35	3.6	4.2

(4) Caps to plug the rail mounting bolt hole

Table 11 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
	secure rail	reference No.	/case
HS15	M3	LG-CAP/M3	20
HS15	M4	LG-CAP/M4	20
HS20	M5	LG-CAP/M5	20
HS25, HS30	M6	LG-CAP/M6	20
HS35	M8	LG-CAP/M8	20

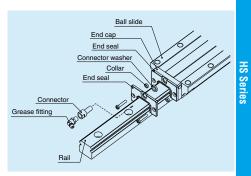


Fig. 15 Double seal

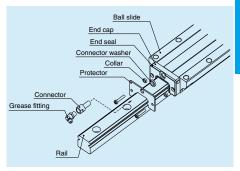


Fig. 16 Protector

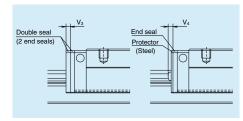


Fig. 17

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

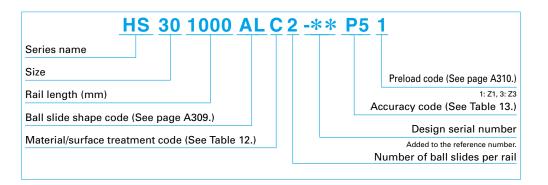
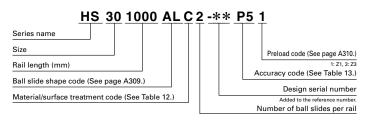
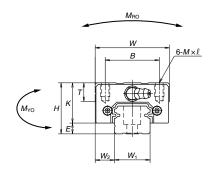


Table 12 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special

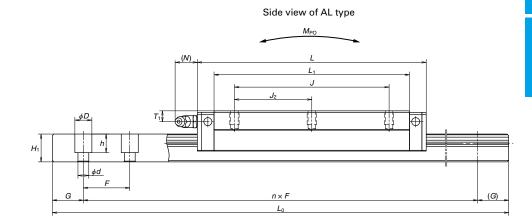

Table 13 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1
Ultra precision grade	P3	K3
Super precision grade	P4	K4
High precision grade	P5	K5


Note: Refer to page A38 for NSK K1 lubrication unit.

A315 A316

9. Dimensions HS-AL


Front view of AL types

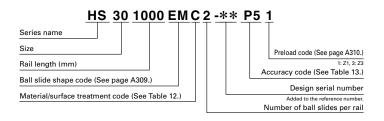
	A:	ssemb	ıly		Ball slide												
Model No.	Height			Width	Length	Mounting hole						Grease fitting			g	Width	Height
Wioder No.	Н	Ε	W_2	W	L	В	J	J_2	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	T_1	N	W_1	H ₁
HS15AL	24	4.6	9.5	34	106	26	60	30	M4×0.7×6	89.2	19.4	10	ø 3	6	3	15	12.5
HS20AL	28	6	11	42	119.7	32	80	40	M5×0.8×7	102.5	22	12	M6×0.75	5.5	11	20	15.5
HS25AL	33	7	12.5	48	148	35	100	50	M6×1×9	126.4	26	12	M6×0.75	7	11	23	18
HS30AL	42	9	16	60	176.1	40	120	60	M8×1.25×12	150.7	33	13	M6×0.75	8	11	28	23
HS35AL	48	10.5	18	70	203.6	50	140	70	M8×1.25×12	175.6	37.5	14	M6×0.75	8.5	11	34	27.5

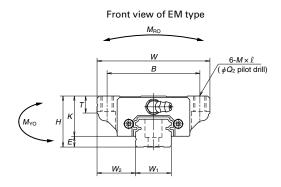
Notes: 1) The HS Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

2) External appearance of stainless steel ball slides differ from those of carbon steel ball slide.

Unit: mm

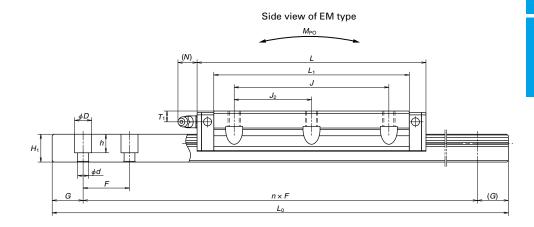
Rail					Basic load rating									
Pitch	Mounting	G	Max.	³)Dyn	amic	Static		Static		Ball	Rail			
	bolt hole		length L _{0max} .	[50km]	[100km]	C 0	M _{RO}	М	PO	M	1,0	slide		
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)	
30	*3.5×6×8.5 4.5×7.5×8.5	20	2 000 (1 700)	20 500	16 300	40 000	199	395	1 990	335	1 670	0.34	1.4	
30	6×9.5×10.5	20	3 960 (3 500)	27 300	21 600	52 000	350	590	2 930	495	2 460	0.52	2.3	
30	7×11×12	20	3 960 (3 500)	44 500	35 000	78 000	605	1 090	5 450	910	4 600	0.85	3.1	
40	7×11×16	20	4 000 (3 500)	68 000	54 000	127 000	1 190	2 120	10 600	1 780	8 850	1.7	4.8	
40	9×14×20	20	4 000 (3 500)	94 500	75 000	172 000	1 980	3 350	16 600	2 820	13 900	2.5	7.0	


3) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)


 C_{so} ; the basic dynamic load rating for 50 km rated fatigue life C_{loo} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

4) Parenthesized dimensions are applicable to stainless steel products.

*) Standard rail mounting bolt hole for HS15 is specified as hole for M3 (3.5 × 6 × 8.5). Please contact us to request a different hole for M4 (4.5 × 7.5 × 8.5).


HS-EM

	А	ssem	ıbly			Ball slide												
Model No.	Height			Width	Length			М	ounting hole					Grease	fittir	ng	Width	Height
iviodei No.	Н	Ε	W_2	W	L	В	J	J_2	$M \times \text{pitch} \times \ell$	$Q_{\scriptscriptstyle 2}$	L ₁	К	Т	Hole size	<i>T</i> ₁	N	W_1	H ₁
HS15EM	24	4.6	18.5	52	106	41	60	30	M5×0.8×7	4.4	89.2	19.4	8	φ 3	6	3	15	12.5
HS20EM	28	6	19.5	59	119.7	49	80	40	M6×1×9 (M6×1×9.5)	5.3	102.5	22	10	M6×0.75	5.5	11	20	15.5
HS25EM	33	7	25	73	148	60	100	50	M8×1.25×10 (M8×1.25×11.5)	6.8	126.4	26	11 (12)	M6×0.75	7	11	23	18
HS30EM	42	9	31	90	176.1	72	120	60	M10×1.5×12 (M10×1.5×14.5)	8.6	150.7		11 (15)	M6×0.75		11	28	23
HS35EM	48	10.5	33	100	203.6	82	140	70	M10×1.5×13 (M10×1.5×14.5)	8.6	175.6	37.5	12 (15)	M6×0.75	8.5	11	34	27.5

Notes: 1) The HS Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail. 2) External appearance of stainless steel ball slides differ from those of carbon steel ball slide.

Unit: mm

Rail					Basic load rating									
Pitch	Mounting	G	Max. length	3)Dyn	amic	Static		Static	momen	t (N·m)		Ball	Rail	
	bolt hole		L _{0max} .	[50km]	[100km]	C 0	MRO	М	PO	M	YO	slide		
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)	
30	*3.5×6×8.5 4.5×7.5×8.5	20	2 000 (1 700)	20 500	16 300	40 000	199	395	1 990	335	1 670	0.45	1.4	
30	6×9.5×10.5	20	3 960 (3 500)	27 300	21 600	52 000	350	590	2 930	495	2 460	0.67	2.3	
30	7×11×12	20	3 960 (3 500)	44 500	35 000	78 000	605	1 090	5 450	910	4 600	1.3	3.1	
40	7×11×16	20	4 000 (3 500)	68 000	54 000	127 000	1 190	2 120	10 600	1 780	8 850	2.4	4.8	
40	9×14×20	20	4 000 (3 500)	94 500	75 000	172 000	1 980	3 350	16 600	2 820	13 900	3.4	7.0	

3) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

4) Parenthesized dimensions are applicable to stainless steel products.

*) Standard rail mounting bolt hole for HS15 is specified as hole for M3 (3.5 × 6 × 8.5). Please contact us to request a different hole for M4 $(4.5 \times 7.5 \times 8.5)$.

Notes: 1) Parenthesized dimensions are for items made of stainless steel.

34 500

52 500

34 500

52 500

LS35CL

LS35AL

LS35JL

LS35JM

LS35KL

LS35EL

I S35FM

LS35FL

 $9 \times 13(14.5)$ 2) Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface.

M8×1.25×12

M8×1.25×12

M10×1.5×20(15)

M10×1.5×13(14.5) <8.6>

9×13(14.5)

M10×1.5×20(15)

M10×1.5×13(14.5) <8.6>

26 000

40 000

26 000

40 000

SS35CL

SS35AL

SS35JL

SS35JM

SS35KL

SS35FI

SS35FL

SS35EM

M8×1.25×12

M8×1.25×12

M10×1.5×20(15)

M10×1.5×13(14.5) <8.6>

9×13(14.5)

M10×1.5×20(15)

M10×1.5×13(14.5) <8.6>

9×13(14.5)

26 000

38 000

26 000

38 000

In VH series, the slide types in flange shape are focused.

M8×1.25×12

M8×1.25×12

M10×1.5×13(14.5) <8.6>

M10×1.5×13(14.5) <8.6>

NS35CL

NS35AL

NS35JM

NS35EM

	After focused			Before focused	
Model No.	Ball slide mounting hole dimension $M \times \text{pitch} \times \ell < \Omega_2 > \text{[mm]}$	Dynamic load rating C_{50} [N]	Model No.	Ball slide mounting hole dimension $M \times \text{pitch} \times \ell$ $Q_1 \times \ell$ [mm]	Dynamic load rating C_{50} [N]
VH15EM	M5×0.8×7 <4.4>	14 200	VH15EL VH15FL	M5×0.8×8 4.5×7	10 800
VH15GM	M5×0.8×7 <4.4>	18 100	VH15GL VH15HL	M5×0.8×8 4.5×7	14 600
VH20EM	M6×1×9.5 <5.3>	23 700	VH20EL VH20FL	M6×1×10 6×9.5	17 400
VH20GM	M6×1×9.5 <5.3>	30 000	VH20GL VH20HL	M6×1×10 6×9.5	23 500
VH25EM	M8×1.25×10(11.5) <6.8>	33 500	VH25EL VH25FL	M8×1.25×16(12) 7×10(11.5)	25 600
VH25GM	M8×1.25×10(11.5) <6.8>	45 500	VH25GL VH25HL	M8×1.25×16(12) 7×10(11.5)	34 500
VH30EM	M10×1.5×12(14.5) <8.6>	47 000	VH30EL VH30FL	M10×1.5×18(15) 9×12(14.5)	35 500
VH30GM	M10×1.5×12(14.5) <8.6>	61 000	VH30GL VH30HL	M10×1.5×18(15) 9×12(14.5)	46 000
VH35EM	M10×1.5×13 <8.6>	62 500	VH35EL VH35FL	M10×1.5×20 9×13	47 500
VH35GM	M10×1.5×13 <8.6>	81 000	VH35GL VH35HL	M10×1.5×20 9×13	61 500
VH45EM	M12×1.75×15 <10.5>	107 000	VH45EL VH45FL	M12×1.75×24 11×15	81 000
VH45GM	M12×1.75×15 <10.5>	131 000	VH45GL VH45HL	M12×1.75×24 11×15	99 000
VH55EM	M14×2×18 <12.5>	158 000	VH55EL VH55FL	M14×2×28 14×18	119 000
VH55GM	M14×2×18 <12.5>	193 000	VH55GL VH55HL	M14×2×28 14×18	146 000

Notes: 1) Parenthesized dimensions are for items made of stainless steel.

2) Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. A322

5. The Comparative Table of New and Former Series

	New Series				Forme	series		
	Ball slide mounting hole	Dynamic		Ball slide mounting hole	Dynamic		Ball slide mounting hole	Dynami
Model	dimension	load rating	Model	dimension	load rating	Model	dimension	load ratir
No.	$M \times pitch \times \ell < Q_2 >$	C ₅₀	No.	$M \times pitch \times \ell < Q_2 >$	C ₅₀	No.	$M \times pitch \times \ell < Q_2 >$	C ₅₀
	[mm]	[Ñ]	l	$Q_1 \times \ell$ [mm]	[N]		Q₁×ℓ [mm]	[N]
NH15AN	M4×0.7×6	14 200	LH15AN	M4×0.7×6	10 800	SH15AN	M4×0.7×6	10 10
NH15BN	M4×0.7×6	18 100	LH15BN	M4×0.7×6	14 600	SH15BN	M4×0.7×6	13 40
	1111/101/710		LH15EL	M5×0.8×8		SH15EL	M5×0.8×8	
NH15EM	M5×0.8×7 <4.4>	14 200	LH15EM	M5×0.8×7 <4.4>	10 800	SH15EM	M5×0.8×7 <4.4>	10 10
un iocivi	1410/0.0/7 (4.42	14 200	LH15FL	4.5×7	10 000	SH15FL	4.5×7	1010
			LH15GL	M5×0.8×8		SH15GL	M5×0.8×8	
NH15GM	M5×0.8×7 <4.4>	18 100	LH15GM		14 600	SH15GM	M5×0.8×7 <4.4>	13 40
MHISGIN	1015X0.6X7 <4.42	16 100	LH15HL	M5×0.8×7 <4.4>	14 000	SH15HL	4.5×7	1340
III A A A A I	ME: 0.0: 0	22.700			17 400			10.00
NH20AN	M5×0.8×6	23 700	LH20AN	M5×0.8×6	17 400	SH20AN	M5×0.8×6	16 30
NH20BN	M5×0.8×6	30 000	LH20BN	M5×0.8×6	23 500	SH20BN	M5×0.8×6	21 60
			LH20EL	M6×1×10		SH20EL	M6×1×10	
NH20EM	M6×1×9.5 <5.3>	23 700	LH20EM	M6×1×9.5 <5.3>	17 400	SH20EM	M6×1×9.5 <5.3>	16 30
			LH20FL	6×9.5		SH20FL	6×9.5	
			LH20GL	M6×1×10		SH20GL	M6×1×10	
NH20GM	M6×1×9.5 <5.3>	30 000	LH20GM	M6×1×9.5 <5.3>	23 500	SH20GM	M6×1×9.5 <5.3>	21 60
			LH20HL	6×9.5		SH20HL	6×9.5	
NH25AL	M6×1×6	33 500	LH25AL	M6×1×6	25 600	SH25AL	M6×1×6	22 40
NH25AN	M6×1×9	33 500	LH25AN	M6×1×9	25 600	SH25AN	M6×1×9	22 40
NH25BL	M6×1×6	45 500	LH25BL	M6×1×6	34 500	SH25BL	M6×1×6	32 00
NH25BN	M6×1×9	45 500	LH25BN	M6×1×9	34 500	SH25BN	M6×1×9	32 00
			LH25EL	M8×1.25×16(12)		SH25EL	M8×1.25×16(12)	
NH25EM	M8×1.25×10(11.5) <6.8>	33 500	LH25EM	M8×1.25×10(11.5) <6.8>	25 600	SH25EM	M8×1.25×10(11.5) <6.8>	22 40
	1110/11/20/110(11/10) 10/05	00 000	LH25FL	7×10(11.5)	1 20 000	SH25FL	7×10(11.5)	
			LH25GL	M8×1.25×16(12)		SH25GL	M8×1.25×16(12)	
NH25GM	M8×1.25×10(11.5) <6.8>	45 500	LH25GM	M8×1.25×10(11.5) <6.8>	34 500	SH25GM	M8×1.25×10(11.5) <6.8>	32 00
MIZOGIVI	1016×1.25×10(11.5) <0.6>	45 500	LH25HL		34 300	SH25HL		32 00
NH30AL	M8×1.25×8	41 000	LH30AL	7×10(11.5)	31 000	SH30AL	7×10(11.5)	31 00
				M8×1.25×8			M8×1.25×8	
NH30AN	M8×1.25×10	41 000	LH30AN	M8×1.25×10	31 000	SH30AN	M8×1.25×10	31 00
NH30BL	M8×1.25×8	61 000	LH30BL	M8×1.25×8	46 000	SH30BL	M8×1.25×8	46 00
NH30BN	M8×1.25×10	61 000	LH30BN	M8×1.25×10	46 000	SH30BN	M8×1.25×10	46 00
			LH30EL	M10×1.5×18(15)		SH30EL	M10×1.5×18(15)	
NH30EM	M10×1.5×12(14.5) <8.6>	47 000	LH30EM	M10×1.5×12(14.5) <8.6>	35 500	SH30EM	M10×1.5×12(14.5) <8.6>	35 50
			LH30FL	9×12(14.5)		SH30FL	9×12(14.5)	
			LH30GL	M10×1.5×18(15)]	SH30GL	M10×1.5×18(15)]
NH30GM	M10×1.5×12(14.5) <8.6>	61 000	LH30GM	M10×1.5×12(14.5) <8.6>	46 000	SH30GM	M10×1.5×12(14.5) <8.6>	46 00
			LH30HL	9×12(14.5)		SH30HL	9×12(14.5)	
NH35AL	M8×1.25×8	62 500	LH35AL	M8×1.25×8	47 500	SH35AL	M8×1.25×8	47 50
NH35AN	M8×1.25×12	62 500	LH35AN	M8×1.25×12	47 500	SH35AN	M8×1.25×12	47 50
NH35BL	M8×1.25×8	81 000	LH35BL	M8×1.25×8	61 500	SH35BL	M8×1.25×8	61 50
NH35BN	M8×1.25×12	81 000	LH35BN	M8×1.25×12	61 500	SH35BN	M8×1.25×12	61 50
			LH35EL	M10×1.5×20		SH35EL	M10×1.5×20	
NH35EM	M10×1.5×13 <8.6>	62 500	LH35EM	M10×1.5×13 <8.6>	47 500	SH35EM	M10×1.5×13 <8.6>	47 50
	11110/1110/110 10:02	02 000	LH35FL	9×13	1 ., 000	SH35FL	9×13	1 ., 0
			LH35GL	M10×1.5×20		SH35GL	M10×1.5×20	
NH35GM	M10×1.5×13 <8.6>	81 000	LH35GM	M10×1.5×13 <8.6>	61 500	SH35GM	M10×1.5×13 <8.6>	61 50
WI ISSUM	10110×1.5×15 <0.0>	01000	LH35HL		01 300	SH35HL	9×13	0130
NH45AL	M10×1.5×10	107 000	LH45AL	9×13 M10×1.5×10	81 000	SH45AL	M10×1.5×10	76 50
NH45AN	M10×1.5×17	107 000	LH45AN	M10×1.5×17	81 000	SH45AN	M10×1.5×17	76 50
NH45BL	M10×1.5×10	131 000	LH45BL	M10×1.5×10	99 000	SH45BL	M10×1.5×10	94 50
NH45BN	M10×1.5×17	131 000	LH45BN	M10×1.5×17	99 000	SH45BN	M10×1.5×17	94 50
	== .=		LH45EL	M12×1.75×24		SH45EL	M12×1.75×24	
NH45EM	M12×1.75×15 <10.5>	107 000	LH45EM	M12×1.75×15 <10.5>	81 000	SH45EM	M12×1.75×15 <10.5>	76 50
			LH45FL	11×15		SH45FL	11×15	
			LH45GL	M12×1.75×24]	SH45GL	M12×1.75×24]
NH45GM	M12×1.75×15 <10.5>	131 000	LH45GM	M12×1.75×15 <10.5>	99 000	SH45GM	M12×1.75×15 <10.5>	94 50
			LH45HL	11×15		SH45HL	11×15	
NH55AL	M12×1.75×13	158 000	LH55AL	M12×1.75×13	119 000	SH55AL	M12×1.75×13	113 00
NH55AN	M12×1.75×18	158 000	LH55AN	M12×1.75×18	119 000	SH55AN	M12×1.75×18	113 00
NH55BL	M12×1.75×13	193 000	LH55BL	M12×1.75×13	146 000	SH55BL	M12×1.75×13	140 00
NH55BN	M12×1.75×18	193 000	LH55BN	M12×1.75×18	146 000	SH55BN	M12×1.75×18	140 0
			LH55EL	M14×2×28		SH55EL	M14×2×28	
NH55EM	M14×2×18 <12.5>	158 000	LH55EM	M14×2×18 <12.5>	119 000	SH55EM	M14×2×18 <12.5>	113 0
			LH55FL	14×18	1	SH55FL	14×18	1
			LH55GL	M14×2×28		SH55GL	M14×2×28	
NH55GM	M14×2×18 <12.5>	193 000	LH55GM		146 000	SH55GM		140 0
41 100 GIVI	1911432310 < 12.5>	1.55 500	LH55HL	M14×2×18 <12.5> 14×18	140 000	SH55HL	M14×2×18 <12.5> 14×18	1-00
AILICE A PL	M16-2-20	220,000			101 000	SHOOHL	14X10	
NH65AN	M16×2×20	239 000	LH65AN	M16×2×20	181 000			
	M16×2×20	310 000	LH65BN	M16×2×20	235 000			
NH65BN			LH65EL	M16×2×24				
NH65BN					1			
NH65BN NH65EM	M16×2×24 <14.6>	239 000	LH65EM	M16×2×24 <14.6>	181 000			
	M16×2×24 <14.6>	239 000	LH65EM LH65FL	M16×2×24 <14.6> 16×24	181 000			
NH65EM			LH65EM LH65FL LH65GL	M16x2x24 <14.6> 16x24 M16x2x24				
	M16×2×24 <14.6>	239 000 310 000	LH65EM LH65FL	M16×2×24 <14.6> 16×24	181 000 235 000			

Notes: 1) Parenthesized dimensions are for items made of stainless steel.

2) Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface.

A-6 Other Linear Rolling Guide Products

A-6-1 Linear Rolling Bushing

1. Features

(1) Low friction

Low friction owes to its design: Balls come into point contacts with raceway surface: the balls smoothly re-circulate. There is very little stick slip.

(2) Low noise

Noise level is low due to the ball retainer which is made of a synthetic resin.

(3) High precision

Due to NSK's superb quality control, precision is guaranteed.

(4) Dust prevention

Series with seal is available. The seal has small friction, and is highly durable. Highly dust-preventive double-lip system has been adopted.

(5) Superb durability

The material of outer sleeve is vacuum degassed, highly pure, and is heat-treated with good expertise.

2. Models

There are three models

(1) Standard type LB (Fig. 1)

This model is the most commonly used, and is the only model that comes with a seal and in super precision grade.

Fig. 1 Standard type LB

(2) Adjustable clearance type LB-T (Fig. 2)

A part of the outer sleeve is cut open toward the axial direction. Used with a housing which can adjust inside diameter, it makes minute adjustment of the clearance between the linear shaft and the inscribed circle (an imaginary circle that connects the summit of the ball) of linear rolling bushing.

Fig. 2 Adjustable Clearance type LB-T

(3) Open type LB-K (Fig. 3)

A cut is made in the outer sleeve and retainer, to a width equivalent to one row of the retainer, to the axial direction. The opening is used to hold this linear rolling bushing by a support or base to prevent a long linear shaft from bending.

Fig. 3 Open type LB-K

NSK

3. Accuracy

(1) Accuracy grades

- Standard type LB······High precision grade S, and super precision grade SP are available.
- Space adjustment type LB-T
 Open type LB-K
 High precision grade S is available.

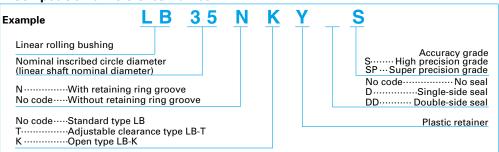
(2) Tolerance of rolling linear bushing, linear shaft and housing

Table 1 Tolerance for inscribed circle of the linear rolling bushing and shaft diameter

Unit: um

Nominal d			ce/inscribe	ed circle dia	ameter*1	Toleranc	e/width <i>B</i>	Tolerance/slot distance of retaining rings Bn		Recommended tolerance/ shaft diameter			
inscribed cir /shaft diar	cie diameter neter (mm)	High pr		Super high precision grade SP		High precision grade S Super high precision grade SP		High precision grade S Super high precision grade SP		High precision grade S		Super high precision grade SP	
over	or less	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower
2.5	6									-6	-14	-4	-9
6	10	0	-8	0	-5					-6	-15	-4	-10
10	18					0	-120	+240	-240	-6	-17	-4	-12
18	30	0	-10	0	-6					-6	-19	-4	-13
30	50	0	-12	0	-8					-7	-23	-5	-16

Table 2 Tolerance of linear rolling bush outside diameter, and housing inside diameter


Unit: µm

A324

Nominal d	limension/	Tole	rance/outsi	de diamete	r D*1	Eccentricity*2	Tolerance/housing ins			diameter	
	eter/housing neter (mm)		ecision de S	Super high precision grade SP		Super high precision grade SP		High precision grade S		Super high precision grade SP	
over	or less	upper	lower	upper	lower	Maximum	upper	lower	upper	lower	
2.5	6						+12	0	+8	0	
6	10	0	-10	0	-7	8	+15	0	+9	0	
10	18						+18	0	+11	0	
18	30	0	-12	0	-8	9	+21	0	+13	0	
30	50	0	-14	0	-9	10	+25	0	+16	0	

- *1) For adjustable clearance type and open type, figures indicate tolerances before the cut is made.
- *2) Eccentricity means the run-out of offset between the centers of outer sleeve diameter and inscribed circle diameter.

4. Composition of Reference Number

5. Lubrication and Friction

(1) Grease lubrication

1 Supply at initial stage

At time of delivery, the linear rolling bushing has a coat of rust preventive agent. Wipe it off with clean kerosene or organic solvent. Dry with an air blower, etc., then apply grease.

Lithium soap based greases with consistency level of 2 are generally used (e.g. NSK Grease LR3, PS2, and AS2).

2 Replenishment

- Sealed linear rolling bushing is designed to be a disposal item. Therefore, a replenishing grease is considered to be not required. However, if replenishment becomes necessary due to dirty environment or wear of the seal, remove the linear bushing from the shaft and replenish lubricant in the same manner as the initial lubricating.
- For items without seal, wipe off old grease from the linear shaft, and apply new grease.
- · Intervals of replenishments are every 100 km in a dirty environment, 500 km in a slightly dirty environment, 1 000 km or no replenishing for a normal environment.

(2) Oil lubrication

It is not necessary to wash off the rust preventive agent applied before delivery.

Use an oil of ISO viscosity grade VG15-100. Drip the oil on the linear shaft by an oil supply system.

Temperature to use

-30°C to 50°C Viscosity VG15 - 46 50°C to 80°C Viscosity VG46 - 100

Lubricant is removed by the seal if the linear ball bearing has a seal. Therefore, the drip method cannot be used except for single-seal types.

(3) Friction coefficient

The linear rolling bushing has a small dynamic friction coefficient. This contributes to low power loss and temperature rise.

According to Fig. 4, dynamic friction coefficient is merely 0.001-0.004. Also, at the speed of under 60 m/min, there is no danger of the temperature rising. Friction force can be obtained by the following formula.

$$F = \mu \cdot P \cdot \cdots (1)$$

In this formula:

F: Friction force (N)

P: Load (vertical load to the shaft center line) (N)

 μ : Friction coefficient (dynamic or static)

For a seal type, a seal resistance of 0.3 to 2.40 N is added to the above.

Fig. 4 Dynamic friction coefficient of linear rolling bushing

6. Range of Conditions to Use

Generally, use under the following conditions.

Please consult NSK when values exceed the ranges aiven below.

Temperature: - 30°C to 80°C

Speed: Up to 120 m/min

(excluding oscillation and short strokes)

7. Preload and Rigidity

The linear rolling bushing is normally used without applying preload. If high positioning accuracy is required, set the clearance between the linear rolling bush and the shaft at the range of 0 to 5 µm. Slight preload is a general rule (1% of basic dynamic load rating C -- see the dimension table).

The dimension table shows theoretical rigidity K when clearance with the shaft is zero, and a load of 0.1 C is applied to the summit of the ball.

Rigidity K_N , when load is not 0.1C, is obtained by the following formula.

$$K_N = K (P/0.1C)^{1/3} \cdots (2)$$

In this formula:

K: Rigidity value in the dimension table (N/ μ m)

P: Radial load (N)

When the load is applied between the ball raws, the load becomes 1.122 times for 4 ball rows; 0.959 times for 5 ball rows; 0.98 times for 6 ball rows.

8. Basic Load Rating and Rated Life

(1) Basic dynamic load rating

Basic dynamic load rating C is: A radial load which allows 90% of a group of linear rolling bush to run a distance of 50 km without suffering damage when they are moved individually.

There is a relationship as below between C and the

$$L = 50 \ f_L^3$$
 (3)
 $f_L = C/P$ (4)

In this formula:

L: Rated life (km)

P: Radial load (N)

 f_{\perp} : Life factor (Refer to Fig. 5)

This formula is used provided that the shaft hardness is HRC58 or higher. Rated life is shorter if the shaft is softer. In this case, find the hardness factor f_H from Fig. 6, and multiply the value.

$$f_L = C \cdot f_H / P \cdot \dots$$
 (5)
Or $C = P \cdot f_L / f_H \cdot \dots$ (6)

Life in time can be obtained by the following formula, substituting for given stroke length, cycle numbers, and running distance:

$$L_h = (L/1.2 \cdot S \cdot n) \times 10^4 \cdot \dots (7)$$

In this formula:

Lh: Life hours (h)

L: Rated life (km)

S: Stroke (mm)

n: Cycles per minute (cpm)

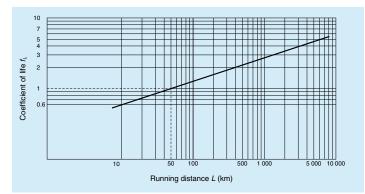


Fig. 5 Relationship between life factor and running distance

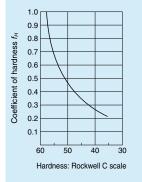
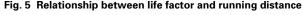



Fig. 6 Hardness factor

(2) Basic static load rating

It is a load that the total permanent deformation of outer sleeve, ball and shaft at the contact point, becomes 0.01% of the ball diameter when this load is applied to the rolling bushing. It is understood in general that this is the applicable load limit which causes this much permanent deformation without hampering operation.

(3) Calculation example

What is the appropriate rolling bushing size if required life is 5 000 hours?

Conditions are:

- Three linear rolling bushings are installed in two parallel shafts, and support a reciprocating table.
- Load 450 N is equally distributed to the three bushings.
- The table is required to reciprocate on the shafts at 200 times per minute at a stroke of 70 mm.
- · Hardness of the shaft: HRC 55

$$450/3 = 150 (N)$$

· Load per linear rolling bushing is:

From Formula (7), the required life when indicated in distance is:

$$L = 5 \times 10^{3} \times 1.2 \times 70 \times 200/10^{4} = 8.4 \times 10^{3}$$
 (km)

From Fig. 5 and Fig. 6,

Life factor $f_{\perp} = 5.6$

Hardness factor $f_{\rm H} = 0.65$

Therefore, from Formula (6),

$$C = P \times f_1 / f_H$$

$$=150 \times 5.6/0.65 = 1292$$
 (N)

Based on the above, select linear rolling bushing LB30NY with shaft diameter of 30 mm, basic dynamic load rating of 1 400 N.

(4) Compensating load rating by ball row position

Load rating of the linear rolling bushing changes by the position of the ball circuit rows.

Permissible load is larger when it is applied to the middle of the ball circuit rows than when it is applied directly above the ball row (Fig. 7).

(Radial clearance set at zero in this case.)

Load ratings in the dimension table are in case "A" when it is applied directly above the ball circuit row. If used as in case "B," the load rating becomes larger (refer to Fig. 7).

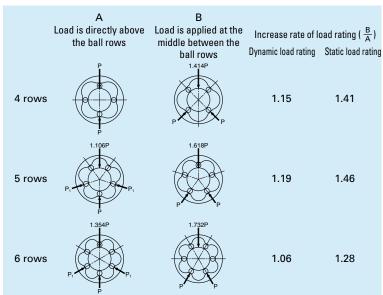


Fig. 7 Increasing rate of load rating by position of ball row (B/A)

9. Shaft Specification

Harden the shaft surface where the balls run with heat treatment to provide the following values.

- Surface hardness: HRC58 or over
- Depth of core hardness at HRC50 or higher Depth for LB3; 0.3 mm or deeper Depth for LB50; 1.2 mm or deeper

Roughness of the surface should be:

• For SP grade, and "the clearance for fit" with the ball bushing less than 5 µm -

Less than 0.8 S

• For SP grade with "the clearance" of more than 5 µm, and for S grade -

Less than 1.2 S

Bending should be:

- LB3 -- 15 μm/100 mm
- LB50 -- 100 um/1 000 mm

An appropriate clearance for normal use conditions can be obtained when the tolerance in shaft diameter remains within the recommended range (refer to **Table 1** on page A324). For operations which require particular accuracy, select the shaft diameter which creates a clearance in the range of 0 to 0.005 (mm) for example, when assembled with the rolling bushing.

10. Dust Proof

Select a linear rolling bushing with seals to prevent moisture or foreign matters which are floating in the air from entering.

11. Installation

(1) Combination of shaft and linear rolling bushing

When the linear rolling bushing is installed in a linear motion table for its reciprocating movement, it is necessary to prevent the table from rotating. In general, for this reason, two shafts installed with two linear rolling bushings on each are used.

Fig. 8 is an installation example.

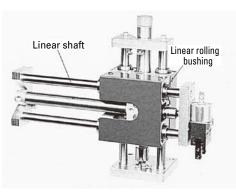


Fig. 8 Installation example

(2) Installation of linear rolling bushing

1) Standard type installation

Fig. 9 shows a method using a retainer ring. Linear rolling bushing can also be secured to the housing using a stop plate and/or screw.

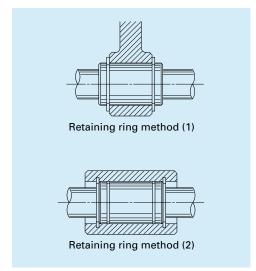


Fig. 9 Installation using retaining rings

- a) Housing inside diameter should be of a recommended value (Table 2, page A324). The entire rolling bushing contracts and gives excessive preload if: the inside diameter is small; the roundness or cylindricity is excessive. This may result in an unexpected failure.
- b) To install linear rolling bushing, use a tool (Fig. 10) and squeeze it in, or use a holder and lightly pound it.

A327 A328

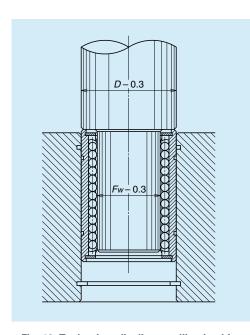


Fig. 10 Tool to install a linear rolling bushing

2) Installation of adjustable clearance type

Use a housing which can adjust the inside diameter of the rolling bushing. This way, the clearance between the rolling bushing and the linear shaft can be easily adjusted. Arrange the cut-open section of the rolling bushing at a 90-degree angle to the housing's cut-open section. This is the most effective way to evenly distribute deformation toward circumferential direction.

The tolerance of shaft diameter of the adjustable clearance type should be within the recommended range (refer to **Table 1** on page A324). As a general rule, set the preload at slight or light volume. (Do not provide excessive preload.) Use a dial gauge to measure and adjust clearance. However, here is an easy method to adjust .

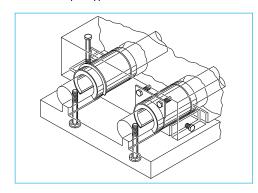
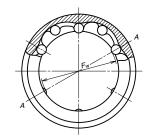
First, loosen the housing until shaft turns freely. Then narrow the clearance gradually. Stop at the point when the shaft rotation becomes heavy. This creates a clearance zero or light preload.

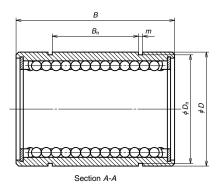
3) Installation of open type

Use with clearance or with light preload.

Keep the tolerance in shaft diameter within the recommended range (refer to **Table 1** on page A324), so the preload shall not become excessive.

(Unlike the adjustable clearance type, clearance cannot be narrowed by rotating the shaft because the state of shaft rotation does not indicate how narrow the space has become. Narrowing clearance requires caution for open type.)


Fig. 11 Installation example of an open type

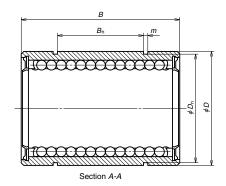
(3) Precaution for installing a shaft in the linear rolling bushing

- To install two shafts parallel to each other, first install one shaft accurately. Use this as a reference, and install the other parallel to the first shaft. This makes installation easy.
- Do not incline the shaft when inserting it into the linear rolling bushing. Do not force it to enter by twisting. This deforms the retainer, and causes the balls to fall out.
- Do not use the shaft for rotating movement after inserting the shaft to the linear rolling bushing.
 The balls slip and damage the shaft.
- Do not twist the shaft after it is inserted to the linear rolling bushing. The pressure scars the shaft.

12. Dimension tables Model LB (standard type), no seal

Unit: mm

											Offic. Hilli
	Inscribed		Length	Retai	ning ring g	roove	Stiffness*1	Number		Basic dynamic	Basic static
Model No.	circle	diameter		Distance	Width	Bottom		of ball	(kg)	load rating	load rating
	diameter					diameter	(N/µm)	circuit	(Reference only)	C	C_0
	F _w	D	В	B₁	m	D_n				(N)	(N)
LB3Y	3	7	10	_	_	_	3	4	0.0016	20	39
LB4Y	4	8	12	_	_	_	4.5	4	0.0022	29	59
LB6NY	6	12	19	11	1.15	11.5	7	4	0.0074	74	147
LB8ANY*2	8	15	17	9	1.15	14.3	5.5	4	0.0094	78	118
LB8NY	8	15	24	15	1.15	14.3	9.5	4	0.014	118	226
LB10NY	10	19	29	19	1.35	18	12	4	0.025	206	355
LB12NY	12	21	30	20	1.35	20	13	4	0.028	265	500
LB13NY	13	23	32	20	1.35	22	13	4	0.040	294	510
LB16NY	16	28	37	23	1.65	26.6	14	4	0.063	440	635
LB20NY	20	32	42	27	1.65	30.3	19	5	0.088	610	1 010
LB25NY	25	40	59	37	1.9	38	35	6	0.267	1 000	1 960
LB30NY	30	45	64	40	1.9	42.5	41	6	0.305	1 400	2 500
LB35NY	35	52	70	45	2.2	49	48	6	0.440	1 510	2 800
LB40NY	40	60	80	56	2.2	57	54	6	0.520	2 230	4 000
LB50NY	50	80	100	68	2.7	76.5	69	6	1.770	4 100	7 100

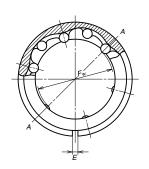

^{*1):} Refer to Section (7).

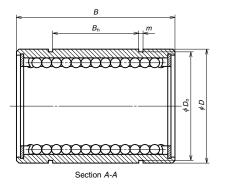
A329 A330

^{*2):} Semi-standard item of which length B is shorter than standard.

Model LB (standard type), with seal

Fin

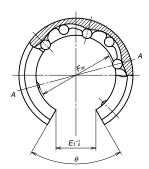


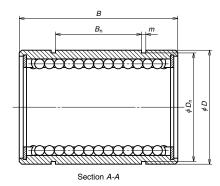

	m	

	Inscribed	Outside	Length	Reta	ining ring gr	roove	Number	Weight	Basic dynamic	Basic static
*Model No.	circle	diameter		Distance	Width	Bottom	of ball	(kg)	load rating	load rating
	diameter					diameter	circuit	(Reference only)		C_0
	F _w	D	В	B₁	m	D₁			(N)	(N)
LB6NYDD	6	12	19	11	1.15	11.5	4	0.0074	74	147
LB8ANYDD	8	15	17	9	1.15	14.3	4	0.0094	78	118
LB8NYDD	8	15	24	15	1.15	14.3	4	0.014	118	226
LB10NYDD	10	19	29	19	1.35	18	4	0.025	206	355
LB12NYDD	12	21	30	20	1.35	20	4	0.028	265	500
LB13NYDD	13	23	32	20	1.35	22	4	0.040	294	510
LB16NYDD	16	28	37	23	1.65	26.6	4	0.063	440	635
LB20NYDD	20	32	42	27	1.65	30.3	5	0.088	610	1 010
LB25NYDD	25	40	59	37	1.9	38	6	0.267	1 000	1 960
LB30NYDD	30	45	64	40	1.9	42.5	6	0.305	1 400	2 500
LB35NYDD	35	52	70	45	2.2	49	6	0.440	1 510	2 800
LB40NYDD	40	60	80	56	2.2	57	6	0.520	2 230	4 000
LB50NYDD	50	80	100	68	2.7	76.5	6	1.770	4 100	7 100

^{*)} Single-seal type is indicated as LB-D.

Model LB-T (Adjustable clearance type)




Unit: mm

	Inscribed	Outside	Length	Opening	Retai	ning ring g	roove	Number	Weight	Basic dynamic	Basic static
Model No.	circle	diameter		width	Distance	Width	Bottom	of ball	(kg)	load rating	load rating
	diameter						diameter	circuit	(Reference only)		C_0
	F _w	D	В	Ε	B₁	m	D _n			(N)	(N)
LB6NTY	6	12	19	0.8	11	1.15	11.5	4	0.0073	74	147
LB8ANTY	8	15	17	1	9	1.15	14.3	4	0.0093	78	118
LB8NTY	8	15	24	1	15	1.15	14.3	4	0.014	118	226
LB10NTY	10	19	29	1.5	19	1.35	18	4	0.025	206	355
LB12NTY	12	21	30	1.5	20	1.35	20	4	0.028	265	500
LB13NTY	13	23	32	1.5	20	1.35	22	4	0.040	294	510
LB16NTY	16	28	37	1.5	23	1.65	26.6	4	0.062	440	635
LB20NTY	20	32	42	2	27	1.65	30.3	5	0.087	610	1 010
LB25NTY	25	40	59	2	37	1.9	38	6	0.265	1 000	1 960
LB30NTY	30	45	64	2	40	1.9	42.5	6	0.302	1 400	2 500
LB35NTY	35	52	70	3	45	2.2	49	6	0.44	1 510	2 800
LB40NTY	40	60	80	3	56	2.2	57	6	0.52	2 230	4 000
LB50NTY	50	80	100	3	68	2.7	76.5	6	1.75	4 100	7 100

A331 A332

Model LB-K (Open type)

- 111	Init:	mm

	Inscribed	Outside	Length	Opening	Opening	Retai	ining ring	groove	Number	Weight	Basic dynamic	Basic static
Model No.	circle	diameter		width	angle	Distance	Width	Bottom	of ball	(kg)	load rating	load rating
	diameter							diameter	circuit	(Reference	С	C_0
	F _w	D	В	E1	θ	B₁	m	D_n		only)	(N)	(N)
LB20NKY	20	32	42	11	60°	27	1.65	30.3	4	0.072	610	1 010
LB25NKY	25	40	59	13	50°	37	1.9	38	5	0.220	1 000	1 960
LB30NKY	30	45	64	15	50°	40	1.9	42.5	5	0.260	1 400	2 500
LB35NKY	35	52	70	17	50°	45	2.2	49	5	0.370	1 510	2 800
LB40NKY	40	60	80	20	50°	56	2.2	57	5	0.440	2 230	4 000
LB50NKY	50	80	100	25	50°	68	2.7	76.5	5	1.480	4 100	7 100

A-6-2 Roller Pack

1. Structure

A roller pack comprises a main body which supports load from the guide way block via two rows of rollers; an end cap which changes the direction of the recirculation of rollers at the end of the main body; a side plate which guides the rollers (**Fig. 1**). Roller pack is one of the linear rolling guides, where rollers are allowed to re-circulate infinitely.

There is a plate spring attached to a side of roller pack to prevent roller pack from falling out when it is turned upside down after assembly.

Other component of the roller pack is spring pin. Spring pin is on the top surface of the roller pack, and makes installation of wedge block and fitting plate easier.

Wedge block is a unit to provide preload (Fig. 3) to roller pack; a fitting plate (Fig. 2), functioning like a pivot, adjusts misalignment of roller pack automatically. Wedge of wedge block moves up and down to apply preload by turning the adjust screw.

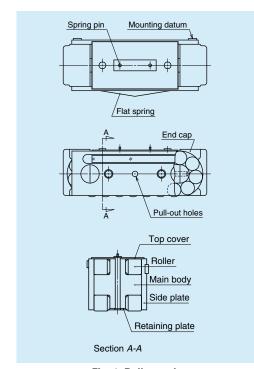


Fig. 1 Roller pack

Photo 1 Roller pack

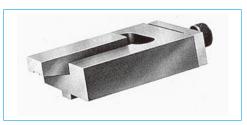


Photo 2 Wedge block

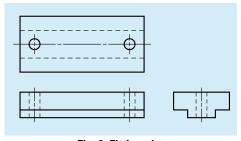


Fig. 2 Fitting plate

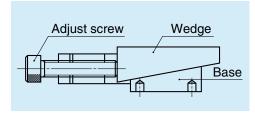


Fig. 3 Wedge block

2. Features

Roller pack has two remarkable characteristics other linear roller guide bearings do not have.

(1) No roller skewing

If the roller is long relative to its diameter, the roller inclines during operation. This phenomenon is called skewing. Skewing causes problems such as sudden rise in friction force. However, a short roller lacks large load carrying capacity. The roller introduced here solved the skewing problem, yet has a large load carrying capacity:

short rollers are combined into double rows.

(2) Load is applied equally.

This is due to a "fitting plate," a result of "changed way of conceiving." Installation is quite easy: Merely place the fitting plate through the two holes to spring pins. The stop pins are inserted to holes on the top surface of the roller pack. The contact area between the fitting plate and the main body is made small. This way, the self-alignment is automatically accomplished by elastic contact of both parts.

This distributes an equal load to the rollers, far extending the life, compared to conventional roller linear guides.

Other characteristics include: Easy to provide preload by the wedge block; can be installed to vertical shaft; and reduction in noise level.

3. Accuracy

The height tolerance of roller pack is 10 μ m. Roller packs are grouped into a size difference of every 2 μ m (corded by A to E) before delivery (**Table 1**).

Table 1 Height Classification

it٠	

Category	Code
over or less +3 - +5	А
+1 - +3	В
-1 - +1	С
-31	D
-5 – -3	E

4. Rigidity

Fig. 4 shows the relationship between load and deformation. This includes deformation caused by contact between: the rollers and main body; the rollers and guide way surface; the main body and fitting plate.

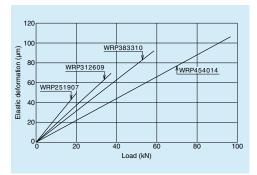


Fig. 4 Elastic deformation of the roller pack

5. Preload

Fig. 5 shows conversions of tightening torque of the wedge block adjust screw into preload volume. Use a dial gauge for accurate measurement.

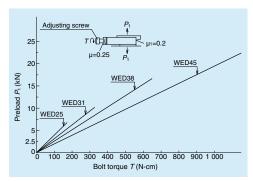


Fig. 5 Tightening torque of the adjust screw, and preload volume

6. Friction and Lubrication

(1) Lubricants and volume

Mineral oils are commonly used. Since roller pack is used under a relatively heavy load, the oil should, ideally, have high viscosity and provide a strong film. Select from JIS viscosity 32-150.

Criteria of oil supply per roller pack Q (cc/h) can be calculated by the following formula.

$$Q \ge S \times 1/4 \cdots (1)$$

In this formula, S (stroke) is shown in meters. The oil volume, when the stroke is 1 m, per roller pack is more than 0.25 (cc/h). It is more desirable to supply a small amount of oil at short intervals than supplying a large amount at one time. In case of grease lubrication, use a grease of consistency 2. Albania EP2 is widely used.

(2) Friction coefficient

Starting friction coefficient is significantly small at under 0.005.

(3) Seal

It is necessary to install a wiper seal to the guide way surface to prevent foreign matters (swarf from cutting, and other dust) from entering the roller pack to enjoy the full benefit of the designed life of it. The material of the seal should have strong resistance to oil and wear. Felt and synthetic rubber (acrylonitril butadiene rubber) are some of the suitable materials.

Fig. 6 shows a general method to install the seals.

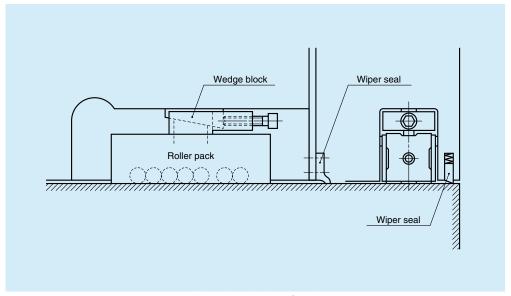


Fig. 6 Installation of seal

7. Installation

(1) Installation and applying preload

As shown in Fig. 7, it is basic that a fitting plate is installed on the roller pack which receives load, and a wedge block is installed on the roller pack which receives no load, but is only used for preload. All components should be secured with a stop pin, facing toward the direction of movement. To cut costs for processing, it is recommended to divide the pocket (which contains roller pack) into some blocks and secure them with bolts (Fig. 7). Preload is provided by the wedge block. Estimate the actual load beforehand, so the preload shall not be lost when a load is applied. A load variation equivalent to up to two times of the preload volume can be absorbed in this case.

(Take into consideration the rated life in 8. in determining preload volume.)

(2) Accuracy of way block

The following is the ideal accuracy specification and installation accuracy of way block as a guide surface.

Hardness by heat treatment

: More than HRC58 hardened depth 2 mm or more

Surface roughness

: Less than 1.6 S

Parallelism as a single unit: Less than 0.010 mm per meter

Parallelism after installation

: Less than 0.020 mm per meter

Please consult NSK when using cast iron or cast steel guide face.

(3) Pocket accuracy

Accuracy of the pocket in which the roller pack is mounted should satisfy the following conditions.

Pocket width

: Roller pack width + 0.10 to 0.20 mm Parallelism of the pocket side faces to the guide way face

: Less than 0.010 mm per 100 mm.

Parallelism of the fitting plate (pocket bottom) mounting surface to the guide way face and parallelism of the wedge block mounting surface to the guide way surface:

: Less than 0.040 mm per 100 mm.

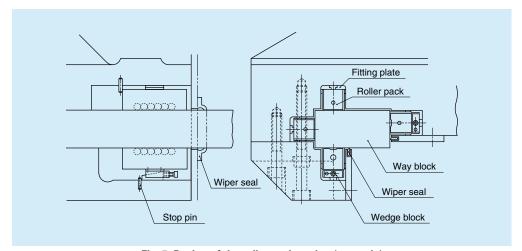


Fig. 7 Design of the roller pack pocket (example)

8. Rated life

Rated life L (km) is shown in the following formula. In this formula:

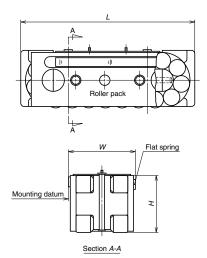
$$L = 50 \left(\frac{C}{f_w \cdot F_c} \right)^{\frac{10}{3}} \dots (2)$$

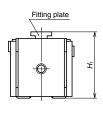
C: Basic dynamic load rating (N)

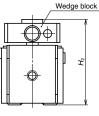
 f_w : Load factors. 1.0 to 1.2 at time of smooth operation

F_c: Calculated load (N) applied to the roller pack

9. Disassembly

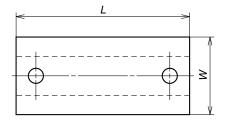

Remove the roller pack preloaded by the wedge block in the following manner.

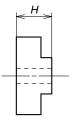

- Loosen the adjust screw of the wedge block. Lightly tap the wedge. In case of light preload, the wedge loosens, and the roller pack can be pulled out.
- When pulling, put the bolt in the tap hole at the end of the end cap, and tug the bolt.
- In case of heavy load, the roller pack could not be pulled out by the above method. Hook a tool to the pull-out hole (Fig. 1) on the side plate of the roller pack, and pull out the roller pack.


A337 A338

10. Dimension Table

Roller pack: Model WRP



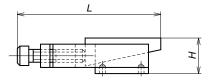

	m	

Model No.	Width W	Height ±0.005 <i>H</i>	Length	Applicable fitting plate reference No.	Assembled height <i>H</i> ₁	Applicable wedge reference No.	Assembled height <i>H</i> ₂	Basic dynamic load rating C (N)	Basic static load rating Co (N)
WRP 251907	25	19	65.5	WFT 25	24	WED 25	31 (30.4 – 31.6)	31 000	40 500
WRP 312609	31	26	85	WFT 31	31	WED 31	40 (39.4 – 40.6)	57 000	73 000
WRP 383310	38.1	33.31	104.4	WFT 38	38.91	WED 38	50.8 (50 – 51.5)	91 000	113 000
WRP 454014	45	40	138	WFT 45	45	WED 45	60 (59.2 – 60.8)	151 000	191 000

Note: Numbers in the parentheses in column H_2 show the adjustable height range of the wedge block.

Fitting plate: Model WFT





Unit: mm

Model No.	Width <i>W</i>	Height (±0.01) <i>H</i>	Length <i>L</i>	Applicable roller pack
WFT 25	10	5	20	WRP 251907
WFT 31	12	5	26	WRP 312609
WFT 38	12.8	5.6	29	WRP 383310
WFT 45	16	5	40	WRP 454014

Wedge block: Model WED

Unit: mm

Model No.	Width <i>W</i>	Height <i>H</i>	Length <i>L</i>	Applicable roller pack
WED 25	23	12 (11.5 – 12.5)	47	WRP 251907
WED 31	28	14 (13.5 – 14.5)	63	WRP 312609
WED 38	35	17.47 (16.9 – 18.1)	76	WRP 383310
WED 45	40	20 (19.2 – 20.8)	95	WRP 454014

 $\textbf{Note}: \text{Numbers in the parentheses in column } \textit{H}_{2} \text{ show adjustable height range of the wedge block}.$

A-6-3 Linear Roller Bearings

1. Structure

Linear roller bearing comprises: A single row of rollers; the main body which supports load via rollers; the end cap which turns the roller recirculating direction at the end of the main body from the loaded zone to the unloaded zone; a retaining wire which prevents rollers from falling out (Fig. 1). The main body, as the cylindrical roller bearing, has a rib at both sides. The rib guides the rollers to travel correctly, and assists the rollers to circulate infinitely in the bearing in a stable manner. This contributes to the bearing's linear movement without the restriction of travel range.

NSK also developed a highly functional preload pad

(Photo 2) to provide a slight preload to the bearing. The preload pad basically comprises parallel plates and sandwiched bellevile springs, having adjusted its spring rate.

Preloaded pad can be used in a machine tool in the following manner.

When two bearings are installed with one on the top and the other under the way block (the bearings comprise a set), a preloaded pad is used at the bottom bearing. This provides an equal preload to the top and bottom bearings. This way, to a certain extent, the variation in the load and the uneven thickness of the way block can be absorbed.

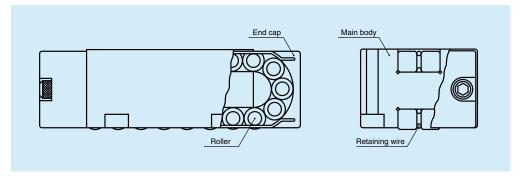


Fig. 1 Linear roller bearing

Photo 1 Linear roller bearing

Photo 2 Preload pad

2. Features

In addition to the general features of a roller bearing guide such as no-stick slip, small friction resistance, and easy maintenance, the linear roller bearing has several more advantages.

(1) No trouble by roller skewing

Skewing is the inclination of the rollers during operation. It causes friction force to suddenly soar. Skewing is apt to occur when the roller is long relative to its diameter. The proportion of the length and diameter is 1:2 for the products in this series. This is superior to the commonly used 1:3 ratio.

(2) Highly reliable

Retaining the rollers without allowing them to fall out of the bearing is a crucial function of the linear guide bearing. The simple and highly effective retaining wire has solved the problem for this product series.

(3) Compact design

Despite the load carrying capacity, this series is smaller in size than any other models. This contributes to the application which requires compact design.

(4) High rigidity

The contact area between the bearing and the mounting surface is large to increase rigidity.

3. Accuracy

The nominal height difference between bearings is 10 μ m. The bearings are grouped into every 2 μ m, and are coded before delivery (**Table 1**).

Table 1 Classification of height

 Unit: μm

 Category
 Code

 over
 or less

 0
 -2
 A

 -2
 -4
 B

 -4
 -6
 C

 -6
 -8
 D

 -8
 -10
 E

4. Rigidity

Fig. 2 shows elastic deformation.

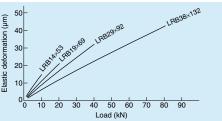


Fig. 2 Elastic deformation

5. Friction and Lubrication

(1) Lubricants and volume

Mineral oils are used in general. The linear roller bearing is used under relatively heavy load. An oil which has high viscosity and creates a strong oil film is ideal for linear roller guides. Select from JIS viscosity 32 to 150.

General oil supply for a linear roller bearing *Q* (cc/h) can be calculated by the following formula.

$$Q \ge S \times 1/4$$
(1)

In this formula, S (stroke) is shown in meters. Therefore, when the stroke is 1 m, the volume of lubricant per roller bearing is more than 0.25 (cc/h). It is recommended to supply a small amount of oil at short intervals rather than supplying a large amount at one time. In case of grease lubrication, a grease of consistency degree 2, such as Albania EP2, is generally used.

(2) Friction coefficient

Starting friction coefficient is significantly small at under 0.005.

(3) Seal

Install a wiper seal on the way block surface to prevent foreign matters (cutting chip and other contaminant from entering) to realize a full life of the linear roller bearing. The material of the seal should have strong resistance against oil and wear. Felt and synthetic rubber (acrylonitril-butadien rubber) are some of the suitable materials.

A341 A342

6. Installation

Secure the linear roller bearing using four bolts. The bearing main body has four holes for mounting.

Accuracy of way block

The ideal accuracy specification and mounting accuracy of a way block as a guide way surface are as follows.

Hardness by heat treatment

: More than HRC58 hardened depth

2 mm or more

Surface roughness

: Less than 1.6 S

Parallelism as a single unit

: Less than 0.010 mm per 1 m

Parallelism after installation

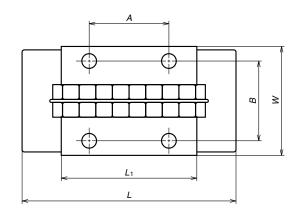
: Less than 0.020 mm per 1 m

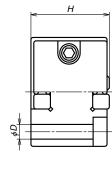
Please consult NSK when using cast iron or cast steel guide way.

7. Rated life

Rated life L (km) is shown in the following formula. In this formula:

$$L = 50 \left(\frac{C}{f_{\text{w}} \cdot F_{\text{c}}} \right)^{\frac{10}{3}} \dots (2)$$

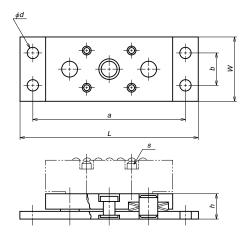

C: Basic dynamic load rating (N)


 $f_{\rm w}$: Load factor. 1.0 to 1.2 at time of smooth operation

F_c: Calculated load applied on the bearing (N)

8. Dimension Table

Linear roller bearing Model: LRB



										Unit: mm
	Madal Na Width Height Length			Roller	Mounting	Bolt hole distance		Basic dynamic	Basic static load rating	
Model No.	W	H-8.010	L	L ₁	diameter × length	bolt hole D	А	В	C (N)	C₀ (N)
LRB 14×53	26.5	14.29	52.8	32.8	φ 4×8	3.4	19	19.3	15 400	21 900
LRB 19×69	30.5	19.05	68.6	44.6	φ 5×10	3.4	25.4	23.3	27 000	39 000
LRB 29×92	41.5	28.58	92.0	59	φ 7.5×15	4.5	38.1	32.7	57 500	76 500
LRB 38×132	51.4	38.10	132.0	88	φ 10×20	5.5	50.8	41.5	119 000	159 000

Note: Bearings are grouped into heights of every 2 μm before delivery.

A343 A344

Preload pad Model: PRP

										Unit: mm
Model No.	Applicable linear roller bearing	Height (no-load) <i>h</i> max.	Compressed height h min.	h min. Load when fully compressed (N)	W	L	d	а	b	s Hex. Socket cap screw
PRP 14×53	LRB 14×53	10.23	9.53	1 570	26	72	4.5	62	14	M3×16
PRP 19×69	LRB 19×69	11.53	11.10	2 650	30	96	4.5	86	18	M3×19
PRP 29×92	LRB 29×92	13.13	12.70	6 450	41	120	4.5	110	27	M3×25
PRP 38×132	LRB 38×132	16.28	15.88	12 000	51	157	4.5	147	35	M5×38

B-1 Selection Guide to NSK Ball Screw

1. Features of NSK Ball Screws B1
2. Structure of a Ball Screw B3
2.1 Ball Recirculation System B4
2.2 Preload System B5
3. Ball Screw Series B7
3.1 Ball Screw Classification B7
3.2 Product Externals B9
4. Procedures to Select Ball
Screw B17
4.1 Flow Chart for Selection ··· B17
4.2 Accuracy Grades B19
4.3 Axial Play B20
4.4 Screw Shaft Diameter, Lead,
and Stroke B21
4.5 Manufacturing Capability for
Screw Shaft B25
4.6 Outside Shapes of Ball Nut
B26
4.7 Shaft End Configuration B27

	iii onait Ena conngaration	
	5. When Placing Orders	. В31
	5.1 When Ordering Standa	rd
	Ball Screws	. В31
	5.2 When Ordering Made-to	0-
	Order Ball Screws	B3 3
BLOCK		

Ball Screw

B-2 Technical Description

of Ball Screws
1. Accuracy B37
1.1 Lead Accuracy B37
1.2 Thermal Expansion and
Target Value of Specified
Travel
1.3 Mounting Accuracy and
Tolerance of Ball Screws B41
1.4 Automatic Lead Accuracy
Measuring System of NSK
B43
2. Static Load Limitation B44
2.1 Buckling Load B44
2.2 Yield by Tensional/
Compressive Stress ····· B46
2.3 Permanent Deformation at
the Ball Contact Point···· B46
3. Permissible Rotational Speed
B47
3.1 Critical Speed of the Screw
Shaft B47
3.2 d•n Value B50
4. Supporting Conditions for
Calculation of Buckling Load
and Critical Speed B51
5. Life (Dynamic Load Limitation)
B53
5.1 Life of Ball Screw B53
5.2 Fatigue Life B53
5.3 Ball Screw and Hardness - B55
5.4 Wear Life B55
6. Preload and Rigidity B56
6.1 Elastic Deformation of
Preloaded Ball Screw ···· B56
6.2 Rigidity of the Feed Screw
System B57
7. Friction Torque and Drive
Torque B62
7.1 Friction Torque B62
7.2 Drive Torque B63
8. Even Load Distribution in Ball
Nut (In Case of Ball Screws for
High-Load Drive) B65

B-3 Ball Screw Dimension Table

9. Lubrication of Ball Screw ··· B67	1. Dimension Table and Reference
10. Dust Prevention for Ball	Number of Standard Ball Screws
Screw B68	1.1 Compact FA SeriesB10
11. Rust Prevention and Surface	1.2 High-Speed SS Series B14
Treatment of Ball Screws ··· B69	1.3 Finished Shaft End
12. Ball Screw Specifications for	MA Type, Miniature, Fine Lead ···· B159
Special Environments B70	FA Type for Small Equipment B18
12.1 Clean Environments ···· B70	SA Type for Machine Tools B21
12.2 Measures for Use Under	1.4 Finished Shaft End
Vacuum B70	KA Type Stainless Steel Product B273
13. Noise and Vibration B71	1.5 Blank Shaft End
13.1 Consideration to Lowering	MS Type, Miniature, Fine Lead ···· B30
Noise B71	FS Type for Small Equipment B309
13.2 Consideration to Operational	SS Type for Machine Tools B32
Characteristics B72	1.6 Ball Screws for Transfer Equipment
13.3 Consideration to Ball Screw	B34
Support System B72	1.7 AccessoriesB389
14. Installation of Ball Screw	2. Dimension Table and Reference
В73	Number of Standard Nut Ball Screws
14.1 Installation Procedure for	2.1 End Deflector TypeB43
Machine Tools, Where High	2.2 Tube Type B43
Installation Accuracy Is	2.3 Deflector (bridge) TypeB47
Required B74	2.4 End Cap TypeB48!
14.2 Installation Procedure	3. Dimension Table and Reference Number
for General Industrial	of Application-Oriented Ball Screws
Machinery B79	3.1 HMD Type for High-Speed Machin
15. Precautions for Designing	ToolsB49!
Ball Screw B83	3.2 HMS Type for High-Speed Machine
15.1 Safety System ····· B83	ToolsB499
15.2 Design Cautions to Assembling	3.3 HMC Type for High-Speed Machin
Ball Screw B83	ToolsB503
15.3 Effective Stroke of Ball	3.4 BSL [™] Type for Miniature Lathes B50 9
Screw B85	3.5 For High-Load Drives
15.4 Matching after Delivery ··· B85	3.5.1 HTF-SRC Type B51 3
15.5 "NSK K1™" Lubrication	3.5.2 HTF-SRD Type B51
Unit B85	3.5.3 HTF Type B52
16. Shaft End Machining B86	3.6 For Contaminated Environments
17. Ball Screw Selection	3.6.1 VSS Type B53 3
Exercise B87	3.6.2 Ball Screw with X1 Seals for Contaminated
18. Reference B101	Environments and Grease Retention B53
19. Guide to Technical	3.7 TW Series for Twin-Drive Systems B54
Services B102	3.8 For High Precision Machine Tools
20. Precautions When Handling	3.8.1 Hollow Shaft Ball Screws ····· B542
Ball Screws····· B103	3.8.2 Nut Cooling Ball Screws ··· B54 ?
	3.9 ND Series for Nut-Rotatable Drives ··· B55
	3.10 Σ Series for Robots ······ B55 9
	3.11 Ball Screw with L1 Seal designed for

Minimal Grease Splatter B571 3.12 Equipped with "NSK K1TM" Lubrication Unit ... **B575** 3.13 Special Ball ScrewsB581

-B104

B105 -B582

B-1 Selection Guide to NSK Ball Screw

B-1-1 Features of NSK Ball Screws

(1) Quick delivery

Standard ball screws are for short lead time.

- Precision ball screws with finished shaft end Compact FA Series, MA Type, FA Type, SA Type, KA Type
- Precision ball screws with blank shaft end MS Type, FS Type, SS Type, HSS Type
- Ball screws for transfer equipment with finished shaft end

VFA Type, RMA Type

 Ball screws for transfer equipment with blank shaft end

RMS Type, R Series

(2) Competitive prices

NSK reduces cost by well-planned mass production of standardized items. We rank the best in the world production of ordered items. We are able to offer our products at competitive prices by producing similar items in the same production group.

(3) Unparalleled accuracy

NSK utilizes its unique grinding technique and measuring equipment for topnotch precision.

(4) Superb durability

NSK uses thoroughly purified alloy steel for superb durability.

(5) No backlash, and unparalleled rigidity

NSK ball screws use Gothic arch grooves as shown in Fig. 1.1 to minimize the clearance between the balls and grooves. Further, an application of preload makes no backlash possible. As providing controlled preload is easy, appropriate rigidity is obtained.

As the Gothic arch also minimizes the clearance between the balls and the grooves, the backlash is minimized without applying preload.



Fig. 1.1 Ball groove profile of NSK ball screw

(6) Smooth movement assures high efficiency

When the circular-arc groove is used for the ball screws, balls are wedging into the grooves of ball nut and ball screw shaft. But this phenomenon does not happen in the Gothic arch groove. The Gothic arch groove, along with the low friction that is inherent nature of ball screw, is accountable for a smooth and highly efficient conversion of motion as shown in Fig. 1.2.

(7) Optimal units available

Utilizing bearing technology, NSK produces high quality support units (for light load type to be used for small equipment and heavy load type to be used for machine tools) which are exclusive for ball screws. These units are standardized.

NSK also offers quality-assured accessories such as lock nuts to tighten bearings, travel stoppers to prevent overrun, and sealing units to cool hollow shaft ball screws.

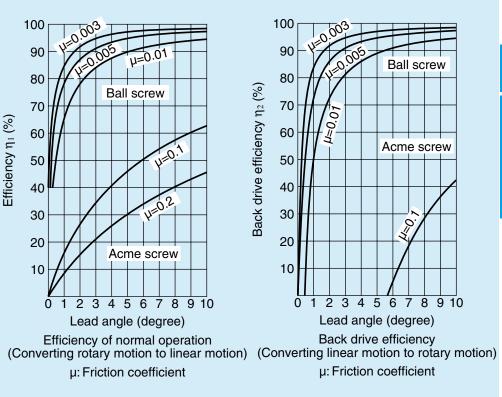
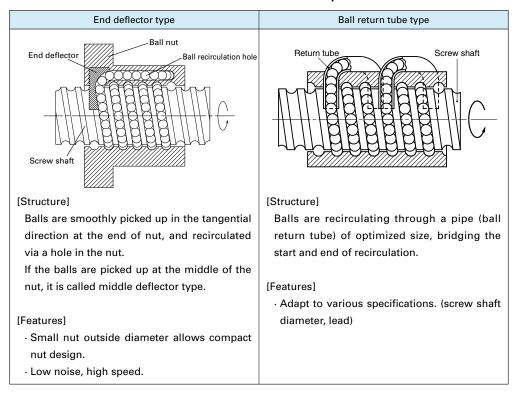


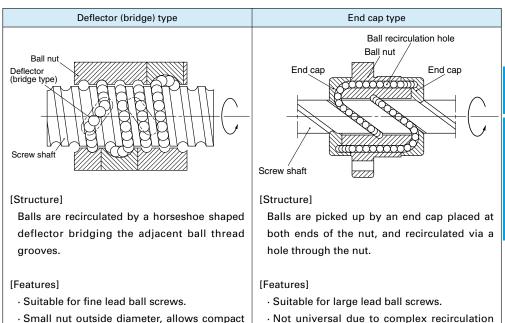
Fig. 1.2 Mechanical efficiency of ball screws


B1 B

B-1-2 Structure of a Ball Screw

Balls are placed between the screw shaft and nut, and roll. This system is called a "ball screw." To keep the balls recirculating continually, this system requires a screw shaft, a nut, balls, and recirculation components as basic items. A ball screw has the following functions.

- (1) Converting motion: Changing rotary motion to linear motion (normal operation); Changing linear motion to rotary motion efficiently (back-drive operation).
- (2) Increasing power: A small torque is converted to a large thrust force.
- (3) Positioning: Sets accurate position in linear motion.


Table 2.1 Ball screw recirculation system

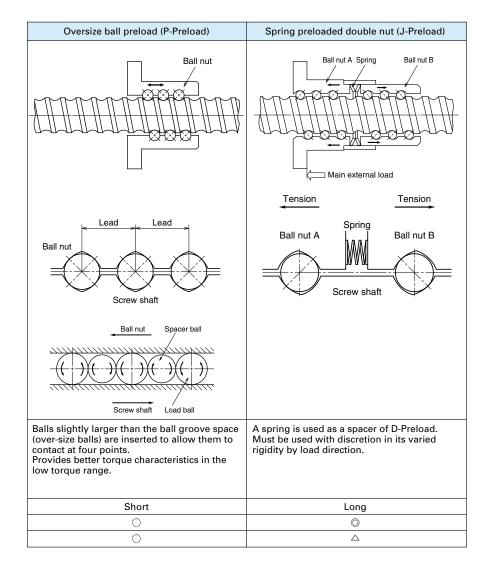
B-1-2.1 Ball Recirculation System

A ball recirculation system is categorically most important, as well as the preload system, to classify the structure of ball screw.

As shown in **Table 2.1**, four types of ball recirculation system are used for the NSK ball screws.

structure.

B3 B4

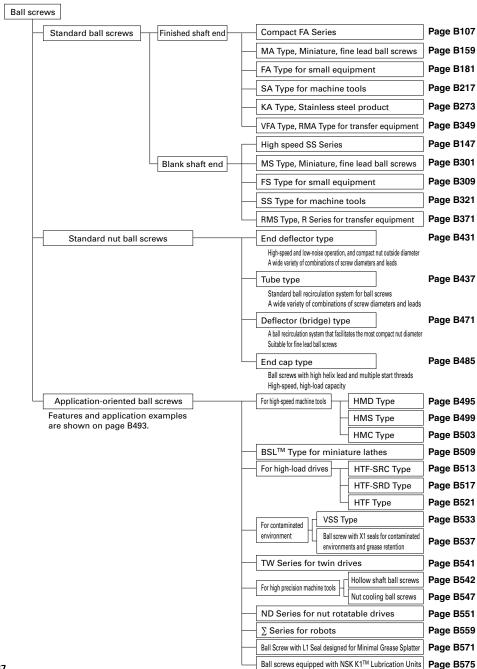

nut design.

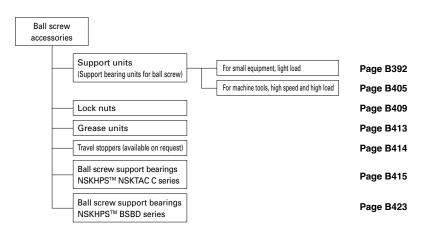
B-1-2.2 Preload system

There are four systems to apply preload to NSK ball screws depending on the application.

Table 2.2 Preload system for ball screws

Preload system	Double nut preload (D-Preload)	Offset preload (Z-Preload)
Structure	Tension Spacer Ball nut B Ball nut A Spacer Ball nut B Tension Ball nut A Ball nut B Screw shaft	Ball nut Lead Lead + α Lead Ball nut Screw shaft
Description	Uses two nuts, and inserts a spacer between them to apply the preload. In general, a spacer is thicker (by the deformation equivalent to the preload) than the actual space between two nuts. However, a thin spacer is inserted in some cases.	To apply preload, the lead near the center of the nut is offset by the volume equivalent to preload (\alpha). This method is like to creating a preload system similar to the double nut preload (D-preload) by a single ball nut, thus enabling a compact nut design.
Nut length	Long	Medium
Torque characteristics	0	0
Rigidity	©	©




B5 B6

B-1-3 Ball Screw Series

B-1-3.1 Ball Screw Classification

Lead classification

Classification	Lead ratio K = lead l / shaft diameterd
Fine	<i>K</i> < 0.5
Medium	0.5 ≤ <i>K</i> < 1
High helix	1 ≤ <i>K</i> < 2
Ultra high helix	2 ≤ <i>K</i>
Ultra high helix	2 ≤ <i>K</i>

B-1-3.2 Product Externals

(1) Ball screws

Standard ball screws

Fig. 3.1 Finished shaft end compact FA Series

Page B107



Fig. 3.2 Blank shaft end high-speed SS Series

Page B147

Fig. 3.3 Finished shaft end MA type, FA type and SA type

Page B157

Fig. 3.4 Finished shaft end KA type

Page B273

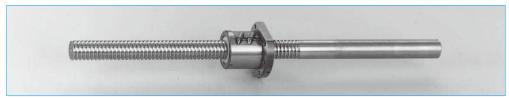


Fig. 3.5 Blank shaft end MS type, FS type and SS type

Page B299

Fig. 3.6 Finished shaft end VFA type for transfer equipment

Page B349

Fig. 3.7 Finished shaft end RMA type and blank shaft end RMS type for transfer equipment

Page B349

Fig. 3.8 Blank shaft end R series for transfer equipment

Page B349

Fig. 3.9 R series nut assembly for transfer Page B349 equipment

Standard nut ball screws

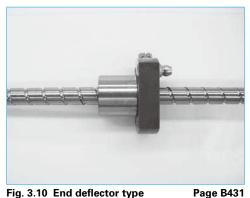


Fig. 3.10 End deflector type

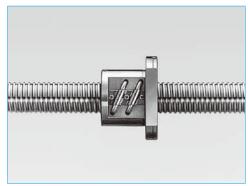


Fig. 3.11 Tube type

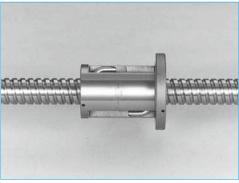


Fig. 3.16 HMC type for high-speed machine tools Page B503

Fig. 3.17 BSL™ type for miniature lathes Page B509

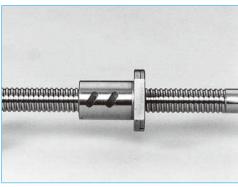


Fig. 3.12 Deflector (bridge) type

Page B471

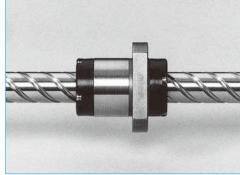


Fig. 3.13 End cap type

Fig. 3.18 HTF-SRC type for high-load drives Page B513

Fig. 3.19 HTF-SRD type for high-load drives Page B517

● Application-oriented ball screws

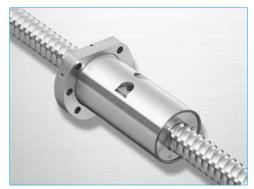


Fig. 3.14 HMD type for high-speed machine tools Page B495 B11

Fig. 3.15 HMS type for high-speed machine tools Page B499

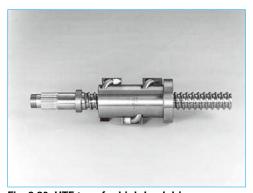


Fig. 3.20 HTF type for high-load drives Page B521



Fig. 3.21 VSS type for contaminated environments Page B533

Fig. 3.22 Ball screw with X1 seals for contaminated environments and grease retention Page B537

Fig. 3.24 Nut cooling ball screws for high precision machine tools Page B547

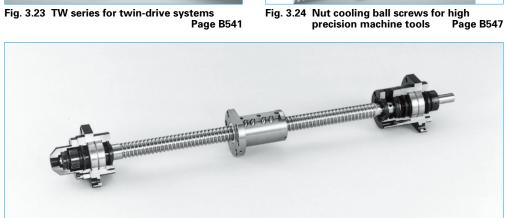


Fig. 3.25 Hollow shaft ball screws for high-precision machine tools

Page B542

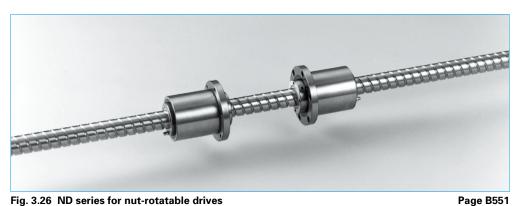


Fig. 3.26 ND series for nut-rotatable drives

Fig. 3.27 \sum series for robots

Page B559

Fig. 3.28 Ball Screw with L1 Seal designed for Minimal Grease Splatter Page B57 Page B571

Fig. 3.29 Ball screws equipped with NSK K1™ lubrication units Page B575

(2) Standard accessories

Fig. 3.29 Support units Page B392 (for small equipment, light load)

Fig. 3.30 Support units Page B392 (for small equipment, light load, low-profile)

Fig. 3.35 Lock nuts for high load

Fig. 3.36 NSK hand grease pump unit Page D19

Fig. 3.31 Support kits for RMA and RMS types Page B401

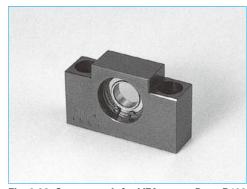


Fig. 3.32 Support unit for VFA type Page B402 (simple support side)



Fig. 3.37 NSK grease

Fig. 3.38 Travel stoppers (by order)

Fig. 3.33 Support units Page B407 (for machine tools, high speed, heavy load)

Fig. 3.34 Lock nuts for light load Page B409

Fig. 3.39 Ball screw support bearings NSKHPS™ **NSKTAC C series** Page B415

Fig. 3.40 Ball screw support bearings NSKHPS™ **BSBD** series Page B423

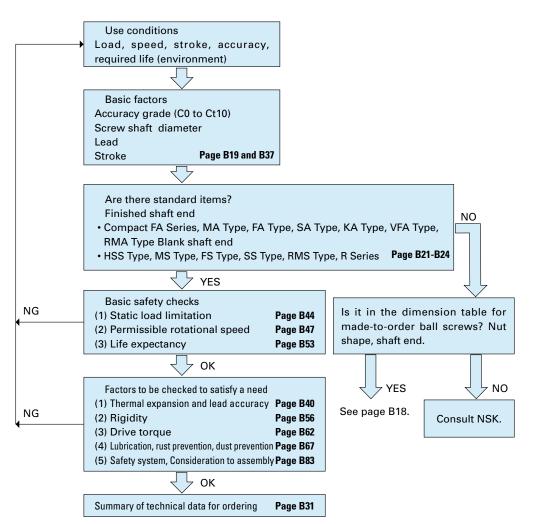
B-1-4 Procedures to Select Ball Screw

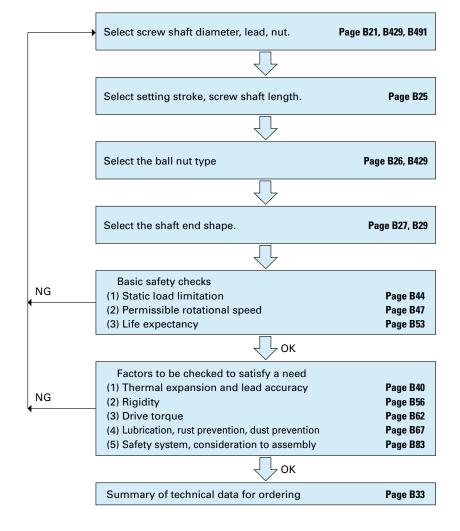
B-1-4.1 Flow Chart for Selection

When selecting a ball screw, you have to review a variety of use conditions and requirements such as applied loads, speeds, motion strokes, positioning accuracy, required life and operating environment. You require a multiple inspection because some of these conditions force a ball screw to have conflicting characteristics.

(1) Standard ball screw

The chart below is one of the selection procedures. To take advantage of prompt delivery and reasonable prices, this procedure focuses on the standardized ball screws.


NSK offers a ball screw selection program, and also has a service to select appropriate items using data file compiled by our knowledge and experience.


(2) Made-to-order ball screws

Dimensions and specifications can be decided individually for the application-oriented ball screws and standard nut ball screws. Procedures are as follows. Refer to the selection exercises on page B87.

Table 4.4 is "Combinations of screw shaft diameter and leads for basic type ball screw." Please consult

NSK if you require the types that are not listed in the table.

B17 B18

B-1-4.2 Accuracy Grades

Table 4.1 shows examples of how to select accuracy grade for a specific use. These practical cases are based on NSK's experience. The circles indicate the range of the accuracy grade in actual use. The double circles indicate accuracy grades most frequently used among the cases marked with the single circle. These symbols help to select the accuracy grade of ball screws temporarily. To confirm whether a specific ball screw accuracy grade satisfies requirements in positioning accuracy in actual use, refer to "Technical Description" and "Mean travel deviation and travel variation." (page B38)

Table 4.1 Accuracy grades of ball screw and their application

NC machine tools																					
:	Application	-	Lames	Milling machines	Boring machines	V V	Machining centers	:: : : : : : : : : : : : : : : : : : : :	Drilling machines		Jig boring machines		Grinders	Electric discharge	machines	Wire cuttings	machines Punch presss Laser cutting machines		Laser cutting macnines	Woodworking machines	
A	xis	Χ	Z	XY	Z	XY	Z	XY	Z	XY	Z	XY	Z	XY	Z	XY	Z	XY	XY	Z	
	C0	0								0	0	0									
Φ	C1	0		0		0				0	0	0	0	0		0	0				
grad	C2	0		0	0	0	0					0	0	0	0	0	0				
acy	С3	0	0	0	0	0	0	0					0	0	0	0	0	0	0	0	
Accuracy grade	C5	0	0	0	0	0	0	0	0						0		0	0	0	0	0
Ĭ	Ct7								0												0
	Ct10																				0

		ر ا د ک	Sem	nicondu	ctor/a	ssociat	ed indu	ustry		Indus	trial r	obots				te		rt	Nuclea	power	
Application		General industrial machines, Machines for specific use	Lithographic machines	nical processing equipment	Wire bonders	Probers	Electric component mounted devices	circuit board drilling machines		Cartesian type	V	Articulate type	SCARA type	el mills equipment	Plastic injection molding machines	Three-dimensional coordinate measuring machines	Office machines	processing equipment	Fuel rod controls	Mechanical snubbers	Aircrafts
		General ind Machines	Lithog	Chemical equi	>		Elec	Printed (Assembly	other purposes	Assembly	other purposes	0)	Steel	Plast	Three-d me	O	Image p	Fue	Mech	
	C0		0			0										0		0			
Ф	C1		0		0	0		0								0		0			
grao	C2				0	0	0	0	0							0					
acy	С3	0		0			0	0	0		0		0						0		0
Accuracy grade	C5	0		0			0	0	0	0	0	0	0		0		0		0		0
⋖	Ct7	0		0					0	0	0	0	0	0	0		0		0	0	
	Ct10	0		0						0				0	0		0			0	

B-1-4.3 Axial Play

Table 4.2 indicates the combinations of NSK ball screw accuracy grades and axial play. Select an axial play which satisfies the required accuracy in backlash, positioning and repeatability. Ranges of available ball thread effective length in relation to accuracy grade and axial play are shown in Table 4.3. Please note that if the effective length exceeds the

range, the axial play may become partially negative (preloaded condition).

For the axial play of Ct10 grade (ball screws for transfer equipment), refer to the R series dimension tables.

Table 4.2 Combinations of accuracy grades and axial play

Axial	Z	T	S	N	L
play	0 mm	0.005 mm	0.020 mm	0.050 mm	0.3 mm
Accuracy grade	(Preload)	or less	or less	or less	or less
C0	COZ	C0T	_	_	_
C1	C1Z	C1T	_	_	_
C2	C2Z	C2T	_	_	_
C3	C3Z	C3T	C3S	_	_
C 5	C5Z	C5T	C5S	C5N	_
Ct7	_	_	C7S	C7N	_

The combination codes shown in the table are NSK reference number.

Table 4.3 Maximum effective thread length in combination of accuracy grade and axial play

Unit: mm

B20

Screw shaft		Effective length	of the screw th	read (maximum))
diameter	Axial play T (0.00	05 mm or under)	Axial pla	y <i>S</i> (0.020 mm d	or under)
diameter	C0 – C3	C5	C3	C 5	Ct7
4 – 6	80	100	80	100	_
8 - 10	250	200	250	300	_
12 – 16	500	400	500	600	700
20 – 25	800	700	1 000	1 000	1 000
28 - 40	1 000	800	2 000	1 500	1 500
45 – 63	1 200	1 000	2 500	2 000	2 000
80 – 125	_	_	4 000	3 000	3 000

Note: Refer to Table 4.8 (page B25) for the available length of screw shaft (maximum length). Also, axial play of code N does not become partial negative play if it is within the available range of effective ball thread length.

B-1-4.4 Screw Shaft Diameter, Lead, and Stroke

Choose a screw shaft diameter and stroke based on the allowable space for ball screw installation. A lead should be set based on the required running speed, and should give some allowance to the maximum rotational speed of the motor.

(1) Standard ball screw

Tables 4.4 and 4.5 show the combinations of ball screw shaft diameter and leads, and range of stroke. From these tables, select the closest values to the shaft diameter, lead, and stroke which had been selected previously. Also, confirm detailed specifications and sizes in "Dimensional table of standard ball screw" (page B105).

Table 4.4 Screw shaft diameter, lead and stroke of standard ball screw

01 6 11								Stroke						
Shaft dia.	Lead	- 50	- 100	- 150	- 200	- 250	- 300	- 350	- 400	- 450	- 500	- 550	- 600	- 650
4	1	Ö	$\bigcirc \triangle$											000
-	1	8		()A	()△									
6	8 12		Ŏ	<u> </u>										
-	12		ě											
	1		$\cap \triangle$		$\cap \triangle$									
			<u>ΟΔ</u> <u>ΟΔ</u>	8	<u>О</u> Д									
8	1.5 2		$\overline{\triangle}$	8										
Ü	10													
	15													
	10			<u>Ο</u> Δ		<u>Ο</u> Δ								
-	2 2.5 4		\sim	$+\times$		$+ \times \overline{\star}$								
10	2.5		8	ŎΔ OΔ	8	<u> </u>	0	$\bigcirc \triangle$						
10	5				0		0	<u> </u>						
	10		_											
	10													
	2				$\bigcirc \triangle$	0	\bigcirc							
	2.5		0	1.2.	ŎΔ	Q.	OA_							
12	2.5 5 10			● Q△	0	● ○△	0.					_		
'-	10				ŎΔ		0/		OΔ		O/			
	/0													
	30													
14	5				0	L	0	Δ					Δ	
14	8				0			0	0	0	$\bigcirc \triangle$		0	
	5													
15	5 8 5 10 20				0	80						○○△✓		
15	20							○ ○✓	()A			○ ○✓	$\bigcirc \triangle$	
	30													
	2 2.5					$\bigcirc \triangle$								
	2.5		Ŏ	Ŏ	Ŏ	ŎA		Ŏ	Δ					
16	5			Ö		Ŏ		Ŏ						
	16			<u> </u>	0	Ŏ		Ŏ	0	-8	Δ	()A	0	\sim
	32 4 5							\sim	-		-	6	-	-
	4				0		Δ	Ŏ		0	Δ	\sim		
	5				~			Ŏ				<u>~</u>		
	10					0		- 88				8		
20	20					8		8		0		8		0
20	20 30					-		\sim				-		
	30					_						_		
	40 60													
	00						_			0		0		
	4						Δ			\sim			Δ	
	5 6				$\bigcirc \bigcirc \triangle$			<u>О</u> Д				$\bigcirc \bigcirc \triangle$		0
	6							0				Ŏ		
25	10						0	Δ			-0	Δ		Δ
	20													
ļ	20 25 30		1											
ļ	30													
	50													
28	5				0	0	Q	QΔ	0	0	Q	$\bigcirc \triangle$		
20	6 5 6						0	\bigcirc \triangle			0	ŎΔ		
	5				0	0	0	\triangle	0	0		OAA		
[6						0					\triangle		
32	8											\triangle		
j	10				0		0	\triangle	\bigcirc \triangle			\triangle	$\bigcirc \triangle$	
j	25													
j	10 25 32 10 5 8													
36	10						0		0		0	Δ	()A	
	5						8				Ö	Δ		
j	8					0				0			Δ	
	10	l	1				0				0	Δ	\bigcirc \triangle	
40	12		1						-		8		<u> </u>	
ŀ	16										-			
ŀ	16 20		1			-								
45	10													
	10									0	0		Q A	
50	12		 	-		l					-	-		<u> </u>
	12		1	1										

Table 4.5	Screw s	shaft diar	neter, lea	d and str	oke of K	A type in	stainless	steel pro	duct	Unit: mm
01 (. 1)						Stroke				
Shaft dia.	Lead	- 150	- 200	- 250	- 300	- 350	- 450	- 500	- 650	- 1 050
6	1									
-	1									
8	2									
10	2									
10	4									
	2									
12	5									
	10									
4.5	10									
15	20									
16	2									

omark; PSS type, USS type, FSS type: ○mark; MA type, FA type, SA type: ▲mark; HSS type Amark; MS type, FS type, SS type: ✓mark; VFA type: □mark; RMA type: □mark; RMS type

Unit: mm

						Str	oke						-3 000
- 700	- 750	- 800	- 850	- 900	- 950	- 1 100	- 1 200	- 1 300	- 1 400	- 1 500	- 1 700	- 2 100	-3 000
		Δ											
			000										
	()		()	Δ		()A							
		_											
			0										
	0		\sim			<u>О</u> Д							
			0	Δ				$\bigcirc \triangle$					
		Δ											
					_								
					0	-		- / · ·					
					()A					$\bigcirc \triangle$			
			_								● ○△		
	\cap					Δ							
	\sim				()	_							
	<u> </u>				0		<u>О</u> Д						
	$\bigcirc \triangle$												
	<u>О</u> Д Д			0		● ○△			0	8			
~~									-				
\rightarrow		_		+						\rightarrow	8		
				Ŏ						0			
						()				\triangle			
\sim	$\cap \wedge$	•0				-0				Δ	•0		
	$\bigcirc \triangle$	•0			0	Õ	OΔ			Δ	-0	● ○△	
\sim				8		8	<u>Ο</u> Δ					•0A	
8		•0	A			Õ	<u>Ο</u> Δ Δ				Δ	•0A	
8	Δ ()Δ	•0	A			8	ΟΔ Δ ΟΔ		<u></u>			• () A	
			A			8	ΟΔ ΟΔ ΟΔ		04			• () A	
	Δ ()Δ			8	0 0 0 0 0 0	8	ΟΔ Δ ΟΔ Ο		8		Δ	•0A	
8	Δ ()Δ	0	Δ			8	ΟΔ Δ ΟΔ Ο	()AA			Δ		
	Δ ()Δ			8		8	<u>О</u> Д Д ОД	()AA	8		Δ		()A
8	Δ ()Δ			8			<u>О</u> Д Д ОД	()AA	8		Δ	0	O <u>A</u>
8	Δ ()Δ	0					0		8		Δ	0	<u>ОА</u> <u>ОА</u>
8	Δ ()Δ				О О Д		ΟΔ Δ ΟΔ Ο	O A A	8	\(\rightarrow\rightar			<u>ОА</u> <u>ОА</u>
	Δ ()Δ	0					0		8	\(\rightarrow\rightar		0	<u>О</u> Д
	Δ ()Δ	0	Δ		О О Д		0		8	\(\rightarrow\rightar		0	○ <u>△</u> ○ <u>△</u>
	Δ ()Δ	0	Δ		О О Д		0	0	8	\(\rightarrow\rightar		0	
	Δ ()Δ	0	Δ		О О Д		0	O OA	8	\(\rightarrow\rightar		0	
	Δ ()Δ	0	Δ		О О Д		0	0	8			0	844
	Δ ()Δ	0	Δ Ο Δ Δ		О О Д		0	O OA				0	8
	Δ ()Δ	0	Δ Ο Δ Δ		О О Д		0	O OA		\(\rightarrow\rightar		0	8
	Δ ()Δ	0	Δ		О О Д		0	0	8			0	8
	Δ ()Δ	0			О О Д		0	0				0	8
	Δ ()Δ	0			О О Д		0	0				0	
	Δ ()Δ	0			О О Д		0	0				0	844

Note: See Table 4.5 for KA Type in stainless steel product.

(2) Made-to-order ball screws

Table 4.7 shows the combinations of screw shaft diameter and leads for made-to-order ball screws. For details, refer to the dimension tables from pages B429 and B491.

Table 4.6 Screw shaft diameter, lead and standard screw shaft length of R Series Unit: mm

Screw shaft					Stand	dard screv	v shaft len	gth			
diameter	Lead	400	500	800	1 000	1 500	2 000	2 500	3 000	4 000	5 000
10	3										
10	6										
12	8			•							
12	12										
14	4										
14	5		•								
15	20		•								
	10		•								
16	16		•								
	32		•								
18	8										
	5										
20	10		•				•				
20	20		•				•				
	40		•				•				
	5						•	•			
25	10						•				
20	25						•	•			
	50						•				
28	6						•	•			
	10										
32	32						•				
	64						•				
36	10						•		•		
	10										
40	40										
	80						•		•		
45	12										
	10										
50	16										
	50										

B23

Table 4.7 Combinations of screw shaft diameter and leads for typical ball screw Unit: mm 8 10 12 14 15 | 16 | 20 | 25 | 30 | 32 | 36 | 40 | 50 | 60 | 64 | 80 | 100 1.5 2 2.5 3 0.5 4 D D D D D S 8 D D D S D S D S S 10 D 12 D D D D T S,T S,T S,C S 14 D D Т Т 15 S S С S,T S,C 16 D D Т T,C С С S,T T,D D,B B S,T C D T S,T Т S s,c 20 S,C S,T T,D D,B B T,B S,T D,B T S,T S,T D S s,c 25 Т Т 28 T,D T,D D,B S,T S,V S,T T,N S,T D 32 D s,c V,F S,T F S,F 36 S,T S,HS,H T,D T,D T,D S,T S,T F S,T H S,H S,T H,N S,H T,H N 40 D C,V S Ň S,T S,T F F 45 |S,H|S,H|S,H| H Н T,N S,T C,V N T,D T,D T,D S,T S,T D,F S,T S,T S,T S,H T,H N S 50 F H H H H T,F F 55 T,D F F D D T,D D,F F T,F Т 63 T,D F T,F T,D T,D F F 80 T,D F D T,D 100 120 FF 125 Т 140 FF FF 160 F F 200 F F

T: Tube type D: Deflector(bridge) type

S: End deflector type
ridge) type H: HMC type, HMD type
e F: HTF-SRC, HTF-SRD, HTF type

N: ND Series B: BSL type V: VSS type

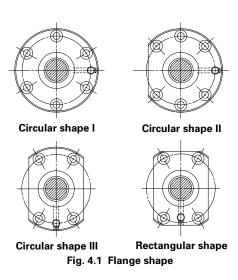
B-1-4.5 Manufacturing Capability for Screw Shaft

Table 4.8 shows the manufacturing capability for the screw shaft overall length for each accuracy grade. The capability of large ball screw whose shaft diameter exceeds 100 mm is limited due to the weight (indicated by * asterisk in the table). Please consult NSK in such a case.

Also consult NSK if the screw shaft size you desire exceeds the size listed in **Table 4.8**.

Table 4.8 Manufacturing capability of screw shaft

	Т	able 4.8 Ma	anufacturing	capability o	f screw shat	ft	Unit: mm
Accuracy Screw grade shaft diameter	CO	C1	C2	C3	C5	Ct7	Ct10
4	90	110	120	140	140	140	_
6	150	180	200	250	250	250	_
8	240	280	340	340	340	340	_
10	350	400	500	500	500	550	800
12	450	500	650	700	750	800	800
14	600	650	750	800	1 000	1 000	1 000
15	600	700	800	900	1 250	1 250	1 500
16	600	750	900	1 000	1 500	1 500	1 500
18	_	_	_	_	_	_	1 500
20	850	1 000	1 200	1 400	1 900	1 900	2 000
25	1 100	1 400	1 600	1 900	2 500	2 500	2 500
28	1 100	1 400	1 600	1 900	2 500	2 500	2 500
32	1 500	1 750	2 250	2 500	3 200	3 200	3 000 (4 000)
36	1 500	1 750	2 250	2 500	3 200	3 500	3 000
40	2 000	2 400	3 000	3 400	3 800	4 300	4 000 (5 000)
45	2 000	2 400	3 000	3 400	4 000	4 500	4 000
50	2 000	3 200	4 000	4 500	5 000	5 750	4 000
55	2 000	4 000	5 000	5 800	6 000	6 000	_
63	2 000	4 000	5 000	6 000	6 800	7 700	_
80	_	4 000	6 300	8 200	9 200	10 000	_
100	_	4 000	6 300	10 000	12 500	13 500	_
*120	_	_	_	_	_	13 500	
* 125	_	_	_	10 000	13 500	13 500	_
*140	_	_	_	_	_	10 000	
*160	_	_	_	_	_	8 000	_
*200	_	_	_	_	_	5 000	


Notes: 1. Values in parentheses of Ct10 are applicable to the ultra high helix lead (I/d≥2). Refer to dimension tables on B385 and following pages for details.

2. Please note that the range for small leads (3 mm or under) are also limited by the screw length.

B-1-4.6 Outside Shapes of Ball Nut

(1) Flange shape

Fig. 4.1 shows the available flange shape. Select the appropriate shape according to the nut installation condition. (Fig. 4.2)

Mounting center height of ball screw

Fig. 4.2 Installation example

(2) Shapes of nut cross section

Cross-section of nuts are shown in Fig. 4.3. For detailed dimensions, refer to dimension table of nut.

① Circular (round)

The ball recirculation components are contained inside the circumference of the nut. It can be inserted in a round hole.

2 Tube-projecting type

This shape is unique to the tube recirculation type. The nut outside diameter is small. However some recess must be given for housing because the ball recirculation tube protrudes from the circumference of the nut.

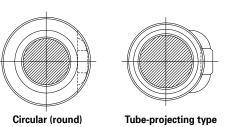


Fig. 4.3 Shape of the cross section of nut

B-1-4.7 Shaft End Configuration

(1) Standard shaft end dimensions

Tables 4.9 and **4.10** show shaft end types for NSK standard support units. Refer to the dimension tables below when designing

Refer to the dimension tables below when designing shaft ends of standard ball screw.

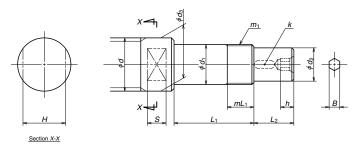


Fig. 4.4 Configuration of standard shaft end (drive side)

Table 4.9 Dimensions of shaft ends (drive side)

	m	

Screw	Bearing	journal	Threa	ad	Driv	e secti	on	Seal section	Hexago	on hole	Wrenc	h flats	Support	
shaft diameter	Outside diameter	Length	Nominal spec.	Length	Outside diameter	Length	Key width	Outside diameter	Width across flats	Depth	Width across flats	Length	unit	
d	d_1	L_1	m ₁	mL₁	d_2	L ₂	k	d_3	В	h	Н	S	Reference No.	
4	6	22.5	M6×0.75	7	4.5	7.5	_	9.5	_	_	8	4.5	WBK06-01A WBK06-11	
6	6	22.5	M6×0.75	7	4.5	7.5	_	9.5	_	_	8	4.5	WBK06-01A WBK06-11	
8	8	27	M8×1	9	6	10	_	11.5	_	_	10	5.5	WBK08-01A WBK08-11	
10	8	27	M8×1	9	6	10	_	11.5	_	_	10	5.5	WBK08-01A WBK08-11	
12	10	30	M10×1	10	8	15	_	14	_	_	12	6.5	WBK10-01A WBK10-11	
14	12	30	M12×1	10	10	15	3	15	4	6	12	6.5	WBK12-01A WBK12-11	
15	12	30	M12×1	10	10	15	3	15	4	6	12	6.5	WBK12-01A WBK12-11	
16	12	30	M12×1	10	10	15	3	15	4	6	12	6.5	WBK12-01A WBK12-11	
20	15	40	M15×1	15	12	20	4	19.5	5	7	17	8.5	WBK15-01A WBK15-11	
20	17	81	M17×1	23	12	29	4	20	5	7	22	10	WBK17DF-31H	
25	20	53	M20×1	16	15	27	5	25	6	8	22	10	WBK20-01 WBK20-11	
	20	81	M20×1	23	15	39	5	25	6	8	22	10	WBK20DF-31H	
28	20	53	M20×1	16	15	27	5	25	6	8	22	10	WBK20-01 WBK20-11	
20	20	81	M20×1	23	15	39	5	28	6	8	24	12	WBK20DF-31H	
	25	62	M25×1.5	20	20	33	6	32	8	10	27	12	WBK25-01W WBK25-11	
32	25	89	M25×1.5	26	20	51	6	32	8	10	27	12	WBK25DF-31H	
	25	104	M25×1.5	26	20	51	6	32	8	10	27	12	WBK25DFD-31H	
36	30	89	M30×1.5	26	25	61	8	36	10	12	30	13	WBK30DF-31H	
30	30	104	M30×1.5	26	25	61	8	36	10	12	30	13	WBK30DFD-31H	
40	30	89	M30×1.5	26	25	61	8	40	10	12			WBK30DF-31H	
40	30	104	M30×1.5	26	25	61	8	40	10	12	_	_	WBK30DFD-31H	
45	35	92	M35×1.5	30	30	63	8	45	12	14	_		WBK35DF-31H	
45	35	107	M35×1.5	30	30	63	8	45	12	14	_	_	WBK35DFD-31H	
50	40	92	M40×1.5	30	35	78	10	50	14	18			WBK40DF-31H	
50	40	107	M40×1.5	30	35	78	10	50	14	18	_	_	WBK40DFD-31H	

Note: Low-profile support unit is available for compact FA Series.

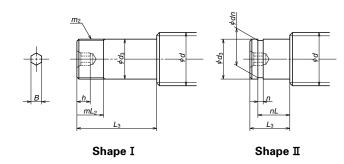


Fig. 4.5 Standard shaft end configuration (opposite to the drive side)

Table 4.10 Dimensions of shaft ends (opposite to the drive side)

Unit: mm

												Unit: mm
Screw shaft			g journal	Thread for	lock nut		ner ring		Hexagor		Suppor	
diameter	Shape	Outside diameter	Length	Nominal spec.	Length	Width	Groove diameter		Huto		Referen Numbers in par	
d		d₃	L_3	m ₂	mL ₂	n	dn	nL	В	h	bearing refere	nce number.
8	П	6	9	_	_	0.8	5.7	6.8	_	_	WBK08S-01	
10	Π	6	9	_	_	8.0	5.7	6.8	_	_	WBK08S-01	
12	П	8	10	_	_	0.9	7.6	7.9	_	_	WBK10S-01	
14	П	10	22(12)	_	_	1.15	9.6	9.15	4	6	WBK12	2S-01
15	П	10	22(12)	_	_	1.15	9.6	9.15	4	6	WBK12	2S-01
16	П	10	22(12)	_		1.15	9.6	9.15	4	6	WBK12S-01	
20	П	15	25(13)	_	_	1.15	14.3	10.15	5	7	WBK1	5S-01
	П	20	19	_		1.35	19	15.35	6	8	WBK20	OS-01
25	I	20	53	M20×1	16	_	_	_	6	8	WBK20-01	WBK20-11
	I	20	81	M20×1	23	_	_	_	6	8	WBK20DF-31H	
	Π	20	19	_		1.35	19	15.35	6	8	WBK20	OS-01
28	I	20	53	M20×1	16	_	_	_	6	8	WBK20-01	WBK20-11
	I	20	81	M20×1	23	_	_	_	6	8	WBK200)F-31H
	П	25	20	_	_	1.35	23.9	16.35	8	10	WBK25	S-01W
32	I	25	62	M25×1.5	20	_	_	_	8	10	WBK25-01W	WBK25-11
	I	25	89	M25×1.5	26	_	_	_	8	10	WBK250	DF-31H
36	I	25	20			1.35	23.9	16.35	10	12	(620)5)
30	I	25	89	M25×1.5	26	_	_	_	10	12	WBK250)F-31H
40	I	30	22	_		1.75	28.6	17.75	10	12	(620	06)
40	I	30	89	M30×1.5	26	_	_	_	10	12	WBK30E	DF-31H
45	Π	35	25	_	_	1.75	33	18.75	12	14	(620)7)
45	I	35	92	M35×1.5	30	_	_	_	12	14	WBK35E	DF-31H
50	Π	40	25	_	_	1.95	38	19.95	14	18	(620)8)
อบ	I	40	92	M40×1.5	30	_	_	_	14	18	WBK40E	DF-31H

(2) Shaft end configuration of R series ball screws for transfer equipment

Tables 4.11 and 4.12 show shaft end types for R Series.

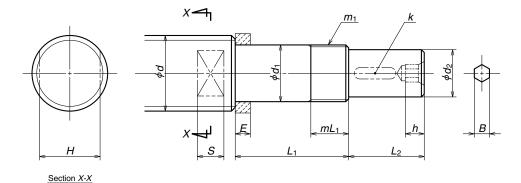


Fig. 4.6 R Series shaft end (drive side)

Table 4.11 Dimensions of R Series shaft ends (drive side)

Unit: mm

Screw	Bearing	journal	Thread for lo	ock nut	Spacer	Dri	ve sect	ion	Hexagor	nal hole	Wrenc	h flat	Support
shaft	Outside diameter	Length	Nominal spec	Length	Width	Outside diameter	Length	Key	Width across flats	Depth	Width across flats	Length	unit
diameter	uiameter					uiameter		-					
d	d ₁	L ₁	m_1	mL₁	E	d_2	L_2	k	В	h	Н	S	Reference No.
10	6	27	M6×0.75	7	5.0	4.5	7.5	_	_	_	8	4.5	WBK06-01A WBK06-11
12	8	32	M8×1	9	5.5	6	10	_	_	-	10	5.5	WBK08-01A WBK08-11
14	10	35	M10×1	10	5.5	8	15	_	_		12	6.5	WBK10-01A WBK10-11
15	10	35	M10×1	10	5.5	8	15	_	_	_	12	6.5	WBK10-01A WBK10-11
16	12	35	M12×1	10	5.6	10	15	3	4	6	12	6.5	WBK12-01A WBK12-11
18	12	35	M12×1	10	5.6	10	15	3	4	6	12	6.5	WBK12-01A WBK12-11
20	15	50	M15×1	15	10	12	20	4	5	7	17	8.5	WBK15-01A WBK15-11
25	17	53	M17×1	17	7	15	27	5	6	8	22	10	WBK17-01A —
25	20	64	M20×1	16	11	15	27	5	6	8	22	10	WBK20-01 WBK20-11
28	20	64	M20×1	16	11	15	27	5	6	8	22	10	WBK20-01 WBK20-11
32	25	76	M25×1.5	20	14	20	33	6	8	10	27	12	WBK25-01W WBK25-11
36	25	76	M25×1.5	20	14	20	33	6	8	10	27	12	WBK25-01W WBK25-11
40	30	89	M30×1.5	26	_	25	61	8	10	12	_		WBK30DF-31H
45	35	92	M35×1.5	30	_	30	63	8	12	14	_	_	WBK35DF-31H
50	35	92	M35×1.5	30	_	30	63	8	12	14	_	_	WBK35DF-31H

Note: The dimension d_i shall be smaller enough than the minor diameter of the ball screw thread to provide sufficient shoulder surface for the spacer.

Refer to "Precautions for Designing Ball Screw (page B83)".

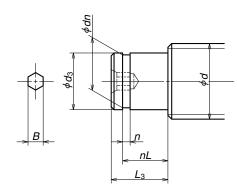


Fig. 4.7 Shaft end configuration of R Series (opposite to the drive side)

Table 4.12 Dimensions of R Series shaft ends (opposite to the drive side)

Unit: mm

Onit. nin												
Screw shaft	Bearing	journal	Reta	ining ring g	roove	Hexagon	al hole	Support unit				
diameter	Outside diameter	Length	Width	Groove diameter	Groove position	Width across flats	Depth	Numbers in parentheses are bearing reference numbers.				
d	d ₃	L ₃	n	dn	nL	В	h	bearing reference numbers.				
10	6	9	0.8	5.7	6.8	_	_	WBK08S-01(606)				
12	8	10	0.9	7.6	7.9	_		WBK10S-01(608)				
14	10	12	1.15	9.6	9.15	4	6	WBK12S-01(6000)				
15	10	12	1.15	9.6	9.15	4	6	WBK12S-01(6000)				
16	10	12	1.15	9.6	9.15	4	6	WBK12S-01(6000)				
18	10	12	1.15	9.6	9.15	4	6	WBK12S-01(6000)				
20	15	13	1.15	14.3	10.15	5	7	WBK15S-01(6002)				
25	17	16	1.15	16.2	13.15	6	8	WBK17S-01(6203)				
23	20	19	1.35	19	15.35	6	8	WBK20S-01(6204)				
28	20	19	1.35	19	15.35	6	8	WBK20S-01(6204)				
32	25	20	1.35	23.9	16.35	8	10	WBK25S-01W(6205)				
36	25	20	1.35	23.9	16.35	8	10	WBK25S-01W(6205)				
40	30	22	1.75	28.6	17.75	10	12	(6206)				
45	35	23	1.75	33	18.75	12	14	(6207)				
50	35	23	1.75	33	18.75	12	14	(6207)				

B29 B30

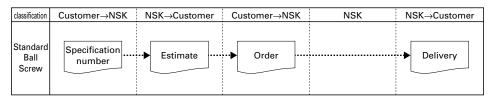
B-1-5 When Placing Orders

To avoid confusion, please use "reference number" or "specification number" when inquiring about desired ball screw specifications.

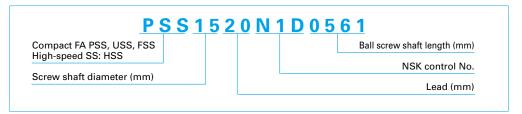
♦ Reference number:

Alpha-numeric codes are assigned to each ball screw. When placing order, please use this reference number.

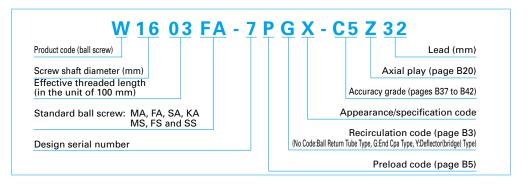
♦ Specification number:

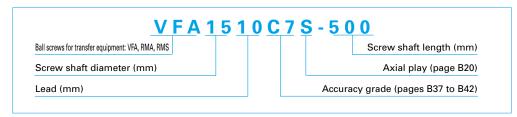

Specification factors are identified by alpha-numeric codes. Codes are for easy explanation of your requirements. (If you do not use these numbers, please itemize your requirements.)

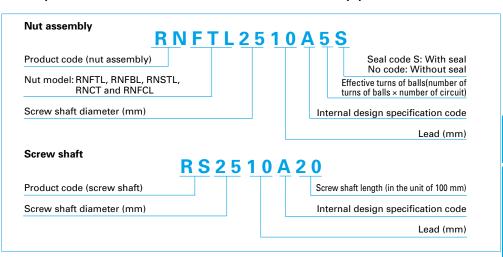
B-1-5.1 When Ordering Standard Ball Screws


Find the reference number from the dimension table. Enter the reference number in the "Order Form by Fax" (page B34). Send the fax to your local NSK agency (branch office, sales office, or

your local representative.).

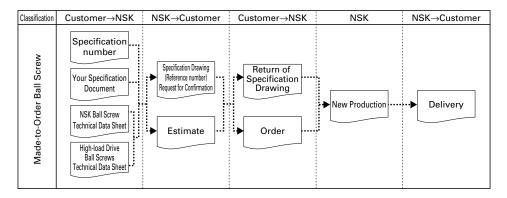

The following is the flow chart for ordering standard ball screws.


(1) Example of reference number for Standard ball screws Compact FA Series and high-speed SS Series

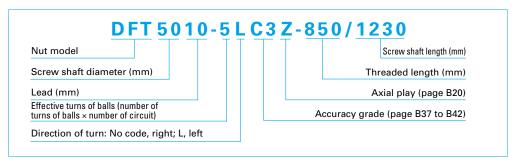

(2) Example of reference number of Standard ball screws

(3) Example of reference number of ball screws for transfer equipment with finished shaft end and blank shaft end

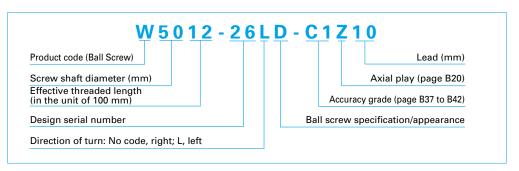
(4) Example of reference number of R series ball screws for transfer equipment


B31 B32

B-1-5.2 When Ordering Made-to-Order Ball Screws


If you would like to discuss technical points regarding specifications, use the NSK ball screw technical data sheet as an aid (page B36). For high-load drive ball screws, use the technical

sheet on page B531 for NSK high-load drive


The following is the flow chart for ordering made-to-order ball screws.

(1) Example of specification number of made-to-order ball screw

(2) Example of reference number of made-to-order ball screw

Fax Order Form

(Make copies for future orders)

I)	Standard	ball screw	

Drive side

Company name :		Date: Day Month Yea		
Address :		Telephone :		
Name of person in charge :	Section :			

Product name	Specification number	Quantity	Desired delivery date
Precision ball screw			
R Series ball screw Nut			
R Series ball screw Screw shaft			
Support unit			
_ock nut			
Grease unit			

Describe the shaft end configuration if processing is required (blank shaft end ball screw). In this case, specify which ball screw in the above list the shaft end shall be processed.

Refer to pages B27 to B30 for shaft end configuration. These pages also show the reference number for support units.

Opposite of drive side		

<u> </u>
_
ä.

NSK Ball Screw Technical Data Sheet (example)

(2) Made-to-order ball screw

Company name	Date: Day Month Year
Address	Telephone
Person in charge	Section
Machine which uses the ball screw Machining center Model MC-	Application Table left/right movement (X axis)
Drawing/rough sketch attached? Yes No	

Use conditions

	Axial load	Pototio	nal speed	Operating	houro				
			· .						
Maximum load	9 000 N	20	min ⁻¹	15	%		Shaft rotation - Moving nut Normal operation		
							Shaft rotation - Moving shaft Back drive operation		
Load in normal use	4 000 N	360	min ⁻¹	60	%	Operating conditions	Nut rotation - Moving nut		
							Nut rotation - Moving shaft Oscillation		
Minimum load	2 000 N	1 000	min ⁻¹	2 5	%				
						Degree of vibration shock	Normal		
Maximum rotational speed	1 (000	min ⁻¹			Required life	20 000h		
Lubricant		and name: I aker:	VSK GR	S AS2)	Motor in use	Company A, Model 1		
Seal		Yes		No		Control system	Company B, Model 2 (resolution: 1 µm)		
Support bearing	Drive side 35	TA C 6 2 D F	7			Opposite to drive	side 35TAC62DF		
Guide way	Rolling Slice	ling (RA4	451500G	M 2 - P 4 Z .	3 - Ⅱ)				
Environment	Temperature (Normal t	emperature in de	egrees Celsius)	Dust	Humi	dity Gas L	iquid (where?) Clean room In vacuum		
Schedule for prototype	Day Month			Year (approx.)		Quantity used	Piece		
Date, going in production/Quantity	/Month /Year			/L	ot	per machine			

Specification factors of the ball screw

Screw shaft diameter	50 mm	Direction of turn	right	Accuracy grade	C2	Screw shaft length	880 mm	Preload	3000 N
Lead	10 mm	Effective turns of balls		Axial play	0 mm	Overall shaft length	1 335 mm	Required torque	
Nut model	ZFT5010-10		Flange type	Circular I	Nut orientation	Same as show	n in the dimens	sion table	Opposite

upplemental explanation/requests	

NSK Ball Screw Technical Data Sheet (example)

(2) Made-to-order ball screw

Company name	Date: Day Month Year
Address_	Telephone
Person in charge_	Section
Machine which uses the ball screw	Application
Drawing/rough sketch attached? Yes No	

Use conditions

	Axial load	Rotational speed	Operating hours					
Maximum load	N	min ⁻¹	%		Shaft rotation - Moving nut	Normal operation		
					Shaft rotation - Moving shaft	Back drive operation		
Load in normal use	N	min ⁻¹	%	Operating conditions	Nut rotation - Moving nut			
					Nut rotation - Moving shaft	Oscillation		
Minimum load	N	min ⁻¹	%	-				
				Degree of vibration shock				
Maximum rotational speed		min ⁻¹		Required life				
Lubricant	Grease/oil (Bran	d name: er:)	Motor in use				
Seal	Ye	S	No	Control system	(resolution:)		
Support bearing	Drive side			Opposite to drive side				
Guide way	Rolling Slidin	ıg ()					
Environment	Temperature (Normal tem	perature in degrees Celsius)	Dust Hum	idity Gas L	iquid (where?) Clean ro	om In vacuum		
Schedule for prototype	Day	Month	Year (approx.)	Quantity used	Piece	9		
Date, going in production/Quantity	/Month	/Year	/Lot	per machine				

Specification factors of the ball screw

Screw shaft diameter	Direction of turn		Accuracy grade		Screw shaft length		Preload	
Lead	Effective turns of balls		Axial play		Overall shaft length		Required torque	
Nut model		Flange type		Nut orientation	Same as shown in	n the dimension ta	ible	Opposite

Supplemental explanation/requests		

B35 B36

B-2 Technical Description of Ball Screws

B-2-1 Accuracy

B-2-1.1 Lead Accuracy

The lead accuracy of NSK precision ball screws (C0 to C5 grades) conforms to the four characteristics specified in JIS Standards. These characteristics are expressed by codes ep, v_{uv} v_{200v} and v_{2z} .

Fig. 1.1 explains the definition of each characteristic, and shows allowable value of each. Leads are classified into two categories: C system for

positioning; Ct system for transportation. **Tables 1.2**, **1.3** and **1.4** show tolerance of each characteristic.

JIS B1192 sets C type and Cp type standards for positioning ball screws. NSK uses the specification of C type only. JIS B1192 specifies Ct1, 3, and 5 grade. NSK standards are integrated by C type only. Refer to **Table 1.2** for C type standard tolerance.

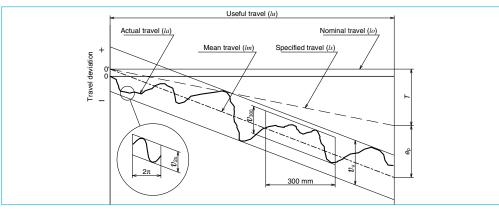


Fig. 1.1 Definition of lead accuracy

Table 1.1 Terminology in lead accuracy

Term	Code	Description	Tolerance
Specified travel	ls	The travel compensates the nominal travel for an elongation caused	
Specified travel		by an increase of temperature or load.	
Travel compensation	T	Value obtained by subtracting the specified travel from the nominal travel based on the useful travel. The value is to compensate for the errors caused by thermal deformation or deformation by load. This value is determined by tests and experience (see page B39).	
Actual travel	la	Actually measured travel	
Actual mean travel	lm	A straight line that demonstrates the direction of actual travel. This straight line is obtained from the curve that shows actual travel volume by least-squares method or by resembling approximation.	
Tolerance on specified travel	ер	Obtained by subtracting the specified travel from the actual mean travel.	Table 1.2
Travel variation	υ _и υ ₃₀₀ υ _{2π}	Maximum range of the actual travel which is between the two straight lines drawn parallel to the actual mean travel. There are three categories as shown below. • Maximum range relative to the effective length of thread. • Maximum range relative to the length of 300 mm anywhere within the effective length of thread. • Maximum range which corresponds to any single rotation (2π rad.) within the effective length of thread.	Table 1.2 Table 1.3, 1.4 Table 1.3

Table 1.2 Tolerance on specified travel ($\pm ep$) and travel variation (v_u) of the positioning (C type)

	Accuracy	grade	С	0	C1		C	2	С	3	C	5	
	over	or less	±ep	$\mathbf{v}_{\scriptscriptstyle u}$	± <i>ep</i>	\mathbf{v}_{u}	±ep	$\mathbf{v}_{\scriptscriptstyle u}$	± <i>ep</i>	\mathbf{v}_{u}	±ep	$\upsilon_{\scriptscriptstyle u}$	_
	-	100	3	3	3.5	5	5	7	8	8	18	18	
	100	200	3.5	3	4.5	5	7	7	10	8	20	18	
	200	315	4	3.5	6	5	8	7	12	8	23	18	
	315	400	5	3.5	7	5	9	7	13	10	25	20	
	400	500	6	4	8	5	10	7	15	10	27	20	
_	500	630	6	4	9	6	11	8	16	12	30	23	
Ē	630	800	7	5	10	7	13	9	18	13	35	25	
gt,	800	1 000	8	6	11	8	15	10	21	15	40	27	
Effective thread length, mm	1 000	1 250	9	6	13	9	18	11	24	16	46	30	
ad	1 250	1 600	11	7	15	10	21	13	29	18	54	35	
thre	1 600	2 000			18	11	25	15	35	21	65	40	
Ę.	2 000	2 500			22	13	30	18	41	24	77	46	Ī
fect	2 500	3 150			26	15	36	21	50	29	93	54	L
Ш	3 150	4 000			30	18	44	25	60	35	115	65	
	4 000	5 000					52	30	72	41	140	77	Ę
	5 000	6 300					65	36	90	50	170	93	
	6 300	8 000							110	60	210	115	Dall octew
	8 000	10 000									260	140	٤
	10 000	12 500									320	170	

Table 1.3 Tolerance of travel variation relative to 300 mm (υ_{300}) and one revolution (υ_{2n}) of the positioning (\emph{C} type) ball screws Unit: um

					- · · · · · · · · · · · · · · · · · · ·
Accuracy grade	C0	C1	C2	C3	C5
$v_{\scriptscriptstyle 300}$	3.5	5	7	8	18
$\upsilon_{\scriptscriptstyle 2\pi}$	2.5	4	5	6	8

Note: _____ to JIS B1192 standards. Values in other areas are NSK standards.

Table 1.4 Travel variation (v_{30}) relative to 300 mm of the transportation (Ct type) ball screws

		Unit: µm
Accuracy grade	Ct7	Ct10
$\upsilon_{\scriptscriptstyle 300}$	52	210

Note: Tolerance on specified travel (ep) of the transportation (Ct type) ball screws is calculated as follows.

$$ep = \frac{2 \cdot lu}{300} \cdot v_3$$

lu: Effective length of the screw thread

B37 B38

Example of specifying lead accuracy

<Use Conditions>

Nut model: DFT4010-5 Stroke: 1 000 mm

Positioning accuracy: ±0.035 mm/1 000 mm

<Calculation>

Obtain required lead accuracy of a ball screw under these conditions.

(1) Calculate the length of the thread

Stroke + nut length + margin =1 000 + 193 + 100
=1 293 (mm)
$$\cdots \rightarrow$$
1 300 mm

(2) Calculate lead accuracy

From **Table 1.2**, obtain the tolerance on specified travel relative to the length of thread (1 300 mm).

C5 ··· ±0.054/1 250 - 1 600 C3 ··· ±0.029/1 250 - 1 600

(3) Determine lead accuracy

Positioning accuracy is: ±ep <±0.035/1 000 mm

Accuracy grade: C3 grade $\pm ep$ = 0.029/length of thread (1 300 mm) $v_{\rm u}$ = 0.018

B-2-1.2 Thermal Expansion and Target Value of Specified Travel

(1) Thermal expansion

Thermal expansion of screw shaft induces the degradation of positioning accuracy of the ball screws. Thermal expansion of a screw shaft is calculated as follows.

 $\Delta L_{\theta} = \rho \cdot \theta \cdot L \text{ (mm) } \cdots 1$

In this formula:

 $\Delta L_{\rm B}$: Thermal expansion (mm)

 ρ : Thermal expansion coefficient (12.0×10⁻⁶ °C⁻¹)

 θ : Average temperature rise of screw shaft (Celsius)

L: Length of screw shaft (mm)

The above formula indicates that when the temperature rises one degree Celsius, the screw shaft stretches 12 µm per meter. Ball screw generates more heat when it is used at high speed. This causes elongation of the screw shaft. Although the ball screw lead is ground into high precision, an elongated screw shaft due to high temperature rise may not satisfy required highly accurate positioning.

(2) Countermeasures against temperature rise

Countermeasures against temperature rise of the ball screw are:

Hollow shaft cooling or nut cooling ball screws are recommended for operation under high-speed and high-precision conditions.

- (a) Suppress heat generation.
- Do not apply excessive preload to the ball screw and support bearing.
- Select appropriate lubricant and use it properly.
- Use higher helix ball screw lead to lower rotational speed.
- (b) Use forced cooling.
- Feed liquid coolant into the hollow shaft cooling or nut cooling ball screws. - Refer to the information on hollow shaft ball screw for high accuracy machine tools in the section for application-oriented ball screws (pages B542 to B550).
- Cool screw shaft surface with lubricant oil or air.
- (c) Avoid effects of temperature rise on positioning.

- Warm up the machine by high speed until the temperature rise of ball screw shaft saturates, then maintain it properly.
- Set pre-tension. (Fig. 1.2)
- Set the negative (minus) target value of specified travel.
- Employ the closed loop control system.

(3) How to determine specified travel

In general, the specified travel of ball screw is the same as the nominal travel. However, the specified lead of ball screw is sometimes set to negative (minus) or positive (plus) to adjust expansion by temperature rise during operation, or the elongation/contraction of the screw shaft by external load. For such occasion, specify travel compensation (T) when ordering the ball screw.

As an example, **Table 1.5** shows the travel compensation (*T*) for typical NC machine tools.

Table 1.5 Travel compensation (*T*) of specified travel for typical NC machine tools

(4) How to determine pre-tension force

In order to absorb thermal expansion, pretension can be provided to the screw shaft at the time of installation. In this case, the pretension is usually equivalent to the expansion brought about by the temperature rise of 2 to 3°C.

Fig. 1.2 shows the bearing support structure in such occasion.

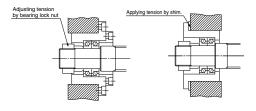


Fig. 1.2 Bearing structure to provide pre-tension

B-2-1.3 Mounting Accuracy and Tolerance of Ball Screws

The accuracy related to mount the ball screws is specified in the following seven characteristics (Fig. 1.3).

The tolerance is indicated in the specification drawing.

Detailed tolerances are specified by JIS B1192. For reference, **Table 1.6** shows standard values of "(7) Total run-out of the screw shaft axis (straightness of the screw shaft)". NSK sets stricter tolerance standards than JIS standards. For accuracy of the ball screw installation, refer to "Installation of Ball Screw (1) Centering of the units" (page B73).

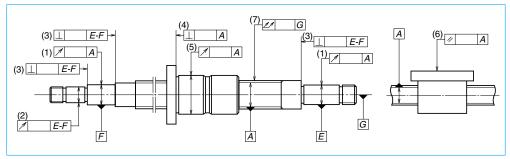


Fig. 1.3 Mounting accuracy of ball screw

- (1) Radial run-out of the support bearing seat relative to the axis of the ball thread of screw shaft.
- (2) Radial run-out of the other shaft ends section relative to the axis of the support bearing seat.
- (3) Perpendicularity of the shoulder of support bearing seat relative to the axis of support bearing seat.
- (4) Perpendicularity of the nut flange surface, or of the nut end datum surface, relative to the axis of screw shaft.
- (5) Eccentricity of the nut outside surface (cylindrical shape) to the axis of screw shaft.
- (6) Parallelism of the nut mounting surface to the screw shaft axis. (in case of flat mounting surface)
- (7) Total run-out of the screw shaft axis.

Table 1.6 Total run-out of the screw shaft axis

Unit: µm

															т. Б
	Accuracy grade				С	0			C1						
Nomina	l diameter (mm)	over	-	8	12	20	32	50	-	8	12	20	32	50	80
	over	or less	8	12	20	32	50	80	8	12	20	32	50	80	125
	-	125	15	15	15				20	20	15				
	125	200	25	20	20	15			30	25	20				
(mm)	200	315	35	25	20	20			40	30	25	20			
	315	400		35	25	20	15		45	40	30	25	20		
shaft	400	500		45	35	25	20			50	40	30	25		
	500	630		50	40	30	20	15		60	45	35	25	20	
screw	630	800			50	35	25	20			60	40	30	25	
of	800	1 000			65	45	30	25			75	55	40	30	25
gth	1 000	1 250			85	55	40	30			95	65	45	35	30
<u>le</u> n	1 250	1 600			110	70	50	40			130	85	60	45	35
Overall length	1 600	2 000				95	65	45				120	80	55	40
õ	2 000	2 500											100	70	50
	2 500	3 150												130	90
	3 150	4 000													120

Unit: um

Accuracy grade СЗ C5 Nominal diameter (mm) over over or less Overall length of screw shaft (mm) 1 000 1 000 1 250 1 250 1 600 1 600 2 000 2 000 2 500 2 500 3 150 3 150 4 000 4 000 5 000 200 | 130 5 000 6 300 6 300 8 000 8 000 10 000

B41 B42

B-2-1.4 Automatic Lead Accuracy Measuring System of NSK

In response to the demand for high precision in production technology, NSK is the first in the world that developed and uses "Lead Accuracy Measuring System (LAMS)." Lead accuracy is measured by the system that employs a laser interferometer measuring instrument and a personal computer.

Fig. 1.4 shows the lead accuracy measuring system. The inspection date of the ball screw is shown in Fig. 1.5. The laser interferometer measures either ball nut travel accuracy or lead accuracy of the ball thread. The data which are input into a computer are processed into four characteristics readings regarding lead accuracy. (See page B37.)

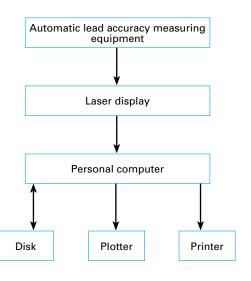


Fig. 1.4 Lead accuracy measuring system

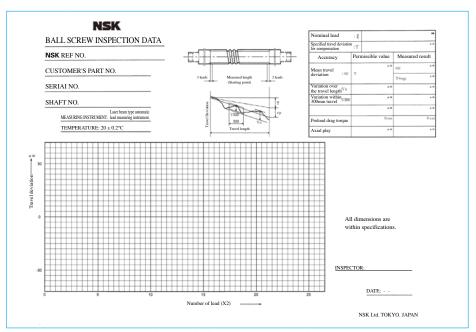


Fig. 1.5 Ball screw Inspection data

B-2-2 Static Load Limitation

Ball screws, based on their function, will generally receive axial load only. Ball screw shafts in general are long, so it is necessary to consider 3 items below:

- · Buckling load of the screw shaft
- Yielding of the screw shaft by tensional or compressive stress
- Permanent deformation at the ball contact points

B-2-2.1 Buckling Load

It is necessary to calculate whether the ball screw shaft is safe against buckling.

Buckling load, i.e. permissible compressive load "P" to axial direction, is calculated as follows.

$$P = \alpha \times \frac{N \cdot \pi^{2} \cdot E \cdot I}{L^{2}} = m \frac{d_{r}^{4}}{L^{2}} \times 10^{4} \text{ (N) } \cdots 2)$$

In this formula:

 α : Safety factor (α = 0.5)

E: Elastic modulus ($E = 2.06 \times 10^5 \text{ MPa}$)

I: Moment of inertia

$I = \frac{\pi}{64} d_r^4$	(mm ⁴) ·····3
64	

- d, : Screw shaft root diameter (mm) (See the dimension table.)
- L: Unsupported length (mm) (See Figs. 4.1 and 4.2 'Supporting conditions of screw shaft and nut' on page B51.)
- m, N: Factors determined by the supporting condition of the ball screw shaft

Table 2.1 Factors of bucking load

Supporting condition	m	N
Fixed - Fixed support	19.9	4
Fixed - Simple support	10.0	2
Fixed support - Free	1.2	0.25
Simple - Simple support	5.0	1

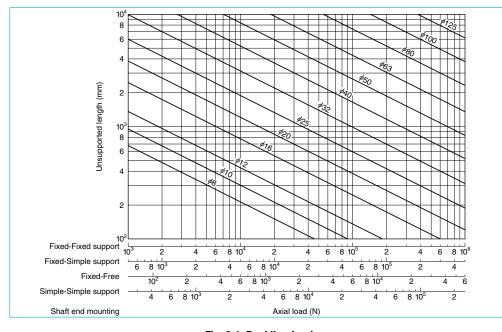


Fig. 2.1 Buckling load

<<Calculation example of buckling load>>

Calculate buckling load under the conditions in Fig. 2.2.

<Use conditions>

Nut model: DFT4010-5

Supporting condition is Fixed - Fixed support (From the supporting condition (ii)

in Fig. 4.1 'Supporting conditions of screw shaft and nut' on page B51.)

Unsupported length L = 2000 mm

Screw shaft root diameter $d_c = 34.4 \text{ mm}$ (From the dimension table)

<Calculation>

Support condition is Fixed - Fixed support, from Table 2.1 on page B44

N = 4

m = 19.9

By formula 2) on page B44

$$P = m \frac{d_1^4}{L^2} \cdot 10^4 = 19.9 \times \frac{34.4^4}{2000^2} \times 10^4 = 69 667 \text{ (N)}$$

Therefore,

Permissible buckling load P = 69600 N

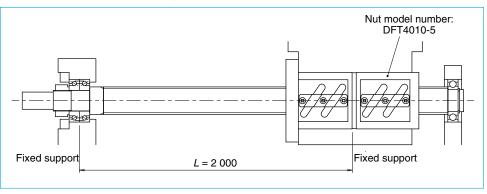


Fig. 2.2 Calculation example of buckling load

B-2-2.2 Yield by Tensional/Compressive Stress

It is necessary to consider permissible load in regards to the yield stress.

Permissible load "P" by tensional or compressive stress to screw shaft is

$$P = \sigma \cdot A = 1.15 d_r^2 \times 10^2 \text{ (N)}$$
 ... 4

In this formula:

σ: Allowable stress (= 147 MPa)

A: Cross section area of a screw shaft using root diameter (mm²)

$$A = \frac{\pi}{4} \cdot d_r^2 \text{ (mm}^2\text{)} \qquad \cdots 5)$$

d: Screw shaft root diameter (mm)

<<Calculation example of yield load>>

Obtain load in respect to the allowable stress under the conditions in **Fig. 2.2**.

<Use conditions>

Nut model: DFT4010-5

Screw shaft root diameter $d_r = 34.4$ (mm)

(From the dimension table)

<Calculation>

By formula 4)

$$P = 1.15 d_r^2 \times 10^2 = 1.15 \times 34.4^2 \times 10^2$$

= 136 086 (N)

Therefore,

Permissible load $P = 136\,000\,\text{N}$

B-2-2.3 Permanent Deformation at the Ball Contact Point

Exposed to an excessively heavy load in axial direction, the balls are squashed, and the ball rolling surface is dented. The deformations on these points do not perfectly restore to original shape after the load is removed. They are permanently disfigured. It is necessary to determine the limitation of this disfigurement to containing it within a certain range.

(1) Basic static load rating C_{0a}

Basic static load rating C_{oa} is a load to axial direction that results in the combined permanent deformation equal to 0.01% of the ball diameter at the contact points of ball and ball grooves of the screw shaft and nut.

(2) Calculation of permissible load by C_{0a}

 P_{\circ} (allowable axial direction load to limit the permanent deformation) is calculated using $C_{\circ a}$.

$$P_0 = \frac{C_{0a}}{f} (N) \qquad \cdots 6)$$

In this formula, f_s: Static permissible load factor

Table 2.2 Static permissible load factor

At time of normal operation	1 – 2
With vibration impact	1.5 – 3

<<Calculation example of the maximum allowable load>>

Obtain the maximum allowable load to the ball groove section under conditions in Fig. 2.2.

<Use conditions>

Nut model: DFT4010-5

Basic static load rating $C_{0a} = 137 000 \text{ (N)}$

(From the dimension table)

Static permissible load factor $f_s = 2$

(normal operation, no vibration impact)

<Calculation>

By formula 6), the maximum allowable load of the ball groove section

$$P_0 = \frac{C_{0a}}{f_s} = \frac{137\ 000}{2} = 68\ 500\ (N)$$

B-2-3 Permissible Rotational Speed

Permissible rotational speed is determined by the feeding speed and ball screw lead. When selecting a ball screw, it is important to know the permissible rotational speed.

It is necessary to calculate two items below, and whichever smaller is the permissible rotational speed.

The lower of the following two factors, d-n and critical speed, will determine the overall permissible rotational speed of the ball screw.

- Critical speed which is the resonance vibration of the shaft.
- d-n value which is involved in damaging the ball recirculation components.
- * Please consult NSK if the maximum rotational speed exceeds the criteria of maximum rotational speed on page B50, even both the critical speed of screw shaft rotation and the d-n value are in range of the allowable limit.

B-2-3.1 Critical Speed of the Screw Shaft

Calculate the critical speed which is the matching value of the ball screw rotational speed and the natural frequency of the screw shaft. The 80% of the critical speed is defined as the permissible rotational speed.

Calculate the critical speed of the screw shaft whether you use shaft rotation or nut rotation. Critical speed varies by the nut traveling position. Please consult NSK for detailed calculation.

If using a ball screw exceeding the critical speed, it is necessary to increase the natural frequency by using an intermediate support, etc. If using with nut rotation, it is possible to operate exceeding critical speed by installing a vibration energy absorbing system (optional, vibration control damper: patented by NSK) to the screw shaft. (Refer to "Nut rotatable drive ND Series" on page B551.)

Calculate the permissible rotational speed based on critical speed $n_{\rm c}$ as follows, taking in account "B-2-4 Supporting Conditions for Calculation of Buckling Load and Critical Speed" on page B51.

Fig. 3.1 shows the permissible rotational speeds against critical speed for each shaft diameter.

$$n_{c} = \alpha \times \frac{60\lambda^{2}}{2\pi L^{2}} \sqrt{\frac{E \cdot I \cdot g}{\gamma \cdot A}}$$

$$= f \frac{d_{r}}{L^{2}} \times 10^{7} \text{ (min}^{-1)}$$
... 7)

In this formula:

 α : Safety factor (α = 0.8)

E: Elastic modulus (E = 2.06 × 10⁵ MPa)

I: Moment of inertia of area of screw shaft

$$I = \frac{\pi}{64} d_r^4 (mm^4) \qquad \cdots 3$$

 d_r : Screw shaft root diameter (mm) (See the dimension table.)

g: Acceleration of gravity (= 9.8×10^3 mm/s²)

 γ : Specific weight ($\gamma = 7.65 \times 10^{-5} \text{ N/mm}^3$)

A: Cross section area of the screw shaft root diameter (mm²)

$$A = \frac{\pi}{4} \times d_r^2 \,(\text{mm}^2) \qquad \cdots 5$$

L: Unsupported length (mm) (See Figs. 4.1, and 4.2 "Supporting conditions of screw shaft and ball nut" on page B51)

 f_{i} λ : Factors determined by the supporting condition

Table 3.1 Coefficients of critical speed

Supporting condition	f	λ
Fixed - Simple support	15.1	3.927
Fixed - Fixed support	21.9	4.730
Fixed support - Free	3.4	1.875
Simple - Simple support	9.7	π

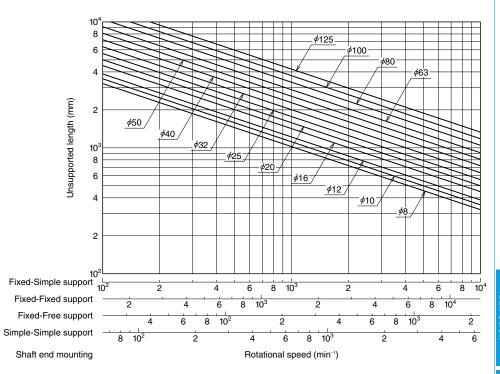


Fig. 3.1 Permissible rotational speeds vs. critical speeds

B47 B48

<<Calculation example of permissible rotational speed to the critical speed>> Calculate the permissible rotational speed to the critical speed under conditions in Fig. 3.2.

<Use conditions>

Nut model: DFT4010-5

Supporting condition is Fixed - Simple support (From the supporting condition (ii) in Fig. 4.1 "Supporting conditions of screw shaft and ball

nut" on page B51.)

Unsupported length L = 2000 mm

Screw shaft root diameter $d_r = 34.4 \text{ mm}$ (from the dimension table)

<Calculation>

Supporting condition is Fixed-Simple support, from Table 3.1 on page B47

$$\lambda = 3.927$$

f = 15.1

By formula 7) on page B47, permissible rotational speed to critical speed is

$$n_c = f \frac{d_c}{L^2} \times 10^7 = 15.1 \times \frac{34.4}{2000^2} \times 10^7 = 1298.6 \text{ (min}^{-1})$$

 $n_c = 1290 \text{ min}^{-1} \text{ or under}$

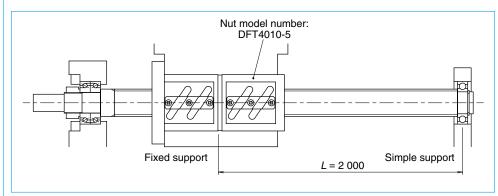


Fig. 3.2 Calculation example of permissible rotational speed to the critical speed

B-2-3.2 d·n Value

An increase of ball orbital speed increases the collision impact of balls to ball recirculation parts, and thus resulting in damage to them. For this reason, the permissible rotational speed is also limited by the d-n value (d, shaft diameter in millimeters; n, rotational speed per minutes).

Table 3.2 shows the allowable d·n value and the maximum rotational speed of ball screws.

Notes: 1. Special measure must be taken for high-speed specification products.

Please consult NSK.

 Please consult NSK if the maximum rotational speed or the d·n value exceed the values on the table below, even both the critical speed of screw shaft and the d·n value are in ranges of the allowable limit.

Table 3.2 Criteria of allowable d-n value and maximum rotational speed

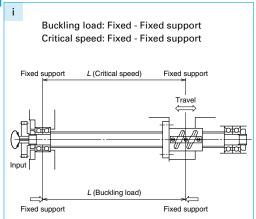
Ball screw recirculation system, Series/Type		Allowable d∙n	value	Criterion of permissible
		Standard	High-speed	rotational speed [min ⁻¹]
Standard ball screw	Ball screw for transfer equipment R series	50 000 or less	-	3 000
	End-deflector type	180 000 or less	-	5 000
Standard nut ball	Return tube type	70 000 or less	100 000 or less	3 000
screws	Deflector(bridge) type	84 000 or less	100 000 or less	3 000
	End cap type	80 000 or less	100 000 or less	3 000
	HMD type for high-speed machine tools	160 000 or less	-	4 000
	HMS type for high-speed machine tools	160 000 or less	-	5 000
	HMC type for high-speed machine tools	100 000 or less, 135 000 or less ¹	-	3 750
	BSL type for miniature lathes	(180 000 or less)	-	4 000
Application-	HTF-SRC type for high-load drives	140 000 or less, 160 000 or less*1	-	3 225
oriented ball screws	HTF-SRD type for high-load drives	120 000 or less	-	2 400
	HTF type for high-load drives	50 000 or less, 70 000 or less*1	100 000 or less	3 125
	VSS type for contaminated environment	150 000 or less	-	3 000
	ND series nut-rotatable ball screws	70 000 or less	100 000 or less	3 000
	∑ series for robots	70 000 or less	-	3 000
	R series for transfer equipment	50 000 or less	_	3 000

*1) Please refer to the explanation of each ball screw for which two allowable d-n values are listed

· HMC type for high-speed machine tools: page B503

· HTF-SRC type for high-load drives: page B513

· HTF type for high-load drives: page B521


B-2-4 Supporting Conditions for Calculation of Buckling Load and Critical Speed

Figs. 4.1 and 4.2 are typical conditions in supporting ball screws. Use them as reference to calculate the buckling load and the critical speed.

Please consult NSK if it is necessary to scrutinize calculation due to use conditions, or if boundary conditions are not clear due to special installation.

[How to read the tables]

Example ii: A buckling load generates between the nut and the left bearings, indicating that the critical speed appears between the nut and the right bearing. Therefore, set *L* at the maximum stroke for each side. Calculate by applying support bearing conditions.

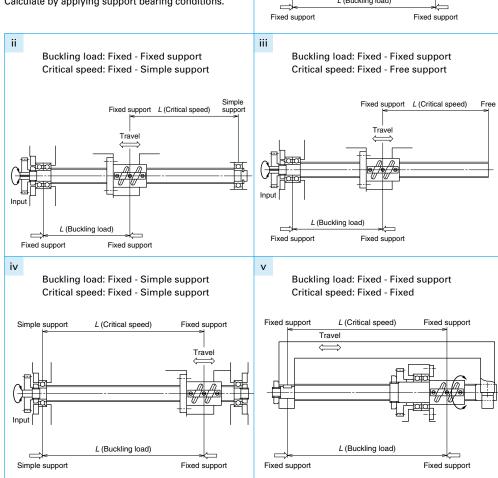
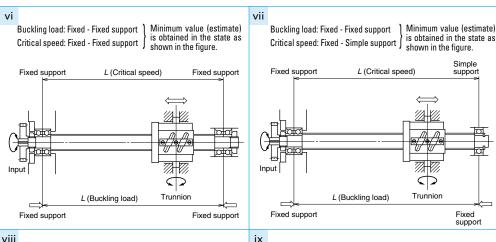
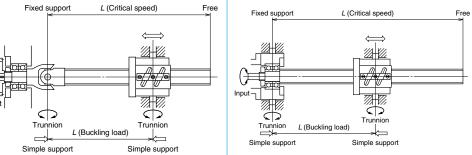
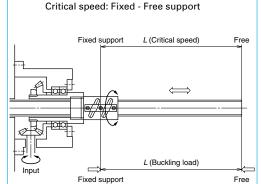



Fig. 4.1 Supporting conditions for screw shaft and ball nut

Buckling load: Simple support - Simple support


Critical speed: Fixed - Free support→ Minimum value

(estimate) is obtained in the state as shown in the figure.


Example support - Simple support - Simple support

Critical speed: Fixed - Free support→ Minimum value

(estimate) is obtained in the state as shown in the figure.

хi

Buckling load: Fixed - Free support

х

Buckling load: Fixed - Fixed support Critical speed: Fixed - Free support

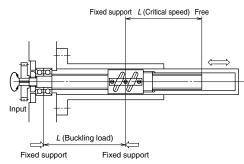


Fig. 4.2 Supporting conditions of screw shaft and ball nut

B-2-5 Life (Dynamic Load Limitation)

B-2-5.1 Life of Ball Screw

Although used in appropriate conditions and is ideally designed, the ball screw deteriorates after a certain operation period, and eventually becomes unusable. The period in this situation is the life of the ball screw. There are two life categories, "fatigue life" caused by flaking, and "life of accuracy" caused by deterioration in precision because of wear.

B-2-5.2 Fatigue Life

Fatigue life of a ball screw can be estimated by basic dynamic load rating (C_a) as is for the rolling bearings.

(1) Basic dynamic load rating C_a

Basic dynamic load rating is the axial load that allows a 90% of the group of the same ball screws to rotate 1 million times (10⁶ rev) under the same condition without causing flaking by rolling contact fatigue.

(2) Fatigue life calculation

Fatigue life is defined as a total rotation number in general. It is sometimes indicated by total rolling hours or total running distance. Fatigue life is obtained by the following formula.

$$L = \left(\frac{C_{\rm a}}{F \cdot f}\right)^3 \cdot 10^6 \qquad \cdots 8)$$

$$L_{t} = \frac{L}{60n} \qquad \cdots 9)$$

$$L_{\rm s} = \frac{L \cdot l}{10^6} \qquad \cdots 10)$$

In this formula:

L: Rating fatigue life (rev)

L.: Life in hours (h)

 $L_{\rm s}$: Life by running distance (km)

C_a: Basic dynamic load rating (N)

F_a: Axial load (N)

n: Rotational speed (min⁻¹)

l: Lead (mm)

f_w: Load factor (Coefficient by operating condition)

Load factor f_w for operating conditions is shown in **Table 5.1**.

Table 5.1 Load coefficient f_w

Smooth operation without impact	1.0 – 1.2
Normal operation	1.2 – 1.5
Operation associated with impact or vibration	1.5 – 3.0

Setting too long fatigue life requires larger ball screw, and is not economical. Below are the general target values of operating life for machines. (reference)

Table 5.2 General target values of fatigue life

Machine tools	20 000 hours
Industrial machines	10 000 hours
Automatic control system	15 000 hours
Measuring equipment	15 000 hours

(3) Mean load

If the axial load often varies, calculate life by obtaining the mean load, which gives the equivalent fatigue life under this varying load conditions.

(a) When the load and the rotational speed shift stepwise Obtain the mean load F_m by the formula below. Obtain mean rotational speed N_m by the formula below as **Table 5.3** and **Fig. 5.1**.

$$F_{m} = \left(\frac{F_{1}^{3} \cdot n_{1} \cdot t_{1} + F_{2}^{3} \cdot n_{2} \cdot t_{2} + \cdots F_{n}^{3} \cdot n_{n} \cdot t_{n}}{n_{1} \cdot t_{1} + n_{2} \cdot t_{2} + \cdots + n_{n} \cdot t_{n}}\right)^{\frac{1}{3}} \quad \cdots 11$$

$$N_{\rm m} = \frac{n_1 \cdot t_1 + n_2 \cdot t_2 + \dots + n_n \cdot t_n}{t_1 + t_2 + \dots + t} \cdots 12$$

Table 5.3 Stepwise operation condition

Axial load	Rotational speed	Hours of use, or
(N)	(min ⁻¹)	ratio of hours of use
F ₁	<i>n</i> ₁	<i>t</i> ₁
F_2	n ₂	t_2
:	:	:
F _n	n _n	t _n

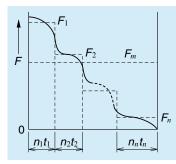


Fig. 5.1 Stepwise load variation

(b) When the rotational speed is constant, and the load changes linearly, obtain approximate value of the mean load F_m by the formula below.

$$F_{\rm m} = \frac{1}{3} \left(F_{\rm min} + 2 F_{\rm max} \right) \qquad \cdots 13$$

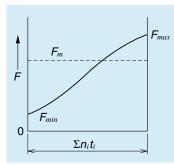


Fig. 5.2 Linear load change

(c) When the rotational speed is constant, and the load changes in a sinusoidal pattern, obtain approximate value of the mean load F_m by the formula below.

When the sine curve is Fig. (a) $F_{\rm m} \doteq 0.65 \ F_{\rm max} \qquad \cdots \ {\rm 14)}$ When the sine curve is Fig. (b)

 $F_{\rm m} = 0.75 F_{\rm max} \qquad \cdots 15$

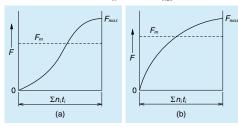


Fig. 5.3 Load changes in sinusoidal pattern

(4) Affect of mounting misalignment

If moment load or radial load is applied to the ball screw, it adversely affects ball screw function, and shortens life. Watch for eccentric load that induces moment or radial load.

Fig. 5.4 shows a calculation example of fatigue life when moment load is applied to the ball screw. In this figure, the value of the rigidity of mounting ball screw sections (screw shaft, support bearing, guide, etc.) is set at infinity. In actual use, deformation is absorbing the moment load in various areas, and the moment load that generates between the screw shaft and nut is abated.

In general, the following values are recommended as control values for precision grade.

Misalignment in inclination $\cdot \cdot 1/2$ 000 or less Eccentricity $\cdot \cdot \cdot \cdot \cdot 20$ µm or less

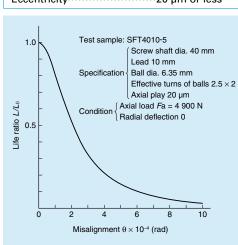


Fig. 5.4 Affects of misalignment

(5) Effects of heavy load and short stroke

If the ball screw is used under heavy load and short strokes, such as for the drive of plastic injection molding machine and of press machines, the fatigue life may become significantly shorter than the rated fatigue life which is calculated in B-2-5.2.

This decreased life occurs because the heavy load generates large stress (surface pressure) in the contact points of balls and ball grooves of the screw shaft and the nut, adversely affecting the life.

The axial load F_{amax}^{*1} during operation and the size of strokes, which affect fatique life, can be obtained by the following formula.

In such case, the life calculation should take into account the size of the surface pressure as well as the size of the stroke. Please consult with NSK.

$$F_{\text{amax}} \ge 0.10 C_{0a}$$
 ... 16)
 $S \le 4$

In this formula:

 F_{amax} : Maximum load to axial direction during drive (N)

 C_{na} : Basic static load rating (N)

S: Stroke (rev)

$$S = \frac{L_s}{I}$$

L_c: Stroke distance (mm)

l: Lead (mm)

*1) Axial load: The load is applied to the axial direction when screw shaft and the nut of ball screw are rotating relatively each other. The rotational speed is irrelevant.

B-2-5.3 Ball Screw and Hardness

Table 5.4 indicates the hardness of NSK standard ball screw.

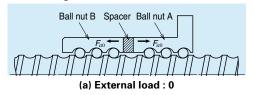
Table 5.4 Ball screw materials and their hardness

Component	Hardness (HRC)	
Causius ala aft	Carburizing	58 or over
Screw shaft	Induction hardening	58 or over
Nut	Carburizing	58 or over

Note: NSK manufactures special material ball screws for special environments (stainless steel: SUS440C, SUS630). NSK also furnishes protective surface treatment (refer to page D5). Please consult NSK for such request.

B-2-5.4 Wear Life

Wear of materials, as is the case for other mechanical components, is significantly affected by use conditions, lubrication conditions and other factors. It is difficult to estimate its volume, and measuring requires various tests and field data.


NSK has the data of wear accumulated through abundant experience. Please contact NSK for inquiry pertaining to the wear.

B-2-6 Preload and Rigidity

B-2-6.1 Elastic Deformation of Preloaded Ball Screw

(1) Position preload (D, Z, and P preload)

The concept of double nut preload ball screw is shown in Fig. 6.1.

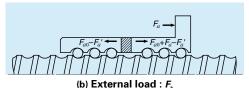


Fig. 6.1 Position preload (double-nut)

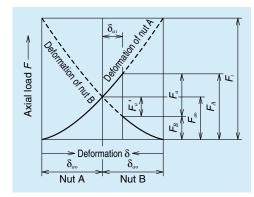


Fig. 6.2 Deformation of A and B nut (position preload)

Elastic deformation of Nut A and B is already given at time of assembly by the amount of δa o by preload F_{a0} . When the external load F_a is added to Nut A, the elastic deformation δ_a and $\delta_{\scriptscriptstyle b}$ of each Nut A and B change as shown in Fig. 6.2,

$$\delta_a = \delta_{a0} + \delta_{a1}$$
 $\delta_b = \delta_{a0} - \delta_{a1}$

At this time, the load to each Nut A and B are:

$$F_A = F_{ao} + F_a - F_a'$$

$$F_{\rm B} = F_{\rm co} - F_{\rm c}$$

It shows that the load applied to Nut A is

affected by Nut B and reduced by the amount of F_a . Thereby, the elastic deformation of Nut A becomes smaller. This effect continues until the elastic deformation by the external load becomes δ_{oo} , and the preload by Nut B disappears.

Assuming that the load when the preload is absorbed is F_{ν} the relationship between the axial load and the elastic deformation is as follows (refer to Fig. 6.2).

$$\delta_{ao} = K \cdot F_{ao}^{2/3}$$
 $2\delta_{ao} = K \cdot F_{l}^{2/3}$

(K: Invariable number)

$$\left[\frac{F_l}{F_{ao}}\right]^{2/3} = \frac{2\delta_{ao}}{\delta_{ao}} = 2$$

$$F_l = 2^{3/2} \times F_{ao} = 3F_{ao}$$

For this reason, the preload should be about 1/3 of the maximum axial load. However, please note that if the preload of about 1/3 of the maximum axial load exceeds 10% of C_a , which is the criterion of the maximum preload, the ball screw may adversely increases heat generation and / or may shortens its lifetime.

Fig. 6.3 shows two types of elastic deformation curves: one is by the ball screw with preload, the other without preload. When an axial load which is about three times as large as the preload is applied, the deformation of the preloaded ball screw is 1/2 of the deformation of the ball screw without preload.

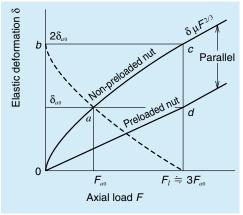


Fig. 6.3 Deformation of preloaded ball nut (position preload)

(2) Constant pressure preload (J preload: preloaded by spring)

Fig. 6.5 shows an elastic deformation of a ball screw which is preloaded with "constant pressure." The rigidity of the preload spring is sufficiently smaller than the nut rigidity. Therefore, the deformation of the spring becomes nearly parallel to the abscissa axis. For this reason, the elastic deformation by the preload with constant pressure changes along the deformation curve by Nut A.

In order to take advantage of the characteristics of the preload with constant pressure, the major external load should be applied in the directions shown by an arrow in **Fig. 6.4**.

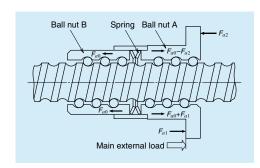


Fig. 6.4 Constant pressure preload (double nut)

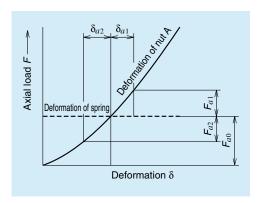


Fig. 6.5 Deformation curve of constant pressure preloaded nut

B-2-6.2 Rigidity of the Feed Screw System

A low rigidity around the feed screw mounting area causes lost motion. To improve the positioning accuracy of precision machines such as NC machine tools, it requires a good balance in axial rigidities of composing parts of the feed screw system.

Also should examine torsional rigidities of the feed screw system.

(1) Axial rigidity of the feed screw system $K_{\scriptscriptstyle T}$

Elastic deformation and rigidity of the feed screw system can be obtained by the following formula.

$$\delta = \frac{F_a}{K_T}$$
 17)

$$\frac{1}{K_{T}} = \frac{1}{K_{S}} + \frac{1}{K_{N}} + \frac{1}{K_{B}} + \frac{1}{K_{H}} \dots 18$$

In this formula:

 δ : Volume of axial elastic deformation of the feed screw system (μ m)

F_a: Axial load to the feed screw system (N)

 K_T : Axial rigidity of the feed system (N/ μ m)

 K_s : Axial rigidity of the screw shaft (N/ μ m)

 K_N : Axial rigidity of the nut (N/ μ m)

 $K_{\rm B}$: Axial rigidity of the support bearing (N/µm)

 K_H : Axial rigidity of the nut and bearing mounting section (N/ μ m)

(2) Axial rigidity of the screw shaft: K_s

(a) In case of: Fixed support - Free (axial direction)

$$K_{\rm S} = \frac{A \cdot E}{x} \times 10^{-3} \dots 19$$

In this formula:

 K_s : Axial rigidity of the screw shaft (N/ μ m)

A: Cross section area of the screw shaft (mm²)

$$A = \frac{\pi}{4} dr^2$$

dr: Screw shaft root diameter (mm)

E: Elastic modulus ($E = 2.06 \times 10^5$ MPa)

x: Distance between points of load application (mm)

(b) In case of: Fixed - Fixed support (axial direction)

$$K_{\rm S} = \frac{A \cdot E \cdot L}{x (L - x)} \times 10^{-3} \dots 20$$

In this formula:

 K_s : Axial rigidity of the screw shaft (N/ μ m)

L: Unsupported length (mm)

x: Axial deformation is maximum at position x = L/2.

Axial rigidity of the screw shaft can be obtained by the following formula.

$$K_{\rm S} = \frac{4A \cdot E}{L} \times 10^{-3} \dots 21$$

<<Calculation example of axial rigidity (1)>>

Obtain axial rigidity of the screw shaft under the condition in Fig. 6.6.

<Use conditions>

Nut model: DFT 4010-5

From Fig. 6.6: Supporting condition;

Fixed support -- Free (axial direction)

Distance between points of load application

$$x = 1 200 \text{ mm}$$

Screw shaft root diameter (from the dimension table)

$$d_{.} = 34.4 \text{ mm}$$

<Calculation>

By formula 19), axial rigidity K_s is:

$$A = \frac{\pi}{4} d_r^2 = \frac{3.14}{4} \times 34.4^2 = 929.4 \text{ (mm}^2)$$

$$K_{\rm S} = \frac{A \cdot E}{x} \times 10^{-3} = \frac{929.4 \times 2.06 \times 10^{5}}{1200} \times 10^{-3} = 159 \text{ (N/}\mu\text{m)}$$

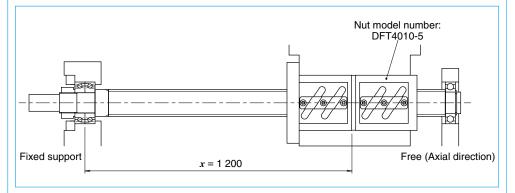


Fig. 6.6 Calculation example of axial rigidity of the screw shaft (1)

<<Calculation example of axial rigidity (2)>>

Obtain axial rigidity of the screw shaft under the conditions in Fig. 6.7.

<Use conditions>

Nut model: DFT 4010-5

From Fig. 6.7: Supporting condition:

Fixed - Fixed support (axial direction)

L = 1 200 mm

Distance between points of load application:

Screw shaft root diameter (from the dimension table)

$$dr = 34.4 \text{ mm}$$

<Calculation>

By formula 21), axial rigidity K_s is:

$$A = \frac{\pi}{4} dr^2 = \frac{3.14}{4} \times 34.4^2 = 929.4 \text{ (mm}^2\text{)}$$

$$K_s = \frac{4A \cdot E}{L} \times 10^{-3} = \frac{4 \times 929.4 \times 2.06 \times 10^5}{1.200} \times 10^{-3} = 638 \text{ (N/}\mu\text{m)}$$

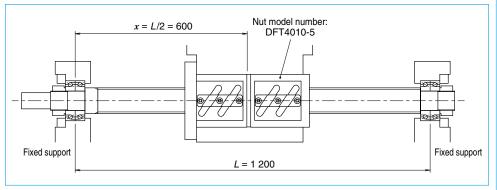


Fig. 6.7 Calculation example of axial rigidity of the screw shaft (2)

(3) Axial rigidity of the ball nut : K_{N}

(a) Rigidity of the nut with axial play

Theoretical rigidity value K is shown in the dimension table. The value K is obtained from the elastic deformation between screw grooves and balls when an axial load equivalent to 30% of the basic dynamic load rating C_a is applied. The criterion for the ball nut rigidity is 80% of the value listed in the table taking into consideration of deformation of the ball nut, etc. The rigidity value K_N is obtained by the following formula when the axial load " F_a " is not 30% of " C_a ."

$$K_{\rm N} = 0.8 \times K \left(\frac{F_{\rm a}}{0.3 C_{\rm a}} \right)^{1/3} (N/\mu m) \qquad \cdots 22$$

In this formula:

K: Rigidity value in dimension tables (N/ μ m)

F_a: Axial load (N)

C_a: Basic dynamic load rating (N)

<<Calculation example of axial rigidity (3)>> Obtain axial rigidity of the nut under the following conditions.

<Use conditions>

Nut model: SFT 4010-5 Axial load: $F_a = 6000 \text{ N}$

 F_a = Rigidity at 0.3 C_a K = 706 N/ μ m

(from the dimension table)

<Calculation>

By formula 22), axial rigidity K_N is:

$$K_{\rm N} = 0.8 \times K \left(\frac{F_{\rm a}}{0.3 \cdot C_{\rm a}} \right)^{1/3}$$

$$= 0.8 \times 706 \times \left[\frac{6\,000}{0.3 \times 52\,000} \right]^{1/3}$$

 $= 410 (N/\mu m)$

(b) Rigidity of preloaded ball nut

Theoretical rigidity K of preloaded ball nut under an axial load is shown in each dimension table. The K is obtained from the elastic deformation of the ball rolling surface and the balls when: a preload which is equivalent to 10% of the basic dynamic load rating C_a (5% in case of the P-preload [single-nut oversize ball preload system]) is applied. The criterion for calculation of nut rigidity is 80% of the value listed in the table taking into consideration of deformation of the ball nut, etc. Rigidity K_N is obtained by the following formula when preload " F_a " is not 10% (or 5%) of " C_a ".

$$K_{\rm N} = 0.8 \times K \left(\frac{F_{\rm a0}}{\varepsilon \cdot C_{\rm a}} \right)^{1/3} (N/\mu m) \qquad \cdots 23$$

In this formula:

K: Rigidity in the dimension tables (N/ μ m)

 F_{a0} : Preload (N)

ε: Basic factor to calculate rigidity (ε = 0.1. For P-preload use percentage of the preload to basic dynamic load rating. e.g. 0.03 for BSS and 0.015 for VSS.)

<<Calculation example of axial rigidity of the screw shaft (4)>> Obtain axial rigidity of the nut under the following conditions.

<Use conditions>

Nut model: DFT 4010-5

Preload : $F_{a0} = 4 000 \text{ N}$

Rigidity K when $F_{a0} = \varepsilon C_a$: $K = 1 376 \text{ N/}\mu\text{m}$ (from the dimension table on page B457)

Basic factor to calculate rigidity when

D Preload: ε = 0.1

<Calculation>

By formula 23)

$$K_{N} = 0.8 \times K \left(\frac{F_{a0}}{\epsilon \cdot C_{a}} \right)^{1/3}$$
$$= 0.8 \times 1376 \times \left(\frac{4000}{0.1 \times 52000} \right)^{1/3}$$

 $= 1008 (N/\mu m)$

The criterion of the preload to ball screw

Nut rigidity increases by a larger preload volume. But an excessive preload shortens life, and generates heat. Set the maximum preload about at 0.1 C_a (0.05 for P-Preload). Table 6.1 shows the criteria for preload for different applications.

Table 6.1 Criteria of preload

Ball screw application	Preload (relative to dynamic load rating $C_{\scriptscriptstyle a}$)
Robots, material handling systems, etc.	Axial play or under 0.01 $C_{\scriptscriptstyle a}$
Semiconductor manufacturing systems, etc. That require highly accurate positioning	0.01 C _a – 0.04 C _a
Medium- high-speed machine tools for cutting	0.03 C _a - 0.07 C _a
Low to medium-speed systems that require especially high rigidity	0.07 C _a – 0.1 C _a

(4) Axial rigidity of support bearing: $K_{\rm R}$

The rigidity (K_B) of the bearing used for ball screw support is shown in the dimension table of bearing. See page B415 for ball screw support bearings, NSKTAC C series and B423 for BSBD series.

(5) Axial rigidity of the ball nut and bearing mounting section: K_H

As the rigidity of mounting section has a profound effect on positioning accuracy, we recommend incorporating high rigidity of the mounting sections of ball nut and support bearings into the design at the early stage of designing the machine.

- (a) Torsional rigidity of the feed screw system Major torsion factors in the rotating system that bring about error in positioning accuracy are given three points below.
 - · Torsional deformation of the screw shaft
 - · Torsional deformation of the joint section
 - · Torsional deformation of the motor

The value of the effect of torsional strain to positioning accuracy is smaller than axial deformation. However, check the effect when

designing equipment that requires high positioning accuracy.

(b) Suppress thermal error

It is necessary to minimize the thermal error for ever increasing demand for positioning accuracy give three points below.

- Suppress heat
- Forced cooling
- Avoid effect of temperature rise

Refer to "Measures against thermal expansion" on page B40.

B-2-7 Friction Torque and Drive Torque

Operations that use ball screw drives require a motor torque which is equivalent to the total of following two:

- Friction torque, i.e. the friction of the ball screw itself
- Drive torque which is required for operation

B-2-7.1 Friction Torque

(1) Starting friction torque (Break away torque)

A high torque is necessary to start a ball screw. This is called "starting friction torque" or

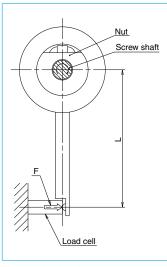


Fig. 7.1 Preload dynamic torque measuring method

"brakeaway torque." This torque is 2 to 2.5 times larger than the dynamic (friction) torque due to preload which is described below. The starting friction torque quickly diminishes once the ball screw begins to move.

(2) Dynamic friction torque (dynamic friction torque due to preload)

When a ball screw is moving, two types of torque generate: the dynamic friction torque due to preload and the friction torque associated with ball recirculation. JIS B1192 sets the standard of dynamic friction torque due to preload, which is the total of these two torque types. They are defined in Fig. 7.2.

The dynamic friction torque due to preload is calculated by the following formula. When the screw shaft is rotated as Fig. 7.1 in the following measuring conditions, measure the nut holding power F and then multiple the distance of action line L which is perpendicular to the direction of the power F.

$$T_p = F \cdot L$$
 ... 24)

- Measuring rotational speed 100 min⁻¹
- · Viscosity of Iubrication is ISO VG 68 as prescribed in JIS K 2009.
- · Remove Seals.

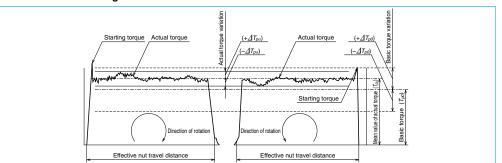


Fig. 7.2 Definitions of dynamic preloaded drag torque

(3) Calculation of basic torque

The basic torque of preloaded ball screw T_{p0} can be obtained by the following formula.

$$T_{p0} = K \frac{F_{a0} \cdot l}{2\pi} = 0.014 F_{a0} \sqrt{d_{m} \cdot l} \quad (N \cdot cm)$$
 ... 25

In this formula:

F_{a0}: Preload (N)

l: Lead (cm)

K: Torque coefficient of ball screw

$$K = \frac{0.05}{\sqrt{tan\beta}}$$

β: Lead angle (deg.)

d_m: Ball pitch circle diameter (cm)

Allowable values of torque variation rate relative to basic torque are regulated as shown in **Table 7.1**.

B-2-7.2 Drive Torque

(1) Operating torque of a ball screw

(a) Normal drive

The torque when converting rotational motion to linear motion (normal operation) is obtained by the following formula.

$$T_{a} = \frac{F_{a} \cdot l}{2\pi \cdot \eta_{1}} \quad (N \cdot cm) \qquad \cdots 26)$$

In this formula:

 T_a : Normal operation torque (N · cm)

F_a: Axial load (N)

l: Lead (cm)

 η_1 : Normal efficiency ($\eta_1 = 0.9$ to 0.95)

(b) Back-drive operation

The torque when converting linear motion to rotational motion (back-drive operation) is obtained by the following formula.

$$T_{\rm b} = \frac{F_{\rm a} \cdot l \cdot \eta_2}{2\pi} \quad (N \cdot cm) \qquad \cdots 27)$$

In this formula:

 T_b : Reverse operation torque (N · cm)

 η_2 : Reverse efficiency ($\eta_2 = 0.9$ to 0.95)

(c) Dynamic drag torque of the preloaded ball screw the operation torque of preloaded ball screw can be obtained by Formula 25).

Table 7.1 Range of allowable values of torque variation rates (Source: JIS B 1192)

			Effective length of the screw thread (mm)									
Basic	torque				4 000 0	or under				Over 4 00	Over 4 000 and 10 000 or under	
(N ·	N · cm) Slenderness ratio ⁽¹⁾ : 40 or less Slenderness ratio ⁽¹⁾ : More than 40 and 60 or less		_									
	Accuracy grade Accuracy grade				Accuracy grade				Ac	curacy gra	ade	
Over	Incl.	C0	C1	C2, 3	C5	C0	C1	C2, 3	C5	C1	C2, 3	C5
20	40	±30%	±35%	±40%	±50%	±40%	±40%	±50%	±60%	_	_	_
40	60	±25%	±30%	±35%	±40%	±35%	±35%	±40%	±45%	_	_	_
60	100	±20%	±25%	±30%	±35%	±30%	±30%	±35%	±40%	_	±40%	±45%
100	250	±15%	±20%	±25%	±30%	±25%	±25%	±30%	±35%	_	±35%	±40%
250	630	±10%	±15%	±20%	±25%	±20%	±20%	±25%	±30%	_	±30%	±35%
630	1 000	_	±15%	±15%	±20%	_	_	±20%	±25%	_	±25%	±30%

Notes: 1. Slenderness ratio: The value obtained by dividing the length of the screw thread section of screw shaft (mm) by diameter of the screw shaft (mm)

(2) Drive torque of the motor

(a) Drive torque at constant speed

The torque which is necessary to drive a ball screw at constant speed resisting to external loads can be obtained by the following formula.

$$T_1 = (T_a + T_{pmax} + T_u) \times \frac{N_1}{N_2}$$
 ... 28

In this formula:

T₂: Drive torque at constant speed

$$T_{\rm a} = \frac{F_{\rm a} \cdot l}{2\pi \cdot \eta_{\rm 1}} \qquad \cdots 26)$$

F_a: Axial load (N)

The value of F_a in Fig. 7.3 is:

$$F_a = F + \mu \cdot m \cdot g$$

F: Such as cutting force to axial direction (N)

 μ : Friction coefficient of the guide way

m : Volume of the traveling section (table mass plus work mass kg)

g: Gravitational acceleration (9.80665 m/s²)

 T_{pmax} : Upper limit of the dynamic friction torque of ball screw (N · cm)

 T_u : Friction torque of the support bearing (N · cm)

N₁: Number of teeth in Gear 1

N₂: Number of teeth in Gear 2

Generally, though it depends on the type of motor, T_1 shall be kept under 30% of the motor rating torque.

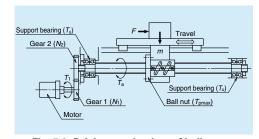


Fig. 7.3 Driving mechanism of ball screw

(b) Drive torque at acceleration

Accelerating the ball screw resisting axial load requires the maximum torque in an operation. Drive torque necessary for this occasion can be obtained by the following formula.

$$T_2 = T_1 + J \cdot \dot{\omega}$$
 ... 29

$$J = J_M + J_{G1} \left(\frac{N_1}{N_2} \right)^2 \left[J_{G2} + J_S + m \left(\frac{l}{2\pi} \right)^2 \right] \text{ (kg} \cdot \text{m}^2\text{)}$$

... 3

In this formula:

 T_2 : Maximum drive torque at time of acceleration (N \cdot m)

 $\dot{\omega}$: Motor's angular acceleration (rad/s²)

J: Moment of inertia applied to the motor (kg · m²)

 $J_{\rm M}$: Moment of inertia of the motor (kg · m²)

 J_{G1} : Moment of inertia of Gear 1 (kg · m²)

 J_{G2} : Moment of inertia of Gear 2 (kg · m²)

 J_s : Moment of inertia of the screw shaft $(kg \cdot m^2)$

When selecting a motor, it is necessary to examine the maximum torque of the motor relative to the drive torque T_2 at the time of acceleration of ball screw.

For the calculation of the moment of inertia of a cylindrical object (ball screw, gear, etc.), please refer to the formula below.

Formula for the moment of inertia of a cylindrical object

$$J = \frac{\pi \cdot \gamma}{32} D^4 \cdot L \text{ (kg} \cdot \text{cm}^2\text{)} \qquad \cdots 31\text{)}$$

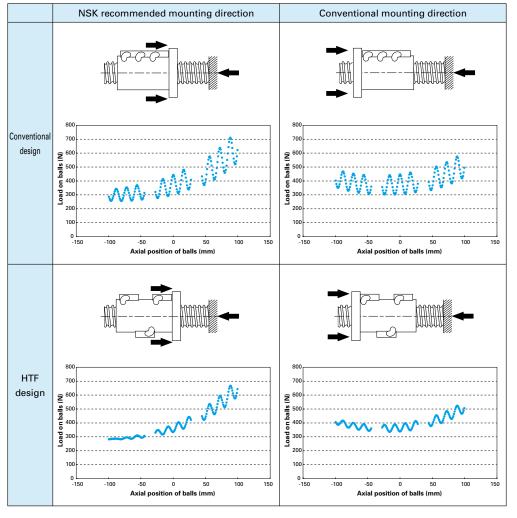
In this formula:

γ: Material density (kg/cm³)

D: Diameter of the cylindrical object (cm)

L: Length of the cylindrical object (cm)

^{2.} NSK independently sets torque standards which are under 20 N·cm.


B-2-8 Even Load Distribution in Ball Nut (In Case of Ball Screws for High-Load Drive)

Generally, the distribution of loaded balls in a ball nut is three-dimensionally asymmetric, thus resulting in uneven load distribution to the balls and ball nut. NSK has taken the measures for even load distribution to the balls by an optimal arrangement of the position of ball recirculation circuits.

Additionally, a heavier load results in a measurable axial deformation of the screw

shaft and the ball nut, thus further increasing the unevenness of load distribution. We have lessened the unevenness of load distribution to the balls by arranging the load acting point of the ball nut and the screw shaft opposite to each other. The relation between loading points and load distribution is shown in **Fig. 8.1**, while **Table. 8.1** shows the result of load distribution analysis.

Table. 8.1 The result of equalization of load distribution

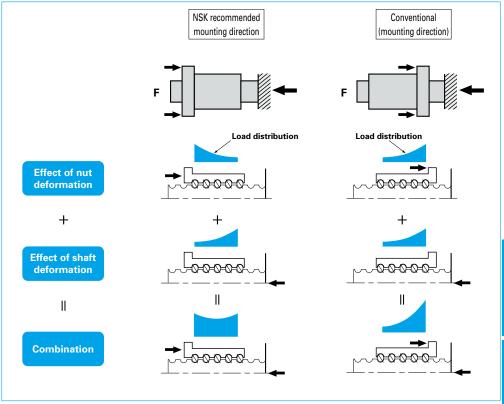


Fig. 8.1 The relationship between acting point of load and load distribution

B65 B66

B-2-9 Lubrication of Ball Screw

Lithium soap-based grease with base oil viscosity of 30 to 140 mm²/s (40°C) is recommended for grease lubrication and oil of ISO VG 32 to 100 for oil lubrication.

In general, a lubricant with low base oil viscosity is recommended where a ball screw is used for high-speed operation, and thus requires reducing thermal elongation of the screw shaft. On the other hand, a lubricant with high base oil viscosity is recommended for a low-speed, high-temperature operation, or a high-load and oscillating operation.

Please consult NSK about greases for high-load drives and high-temperature applications.

NSK markets "NSK Grease Unit" as the standard series products for a variety of applications. NSK Grease Unit for ball screw lubrication includes:

- 1) Various types of grease in the bellows-tube which can be instantly attached to the grease pump
- 2) Hand grease pump which is compact and easy to use
- 3) Nozzles

Table 9.1 shows NSK greases, and names of other ball screw greases.

Table 9.2 explains checking points in lubrication and standard intervals between replenishments. It is important to wipe off old grease from the screw shaft prior to applying new grease. Page D16 also explains in detail concerning the replenishing methods.

Table 9.1 Grease for ball screw

Product name	Thickener	Base oil	Base oil viscosity mm²/s (40°C)	Range of temperature for use (°C)	Application
NSK Grease AS2	Lithium base	Mineral oil	130	-10 - 110	General heavy load
NSK Grease PS2	Lithium base	Synthetic oil combined with Synthetic hydrocarbon oil	15.9	-50 - 110	Light load
NSK Grease LR3	Lithium base	Synthetic oil	30	-30 - 130	High-speed medium load
NSK Grease LG2	Lithium base	Mineral oil combined with Synthetic hydrocarbon oil	32	-20 - 70	For clean environment
NSK Grease NF2	Urea composite type	Synthetic hydrocarbon oil	26	-40 - 100	Fretting resistant

^{*}Refer to page D13 for the nature of NSK greases.

Table 9.2 Checking lubricant and intervals of replenishment

Lubricating method	Checking intervals Check points I		Replenish/replacing interval
Intermittent automatic oil supply	Once a week	Remaining volume, contamination	Supply oil when checking (depending on the tank volume)
Grease	2 – 3 months after start of use	Clean, foreign matters	Generally once a year (replenish when necessary)
Oil bath	Every day, when start to work	Oil level	Specify according to oil consumption

B-2-10 Dust Prevention for Ball Screw

If foreign matters enter inside the ball nut, all screw grooves and balls wear rapidly, or the ball screw may malfunction due to the damage of groove and/or ball recirculation system. Use bellows or telescopic pipes (Fig. 10.1) to keep foreign matters from entering into the feed

screw system. Install these items so as to shut foreign matters completely from the ball screw. Also it is even more effective to add seals on the ball nut as shown in Figs. 10.2 to 10.7. We provide seals in Table 10.1.

Table 10.1 Seal

	Sealing capability	Torque	Heat	grease retention	Application
Thin plastic seal	0	0	0	0	End deflector type, HMD type, BSL type
Plastic seal	×	0	0	×	Tube type, Deflector(bridge) type
Wiper seal	0	×	×	0	(Seal is not put on the lead of 1mm or smaller.)
X1 seal	0	0	0	0	HMS type, HMD type
High performance seal	0	0	0	0	VSS type
Brush-seal	Δ	0	0	Δ	For R Series (Seal for those with the shaft diameter of 14 mm or less is plastic seal.)

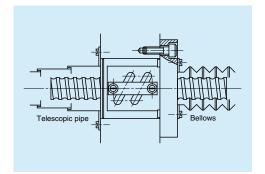


Fig. 10.1 Dust prevention by telescopic pipe and bellows

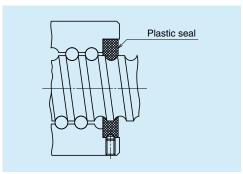


Fig. 10.3 Plastic seal

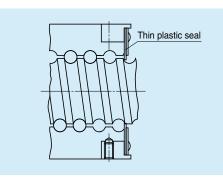


Fig. 10.2 Thin plastic seal

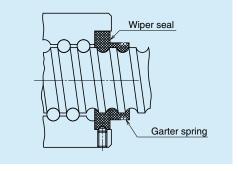


Fig. 10.4 Wiper seal

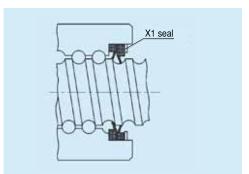


Fig. 10.5 X1 seal

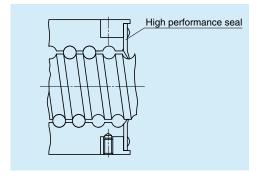


Fig. 10.6 High performance seal

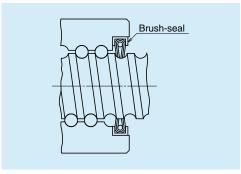


Fig. 10.7 Brush-seal for R Series

B-2-11 Rust Prevention and Surface Treatment of Ball Screws

(1) Stainless steel ball screw

KA type ball screws made of stainless steel are available. Please consult NSK for a custom made stainless steel ball screw.

(2) Types of surface treatment

The following are common types of treatment.

- OLow temperature chrome plating
- Used to prevent corrosion and light reflection. and for cosmetic purpose.
- OFluoride low temperature chrome plating
- · Fluoroplastic coating is provided following the low temperature chrome plating.
- · Resistance to corrosion is higher than low temperature chrome plating.
- OHard chrome plating
- Very hard coating provides high resistance to both wear and corrosion.
- OElectroless nickel plating
- · Creates a film of consistent thickness on complex shaped items.
- For corrosion prevention.

(3) Recommended surface treatment

Among the surface treatments mentioned above, we recommend "Low temperature chrome plating" and "fluoride low temperature chrome plating" for rust prevention because of the result of humidity chamber test for antirust characteristics.

However, never apply any organic solvent for degreasing because it has adverse effect on antirust characteristics.

Table 11.1 Surface treatment length

	Applicable length
Low temperature chrome plating	5 m or less
Fluoride low temperature chrome plating	4 m or less

Refer to "1.3 Rust Prevention and Surface Treatment" (page D5) for the results of humidity chamber test.

B-2-12 Ball Screw Specifications for Special Environments

B-2-12.1 Clean Environments

NSK manufactures NSK Clean Grease "LG2" and "LGU" for NSK linear guides, ball screws, and Monocarriers which are used under normal temperature and pressure in a clean room.

The LG2 and LGU grease are far more superior in stable torque characteristics than the vacuum grease which has been used as a countermeasure against dust generation. The LG2 and LGU also have a sufficient durability and dust prevention capability.

Features of "LG2" and "LGU"

- (a) Generates less dust than prevailing vacuum greases and general greases. Cleanliness is enhanced by simply switching the grease to the LG2 or the LGU.
- (b) Has extremely low and stable torque characteristics. It is ideal for high-speeds operation.
- (c) Unlike prevailing vacuum greases, the LG2 and LGU have a nature similar to general grease. Its effect is long-lasting, and sufficiently durable. They greatly contribute to minimize the frequency of maintenance.
- (d) They have an equal capability in rust prevention as general grease, and also are reliable.

When using NSK linear guides, ball screws, or Monocarriers in a clean environment, request the LG2 or LGU as a packed lubricant prior to delivery. NSK also makes bellows-tubes which contain 80 grams of the LG2 or LGU. The tube is easy to use, and is ideal for maintenance (refer to pages B413 and D19). Wash to remove adipose substances prior to use.

Refer to page D8 for their detailed nature, functions and characteristics of LG2 and LGU.

B-2-12.2 Measures for Use Under Vacuum

NSK developed MoS₂ / WS₂ spattering and dryfilmed ball screws for equipment to be used in space. NSK also makes soft-metal film (gold and silver) ball screws to be used in a vacuum environment for semiconductor and liquid crystal display processing equipment.

Lubricants widely used for ball screws in a high vacuum are:

- · Vacuum grease which uses base oil of low vapor pressure.
- Solid lubricants such as MoS₂, WS₂ used mainly for equipment in space.
- · Solid lubricants by soft-metal such as gold, silver, or lead film.

When used for semiconductor and liquid crystal display manufacturing equipment. the oil of the vacuum grease evaporates and causes environmental contamination. Also, it hinders creation of a super high vacuum. MoS, in the state of solid lubricant generates a large volume of dust, and Mo is unsuitable for semiconductors and reformed surface. Therefore, it is not suitable for the processing machines for semiconductor and liquid crystal display.

NSK recommends solid lubricant ball screws with a long life. These ball screws are treated with special silver film by NSK's unique processing technology, and can be used in a super-high vacuum. However, because of a solid lubricant, the film may peel off and stick to surface of ball grooves repeatedly, causing the torque to rise momentarily on some occasions. The drive motor should be of large capacity to handle this drastic variation of torque.

Refer to page D7 for the test data of ball screws for vacuum.

For ball screw specifications for special environments, refer to page D2.

B69 B70

B-2-13 Noise and Vibration

B-2-13.1 Consideration to Lowering Noise

As the machine operates at higher speeds. noise levels tend to increase. Covering the nut section is insufficient to lower noise. NSK has abundant data (NSK Motion & Control Technical Journal No.4, etc.), and offers advice to users regarding selecting ball screw.

To lower noise level in general, the following points should be taken into consideration.

- (a) Use as a large lead as possible to reduce rotational speed.
- (b) Use a ball screw with smaller outer diameter as possible.
 - (It often requires designing for critical dimensions, mandating special specification. Please consult NSK.)

For reference, noise levels by ball screws alone are plotted below. The formula for calculation is also shown below.

- (a) Average value at measuring distance of 400 mm dB (A) = 25.2 { $\log_{10} (D_w \cdot d_m \cdot n \times 10^{-5})$ } + 63.9 ... 32)
- (b) Upper limit at measuring distance of 400 mm Average value + 6 dB (A)
 - D_w: Ball diameter (mm)
 - d_m : Ball pitch circle dia. (mm)
 - n: Rotational speed (min⁻¹)

If measuring distance is 1 m, the average noise level is: Various noise levels minus 8 dB (A).

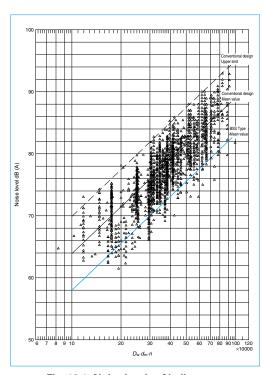


Fig. 13.1 Noise levels of ball screws

<< Example of calculation of noise levels>> <Use conditions>

Nut model: DFT4010-5

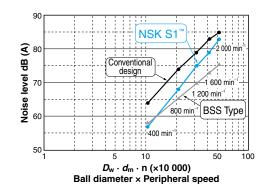
From the dimension table: $D_{w} = 6.350$

 $d_{m} = 41$

Maximum rotational speed: 2 000 min⁻¹

<Calculation>

By formula 34):


dB (A) = 25.2 {log₁₀ (
$$D_w \cdot d_m \cdot n \times 10^{-5}$$
) } + 63.9

- = 25.2 { $\log_{10} (6.350 \times 41 \times 2000 \times 10^{-5})$ } + 63.9
- = 82 dB (A)

The average value of noise level by ball screws alone at maximum rotational speed (measuring distance 400 mm) is 82 dB (A). Upper limit is: 82 dB (A) + 6 dB (A) = 88 dB (A)If the measuring distance is 1 m, the average value of noise level is 74 dB (A), and upper limit is 80 dB (A).

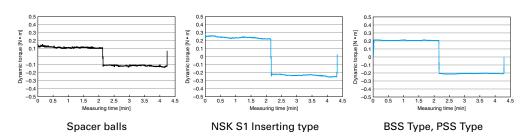
When installed, the noise of ball screw becomes higher by the noise of the machine and characteristics of machine vibration.

By using NSK S1, the noise is reduced and softened compared to conventional ball screws. The BSS type will furthermore reduce and soften the noise.

B-2-13.3 Consideration to Ball Screw **Support System**

A ball screw has low radial rigidity because its support span is longer compare to its shaft diameter. It has only small damping capacity, requiring as much support rigidity as possible through design.

A simplified support bearing system to cut costs invites noise and vibration problems. Therefore, the necessity of consideration to the ball screw support system of both shaft ends is increasingly becoming important as the speed of machines is ever-increasing.


If one shaft end must be left unfixed without support bearing due to structural reasons, noise and vibration problems may occur. These problems are related to the natural vibration frequency of the screw shaft on the unsecured end. This problem can be averted by installing an impact damper to the shaft end (Fig. 13.2). Please consult NSK for details.

Stopper Assembly Screw shaft Clearance

B-2-13.2 Consideration to Operational Characteristics

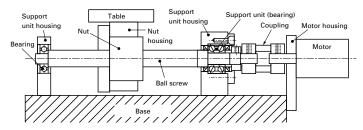

Smooth motion is achieved by using spacer balls on conventional ball return tube type ball screws. By using NSK S1 the smoothness is further improved. The BSS type will achieve the smoothness equivalent to ball screws with NSK S1.

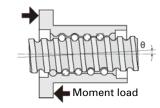
Fig. 13.2 Impact damper (Applied for patent)

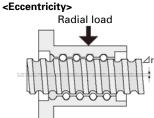
B-2-14 Installation of Ball Screw

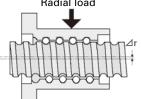
The following simplified component drawing shows a representative example of a single-axis table.

The screw shaft of the ball screw is supported by a nut and bearings, and it is driven by a motor.

It is critically important to complete the centering work to ensure the predetermined operation life, functionality and accuracy of the ball screw. In general, the following accuracy is recommended for precision-class applications.

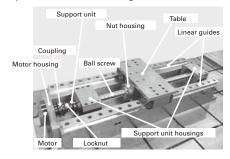

Inclination of center line: 1/2000 or less (Target: 1/5000 or less)

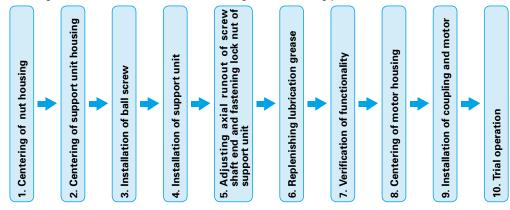

Eccentricity: 0.020 mm or less


The following problems could occur if an installation error negatively affected the ball screw:

- (1) Effects on durability:
- → Lowered flaking life or wearing life.
- (2) Effects on torque characteristics:
 - → Increased friction torque or torque variations.
- (3) Effects on feed rate:
 - → Decreased accuracy in motion.

<Inclination of center line>

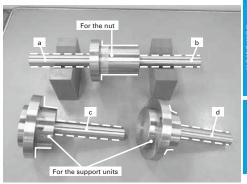



Overall View of Assembled Body

Explanations of the assembling procedure are given below, using the single-axis table as an example: In this explanation, two different installation procedures are provided: one for machine tools, where high installation accuracy is required, and another for general industrial machinery.

B-2-14.1 Installation Procedure for Machine Tools, Where High Installation Accuracy

The single-axis table shall be installed according to the following procedure:

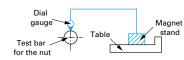


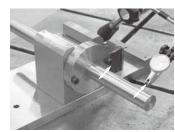
I. Jigs required for installation

Test bars:

(For the nut: one piece; for the support units: two pieces)

⇒ For centering and measurement of axial runout. The portions onto which the housing is installed (marked with the solid line) and the portions subject to measurement (a, b, c and d, marked with the broken line) shall be finished to high precision.


II. Installation of assembled body


1. Centering of nut housing

Turn the table over and mount the nut housing and test bar for the nut onto it.

Set up a magnet stand with a dial gauge attached, taking the rear side of the table as reference. Measure two spots at the top of the test bar for the nut by moving the magnetic stand around to check the inclination in the vertical direction.

If inclination of center line is observed, adjust the surfaces on which the nut housing is installed.

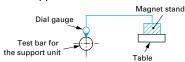
1-2

Fix the magnetic stand, with the dial gauge attached, onto a block. While pressing the block toward the reference surface of the table, move the magnet stand around. Measure the side surface of the test bar for the nut, check the inclination in the horizontal direction. If inclination of center line is observed. adjust the portion where the nut

housing is installed onto the table.

2. Centering of support unit housing

Install the linear guides onto a machine base, and then install the table, which has already been centered. (For installation of linear guides, please refer to A67 of CAT. No. 9008.)

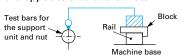

2-1

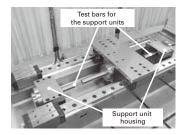
Install the test bar for the support unit onto the support unit housing.

2-2

Install the magnet stand, with the dial gauge attached, using the table as reference. While moving the table, measure the two spots at the top of the test bar for the motor-side support unit to check the inclination in the vertical direction. If inclination of center line is observed, adjust the mounting surfaces of the support unit housing.

Follow the same procedure for the opposite side of the motor.

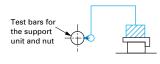



2-3

Fix the magnet stand, with the dial gauge attached, onto a block, and install the block onto the top surface of the linear guide rail. Measure the top points of the test bar for the nut and the support unit to check for eccentricity in the vertical direction.


If eccentricity is observed, adjust the mounting surface of the support unit housing.

Follow the same procedure for the opposite side of the motor.



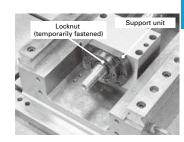
2-4

Fix the magnet stand, with the dial gauge attached, onto a block. While pressing the block toward the top surface of the linear guide rail as reference and moving it, take measurements of the side surfaces of the test bars for the nut and support unit to check for eccentricity in the horizontal direction. If eccentricity is observed, adjust the mounting surface of the support unit housing.

Follow the same procedure for the opposite side of the motor.

3. Installation of ball screw

Remove all test bars from the housing.


Clean the outside diameter surface of the nut and the inside diameter surface of the housing using a cloth, and install the ball screw.

Apply grease to spots with metal-to-metal contact to avoid any scratches or dents. While doing this, be careful not to drop the ball screw or hit it with anything, which might cause malfunction. If the housing must be removed in order to mount the ball screw, use a positioning pin so that the housing can be mounted back in its original position.

4. Installation of support unit

Insert the screw shaft into the support unit housing and mount the support units on both shaft ends. Fix the motor-side support unit to the housing. Fasten the locknut temporarily.

Follow the same procedure for the opposite side of the motor.

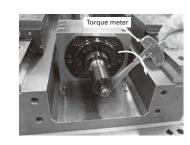
5. Adjusting axial runout of screw shaft end and fastening lock nut of support unit

Bring the dial gauge into contact with the top of the shaft end. Then, while rotating the screw shaft, measure the runout of the shaft end. While adjusting the shaft end runout, fasten the locknut to attain the required fastening torque.

Follow the same procedure for the opposite side of the motor.

NSK

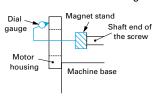
6. Replenishing lubrication grease


Wipe away the antirust oil from the empty ball screw, to which grease has not been applied, and supply grease through the grease hole to fill the inside. (Supply the grease while rotating the ball screw in the direction that moves grease toward the inside of the nut. This will lubricate the ball screw evenly.) If you use a ball screw already filled with grease, it is not

7. Verification of functionality

necessary to add more.

To check whether the ball screw has been installed accurately, verify its functionality. Measure the driving torque with a torque meter over the entire movable range of the screw. Confirm (including by touch) that there are no abnormalities.

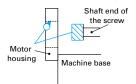


8. Centering of motor housing

8-1

Install the motor housing, and mount the dial gauge onto the shaft end of the ball screw. Rotate the screw shaft to check the inclination of the motor housing, with the stylus of the dial gauge in contact with the end face of the motor housing. If

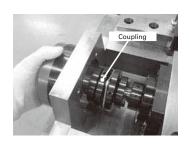
inclination of the end surface of the motor housing is observed, gauge adjust the mounting surface of the motor housing.



8-2

Set up the dial gauge onto the end face of the ball screw. Rotate the screw shaft to check eccentricity, with the stylus touching the inside diameter surface of the motor housing. If

eccentricity is observed, adjust it by installing the motor housing appropriately.

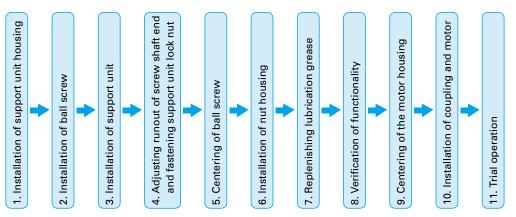


9. Installation of coupling and motor

Mount the coupling onto the shaft end of screw, and install motor.

Fasten the bolts of the coupling to connect the shaft end with motor shaft.

10. Trial operation

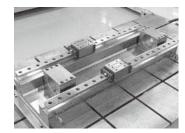

At the beginning, run the assembly at low speed to check for vibrations and noise. Then, run it at moderate speed, and finally at high speed and check for abnormalities. Then run it continuously for approximately two hours, carry out a running-in operation and at the same time check for any abnormalities. During this running-in operation, the excessive grease inside of the nut is pushed out of the nut. Wipe it away.

B77 B78

B-2-14.2 Installation Procedure for General Industrial Machinery

In this procedure, the ball screw is installed with the accuracy required for the linear quide. The centering of nut and table are adjusted by installing the nut housing appropriately. Since no test bars are required and the inside diameter of the nut housing does not need to be fit with the nut, the ball screw can be installed relatively easily and cheaply.

The installation procedure used for the single-axis table is shown below:

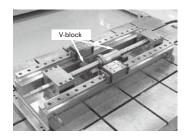

I. Installation of assembled body

1. Installation of support unit housing

Install the linear guide onto the machine base.

(For installation procedure for linear guide, please refer to A67, CAT. No. 9908.)

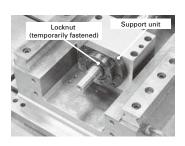
Place the support unit housing at the predetermined position and fasten it temporarily.



2. Installation of ball screw

Clean the outside diameter surface of the nut and the inside diameter surface of the housing using a cloth, and install the ball screw.

Apply grease to spots with metal-to-metal contact to avoid scratches and dents. While doing this, be careful not to drop the ball screw or hit it with anything, which might cause malfunction.


Conduct this task using a V-block to prevent scratches and dents.

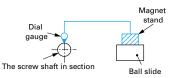
3. Installation of support unit

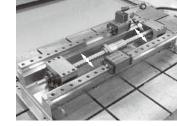
Insert the screw shaft into support unit housing and mount support units on both shaft ends. Fix the motor-side support unit to the housing. Fasten the locknut temporarily.

Follow the same procedure for the opposite side of the motor.

4. Adjusting runout of screw shaft end and fastening support unit locknut

Bring the dial gauge into contact with the top of the shaft end. Then, while rotating the screw shaft, measure the runout of the shaft end. While adjusting the shaft end runout, fasten the locknut to attain the required fastening torque.

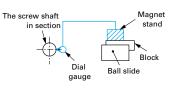

Follow the same procedure for the opposite side of the motor.



5. Centering of ball screw

Set up a magnet stand with a dial gauge attached, using the ball slide of the linear guide as reference. Measure the top of the screw shaft in the vicinity of the support unit housing both on the motor and opposite sides to check the inclination in the vertical direction. If inclination of center line is observed, adjust

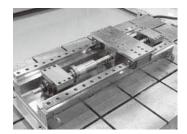
the mounting surface of the support unit housing.



5-2

Fix the magnet stand, with the dial gauge attached, onto a block. While pressing the block toward the ball slide of the linear guide, move the block. Measure the side surface of the screw shaft in the vicinity of the support unit housing both on the motor and opposite sides to check the inclination in the horizontal direction. If inclination of center line is observed,

adjust by installing support unit housing appropriately. The screw shaft After the adjustment, fix the support unit housings of the motor side and the opposite side.



6. Installation of nut housing

Temporarily fasten the nut housing onto the table, and fasten the table, using the ball slide of the linear guide as reference surface.

To minimize the bending of the screw shaft caused by the selfweight of the nut, move the nut toward the support unit housing at the shaft end.

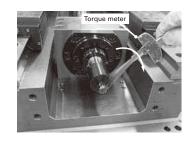
6-2

Move the table toward the nut, and fasten the nut to the nut housing.

Loosen the bolts that fasten the table to the nut housing, and re-fasten them.

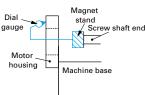
Loosen the bolts that fasten the nut housing and the nut, and re-fasten them.

7. Replenishing lubrication grease

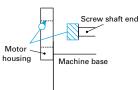

Wipe away the antirust oil from the empty ball screw, to which grease has not been applied, and supply grease through the grease hole to fill the inside. (Supply grease while rotating the ball screw in the direction that moves grease toward the inside of the nut. This will lubricate the ball screw evenly.)

If you use a ball screw already filled with grease, it is not necessary to add more.

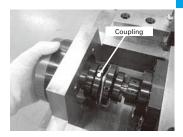
8. Verification of functionality


To check whether the ball screw has been installed accurately, verify its functionality. Measure the driving torque with a torque meter over the entire movable range of the screw. Confirm (including by touch) that there are no abnormalities.

9. Centering of motor housing


Install the motor housing, and mount the dial gauge onto the end face of the ball screw. Rotate the screw shaft to check the inclination of the motor housing, with the stylus of the dial gauge in contact with the end face of the motor housing. If inclination of center line is observed, adjust the mounting surface of the motor housing.

9-2


Set up the dial gauge onto the end face of the screw shaft. Rotate the screw shaft to check eccentricity, with the stylus touching the inside-diameter surface of the motor housing. If eccentricity is observed, adjust it by installing the motor housing appropriately.

10. Installation of coupling and motor

Mount the coupling onto the shaft end, and install the motor. Fasten the bolts of the coupling to connect the shaft end with the motor shaft.

11. Trial operation

At the beginning, run the assembly at low speed to check for vibrations and noise. Then, run it at moderate speed, and finally at high speed and check for abnormalities. Then run it continuously for approximately two hours, carry out a running-in operation and at the same time check for any abnormalities. During this running-in operation, the excessive grease inside of the nut is pushed out of the nut. Wipe it away.

B81

B-2-15 Precautions for Designing Ball Screw

B-2-15.1 Safety System

As shown in the illustration on page B352, a stopper is installed in some cases to prevent the nut from overrunning due to malfunction of the safety system of the machine itself, or human error during operation.

The travel stopper should be installed at a place where it will not come into contact with the nut when the nut reaches the designed stroke end. An impact absorbing travel stopper (NSK patent, refer to page B414) is available at NSK.

B-2-15.2 Design Cautions to Assembling Ball Screw

(1) Cutting through the thread screw to the end For some recirculation system, such as the deflector(bridge) type, end cap type, S1 speficication (High-Load drive ball screws etc.) and a part of end deflector type, one end of the thread screw should be cut through to the end of the major diameter. This is necessary to assemble the ball nut to the screw shaft (Fig. 15.1).

In this case, the shaft end diameter, to where this "cut-through thread" is made, should be 0.2 mm or smaller than the ball groove root diameter "dr". (See the dimension table.) A similar precaution is required when it is absolutely necessary to remove the nut from the screw shaft in order to install the ball screw to the machine. Also, in case using the cut-through end as the shoulder of the support bearing, make certain that a sufficient amount of the effective flat surface is left from the root diameter. If it is insufficient, the bearing cannot be installed perpendicularly to the bearing seat. (Fig. 15.2)

(2) Designing the screw shaft end and the nut mounting area

When installing a ball screw to the machine, avoid a design which makes it necessary to separate the nut from the screw shaft as shown in Fig. 15.3. If separated, the balls may fall out. The separation may also deteriorate the ball screw accuracy, or may damage the ball screw. If separating them is unavoidable, please furnish NSK with the component which is to be installed between the nut and screw shaft. NSK will install the component prior to delivery.

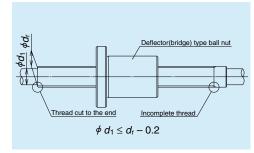


Fig. 15.1 Shaft end of a deflector (bridge) recirculation system ball screw

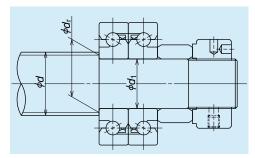


Fig. 15.2 Support bearing and end face (shoulder) for installation

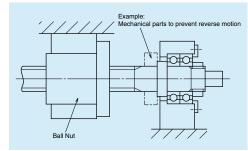


Fig. 15.3 Nut and ball screw are required to be separated when installing in this structure.

(3) Removing the nut from the screw shaft at the time of assembly

If it is unavoidable, use an arbor (Fig. 15.4), keeping the balls in the nut. In this case, the outside diameter of the arbor should be approximately 0.2 mm to 0.4 mm smaller than the ball groove root diameter "d."

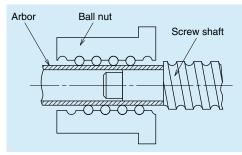
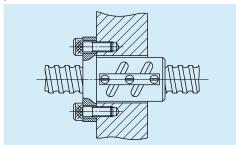



Fig. 15.4 Arbor to install and remove nut

(4) Centering of the ball nut when installing

When installing the nut as shown in Fig. 15.5, provide a space between the housing and the nut body diameter, allowing the centering to be performed.

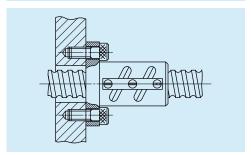


Fig. 15.5 Fixing a ball nut by flange

(5) Preventing the thread screw of nut from loosening

When installing and securing the nut to the housing at the thread screw section, as in the case for RNCT type of R Series ball screws, apply an agent which prevents the nut from loosening.

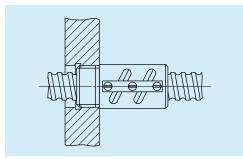


Fig. 15.6 Fixing a ball nut with thread screw

(6) Installation of brush-seal to the nut

If a brush-seal is installed at the thread screw side of the nut similar to the RNCT type which comes with a thread screw, the brush-seal should be secured as shown in Fig. 15.7.

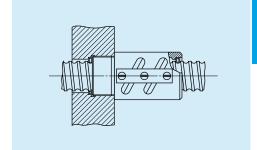


Fig. 15.7 Installation of brush-seal to a ball nut with thread screw

B-2-15.3 Effective Stroke of Ball Screw

When hardened by the induction hardening, the hardness of a ball screw may be slightly low at both ends of the screw section. Consider this low hardness prior to determining the length of effective stroke. Please consult NSK for details.

B-2-15.4 Matching after Delivery

When, after the delivery of a ball screw, you require drill knock pin hole on the screw shaft end, or at the nut mounting area, please inform NSK on the position and size of the hole.

NSK will take a measure and protect designated spots from heat treatment prior to delivery to make subsequent machining easy.

B-2-15.5 "NSK K1™" Lubrication Unit

When using the NSK K1 lubrication unit, be aware of the operating temperature and chemicals that come to contact the unit for keeping the K1's best performance.

Temperature range for use:

Maximum temperature; 50°C

Momentary maximum temperature; 80°C

Chemicals that should not come to contact:

Do not leave the K1 unit in organic solvent, white kerosene such as hexane, thinner which removes oil, and rust preventive oil which contains white kerosene.

Water-type cutting oil, oil-type cutting oil, grease such as mineral-type AS2 and estertype PS2 do not damage the K1 unit.

B-2-16 Shaft End Machining

You require to machine shaft ends in the following three occasions.

- * Precision ball screws with blank shaft end.
- * Ball screws in R Series with blank shaft end (see page B349).
- * Additional machining of a completed ball

The following are the summaries of machining of these shaft ends. For details, please contact NSK.

(1) Machining of blank shaft ends of precision ball screws

(a) Cutting screw shaft

Use a cutting whetstone or the like to cut the shaft, leaving stock for turning. Keep the nut in the assembled state to the screw shaft, and open only one side of the plastic wrapping bag, expose only the shaft end section to be machined, and then cut the screw shaft. This prevents foreign matters from entering to the ball screw section. Do the same for other machining.

(b) Precautions in cutting shaft end Outside of the screw shaft is ground with

precision (excluding R Series). There is a center hole in the ends. Use them for centering, Do not rotate the shaft quickly or stop it suddenly, or the nut might move along the shaft. We recommend securing the nut with tape. To machine a very long shaft, apply work rests to the screw shaft surface to suppress vibration (especially caused by critical speed).

(c) Turning by lathe

Cut to the length, turn shaft end steps, turn thread screw, and provide the center hole. Refer to JIS B1192 which sets standards for the shaft end accuracy.

(d) Processing by grinding

Apply the same precautions as for cutting for centering, securing nut, and work rest. Grind sections where the bearings and a "Spann ring" are installed.

e) Milling processing

Process keyways and tooth seats for lock washers.

(f) Deburring, washing, and rust prevention Wash with clean white kerosene after processing. Apply lubricant for immediate use. For later use, apply rust preventive agent.

Note: Contact NSK if nut is accidentally removed.

(2) Additional machining of R Series ball screw shaft end

(a) Cutting screw shaft

Carry out the same process as "(1) Machining of blank shaft ends of precision ball screws" above.

- (b) Annealing the shaft end (Heat the section of ... the shaft end to be machined with an acetylene torch. Then gradually cool it in ambient
- * The area not machined loses hardness if exposed to heat. This may shorten the all screw life. Cool with water the areas where should not be heated to avoid heat conduction.
- (c) The following process is the same as "(1) Machining of blank shaft ends of precision ball screws" above.

B88

NSK

B-2-17 Ball Screw Selection Exercise

Drill 1: High-speed transporting system

1. Design conditions

Table mass: $m_1 = 40 \text{ kg}$

Mass of the

transporting item : $m_2 = 20 \text{ kg}$

Maximum stroke : $S_{max} = 700 \text{ mm}$

Rapid traverse speed: $V_{\text{max}} = 1\,000 \text{ mm/sec}$ (60 m/min) Positioning accuracy: $\pm 0.05/700 \text{ mm}$ (0.005 mm/pulse)

Repeatability: ±0.005 mm

Required life: $L_t = 25\ 000\ h\ (5\ years)$

Guide way (rolling) : $\mu = 0.01$ (friction coefficient) Drive motor : AC servo motor

 $(N_{\rm max} = 3\,000\,{\rm min}^{-1})$

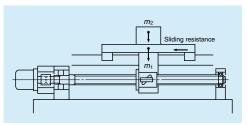


Fig. 16.1 System appearance

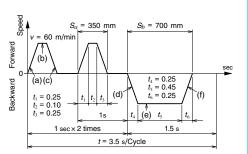


Fig. 16.2 Operating condition

2. Selection of basic factors

(1) Selection of accuracy grade and axial play

According to **Table 4.1** "Accuracy grades of ball screw and their application" on page B19, the accuracy grade of ball screws for Cartesian type industrial robots is C5 to Ct10.

From the following conditions in design, the axial play should be 0.005 mm or less.

Repeatability: ±0.005 (mm)
Resolution: 0.005 mm/pulse

According to **Table 4.2** "Combinations of accuracy grades and axial play" on page B20, you will require the accuracy grade C5 to satisfy the axial play of 0.005 mm or less. Therefore select the accuracy grade C5, and the axial play of 0 mm (Z-preload).

(2) Selection of lead

Calculate the lead l based on maximum speed of AC servo motor and the rapid traverse speed $V_{\rm max}$.

$$l \ge \frac{V_{\text{max}}}{N_{\text{max}}} = \frac{1\ 000 \times 60}{3\ 000} = 20\ \text{(mm)}$$

Select a lead l of 20 mm or larger.

(3) Selection of screw shaft diameter

According to the **Table 4.4** "Shaft diameter, lead and stroke of standard ball screw" on page B21, the screw shaft diameter *d* which has a lead *l* larger than 20 mm should be in the range of 15 mm to 32 mm. Select the smallest 15 mm.

(4) Selection of stroke

From the **Table 4.4** "Screw shaft diameter, lead, and stroke of standard ball screw" on page B21, a ball screw with shaft diameter (d) of 15 mm and lead (*l*) of 20 mm meets maximum stroke of 700 mm, therefore it is possible to select from the standard ball screws. The primary selection is as follows:

Primary selection:

Shaft diameter: 15 (mm)

Lead: 20 (mm)

Stroke: 700 (mm)

Accuracy grade: C5

Axial play: Z

3. Confirmation of standard ball screw

In consideration of delivery time and price, select from the standard ball screws with finished shaft ends.

Primary candidate: W1507FA-3PG-C5Z20

4. Basic safety check

Let's examine the primary candidate.

(1) Allowable axial load

[1] Calculation of allowable axial load

From **Fig. 16.2**: Acceleration α_1 at accelerating / decelerating is:

$$\alpha_1 = \frac{V_{\text{max}}}{t_1} = \frac{1\ 000}{0.25} = 4\ 000\ (\text{mm/s}^2) = 4\ (\text{m/s}^2)$$

Axial load F_i is:

(At the time of acceleration (a)(d))

$$F_1 = \mu (m_1 + m_2) \times g + (m_1 + m_2) \times \alpha_1$$

= 0.01 \times (40 + 20) \times 9.80665 + (40 + 20) \times 4
= 246 (N)

(At the time of constant speed (b)(e))

$$F_2 = \mu (m_1 + m_2) \times g = 0.01 \times (40 + 20) \times 9.80665$$

= 6 (N)

(At the time of deceleration (c)(f))

$$F_3 = -\mu (m_1 + m_2) \times g + (m_1 + m_2) \times \alpha_1$$

= -0.01 \times (40 + 20) \times 9.80665 + (40 + 20) \times 4
= 234 (N)

Thus, the maximum axial load P is 246 N.

[2] Buckling load

W1507FA-3PG-C5Z20 has the support length of 804 mm ("La" as per the dimension table on page B193), and must support maximum axial load (P) of 246 (N). The supporting condition of screw shaft is "Fixed – Simple", and the supporting condition of ball nut is "Fixed". Due to the direction of the load, the whole ball screw supporting condition is "Fixed – Fixed" support (Factor m = 19.9).

From fomula 2) on page B44:

$$d_r \ge \left(\frac{P \cdot L_a^2}{m} \times 10^4\right)^{1/4} = \left(\frac{246 \times 804^2}{19.9} \times 10^4\right)^{1/4}$$

= 5.3 (mm)

W1507FA-3PG-C5Z20 has the dimension (dr) of 12.2 mm as per the dimension chart (page B193) and therefore meets the condition.

Result: Acceptable

(2) Allowable rotational speed

The permissible rotational speed listed in the dimension table is 3 000 min⁻¹. Since the motor maximum rotational speed is 3 000 min⁻¹, the operation is in the range of permissible rotational speed.

Result: Acceptable

(3) Checking life expectation

[1] Mean load F_m and mean rotational speed N_m From the calculation of axial load, rotational speed N_i and the operating time t_i is:

(At the time of acceleration (a)(d))

$$F_1 = 246 (N)$$

$$N_1 = \frac{n}{2} = \frac{3\ 000}{2} = 1\ 500\ (\text{min}^{-1})$$

$$t_a = 2 \times t_1 + t_4 = 0.75$$
 (s)

(At the time of constant speed (b)(e))

$$F_2 = 6 (N)$$

$$N_2 = 3\,000\,(\text{min}^{-1})$$

$$t_b = 2 \times t_2 + t_5 = 0.65$$
 (s)

(At the time of deceleration (c)(f))

$$F_3 = 234 (N)$$

$$N_3 = 1500 \text{ (min}^{-1})$$

$$t_c = 2 \times t_3 + t_6 = 0.75$$
 (s)

Calculation result is shown in Table 16.1

Table 16.1 Axial load and rotational speed

Operating condition	Axial load (N)	Rotational speed (mean) (min ⁻¹)	Operating time (s)		
(a) (d)	$F_1 = 246$	$N_1 = 1500$	$t_{a} = 0.75$		
(b) (e)	$F_2 = 6$	$N_2 = 3000$	$t_{\rm b} = 0.65$		
(c) (f)	$F_3 = 234$	$N_3 = 1500$	$t_c = 0.75$		

From the formulas 11) and 12) on page B53:

$$F_{m} = \left(\frac{F_{1}^{3} \cdot N_{1} \cdot t_{a} + F_{2}^{3} \cdot N_{2} \cdot t_{b} + F_{3}^{3} \cdot N_{3} \cdot t_{c}}{N_{1} \cdot t_{a} + N_{2} \cdot t_{b} + N_{3} \cdot t_{c}}\right)^{1/2}$$

= 195 (N)

$$N_{\rm m} = \frac{N_1 \cdot t_{\rm a} + N_2 \cdot t_{\rm b} + N_3 \cdot t_{\rm c}}{t}$$

= 1 200 (min⁻¹)

NSK

[2] Calculation of life expectancy

At the basic dynamic load rating C_a of W1507FA-3PG-C5Z20 (Clearance Z) is 3 870 N (as per the dimension table on page B193), from the formulas 8) and 9) on page B53:

$$L_{t} = \left(\frac{C_{a}}{F_{m} \cdot f_{w}}\right)^{3} \times \frac{1}{60N_{m}} \times 10^{6}$$
$$= \left(\frac{3870}{195 \times 1.2}\right)^{3} \times \frac{1}{60 \times 1200} \times 10^{6}$$
$$= 62800$$

The ball screw satisfies the required life.

Result: Acceptable

5. Check for other requirements

(1) Accuracy and axial play

As per the dimension table on page B180 and **Table 1.2** for the permissible value of lead accuracy on page B38:

According to Table 1.2:

Accuracy grade: C5

 $e_{\rm n} = \pm 0.035/800 \, ({\rm mm})$

 $v_{...} = 0.025 \text{ (mm)}$

This grade satisfies the required positioning accuracy of $\pm 0.05/700$ mm.

The checking of axial play is omitted here since it is explained in "2. Selection of basic factors."

(2) Drive torque

Required specifications are as follows.

Motor rotational speed: 3 000 min⁻¹

Time to reach maximum speed: Less than 0.25 sec

[1] Load (converted to the motor axis)

Using the formula 30) and 31) on page B64, calculate the moment of inertia whereas γ is the material density of the ball screw.

(Screw shaft)

$$J_{B} = \frac{\pi \cdot \gamma}{32} D^{4} \cdot L = \frac{\pi \times 7.8 \times 10^{3}}{32} \times 1.5^{4} \times 80$$
$$= 0.31 \text{ (kg} \cdot \text{cm}^{2}\text{)}$$

(Moving part)

$$J_{w} = m \times \left(\frac{l}{2\pi}\right)^{2} = 60 \times \left(\frac{2}{2\pi}\right)^{2}$$
$$= 6.1 \text{ (kg} \cdot \text{cm}^{2}\text{)}$$

(Coupling)

 $J_{c} = 0.25 \text{ (kg} \cdot \text{cm}^2) \cdots \text{Temporary}$

(As a whole

Moment of inertia of the ball screw J_1 is:

$$J_{L} = J_{B} + J_{W} + J_{C}$$
$$= 0.31 + 6.1 + 0.25$$
$$= 6.7 \times 10^{-4} \text{ (kg} \cdot \text{m}^{2}\text{)}$$

[2] Driving torque

We assume that WBK12-01 compact light load type is used as recommended for W1507FA-3PG-C5Z20, and the moment of inertia of motor (J_M) is 3.1 $(ka \cdot cm^2)$ $(3.1 \times 10^{-4} \text{ kg} \cdot m^2)$.

(At the time of constant speed)

The torque which is necessary to drive the ball screw at a constant speed resisting to external loads is: per formula 28) on page B64

$$T_1 = T_a + T_{pmax} + T_u$$

In this formula, T_a is the drive torque at constant speed, T_{pmax} is the upper limit of the dynamic friction torque of ball screw, and T_u is the friction torque of the support bearings.

From the chart on pages B193 and B400, (T_{pmax}) is 7.8 $(N \cdot cm)$ and (T_{ij}) is 2.1 $(N \cdot cm)$ respectively.

$$T_{\rm a} = \frac{F_{\rm a} \cdot l}{2\pi \eta_1}$$

Using formula 26) on page B63, the drive torque at a constant speed T. is:

$$T_{1} = \frac{F_{a} \cdot l}{2\pi \cdot \eta_{1}} + T_{pmax} + T_{u}$$

$$= \frac{6 \times 2}{2\pi \times 0.9} + 7.8 + 2.1$$

$$= 12 (N \cdot cm) = 0.12 (N \cdot m)$$

(At the time of acceleration)

The drive torque necessary for accelerating the ball screw resisting axial load can be calculated by the formula 29) on page 64.

$$T_2 = T_1 + J \cdot \frac{2\pi \cdot n}{60t_1}$$

$$= T_1 + (J_L + J_M) \cdot \frac{2\pi \cdot n}{60t_1}$$

$$= 0.12 + (6.7 \times 10^4 + 3.1 \times 10^4) \frac{2\pi \times 3000}{60 \times 0.25}$$

$$= 1.35 \text{ (N} \cdot \text{m)}$$

(At the time of deceleration)

Similarly at the time of acceleration.

$$T_3 = T_1 - J \cdot \frac{2\pi \cdot n}{60t_3}$$

$$= T_1 - (J_L + J_M) \cdot \frac{2\pi \cdot n}{60t_3}$$

$$= 0.12 - (6.7 \times 10^4 + 3.1 \times 10^4) \frac{2\pi \times 3000}{60 \times 0.25}$$

$$= -1.11 \text{ (N \cdot m)}$$

[3] Selection of motor

Selection conditions are as follows.

Maximum rotational speed: $N_{M} \ge 3\,000\,(\text{min}^{-1})$ Motor rating torque: $T_{M} \ge T_{rms}\,(\text{N}\cdot\text{m})$

 $(T_{rms}: Effective torque)$

Moment of inertia of the motor: $J_{\rm M} > J_{\rm L}/3$ or more Form above: select an AC servo motor with the following specifications.

Motor specifications:

Rating power output: $W_{\rm M} = 300$ (W)

Maximum rotational speed:

 $N_{\rm M} = 3\,000\,({\rm min}^{-1})$

Rating torque: $T_M = 1 \text{ (N} \cdot \text{m)} = 1 \times 10^2 \text{ (N} \cdot \text{cm)}$ Moment of inertia: $J_M = 3.1 \times 10^4 \text{ (kg} \cdot \text{m}^2)$

 $= 3.1 (ka \cdot cm^{2})$

[4] Check on effective torque

Effective torque T_{rms} can be calculated as follows:

$$T_{\text{rms}} = \sqrt{\frac{T_2^2 \times t_a + T_1^2 \times t_b + T_3^2 \times t_c}{t}}$$

$$= \sqrt{\frac{1.35^2 \times 0.75 + 0.12^2 \times 0.55 + 1.11^2 \times 0.75}{3.5}}$$

$$= 0.81$$

Thus the condition of " $T_M \ge T_{rms}$ " is cleared.

[5] Check on time to reach maximum speed

The time required to reach the rapid traverse speed can be calculated as follows. Whereas $T_{\text{M}}' = 2 \times T_{\text{M}}$:

$$t_{a} = \frac{(J_{L} + J_{M}) \times 2\pi \times n}{(T_{M}' - T_{1})} \times 1.4$$

$$= \frac{(6.7 \times 10^{4} + 3.1 \times 10^{4}) \times 2\pi \times 3000}{(2 \times 1 - 0.12) \times 60} \times 1.4$$

$$= 0.23$$

Thus the ball screw meets the requirement of "0.25 sec or less".

From the above, use W1507FA-3PG-C5Z20

Drill 2: Processing table for special machines

1. Design conditions

Table mass: $m_1 = 1000 \text{ kg}$ Mass of the work: $m_2 = 600 \text{ kg}$ Maximum stroke: $S_{max} = 1000 \text{ mm}$ Maximum speed: $V_{\rm max} = 15\,000\,{\rm mm/min}$ Positioning accuracy: ±0.035/1 000 mm (no load)

* Attitude accuracy of the table and thermal displacement are not included in the accuracy requirement of the ball screw.

Repeatability: ±0.005 mm (no load)

Lost motion: 0.020 mm (no load) Required life expectancy: L = 20000 h

 $(16^{h} \times 250^{days} \times 10^{years} \times 0.5^{rate of operation})$

Guide way (sliding): $\mu = 0.15$

(friction coefficient)

Processing: Milling and drilling Drive motor: AC servo motor

 $(N_{\text{max}} = 2\ 000\ \text{min}^{-1})$

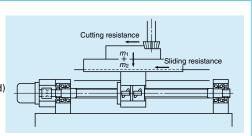


Fig. 16.3 System appearance

Table 16.2 Operating conditions

Operation	Axia	l load (N)	Feed speed	Use time	
Operation	Cutting resistance	Sliding resistance	(mm/min)	ratio (%)	
Rapid traverse	0	2 354	15 000	30	
Light/medium cutting	4 000	2 354	500	50	
Heavy cutting	8 000	2 354	100	20	

* Sliding resistance: $F_1 = \mu (m_1 + m_2) g = 0.15 \times (1000 + 600) \times 9.80665 = 2354 (N)$

* Ignore the inertia force at the time of acceleration/deceleration because their time rate is negligibly short.

2. Selection of basic factors

(1) Selection of accuracy grade and axial play

The proper accuracy grade for machining centers should be in the range from C1 to C5 according to "Table 4.1 Accuracy grades of ball screws and their applications" on page B19. Assuming the nut length is 200 mm and margin stroke is 100 mm, the shaft length L_0 is obtained as follows:

 L_0 = Maximum stroke + nut length + margin

= 1000 = (200) + (100) = 1300

From "Table 1.2 Tolerance on specified travel and travel variation of the positioning ball screws" on page B38, the accuracy factors which satisfy the required function are:

Accuracy C3 grade

 $e_0 = \pm 0.029/1 600 \text{ (mm)}$

 $v_{\parallel} = 0.018 \text{ (mm)}$

Considering the importance of lost motion, select the Z code (axial play 0 mm and less) for the axial play.

(2) Selection of lead

From the maximum rotational speed of AC servo motor N_{max} and rapid traverse speed of table V_{max} , lead l is:

$$l \ge \frac{V_{\text{max}}}{N_{\text{max}}} = \frac{15\ 000}{2\ 000} = 7.5\ (\text{mm})$$

A larger lead l would be beneficial for a higher feed speed. But from the view of the control system (resolution), the lead l is limited to 8 mm or 10 mm.

(3) Selection of screw shaft diameter

According to Table 4.4 "Screw shaft diameter, lead and stroke of standard ball screw" on page B21, the screw shaft diameter with the lead of 8 mm or 10 mm are in the range of 10 mm to 50 mm. Placing more importance on rigidity than to the volume of lost motion, select a relatively large size in the range of 32 mm to 50 mm.

(4) Selection of stroke

Select 1 000 mm, the maximum stroke as specified in the design condition.

Primary selection:

Standard ball screw

Shaft diameter: 32, 36, 40, 45, 50 mm

Lead: 8, 10 mm 1 000 mm Stroke:

grade: C3 Axial play code: Z

3. Confirmation of standard ball screw

Giving consideration to delivery time and price, select a standard ball screw.

At the primary selection of C3 grade is not found in the standard ball screws. Let us check for application-oriented ball screws whether there is a C3 grade among ball screw.

4. Confirmation of made-to-order ball screw

Because standard ball screws do not meet the accuracy grade requirement, we will consider made-to-order ball screws which are based on standard ball screws but with accuracy grade of C3.

Second selection:

Made-to-order ball screw

Shaft diameter: 32, 36, 40, 45, 50 mm

Lead: 8. 10 mm 1 000 mm Stroke:

Accuracy grade: C3 Axial play: 7

5. Selection of screw shaft diameter. lead, and nut

(1) Dynamic load rating

Obtain required load carrying capacity for each lead through load conditions. From **Table 16.2** "Operating conditions" on page B91, calculate the rotation speed N₂ as shown in Table 16.3.

$$N_i \geq \frac{V_i}{l}$$

Table 16.3 Load conditions

Operating condition	Axial load (N)	Rotations per $l = 8$	Use time ratio (%)	
Condition	(147	$\iota = 0$	<i>l</i> = 10	1410 (70)
Rapid traverse	$F_1 = 2354$	$N_1 = 1875$	$N_1 = 1500$	$t_1 = 30$
Light/medium cutting	$F_2 = 6354$	$N_2 = 62.5$	$N_2 = 50$	$t_2 = 50$
Heavy cutting	$F_3 = 10354$	$N_3 = 12.5$	$N_3 = 10$	$t_3 = 20$

By using the formulas 11) and 12) on page B53, calculate the mean load F_m and the mean rotational speed N_m as shown below.

$$F_{m} = \left(\frac{F_{1}^{3} \cdot N_{1} \cdot t_{1} + F_{2}^{3} \cdot N_{2} \cdot t_{2} + F_{3}^{3} \cdot N_{3} \cdot t_{3}}{N_{1} \cdot t_{1} + N_{2} \cdot t_{2} + N_{3} \cdot t_{3}}\right)^{1/3}$$

$$N_{\rm m} = \frac{N_1 \cdot t_{\rm a} + N_2 \cdot t_{\rm b} + N_3 \cdot t_{\rm c}}{t}$$

Table 16.4 Mean load and mean rotational speed

Tubio Tota Miculi Icaa ana n	iouii i otutic	mai opoou		
Lead (mm)	8	10		
Mean load F_m (N)	3 122	3 122		
Mean rotational speed N _m (min ⁻¹)	596	477		

Using the formulas 8) and 9) on page B53, calculate the required dynamic load rating.

$$C_a \ge (60 N_m \cdot L_t)^{1/3} \cdot F_m \cdot f_w \times 10^{-2} (N)$$

Whereas required life expectancy $L_t = 20\ 000\ (h)$, load coefficient $f_w = 1.2$ (refer to page B53),

$$l = 8 \text{ (mm)} \cdots C_a \ge 33 500 \text{ (N)}$$

$$l = 10 \text{ (mm)} \cdots C_a \ge 31 \ 100 \text{ (N)}$$

(2) Selection of the nut

Due to the requirement on the lost motion, the nut will be selected as follows emphasizing the importance of system rigidity.

Table 16.5 shows the dynamic load rating of each specification.

- · Standard nut ball screw, tube type
- Model: ZFT or DFT (pages B439 to B468)
- Number of turns of balls: Select from 2.5 turns 2 circuits or 2.5 turns 3 circuits

From **Table 16.5** select item that meets required dynamic load rating C_a as follows:

Third selection: In the range surrounded by the dotted lines in **Table 16.5**

Table 16.5 Dynamic load rating of each specification

Screw shaft	Dyı	Dynamic load rating <i>C</i> a: (N)										
diameter	Lead	8 mm	Lead 10 mm									
(mm)	2.5 turns 2 circuits	2.5 turns 3 circuits	2.5 turns 2 circuits 2.5 turns 3 circuits									
32	31 700	-	46 300 -									
36	_	_	49 300 -									
40	34 900	_	52 000									
45	_	_	54 200 76 800									
50	38 700	54 900	57 700 81 800									

(3) Permissible rotational speed

[1] Critical speed

Check if the rapid traverse speed of 15 000 mm/min $(V_{\rm max})$ clears the critical speed. Ball screw rotational speed at each lead N is:

$$l = 8 \text{ (mm)} \cdot \cdot \cdot \cdot N = 1.875 \text{ (min}^{-1})$$

$$l = 10 \text{ (mm)} \cdot \cdot \cdot \cdot N = 1500 \text{ (min}^{-1})$$

From the formula 7) on page B47, screw shaft root diameter to meet critical speed requirement is:

$$d_{\rm r} \ge \frac{N \cdot L_{\rm a}^2}{f} \times 10^{-7} \, (\rm mm)$$

In this formula, unsupported length L_a is:

$$= 1000 + 100 + 200 = 1300 (mm)$$

Supporting condition of the screw shaft is Fixed - Fixed support, and that of the ball nut is Fixed. Therefore, supporting condition is Fixed - Fixed support (Factor f = 21.9)

$$l = 8 \text{ (mm)} \cdots d_{c} \ge 14.5 \text{ (mm)}$$

$$l = 10 \text{ (mm)} \cdots d_r \ge 11.6 \text{ (mm)}$$

[2] *d* • *n* value

From **Table 3.2** on page B50, as the d·n is 70 000 or less, screw shaft diameters to meet the d·n are:

$$d \le \frac{70\ 000}{N}$$
 (mm)

$$l = 8 \text{ (mm)} \cdots d \leq 37.3 \text{ (mm)}$$

$$l = 10 \text{ (mm)} \cdots d \le 46.7 \text{ (mm)}$$

Based on nut specifications (pages B439 to B468) select an item that meets screw shaft root diameter (d_r) and screw shaft diameter (d).

* Please consult NSK if the d • n value is necessary to exceed 70 000.

Fourth selection: In the range surrounded by the solid-lines in **Table 16.5**

(4) Rigidity of the ball screw system

Set the lost motion of the ball screw system (screw shaft, nut and support bearings) at 80% of the specified value. Then calculate the system rigidity. The criterion lost motion is:

$$20 (\mu m) \times 0.8 = 16 (\mu m)$$

At this time, the one-way elastic deformation ΔL of the major factors of ball screw system shall be less than the half of above criterion.

$$\Delta L \leq 8 \text{ (um)}$$

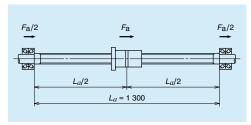


Fig. 16.3 Unsupported length

[1] Rigidity of the screw shaft K_s

Calculate the rigidity at the center of screw shaft where the axial deformation becomes the largest. Because the supporting condition of screw shaft is Fixed - Fixed support, the rigidity as per the formula 21) on page B58:

$$K_{\rm s} = \frac{\pi \cdot d_{\rm r}^2 \cdot E}{L_{\rm a}} \times 10^{-3} \text{ (N/mm)}$$

At here E is the elastic modulus. From the formula 17) on page B57, the elastic deformation of the screw shaft ΔL_s is:

$$\Delta L_{s} = \frac{F_{a}}{K_{s}} = \frac{F_{a} \cdot L_{a}}{\pi \cdot d_{r}^{2} \cdot E} \times 10^{3} \text{ (}\mu\text{m)}$$

The sliding resistance F_a is:

$$F_a = \mu (m_1 + m_2) = 0.15 \times (1000 + 600)$$

= 2354 (N)

Table 16.7 shows the rigidity of screw shaft K_s and the elastic deformation ΔL_s .

[2] Rigidity of the ball nut K_N

Set about 1/3 of the maximum axial load as the preload value F_{a0} .

$$F_{a0} = \frac{F_{max}}{3} = \frac{10\ 354}{3} = 3\ 452 \rightarrow 3\ 500\ (N)$$

From the formula 23) on page B60, the rigidity of the ball nut K_N is:

$$K_{N} = 0.8 \times K \left(\frac{F_{a0}}{\epsilon \cdot C_{a}} \right)^{1/3} = 0.8 \times K \left(\frac{3500}{0.1 \cdot C_{a}} \right)^{1/3}$$
 (N/µm)

K: Theoretical rigidity

From the formula 17) on page B58, elastic deformation of the ball nut $\Delta L_{\rm N}$ is:

$$\Delta L_{\rm N} = \frac{F_{\rm a}}{K_{\rm N}} = \frac{2354}{K_{\rm N}}$$

Table 16.7 shows the rigidity of ball nut K_N and the elastic deformation ΔL_N .

[3] Rigidity of the support bearing $K_{\rm R}$

The bearings are Ball screw support bearings NSKTAC C series. We specify the model number of support bearing unit for each shaft diameter as shown in **Table 16.6** (refer to page B415).

Table 16.6 Bearing code

Screw shaft diameter (mm)	Bearing code
32	25TAC62CDF
36	25TAC62CDF
40	30TAC62CDF
45	35TAC72CDF

Refer to page B419 for the rigidity $K_{\rm B}$ of each bearing unit (axial spring modulus). Elastic deformation of bearing $\Delta L_{\rm B}$ is:

$$\Delta L_{\rm B} = \frac{F_{\rm a}}{2K_{\rm o}}$$

Table 16.7 shows the rigidity of support bearing K_0 and the elastic deformation ΔL_0 .

Table 16.7 Rigidity and elestic deformation

Nut model	Screw shaft		Nut		Support	Total				
number	K _s	ΔL_s	K_{N}	ΔL_{N}	K _B	$\Delta L_{\scriptscriptstyle B}$	∆L			
DFT3210-5	347	6.8	839	2.8	1 000	1.2	10.8			
DFT3610-5	460	5.1	907	2.6	1 000	1.2	8.9	100		
DFT4010-5	589	4.0	973	2.4	1 030	1.1	7.5	001		
DFT4510-5	772	3.0	1 050	2.2	1 180	1.0	6.2	S N		
DFT4510-7.5	112	3.0	1 375	1.7	1 100	1.0	5.7			

Choose the most economical ball screw system which meets the requirement of one-way deformation (ΔL) of 8 um or less.

The selected ball screw:

Nut model number: DFT4010-5
Shaft diameter: 40 (mm)
Lead: 10 (mm)
Dynamic load rating: 52 000 (N)

6. Decision of screw shaft length

DFT4010 ball nut has the length of 193 mm, and thus the unsupported length of screw shaft L_a should be:

 L_a = Maximum stroke + nut length + margin = 1 000 + 193 + 100 = 1 293 \rightarrow 1 300 mm

NSK

7. Checking basic safety

(1) Permissible axial load

Calculate the buckling load for conditions shown in Fig. 16.4 with P of 10 354 (N) and L₁ of 1 210 (mm).

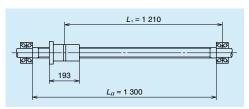


Fig. 16.4 Examination of bucking load

Supporting condition is Fixed - Fixed support, and from the calculation formula 2) on page B44, the screw shaft diameter d, to prevent buckling is

$$d_{r} \ge \left(\frac{P \cdot L_{1}^{2}}{m} \times 10^{4}\right)^{1/4}$$
$$= \left(\frac{10.354 \times 1210^{2}}{19.9} \times 10^{4}\right)^{1/4} = 16.6 \text{ (mm)}$$

From the specification of DFT4010-5 ball nut (page B457), the root diameter of screw shaft d. is 34.4 mm and thus meets the above condition.

Result: Acceptable

(2) Permissible rotational speed

[1] Critical speed n

From the critical speed calculation formula 7) on page B47:

$$n = f \cdot \frac{d_r}{L_1^2} \times 10^7 = 21.9 \times \frac{34.4}{1210^2} \times 10^7$$

⇒ 5 140

The maximum rotational speed (N_{max}) of 1 500 min⁻¹ is less than the critical speed, and thus meets the requirement.

Result: Acceptable

[2] *d* • *n* value

The $d \cdot n$ value is:

$$d \cdot n = 40 \times 1500 = 60000$$

From Table 3.2 on page B50, the d·n of tube type ball nut is 70 000 or less, and meets the requirement.

Result: Acceptable

(3) Life L.

The dynamic load rating C_a is 52 000 N (see dimension table on page B457), and from the formulas 8) and 9) on page B53 the life expectancy is:

$$L_t = \left(\frac{C_{\rm a}}{f_{\rm w} \cdot F_{\rm m}}\right)^3 \times 10^6 \times \frac{1}{60 \cdot N_{\rm m}}$$

The above result satisfies the required life of 20 000 (h). Result: Acceptable

8. Check whether the following factors satisfy requirements (1) Checking accuracy

[1] Positioning accuracy

The positioning accuracy of ±0.035/1 000 mm, and therefore, from Table 1.2 "Tolerance of specified travel and travel variation" on page B38 the positioning accuracy is:

Accuracy grade: C3

 $e_0 = \pm 0.029/1 600 \text{ (mm)}$

 $v_{..} = 0.018 \text{ (mm)}$

and thus meets the required positioning accuracy.

[2] Measures against thermal expansion

Provide pre-tension force equivalent to the elongation of 3°C temperature rise, taking in consideration of the load carrying capacity of bearings. Also, adjust the travel compensation for the specified travel equivalent to 3°C temperature rise (refer to page B40).

(a) Thermal elongation : ΔL

From the formula 1) on page B40:

$$\Delta L_{\theta} = \rho \cdot \theta \cdot L_{a} = 12.0 \times 10^{-6} \times 3 \times 1300$$

= 0.047 (mm)

(b) Pre-tension force : F_0

$$F_{\theta} = \Delta L_{\theta} \cdot Ks = \frac{\Delta L_{\theta} \cdot E \cdot \pi \cdot d_{r}^{2}}{\Delta I}$$

$$=\frac{0.047\times2.06\times10^{5}\times\pi\times34.4^{2}}{4\times1~300}$$

 $= 6922 \rightarrow 6900 (N)$

Travel compensation: -0.047/1 300 (mm)

Pre-tension force: 6 900 (N)

Tension (elongation) volume: 0.047 (mm)

[3] Selection of support bearing

Assuming that the ratio of basic dynamic load rating of support bearing (C₃) and pre-tension force $(F_{\rm B})$ is $\varepsilon_{\rm r}$ select a bearing which generally satisfies the following:

$$\varepsilon = F_{\rm e}/C_{\rm a} < 0.20$$

Design the bearing supporting configuration to which pre-tension force is applied in such way that the axial load is supported by the duplex combination or a more multiple condition. Please consult NSK when one bearing must sustain the pre-tension load.

Table 16.8 Comparison of dynamic load rating and pre-tension force

Bearing reference number	C _a (N)	ε
30TAC62CDF	29 200	0.23
30TAC62CDFD	47 500	0.14

Selected support bearing: 30TAC62CDFD

(2) Checking drive torque of motor

(Required specifications)

- Motor rotational speed: 1 500 min⁻¹
- Time to reach maximum speed: 0.16 sec or less (At the time of rapid traverse)

[1] Load (converted to the motor load)

Calculate the moment of inertia of ball screw.

From the formulas 30) and 31) on page B64, moment of inertia of ball screw parts J are calculated the load as follows, whereas y is material density and ball screw shaft length L₀ is 1 550 mm.

(Screw shaft)

$$J_{\rm B} = \frac{\pi \cdot \gamma}{32} D^4 \cdot L_{\rm o} = \frac{\pi \times 7.8 \times 10^3}{32} \times 4^4 \times 155$$

 $= 30 (ka \cdot cm^2)$

(Moving part)

$$J_{\rm w} = m \times \left(\frac{l}{2\pi}\right)^2 = 1\ 600 \times \left(\frac{1}{2\pi}\right)^2$$

$$= 40 (ka \cdot cm^2)$$

(Coupling)

$$J_c = 10 (kg \cdot cm^2) \cdots assumed$$

(Total)

$$J_{L} = J_{B} + J_{w} + J_{c} = 30 + 40 + 10$$

= 80 (kg · cm²) \rightarrow 80 × 10⁻⁴ (kg · m²)

[2] Driving torque

The required torque to drive a ball screw resisting to external loads T₁ can be obtained by the formula 28) on page B64:

$$T_1 = T_\Delta + T_P + T_H$$

In this formula, T_a is drive torque at constant speed, T_P is dynamic friction torque, and, T_{II} is friction torque of the support bearings. From the formula 26) and 25) on page B63, T_A and T_P are:

$$T_A = \frac{Fa \cdot l}{2\pi n_s}$$

$$T_P = 0.014 F_{a0} \sqrt{d_m \cdot l}$$

$$\eta_1 = 0.9$$

Refer to the starting torque value in Table 3 on page B419:

 $T_{\rm II}$ is:

$$T_{11} = 21 + 21 = 42 (N \cdot cm)$$

So, the required drive torque during rapid ... traverse T₁₁ and heavy cutting T₁₃ are: (At the time of rapid traverse)

$$T_{11} = T_{A1} + T_{P1} + T_{U1}$$

$$= \frac{2354 \times 1}{2\pi \times 0.9} + 0.014 \times 3500 \sqrt{4.1 \times 1} + 42$$

= 557 (N · cm) \rightarrow 557 × 10⁻² (N · m)

(At the time of heavy cutting)

$$T_{12} = T_{A2} + T_{P2} + T_{U2}$$

$$= \frac{10\ 354 \times 1}{2\pi \times 0.9} + 0.014 \times 3\ 500\ \sqrt{4.1 \times 1} + 42$$

$$= 1\ 972\ (\text{N} \cdot \text{cm}) \rightarrow 1\ 972 \times 10^{-2}\ (\text{N} \cdot \text{m})$$

[3] Selection of the motor

(Selection conditions)

Maximum rotational speed: $N_{\rm M} \ge 1500 \, ({\rm min}^{-1})$

Motor rating torque: $T_M > T_1 (N \cdot m)$

Moment of inertia of the motor: $J_{\rm M} > J_{\rm I}/3$ (kg · m²)

Based on the above, select AC servo motor as follows.

Motor specifications

Rating power output: $W_{\rm M} = 1.8$ (kW)

Maximum rotational speed:

 $N_{\rm M} = 1500 \, (\rm min^{-1})$

Rating torque: $T_{\rm M} = 22.5 \, (\rm N \cdot m)$

 $= 22.5 \times 10^{2} (N \cdot cm)$

Moment of inertia: $J_{\rm M} = 190 \times 10^{-4} \, (\text{kg} \cdot \text{m}^2)$

 $= 190 (kg \cdot cm^2)$

[4] Checking the time to reach maximum speed: Required time to reach rapid traverse speed can be calculated as follows (whereas $T_M' = 2 \times T_M$):

$$t_{a} = \frac{(J_{L} + J_{M}) \times 2\pi \times N}{(T_{M}' - T_{1}) \times 60} \times 1.4$$

$$= \frac{(80 \times 10^{-4} + 190 \times 10^{-4}) \times 2\pi \times 1500}{(2 \times 22.5 - 580 \times 10^{-2}) \times 60} \times 1.4$$

$$= 0.15 \text{ (sec)}$$

Thus the time meets the requirement 0.16 sec or less.

Drill 3: Cartesian type robot Z axis (vertical axis)

1. Design conditions

Mass of the traveling item : m = 300 kgMaximum travel : $S_{\text{max}} = 1500 \text{ mm}$ Rapid traverse speed : $V_{\text{max}} = 10000 \text{ mm/min}$

Repeatability: 0.3 mm Required life: $L_t = 24\,000\,h$

 $(16^{\text{hours}} \times 300^{\text{days}} \times 5^{\text{years}})$

Screw shaft supporting condition:

Fixed -- Simple support

Nut: Flanged single nut

Guide way (rolling): $\mu = 0.01$ (friction coefficient)

Drive motor: AC servo motor $(N_{\text{max}} = 1 \ 000 \ \text{min}^{-1})$

Environment: Slightly dusty

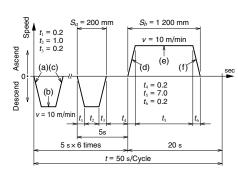


Fig. 16.5 System appearance

Fig. 16.6 Operating condition

2. Selection of basic factors

(1) Selection of accuracy grade

Although this application is not listed in **Table 4.1** "Accuracy grades of ball screw and their application" on page B19, the possibility is to use a ball screw for transfer equipment R series, because the required repeatability is 0.3 mm that is not very high.

(2) Selection of lead

From the maximum rotational speed of AC motor:

$$l \ge \frac{V_{\text{max}}}{N_{\text{max}}} = \frac{10\ 000}{1\ 000} = 10\ \text{(mm)}$$

Select a lead 10 mm or over.

(3) Selection of screw shaft diameter

According to the **Table 4.6** "Shaft diameter, lead and standard screw length of R Series" on page B23, the shaft diameters whose lead is 10 mm or over are in the range of 12 mm to 50 mm.

(4) Selection of stroke

From the **Table 4.6** "Screw shaft diameter, lead and standard screw shaft length of R series" on page B23, it is possible to select from R series because the diameter d of 15 mm to 50 mm and lead *l* of 10 mm will meet the required maximum stroke of 1500 mm.

Primary selection: R Series ball screw for transfer equipment

Screw shaft diameter: 15 - 50 (mm) Lead: 10 (mm)

Stroke: 1 500 (mm)

3. Confirmation of standard ball screw

Select from a flanged single nuts of R Series ball screws for transfer equipment.

 $Second\ selection: R\ Series\ ball\ screw\ for\ transfer\ equipment$

Screw shaft diameter : 16, 20, 25, 32, 36

40, 45, 50 (mm)

Lead: 10 (mm) Stroke: 1 500 (mm)

4. Decision of screw length

Screw length L_{\circ} is:

L_o = Stroke + nut length + margin + shaft end length

$$= 1500 + 100 + 100 + 200 = 1900 (mm)$$

Normally, the overall screw shaft length L_{\circ} less than or equal to 70 times of screw shaft diameter d is recommended.

Therefore, screw shaft diameter d is:

$$d \ge \frac{L_s}{70} = \frac{1900}{70} = 27.1 \text{ (mm)}$$

Third selection: R Series ball screw for transfer equipment Shaft diameter: 32, 36, 40, 45, 50 (mm)

Lead: 10 (mm)

Stroke: 1 500 (mm)

5. Checking basic safety

(1) Allowable axial load

[1] Calculation of allowable axial load Accelerating/decelerating time is:

$$\alpha = \frac{V}{60 \ t} = \frac{10 \times 10^3}{60 \times 0.2} = 833 \ (\text{mm/s}^2)$$
$$= 0.833 \ (\text{m/s}^2)$$

$$t = t_1 = t_3 = t_4 = t_6$$

(a), (f)
$$\cdots F_1 = mg - m\alpha$$

$$= 300 \times 9.80665 - 300 \times 0.833$$

$$= 2.690 (N)$$

(b), (e) $\cdots F_2 = mg = 2940 (N)$

(c), (d) $\cdots F_3 = mg + m\alpha = 3 \ 190 \ (N)$

[2] Buckling load

For condition in **Fig. 16.7**, use values below. P = 3 190 N, $L_1 = 1 600 \text{ mm}$

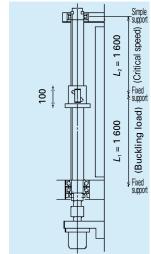


Fig. 16.7 Inspecting for buckling load and critical

From the formula 2) on page B44:

$$d_{r} \ge \left(\frac{P \cdot L_{1}^{2}}{m} \times 10^{-4}\right)^{1/4}$$
$$= \left(\frac{3.190 \times 1.600^{2}}{19.9} \times 10^{-4}\right)^{1/4} = 14.2 \text{ (mm)}$$

(2) Checking permissible rotational speed

[1] Critical speed

Use values below.

 $n = 1\,000 \,(\text{min}^{-1}), L_2 = 1\,600 \,(\text{mm})$

From the formula 7) on page B47:

$$d_r \ge \frac{n \cdot L_z^2}{f} \times 10^{-7} = \frac{1000 \times 1600^2}{15.1} \times 10^{-7}$$

= 17 (mm)

[2] *d* • *n* value

From Table 3.2 on page B50:

$$d \le \frac{50\ 000}{n} = \frac{50\ 000}{1\ 000}$$

= 50 (mm)

* Please consult NSK when the d • n value exceeds 50 000.

(3) Checking life (dynamic load rating)

Determine the required load carrying capacity from load conditions of **Table 16.9**.

Table 16.9 Load conditions

Operating condition	Axial load (N)	Rotational speed (mean) (min ⁻¹)	Use time (s)
(a) _{×6} (f)	$F_1 = 2690$	$N_1 = 500$	$t_{\rm a} = 1.4$
(b) _{×6} (e)	$F_2 = 2940$	$N_2 = 1 000$	$t_{\rm b} = 13.0$
(c) _{x6} (d)	$F_3 = 3 190$	$N_3 = 500$	t _c = 1.4

Calculate mean load F_m and mean rotational speed N_m from the formulas 11) and 12) on page B53:

Required load carrying capacity is:

$$F_{m} = \left(\frac{F_{1}^{3} \cdot N_{1} \cdot t_{a} + F_{2}^{3} \cdot N_{2} \cdot t_{b} + F_{3}^{3} \cdot N_{3} \cdot t_{c}}{N_{1} \cdot t_{a} + N_{2} \cdot t_{b} + N_{3} \cdot t_{c}}\right)^{1/3}$$

$$= 2940 (N)$$

$$N_{m} = \frac{N_{1} \cdot t_{a} + N_{2} \cdot t_{b} + N_{3} \cdot t_{c}}{t}$$

From the formulas 8) and 9) on page B53:

$$C_a \ge (60 N_m \cdot L_1)^{1/3} \cdot F_m \cdot f_w \times 10^{-2} \text{ (N)}$$

= $(60 \times 288 \times 24000)^{1/3} \times 2940 \times 1.2 \times 10^{-2}$
= 26 300 (N)

(4) Checking static load rating

= 288 (min⁻¹)

$$C_{0a} = F_{max} \times f_{s} = 3 \ 190 \times 2$$

= 6 380 (N)

In consideration of expense, select a ball screw shaft as follows.

Fourth selection: R Series ball screw for transfer equipment

Shaft diameter: 32 (mm) Lead: 10 (mm)

Stroke:

Turns of balls and circuit number : $2.5\times2\,$

Screw length: 2 000 (mm)

Basic dynamic load rating: 35 700 (N)

6. Selection of nut

Select a "standard nut with a flange and a builtin brush seals" based on the environmental conditions.

Selected ball screw:

Nut assembly RNFTL3210A5S

Screw shaft RS3210A20

NSK

B-2-18 Reference

"NSK Motion & Control (technical journal)" was compiled to introduce NSK products and its technologies. You will find data summaries which are imperative in selecting ball screws in this catalog. If you need detailed technical data, other than described in this catalog, please refer to "NSK Motion & Control" technical journal. For inquiries and orders, please contact NSK branch offices, sales offices, and representatives assigned at various locations.

Table 17.1 NSK Motion & Control (technical journal): Issues relating to ball screws (1980-)

Issued Date	Title
Jun. 1998	Recent Technical Trends in Ball Screws
May. 2000	Ball Screw with Rotating Nut and Vibration Damper
Oct. 2000	WFA Standard-Stock Ball Screws
Apr. 2001	High Performance Seals for Ball Screws
Oct. 2001	Development of NSK S1 Series Ball Screws and Linear Guides
Oct. 2001	Low Inertia Series of Nut Rotatable Ball Screws
Oct. 2002	Development of HTF Series Ball Screws for High Load Drive Application
Oct. 2002	High Lead Precision Rolled Ball Screws
May. 2003	High Speed and Low Noise Ball Screws HMC-B02 Series
Dec. 2003	Clean Support Units for Ball Screws
Aug. 2004	Development of High Speed and Low Noise Ball Screws
Aug. 2005	S3 Ball Screws: Super Low Noise Ball Screws for Automation Equipment
Sep. 2006	High-Speed and Low-Noise Ball Screw for Standard Stock - Compact FA Series
Dec. 2007	V1 Series of Ball Screws for Contaminated Environments
	HTF-SRC Series of Ball Screws for High-Speed and High-Load Applications
Mar. 2011	Technological Trends of Ball Screws for Industrial Machinery
	BSL Series of Ball Screws for Small Lathes
	HTF-SRD Series of Long-Lead Ball Screws for High-Speed and Heavy-Load Applications
Jun. 2013	TW Series of Ball Screws for Twin-Drive Systems
	HMD Series of Ball Screws for High-Speed Machine Tools
Dec. 2014	Ball Screw for Motorcycle Brake Systems
	Jun. 1998 May. 2000 Oct. 2000 Apr. 2001 Oct. 2001 Oct. 2002 Oct. 2002 May. 2003 Dec. 2003 Aug. 2004 Aug. 2005 Sep. 2006 Dec. 2007 Mar. 2011 Jun. 2013

B-2-19 Guide to Technical Services

(1) CAD data

■Web page

http://www.jp.nsk.com/app01/en/ctrg/

■CD-ROM

CAT. No. 7110

(3D data: Intermediate format or native,

2D date: DXF)

Catalog No.7110 (CD-ROM) contains precision machine components and rolling bearings.

Standard Ball Screws

•Finished shaft end (Compact FA series, MA type, FA type, SA type,

KA type, and RMA type)

•Blank shaft end (MS type, FS type, and SS type)

Standard nut ball screws

• End deflector type

Standard support units

(2) Telephone consultation with NSK engineers

This catalog contains technical explanation for each section. However, some descriptions and explanations may be insufficient due to page limitation, etc. To amend this shortcoming, NSK offers telephone assistance. NSK engineers are pleased to help you. Our local offices are listed in the last part of this catalog. Call local NSK office or representative in your area.

(3) Additional machining (processing) some part of standard ball screws in stock

NSK processes standard ball screw blank shaft end. NSK also cuts linear guide rails to required length for you. Service is available at NSK processing factories throughout the world. Requests are taken by branch offices and agencies.

B101 B102

B-2-20 Precautions When Handling Ball Screws

Ball screws are precision products. They require careful handling as described below.

Lubrication

- (1) Confirm the state of lubrication before use. Insufficient lubrication causes loss of ball screw functions in a short period.
- (2) Do not apply any lubrication if grease is already applied to the ball screws. Remove dust or swarf if they stuck to the greased surface during handling. Wipe the surface with clean white kerosene, and then apply the same type of new lubricant before use. Avoid using different types of grease at the same time.

Consult NSK for special oil lubricant if it is required to your application.

(3) Check the grease after two to three months of operation. Wipe off the old grease if it is excessively contaminated, and apply sufficient volume of a fresh coat of grease. After the initial check, check and replenish the grease approximately every year. Check more often if environment requires. Note: Refer to pages B67 and D13 for lubrication.

Do not reassemble Watch out for falling objects

Handle with care

Do not apply shock

Handling

- (1) Never disassemble the ball screw. It invites dust to enter, and lowers precision, or may cause an
- (2) Once the ball screw is disassembled for some reason, the user should never reassemble the ball screw by himself. Loss of ball screw function is apt to occur if a mistake is made. Please send the ball screw to NSK for repair or re-assembly. It will be reworked at the minimum service charge.
- (3) The ball screw shaft or nut may fall off due to its own weight. Watch out for such falling object. If it falls, the ball groove or ball recirculation component may be damaged and their function might be lost. Make certain to return such item to NSK for check. There will be the minimum charge for this service.
- (4) If the recirculation component, the shaft outside, or the ball groove is scratched or damaged by impact, recirculation operation becomes deficient, and may cause a loss of function.

Note: Refer to page B73 for assembling components.

Rotational speed limitation

Do not overrun

Temperature limitation

Precautions in use

- (1) Ball screws should be used in a clean environment. Use a dust cover to keep dust and swarf from entering into the system. Insufficient dust protection causes not only the ball screw function to deteriorate but also brings about damage to the recirculation components if dust plugs the system. This may result in more serious accident such as a fall of the table.
- (2) For rotational speed in operation, refer to the applicable section in this catalog which describes permissible rotational speeds, or to specification drawing furnished by NSK. Exceeding permissible rotational speed damages recirculation components, and may cause the table to fall. A precaution system such as a safety nut is recommended in vertical use of ball screw. Please consult NSK for safety system.
- (3) Overrunning ball nut (removed from the ball thread) causes the balls to fall out, damages recirculation components, and dent ball groove, resulting in insufficient operation. Continued use under such conditions may cause premature wear, and damages recirculation components. For these reasons, avoid overrun by all means. If overrun occurs, please request NSK to check. There will be a minimum charge for this service.
- (4) Ball screws are designed to be used at a temperature of less than 80°C. Do not operate at temperatures higher than this limit. Use at a higher temperature may damage recirculation and seal components. Please consult NSK if it is necessary to use at a temperature higher than the limit.

When using NSK K1 lubrication unit, the operating temperature should be 50°C or less. (Momentary maximum temperature in use: 80°C)

Note: Please read page B83 before designing.

Store in the correct position

Storage

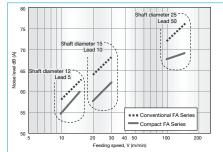
- (1) Store in the original NSK package. Do not unwrap or tear the inner wrapping if it is not necessary. This allows dust to enter and rust to set in, and may deteriorate functions.
- (2) The following position is recommended when storing ball screws.
- ① Keep in the NSK original package, and place it flat.
- 2 Place flatly on supports; store in a clean area.
- 3 Hang vertically in a clean place.

B-3 Ball Screw Dimension Table

1. Compact FA Series	B107
2. High-Speed SS Series	B147
3. Finished Shaft End	B157
MA Type, Miniature, Fine Lead	B159
FA Type for Small Equipment	B181
SA Type for Machine Tools	B217
4. Finished Shaft End	
KA Type Stainless Steel Product	B273
5. Blank Shaft End	B299
MS Type, Miniature, Fine Lead	B301
FS Type for Small Equipment	B309
SS Type for Machine Tools	B321
6. Ball Screws for Transfer Equipment	B349
7. Accessories	B389

NSK

B-3-1 Dimension Table and Reference Number of Standard Ball Screws


B-3-1.1 Compact FA Series PSS Type, USS Type, and FSS Type

1. Features

In order to respond quickly to a wide range of needs, NSK keeps end-deflector recirculation system ball screws, which offer high-speed and low-noise operation and compact design, in standard inventories as the Compact FA Series. The exceptionally high performance ball screws are ready for use in a variety of fields such as semiconductor manufacturing equipment, LCD manufacturing equipment, chip mounting equipment, measuring apparatus, food and medical equipment, and automotive manufacturing equipment.

●Quieter sound

The operating noise level of ball screws has been reduced by 6 dB, about half of what is sensed by the ear.

(Microphone was positioned at a distance of 400 mm for all noise levels)

Fig. 1 Comparison of noise level

■Compact

The outside diameter of the ball nut is as much as 30% smaller than those of existing NSK products. This contributes to more compact design of all sorts of equipment and devices such as low-profile positioning stages.

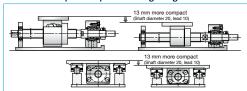


Fig. 2 Comparison of FA Type and Compact FA Series PSS Type

●High speed

The permissible rotational speed up to 5 000 min⁻¹. This capability dramatically expands the range of service conditions.

Please refer to the dimension tables for details of the permissible rotational speed.

A grease fitting is provided as a standard equipment

The new ball screw type is equipped with a grease fitting (M5 \times 0.8) as a standard equipment. Two lubrication ports are provided to facilitate easy maintenance.

Storage seal

Compact, thin plastic seal is available. Nut outside diameter is compact compare with the return tube recirculation system.

●Low-profile design

The low-profile support units especially compatible with the compact FA Series are available for a superb space-saving design.

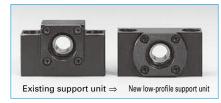
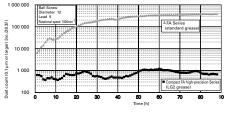



Fig. 3 Comparison of support units

● Low dust generation LG2 grease (USS Type)

The dust count is approximately 1/100 that of the existing FA series. It is suitable for applications in clean environments.

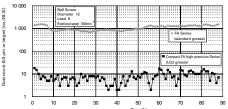


Fig.4 Comparison of dust count

●Easy stroke setting (FSS Type)

Flexible stroke setting with fixed-simple support by means of mounting support unit (simple support side) directly onto ball screw thread outside diameter. Proprietary support unit (simple support side) is available from NSK.

2. Order of the dimension table

For each type, it is arranged in order from small diameter to large.

3. Dimension tables

Dimension tables show shapes/sizes as well as specification factors of each shaft diameter/ lead combination. Tables also contain data as follows:

Stroke

Nominal stroke: A reference for your use. Maximum stroke: The limit stroke that the nut can move. The figure is obtained by subtracting the

nut length from the effective threaded length (L₁).

Lead accuracy

PSS Type, C5 grade; USS Type, C3 grade; FSS Type, Ct7 grade

T: Travel compensation

e_n: Tolerance on specified travel

υ...: Travel variation

See "Technical Description: Lead Accuracy" (page B37) for the details of the codes.

Fig.5 Flexible stroke setting

●Permissible rotational speed

d • n:

Limited by the relative peripheral speed between the screw shaft and the nut.

Critical speed: Limited by the natural frequency of a ball screw shaft. Critical speed depends on the supporting condition of screw shaft.

The lower of the two criteria, the d·n and critical speed, will determine the overall permissible rotational speed of the ball screw. For details, rotational speed of the ball screw. For details, see "Technical Description: Permissible Rotational Speed" (page B47).

4. Other

The seal of the ball screw and end deflector are made of synthetic resin. Consult NSK 🕏 when using our ball screws under extreme environments or in special environments, or if using special lubricant or oil.

The NSK K1 cannot be mounted to the compact FA Series.

For special environments, see pages B70 and D2. For lubrications, see pages B67 and D13.

Note: For details of standard stock products, contact NSK.

Table 1 Combinations of screw shaft diameter and lead

Lea Screw shaft diameter	d 5	8	10	12	15	20	25	30	40	50	60
6		B109		B109							
8			B111		B111						
10	B113 B133		B113								
12	B115 B135		B115 B139			B115		B115			
15	B117 B137		B117 B141			B119 B141		B119			
20	B121		B121 B143			B123 B143		B123	B125		B125
25	B127		B127 B145			B129 B145	B129 B145	B131		B131	

B107 B108

Screw shaft ø6

Lead 8, 12

Unit: mm

Ball screw specification					
Ball diameter/screw shaft root diameter	1.2 / 4.9				
Ball circle dia.	6.2				
Accuracy grade/axial play	C5 / 0.005 or less				
Factory-packed grease	NSK grease PS2				

Recommended

For drive side (Fixed)				
WBK04-01M (square)				
WBK04-11M (round)				

2- \(\phi 3.4 \) drill thru (equally spaced) Cross-section X-X

- ⊥ 0.005 E

23

M4×0.5

	Screw shaft	Lead	Effective	Basic load ratings (N)		Maximum	Nut	Screw shaft dimensions		
Ball screw No.	diameter	Leau	tums of balls	Dynamic	Static	stroke	length			
	d	l		$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$		L	$L_{\rm t}$	L_1	
PSS0608NAD0150	6 –	8	2	550	715	97.5	16	118.5	8.5	
PSS0608NBD0150		0	4	1 180	1 760	89.5	24	118.5	8.5	
PSS0612NAD0150		-	12	2	550	715	92	20	117	10
PSS0612NBD0150		12	4	1 180	1 760	80	32	117	10	

φ 14 φ 27

A

150

Notes: 1. Contact NSK if permissible rotational speed is to be exceeded.

⊥0.010 A

L_t (quenching range)

127

Lead accuracy			Dynamic	Mana	Permissible	Internal spatial	Standard volume of
Target value	Error	Variation	preload torque	Mass	rotational speed	volume of nut	grease replenishing
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	(N·cm)	(kg)	(min ⁻¹) *1	(cm³)	(cm³)
	0.020	0.020 0.018	~0.5	0.06		0.2	0.1
0				0.06	5 000	0.3	0.2
U				0.06	5 000	0.2	0.1
				0.07		0.3	0.2

- Service temperature range is 0 to 80°C.
 Use of NSK support unit is recommended. Refer to page B389 for details.

Unit: mm

Screw shaft ø8

Lead 10, 15

Unit: mm

Ball screw specification					
Ball diameter/screw shaft root diameter	1.588 / 6.6				
Ball circle dia.	8.3				
Accuracy grade/axial play	C5 / 0.005 or less				
Factory-packed grease	NSK grease PS2				

Recommended

For drive side (Fixed)					
WBK06-01M (square)					
WBK06-11M (round)					

	2-43.4 drill thru (equally spaced)
9.5	9.5
19	
Cross-section	n <i>X-X</i>

Ball screw No.	Screw shaft diameter d	Lead <i>l</i>	Effective tums of balls		ratings (N) Static C _{0a}	- Maximum stroke	Nut length <i>L</i>	Screw shaft	dimensions L ₁
PSS0810NAD0150		10	2	910	1 260	86.5	18	109.5	10.5
PSS0810NBD0150	8	10	4	1 950	3 080	76.5	28	109.5	10.5
PSS0815NAD0150	l °	15	2	910	1 260	80	22	107	13
PSS0815NBD0150		15	4	1 950	3 080	65	37	107	13

φ 18 φ 31

150

Ε

30

M6×0.75

0.010 E

Notes: 1. Contact NSK if permissible rotational speed is to be exceeded.

⊥ 0.010 A →

L_t (quenching range)

	Lead accuracy		Dynamic	Mass	Permissible	Internal spatial	Standard volume of
Target value	Error	Variation	preload torque	Mass	rotational speed	volume of nut	grease replenishing
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	(N·cm)	(kg)	(min ⁻¹) *1	(cm³)	(cm³)
	0.020	0.020 0.018	~0.5	0.09		0.4	0.2
0				0.11	5 000	0.5	0.3
0				0.1	5 000	0.4	0.2
				0.12		0.6	0.3

- Service temperature range is 0 to 80°C.
 Use of NSK support unit is recommended. Refer to page B389 for details.

Unit: mm

4- φ4.5 drill thru φ8 c'bore, 4.5 depth

Plug (oil hole, M5×0.8 tap)

Cross-section X-X

Screw shaft ø10

Lead 5, 10

Unit: mm

Ball screw specification					
Preload type	Oversize ball preload (P-preload)				
Ball diameter/screw shaft root diameter	2.000 / 8.2				
Ball circle dia.	10.3				
Accuracy grade/axial play	C5 / 0				
Factory-packed grease	NSK grease PS2				

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK08-01B (low-profile, square)	WBK08S-01B (low-profile, square)
WBK08-11B (round, high load)	

Unit: mm

Lead accuracy		Shaft	Dynamic preload	Mass	Permissible rotational speed (min ⁻¹) *2	Internal spatial	Standard volume of	
get value	Error	Variation	run-out	torque	IVIASS	Fixed-Simple	volume of nut	grease replenishing
Τ	$e_{\scriptscriptstyle \mathrm{p}}$	υu	С	(N·cm) *1	(kg)	rixeu-Simple	(cm³)	(cm³)
	0.020	0.018	0.030	0.7 - 3.3	0.3			
	0.020	0.018	0.045	0.7 - 3.3	0.3			
	0.023	0.018	0.060	0.6 - 4.3	0.3	5 000	0.8	0.4
	0.025	0.020	0.070	0.6 - 4.3	0.4			
0	0.027	0.020	0.085	0.4 - 4.9	0.5			
	0.020	0.018	0.045	0.7 - 3.3	0.3			
	0.023	0.018	0.060	0.6 - 4.3	0.4	5 000	0.7	0.4
	0.025	0.020	0.070	0.6 - 4.3	0.4	5 000		
	0.027	0.020	0.085	0.4 - 4.9	0.5			

- 4. Use of NSK support unit is recommended. Refer to page B389 for details.5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

10.005 F - 10.005 E 11.0005 E 12.0005 E 12.0005 E 13.0005 E 14.0005 E 15.0005 E 15.0	
L _a L _o 37	

	Screw shaft	Lead	Basic load	Basic load ratings (N)		Stroke		Screw shaft dimensions		
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length			
	d	l	C _a	C_{0a}	INOITIIIIai	IVIAX.	L	$L_{\rm t}$	La	L。
PSS1005N1D0171					50	78		112	125	171
PSS1005N1D0221		5	2 930	4 790	100	128	29	162	175	221
PSS1005N1D0321					200	228		262	275	321
PSS1005N1D0421					300	328		362	375	421
PSS1005N1D0521	10				400	428		462	475	521
PSS1010N1D0221					100	125		162	175	221
PSS1010N1D0321		10	1 970	3 010	200	225	32	262	275	321
PSS1010N1D0421			1970		300	325	32	362	375	421
PSS1010N1D0521					400	425		462	475	521

- Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.


 2. Contact NSK if permissible rotational speed is to be exceeded.

 - 3. Service temperature range is 0 to 80°C.

B113 B114

Screw shaft ø12 Lead 5, 10, 20, 30

Unit: mm

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK08-01B (low-profile, square)	WBK08S-01B (low-profile, square)
WBK08-11B (round, high load)	

I Init:	mm

	ad accura		Shaft	Dynamic preload	Mass	Permissible rotational speed (min ⁻¹) *2		Standard volume of	
Target value	Error	Variation	run-out	torque		Fixed-Simple		grease replenishing	
T	$e_{\scriptscriptstyle p}$	υu	С	(N·cm) *1	(kg)		(cm³)	(cm³)	
	0.020	0.018	0.030	0.7 - 3.3	0.3				
	0.020	0.018	0.045	0.7 - 3.3	0.3				
	0.023	0.018	0.060	0.6 - 4.3	0.4	5 000	1.0	0.5	
	0.025	0.020	0.070	0.6 - 4.3	0.5	3 000	1.0	0.5	
	0.027	0.020	0.085	0.6 - 4.3	0.6				
	0.030	0.023	0.085	0.4 - 4.9	0.7				
	0.020	0.018	0.045	0.7 - 3.3	0.4				
	0.023	0.018	0.060	0.6 - 4.3	0.5				
	0.025	0.020	0.070	0.6 - 4.3	0.5	5 000	1.0	0.5	
	0.027	0.020	0.085	0.6 - 4.3	0.6	.6			
0	0.030	0.023	0.085	0.4 - 4.9	0.7				
	0.023	0.018	0.045	1.4 - 4.5	0.4	5 000			
	0.023	0.018	0.060	0.9 - 4.9	0.5	5 000			
	0.027	0.020	0.070	0.9 - 4.9	0.6	5 000	1.2	0.6	
	0.030	0.023	0.085	0.6 - 5.9	0.7	5 000			
	0.030	0.023	0.110	0.6 - 5.9	0.8	4 480			
	0.023	0.018	0.045	1.4 - 4.5	0.5	5 000			
	0.023	0.018	0.060	0.9 - 4.9	0.6	5 000			
	0.027	0.020	0.070	0.9 - 4.9	0.7	5 000	1.5	0.8	
	0.030	0.023	0.085	0.6 - 5.9	0.7	5 000			
	0.030	0.023	0.110	0.6 - 5.9	0.8	4 720			

- 4. Use of NSK support unit is recommended. Refer to page B389 for details.
- 5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(10.018A) (10.018A) (10.005F)	2-thin plastic seal (synthetic plastic) 10.012 A (synthetic plastic) 4 4 4 4 4 4 4 4 4 4 4 4 4	M8×1.0 M8×1.0 M8×1.0	√0.010IE **** **** **** **** **** ****
L _a L _o 3/	 	,		
<u>L</u> o	- 9	L _a	3/	
		Lo		

(Fine, Medium, High helix lead)

	Screw shaft Lead Basic load ratings (N)		Stro	oke	Nut	Screv	Screw shaft dimensions					
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length					
	d	l	C _a	C_{0a}	INOITIIIIai	iviax.	L	$L_{\rm t}$	La	L _o	L ₁	
PSS1205N1D0171					50	75		110	125	171		
PSS1205N1D0221					100	125		160	175	221		
PSS1205N1D0321		5	3 200	5 860	200	225	30	260	275	321	7	
PSS1205N1D0421		5	3 200	5 600	300	325	30	360	375	421	′	
PSS1205N1D0521					400	425		460	475	521		
PSS1205N1D0621					500	525		560	575	621		
PSS1210N1D0221					100	112		160	175	221		
PSS1210N1D0321					200	212		260	275	321		
PSS1210N1D0421		10	3 200	5 860	300	312	43	360	375	421	7	
PSS1210N1D0521					400	412		460	475	521		
PSS1210N1D0621	12				500	512		560	575	621		
PSS1220N1D0271					100	153		208	225	271		
PSS1220N1D0371					200	253		308	325	371		
PSS1220N1D0471		20	2 150	3 610	300	353	50	408	425	471	9	
PSS1220N1D0571					400	453		508	525	571		
PSS1220N1D0671					500	553		608	625	671		
PSS1230N1D0271					100	128		203	225	271		
PSS1230N1D0371					200	228		303	325	371		
PSS1230N1D0471		30	2 150	3 610	300	328	70	403	425	471	14	
PSS1230N1D0571						400	428		503	525	571	
PSS1230N1D0671					500	528		603	625	671		

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

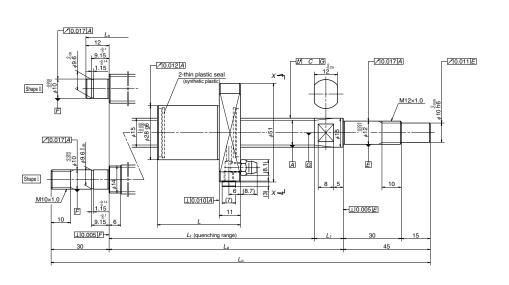
Cross-section X-X

Screw shaft ø15

Lead 5, 10

Unit: mm

Ball screw s	pecification
Preload type	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	2.778 / 12.6
Ball circle dia.	15.5
Accuracy grade/axial play	C5 / 0
Factory-packed grease	NSK grease LR3


Recommended support unit

For drive side	For opposite	to drive side
(Fixed)	(Fixed)	(Simple)
WBK12-01B (low-profile, square)	WBK10-01B (low-profile, square)	WBK12S-01B (low-profile, square)
WBK12-11 (round)	WBK10-11 (round)	

Unit: mm

Left shaft end	Le	ad accura	асу	Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2	Internal spatial	Standard volume of
(opposite	Target value	Error	Variation	run-out	preload torque	IVIGSS	Fixed-	Fixed-	volume of nut	grease replenishing
driven side)	T	$e_{\scriptscriptstyle p}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
		0.020	0.018	0.035	0.2 - 6.9	0.5	5 000			
		0.020	0.018	0.035	0.2 - 6.9	0.5	5 000			
		0.023	0.018	0.045	0.2 - 6.9	0.6	5 000			
П		0.025	0.020	0.050	0.4 - 9.8	8.0	5 000	_	2.0	1.0
		0.027	0.020	0.060	0.4 - 9.8	0.9	5 000			
		0.030	0.023	0.075	0.4 - 9.8	1.0	5 000			
		0.035	0.025	0.075	0.4 - 11.8	1.1	4 130			
П	0	0.020	0.018	0.035	0.6 - 7.4	0.6	5 000	_		
П		0.023	0.018	0.045	0.6 - 7.4	0.7	5 000	_		
П		0.025	0.020	0.050	0.4 - 9.8	0.8	5 000	_		
П		0.027	0.020	0.060	0.4 - 9.8	1.0	5 000	_		
П		0.030	0.023	0.075	0.4 - 9.8	1.1	5 000	_	2.0	1.0
П		0.035	0.025	0.075	0.4 - 11.8	1.2	4 210	_		
I		0.035	0.025	0.095	0.4 - 11.8	1.4	3 190	4 410		
I		0.040	0.027	0.095	0.4 - 11.8	1.5	2 500	3 470		
I		0.046	0.030	0.120	0.4 - 11.8	1.7	1 650	2 320		

- 4. Use of NSK support unit is recommended. Refer to page B389 for details.5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

	Screw shaft	ew shaft Lead Basic load ratings (N) Stroke		oke	Nut	Scre	Screw shaft dimensions				
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length				
	d	l	C _a	C_{0a}	INOITIIIai	iviax.	L	$L_{\rm t}$	La	L _o	L_1
PSS1505N1D0211					50	103		139	154	211	
PSS1505N1D0261					100	153		189	204	261	
PSS1505N1D0361					200	253		289	304	361	
PSS1505N1D0461		5	5 460	10 200	300	353	30	389	404	461	15
PSS1505N1D0561					400	453		489	504	561	
PSS1505N1D0661					500	553		589	604	661	
PSS1505N1D0761					600	653		689	704	761	
PSS1510N1D0261	15				100	140		189	204	261	
PSS1510N1D0361					200	240		289	304	361	
PSS1510N1D0461					300	340		389	404	461	
PSS1510N1D0561					400	440		489	504	561	
PSS1510N1D0661		10	5 460	10 200	500	540	43	589	604	661	15
PSS1510N1D0761					600	640		689	704	761	
PSS1510N1D0879					700	740		789	804	879	
PSS1510N1D0979					800	840		889	904	979	
PSS1510N1D1179					1 000	1 040		1 089	1 104	1 179	

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

B117 B118

Screw shaft ø15

Lead 20, 30

Unit: mm

Ball screw specification										
Preload type	Oversize ball preload (P-preload)									
Ball diameter/screw shaft root diameter	3.175 / 12.2									
Ball circle dia.	15.5									
Accuracy grade/axial play	C5 / 0									
Factory-packed grease	NSK grease LR3									

Recommended support unit

For drive side	For opposite to drive sid					
(Fixed)	(Fixed)	(Simple)				
WBK12-01B (low-profile, square)	WBK10-01B (low-profile, square)	WBK12S-01B (low-profile, square)				
WBK12-11 (round)	WBK10-11 (round)					

Grease nipole (oil hole, M5×0.8 tap) Plug (oil hole, M5×	33	30° 16.5	27	
Left shaft end	Le	ad accura	су	
(opposite	Target value	Error	Variation	- 1
driven side)	T	Δ.	1)	

					Unit: m	ım
Left shaft end	Lead accuracy	Shaft	Dynamic	Macc	Permissible rotational speed (min ⁻¹) *2 Internal spatial Standard volum	e of

Lett snatt end				Onant	Dynanic	11000			Tittorriai apatiai	Otaliaala volullio ol
(opposite	Target value	Error	Variation	run-out	preload torque	Mass	Fixed-	Fixed-	volume of nut	grease replenishing
driven side)	T	$e_{\scriptscriptstyle p}$	บู	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
П		0.020	0.018	0.035	0.8 - 8.8	0.7	5 000	_		
П		0.023	0.018	0.045	0.8 - 8.8	0.8	5 000	_		
П		0.025	0.020	0.050	0.8 - 10.8	0.9	5 000	_		
П		0.027	0.020	0.060	0.8 - 10.8	1.1	5 000	_		
П		0.030	0.023	0.075	0.8 - 10.8	1.2	5 000	_	2.8	1.4
П		0.035	0.025	0.075	0.8 - 13.8	1.3	4 170	_		
I		0.035	0.025	0.095	0.8 - 13.8	1.5	3 150	4 310		
I		0.040	0.027	0.095	0.8 - 13.8	1.6	2 460	3 390		•
I	0	0.046	0.030	0.120	0.8 - 13.8	1.9	1 620	2 260		
П		0.023	0.018	0.035	1.2 - 9.3	0.8	5 000	_		
Π		0.025	0.020	0.050	0.8 - 10.8	1.0	5 000	_		
П		0.027	0.020	0.060	0.8 - 10.8	1.1	5 000	_		
П		0.030	0.023	0.060	0.8 - 10.8	1.2	5 000	_		
П		0.030	0.023	0.075	0.8 - 13.8	1.4	5 000	_	3.4	1.7
Π		0.035	0.025	0.095	0.8 - 13.8	1.5	3 770	_		
I		0.040	0.027	0.095	0.8 - 13.8	1.6	2 880	3 910		
I		0.040	0.027	0.120	0.8 - 13.8	1.8	2 310	3 110		
I		0.046	0.030	0.120	0.8 - 13.8	2.0	1 540	2 100		

- 4. Use of NSK support unit is recommended. Refer to page B389 for details.
- 5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

M10×1.0	2-thin plastic seal (synthetic plastic) 1	7/ C G 12 5/35 12 5/35 13 13 13 13 13 13 13 13 13 13 13 13 13	M1:	2x1.0 % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<u> </u>	L _t (quenching range)	L ₁	30	15
30	La		45	-
-	Lo			

	Screw shaft	Lead	Basic load	ratings (N)	Str	oke	Nut	Scre	w shaft	dimens	ions
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length				
	d	l	C _a	C_{0a}	INOITIIIIai	IVIAX.	L	$L_{\rm t}$	La	L _o	L ₁
PSS1520N1D0261					100	129		186	204	261	
PSS1520N1D0361					200	229		286	304	361	
PSS1520N1D0461					300	329		386	404	461	
PSS1520N1D0561					400	429		486	504	561	
PSS1520N1D0661		20	5 070	8 730	500	529	51	586	604	661	18
PSS1520N1D0761					600	629		686	704	761	
PSS1520N1D0879					700	729		786	804	879	
PSS1520N1D0979				800	829		886	904	979	ı	
PSS1520N1D1179	15				1 000	1 029		1 086	1 104	1 179	
PSS1530N1D0311	15				100	153		230	254	311	
PSS1530N1D0411					200	253		330	354	411	
PSS1530N1D0511					300	353		430	454	511	
PSS1530N1D0611					400	453		530	554	611	
PSS1530N1D0711		30	5 070	8 730	500	553	71	630	654	711	24
PSS1530N1D0811					600	653		730	754	811	
PSS1530N1D0929					700	753		830	854	929	
PSS1530N1D1029					800	853		930	954	1 029	
PSS1530N1D1229					1 000	1 053		1 130	1 154	1 229	

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N-cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

B119 B120 ∕0.017 A

<u>M15×1.0</u> ∰

1.15⁸¹⁴ 10.15⁸¹

Shape II

Shape I

- ✓ 0.012 E

✓0.017 A

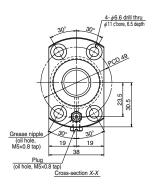
Ė

-<u>∐0.005|</u>E

M15×1.0

Screw shaft ø20

Lead 5, 10


Unit: mm

Unit: mm

Ball screw s	Ball screw specification									
Preload type	Oversize ball preload (P-preload)									
Ball diameter/screw shaft root diameter	3.175 / 17.2									
Ball circle dia.	20.5									
Accuracy grade/axial play	C5 / 0									
Factory-packed grease	NSK grease LR3									

Recommended support unit

For drive side	For opposite to drive side					
(Fixed)	(Fixed)	(Simple)				
WBK15-01B (low-profile, square)	WBK15-01B (low-profile, square)	WBK15S-01B (low-profile, square)				
WBK15-11 (round)	WBK15-11 (round)					

			I=		l -		I	I _			
	Screw shaft	Lead		ratings (N)	Stro	oke	Nut	Scre	w shaft	dimens	ions
Ball screw No.	diameter Dynamic Static Nomin	Nominal	Max.	length							
	d	l	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle \mathrm{Oa}}$			L	L_{t}	La	L _o	L_1
PSS2005N1D0323					150	191		228	250	323	
PSS2005N1D0373					200	241		278	300	373	
PSS2005N1D0473					300	341		378	400	473	
PSS2005N1D0573		E	8 790	10 500	400	441	31	478	500	573	22
PSS2005N1D0673	5	5	8 790	18 500	500	541	31	578	600	673	22
PSS2005N1D0773					600	641		678	700	773	
PSS2005N1D0873					700	741		778	800	873	
PSS2005N1D1000					800	839		878	900	1 000	
PSS2010N1D0387	20			200	241		292	314	387		
PSS2010N1D0487					300	341		392	414	487	
PSS2010N1D0587					400	441		492	514	587	
PSS2010N1D0687					500	541		592	614	687	
PSS2010N1D0787		10	8 790	18 500	600	641	45	692	714	787	22
PSS2010N1D0887					700	741		792	814	887	
PSS2010N1D1014				800	839		892	914	1 014		
PSS2010N1D1214			1 000	1 039		1 092	1 114	1 214			
PSS2010N1D1414					1 200	1 239		1 292	1 314	1 414	

2-thin plastic seal (synthetic plastic)

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 Norm of torque is added due to thin plastic seals.

2. Contact NSK if permissible rotational speed is to be exceeded.

3. Service temperature range is 0 to 80°C.

Left shaft end	Le	ad accura	эсу	Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2	Internal spatial	Standard volume of
(opposite	Target value	Error	Variation	run-out	preload torque	iviass	Fixed-	Fixed-	volume of nut	grease replenishing
driven side)	T	$e_{\scriptscriptstyle p}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
П		0.023	0.018	0.045	0.6 - 7.4	1.0	5 000	_		
П		0.023	0.018	0.045	0.6 - 7.4	1.1	5 000	_		
П		0.025	0.020	0.050	0.6 - 7.4	1.3	5 000	_		
П		0.027	0.020	0.060	0.4 - 9.8	1.5	5 000	_	3.4	1.7
П		0.030	0.023	0.075	0.4 - 9.8	1.7	5 000	_	3.4	1.7
П		0.035	0.025	0.075	0.4 - 9.8	1.9	5 000	_		
П		0.035	0.025	0.095	0.4 - 9.8	2.2	4 410	_		
I		0.040	0.027	0.095	0.4 - 11.8	2.4	3 450	4 710		
П	0	0.023	0.018	0.045	1.2 - 9.3	1.2	5 000	_		
П		0.025	0.020	0.050	1.2 - 9.3	1.4	5 000	_		
П		0.027	0.020	0.060	0.8 - 10.8	1.7	5 000	_		
П		0.030	0.023	0.075	0.8 - 10.8	1.9	5 000	_		
П		0.035	0.025	0.075	0.8 - 10.8	2.1	5 000	_	3.2	1.6
П		0.035	0.025	0.095	0.8 - 10.8	2.4	4 330	_		
I		0.040	0.027	0.120	0.8 - 13.8	2.6	3 400	4 640		
I		0.046	0.030	0.120	0.8 - 13.8	3.1	2 250	3 110		
I		0.054	0.035	0.160	0.8 - 13.8	3.6	1 600	2 220		

4. Use of NSK support unit is recommended. Refer to page B389 for details.

5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

B121 B122

∕0.017 A

Shape II

Shape I

∕ 0.017|**A**|-M15×1.0

> 1.15%1 10.15%1 10.005 F

> > Screw shaft

Lead

- ✓ 0.012 E

✓ 0.017 *A*

Ė

-<u>∐0.005|</u>E

Nut

M15×1.0

Screw shaft dimensions

935 1 035

1 435

1 108 | 1 135 | 1 235

1 335

908

Screw shaft ø20


Lead 20, 30

Unit: mm

Ball screw specification									
Preload type	Oversize ball preload (P-preload)								
Ball diameter/screw shaft root diameter	3.175 / 17.2								
Ball circle dia.	20.5								
Accuracy grade/axial play	C5 / 0								
Factory-packed grease	NSK grease LR3								

Recommended support unit

For drive side	For opposite to drive side						
(Fixed)	(Fixed)	(Simple)					
WBK15-01B (low-profile, square)	WBK15-01B (low-profile, square)	WBK15S-01B (low-profile, square)					
WBK15-11 (round)	WBK15-11 (round)						

	OPICAN SHOIF	Lead	Bacic icaa	ratinge (i ti	0.11	0110	INUL	00.0	· · Onarc	annono	1010110		
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length						
	d	l	C _a	C_{0a}			L	$L_{\rm t}$	La	L _o	L_1		
PSS2020N1D0508					300	353		413	435	508			
PSS2020N1D0608					400	453		513	535	608			
PSS2020N1D0708					500	553		613	635	708			
PSS2020N1D0808					600	653		713	735	808	22		
PSS2020N1D0908		20	5 900	11 700	700	753	54	813	835	908			
PSS2020N1D1035					800	851		913	935	1 035			
PSS2020N1D1235					1 000	1 051		1 113	1 135	1 235			
PSS2020N1D1435					1 200	1 251		1 313	1 335	1 435			
PSS2020N1D1835	20				1 600	1 651		1 713	1 735	1 835			
PSS2030N1D0408	20				200	228		308	335	408			
PSS2030N1D0508					300	328		408	435	508			
PSS2030N1D0608					400	428		508	535	608			
PSS2030N1D0708					500	528		608	635	708			
PSS2030N1D0808		30	5 900	11 700	600	628	74	708	735	808	27		
PSS2030N1D0908					700	728		808	835	908			

Stroke

2-thin plastic seal (synthetic plastic)

Basic load ratings (N)

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

800

1 000

1 200

826

1 026

1 226

2. Contact NSK if permissible rotational speed is to be exceeded.

3. Service temperature range is 0 to 80°C.

PSS2030N1D1035

PSS2030N1D1235

PSS2030N1D1435

										Unit: mm	
Left shaft end	Le	ad accura	асу	Shaft	Dynamic	Mass	Permissible rotatio	nal speed (min ⁻¹) *2		Standard volume of	
(opposite	Target value	Error	Variation	run-out	preload torque	IVIGSS	Fixed-	Fixed-		grease replenishing	
driven side)	T	$e_{\scriptscriptstyle p}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)	
П		0.027	0.020	0.060	1.4 - 11.8	1.6	5 000	_			9
П		0.030	0.023	0.060	1.4 - 11.8	1.8	5 000	_			ľ
П		0.030	0.023	0.075	1.4 - 11.8	2.0	5 000	_			
П		0.035	0.025	0.095	1.4 - 11.8	2.3	5 000	_			
П		0.040	0.027	0.095	0.8 - 13.8	2.5	4 150	_	3.2	1.6	
I		0.040	0.027	0.120	0.8 - 13.8	2.8	3 270	4 470			H
I		0.046	0.030	0.120	0.8 - 13.8	3.3	2 180	3 010			
I		0.054	0.035	0.160	0.8 - 13.8	3.8	1 550	2 170			
I	0	0.065	0.040	0.200	0.8 - 13.8	4.7	900	1 270			
П		0.023	0.018	0.050	1.6 - 9.8	1.4	5 000	_			
П		0.027	0.020	0.060	1.4 - 11.8	1.7	5 000	_			
П		0.030	0.023	0.060	1.4 - 11.8	1.9	5 000	_			
П		0.030	0.023	0.075	1.4 - 11.8	2.1	5 000	_			
П		0.035	0.025	0.095	1.4 - 11.8	2.4	5 000	_	4.6	2.3	
П		0.040	0.027	0.095	0.8 - 13.8	2.6	4 310	_			
I		0.040	0.027	0.120	0.8 - 13.8	2.9	3 380	4 570			
I		0.046	0.030	0.120	0.8 - 13.8	3.4	2 240	3 070			
I		0.054	0.035	0.160	0.8 - 13.8	3.9	1 590	2 200			

4. Use of NSK support unit is recommended. Refer to page B389 for details.

5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

B123 B124 **∠**0.017 A

Shape II

Shape I

> 1.15⁻⁸¹⁴ 10.15⁻⁸¹

- ✓ 0.012 E

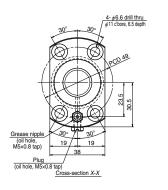
✓0.017 A

Ė

-<u>∐0.005|</u>E

M15×1.0

Screw shaft ø20


Lead 40, 60

Unit: mm

Ball screw s	pecification
Preload type	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	3.175 / 17.2
Ball circle dia.	20.5
Accuracy grade/axial play	C5 / 0
Factory-packed grease	NSK grease LR3

Recommended support unit

For drive side	For opposite to drive side					
(Fixed)	(Fixed)	(Simple)				
WBK15-01B (low-profile, square)	WBK15-01B (low-profile, square)	WBK15S-01B (low-profile, square)				
WBK15-11 (round)	WBK15-11 (round)					

	Screw shaft	Lead	Basic load	ratings (N)	Str	oke	Nut	Scre	Screw shaft dimensions			
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length					
	d	l	C _a	C_{0a}	INOITIIIai	iviax.	L	$L_{\rm t}$	La	L _o	L_1	
PSS2040N1D0658					400	455		553	585	658		
PSS2040N1D0758					500	555		653	685	758		
PSS2040N1D0858					600	655		753	785	858		
PSS2040N1D0958					700	755		853	885	958		
PSS2040N1D1085		40	5 900	11 700	800	853	92	953	985	1 085	32	
PSS2040N1D1285					1 000	1 053		1 153	1 185	1 285		
PSS2040N1D1485					1 200	1 253		1 353	1 385	1 485		
PSS2040N1D1885					1 600	1 653		1 753	1 785	1 885		
PSS2040N1D2285	20				2 000	2 053		2 153	2 185	2 285		
PSS2060N1D0708	20				400	458		593	635	708		
PSS2060N1D0808					500	558		693	735	808		
PSS2060N1D0908					600	658		793	835	908		
PSS2060N1D1008					700	758		893	935	1 008		
PSS2060N1D1135		60	5 900	11 700	800	856	129	993	1 035	1 135	42	
PSS2060N1D1335					1 000	1 056		1 193	1 235	1 335		
PSS2060N1D1535					1 200	1 256		1 393	1 435	1 535		
PSS2060N1D1935					1 600	1 656		1 793	1 835	1 935		
PSS2060N1D2335					2 000	2 056		2 193	2 235	2 335		

2-thin plastic seal (synthetic plastic)

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

2. Contact NSK if permissible rotational speed is to be exceeded.

3. Service temperature range is 0 to 80°C.

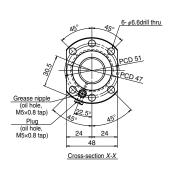
										Unit: mm	
Left shaft end	Le	ad accura	асу	Shaft	Dynamic	Mass	Permissible rotatio	nal speed (min ⁻¹) *2		Standard volume of	
(opposite	Target value	Error	Variation	run-out	preload torque	IVIGSS	Fixed-	Fixed-	volume of nut	grease replenishing	
driven side)	T	$e_{\scriptscriptstyle p}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)	
П		0.030	0.023	0.075	2.2 - 12.8	2.1	5 000	_			ş
П		0.035	0.025	0.075	2.2 - 12.8	2.4	5 000	_			ľ
П		0.035	0.025	0.095	2.2 - 12.8	2.6	5 000	_			
П		0.040	0.027	0.095	1.8 - 14.8	2.8	3 940	_			
I		0.040	0.027	0.120	1.8 - 14.8	3.1	3 120	4 190	5.3	2.7	
I		0.046	0.030	0.160	1.8 - 14.8	3.6	2 100	2 850			
I		0.054	0.035	0.160	1.8 - 14.8	4.1	1 500	2 070			
I		0.065	0.040	0.200	1.8 - 14.8	5.1	880	1 230			
I	0	0.077	0.046	0.240	1.8 - 14.8	6.0	580	810			
П	0	0.030	0.023	0.075	2.7 - 13.8	2.4	5 000	_			
П		0.035	0.025	0.095	2.7 - 13.8	2.6	5 000	_			
П		0.035	0.025	0.095	2.7 - 13.8	2.9	4 830	_			
П		0.040	0.027	0.120	1.8 - 14.8	3.1	3 740	_			
I		0.040	0.027	0.120	1.8 - 14.8	3.4	2 980	3 920	7.0	3.5	
I		0.046	0.030	0.160	1.8 - 14.8	3.9	2 020	2 700			
I		0.054	0.035	0.160	1.8 - 14.8	4.4	1 460	1 970			
I		0.065	0.040	0.200	1.8 - 14.8	5.4	860	1 180			
I		0.077	0.046	0.240	1.8 - 14.8	6.3	570	790			

4. Use of NSK support unit is recommended. Refer to page B389 for details.

5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

B125 B126

Screw shaft ø25


Lead 5, 10

Unit: mm

Ball screw s	pecification
Preload type	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	3.175 / 22.2
Ball circle dia.	25.5
Accuracy grade/axial play	C5 / 0
Factory-packed grease	NSK grease LR3

Recommended support unit

For drive side	For opposite to drive side					
(Fixed)	(Fixed)	(Simple)				
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)				
WBK20-11 (round)	WBK20-11 (round)					

For drive side	For opposite to drive side				
(Fixed)	(Fixed)	(Simple)			
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square			
WBK20-11 (round)	WBK20-11 (round)				

		I Init:	mm

Left shaft end	Le	ad accura	эсу	Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2	Internal spatial	Standard volume of
(opposite	Target value	Error	Variation	run-out	preload torque	iviass	Fixed-	Fixed-	volume of nut	grease replenishing
driven side)	T	$e_{\scriptscriptstyle p}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
П		0.023	0.018	0.035	1.2 - 9.3	1.5	5 000	_		
П		0.023	0.018	0.035	1.2 - 9.3	1.6	5 000	_		
П		0.025	0.020	0.040	1.2 - 9.3	2.0	5 000	_		
П		0.027	0.020	0.045	1.2 - 9.3	2.3	5 000	_	4.4	2.2
П		0.030	0.023	0.055	0.8 - 10.8	2.7	5 000	_	4.4	2.2
П		0.035	0.025	0.065	0.8 - 10.8	3.4	5 000	_		
П		0.040	0.027	0.065	0.8 - 10.8	3.7	4 490	_		
I	0	0.046	0.030	0.080	0.8 - 13.8	4.5	2 960	4 060		
П		0.027	0.020	0.045	3.1 - 11.8	2.4	5 000	_		
П		0.030	0.023	0.055	2.2 - 12.8	2.7	5 000	_		
П		0.030	0.023	0.055	2.2 - 12.8	3.1	5 000	_		
П		0.035	0.025	0.065	2.2 - 12.8	3.5	5 000	_	4.7	2.4
П		0.040	0.027	0.065	2.2 - 12.8	3.8	5 000	_	4.7	2.4
П		0.040	0.027	0.080	2.2 - 12.8	4.2	4 120	_		
I		0.046	0.030	0.100	1.8 - 14.8	5.0	2 760	3 790		
I		0.065	0.040	0.130	1.8 - 14.8	7.2	1 150	1 620		

- 4. Use of NSK support unit is recommended. Refer to page B389 for details.5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

\(\square 0.016 \)	200 D T T T T T T T T T T T T T T T T T T	15.35 1.35°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	<u> </u>	268 100 (100 (100 (100 (100 (100 (100 (100	W C G	12 10	₩ 0 ₩ 0 ₩ 0 ₩ 16 ₩ 16	M20×1.0	20.012 E
	53	•	Lt (quenching	range) L _a	-	L- L1	. 53 80	+ 2/ -	
	*1	•		Lo					
								·	

	Screw shaft	Lead	Basic load	ratings (N)	Stro	oke	Nut	Scre	w shaft	dimens	ions
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length				
	d	l	C _a	C_{0a}	INOITIIIIai	iviax.	L	$L_{\rm t}$	La	L _o	L_1
PSS2505N1D0349					150	185		223	250	349	
PSS2505N1D0399					200	235		273	300	399	
PSS2505N1D0499					300	335		373	400	499	
PSS2505N1D0599		5	9 760	23 600	400	435	32	473	500	599	27
PSS2505N1D0699		5	9 760	23 600	500	535	32	573	600	699	21
PSS2505N1D0899					700	735		773	800	899	
PSS2505N1D0999					800	835		873	900	999	
PSS2505N1D1233	25				1 000	1 027		1 073	1 100	1 233	
PSS2510N1D0549	25				300	361		423	450	549	27
PSS2510N1D0649					400	461		523	550	649	
PSS2510N1D0749					500	561		623	650	749	
PSS2510N1D0849		10	12 800	32 300	600	661	56	723	750	849	
PSS2510N1D0949		10	12 000	32 300	700	761	50	823	850	949	2/
PSS2510N1D1049					800	861		923	950	1 049	
PSS2510N1D1283					1 000	1 053		1 123	1 150	1 283	
PSS2510N1D1883					1 600	1 653		1 723	1 750	1 883	

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

B127 B128 ⊥[0.005]*F*]-

✓ 0.016 A

Shape ${\mathbb I}$

Shape I

M20×1.0

∕ 0.016 **A**

<u></u> ⊥[0.011|*A*]-

Lt (quenching range)

2-thin plastic seal (synthetic plastic)

Screw shaft ø25

Lead 20, 25

Unit: mm

Ball screw specification									
Preload type	Oversize ball preload (P-preload)								
Ball diameter/screw shaft root diameter	3.175 / 22.2								
Ball circle dia.	25.5								
Accuracy grade/axial play	C5 / 0								
Factory-packed grease	NSK grease LR3								

Recommended support unit

For drive side	For opposite to drive side						
(Fixed)	(Fixed)	(Simple)					
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)					
WBK20-11 (round)	WBK20-11 (round)						

6- ø6.6drill thru PCD 47

	9	-		
	,	*/ -		M.
		Grease nipple		
		(oil hole, M5×0.8 tap)	22.5	45°
		Plug (oil hole,		
		(oil hole, M5×0.8 tap)	24 48	24
			Cross-sec	
			0.000 000	200117171
_				

(Medium, High helix lead)

√0.022 A

-[⊥[0.005]*E*]

	Screw shaft	Lead	Basic load	ratings (N)	Stro	Stroke		Screw shaft dimensions			
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length				
	d	l	C _a	C_{0a}	INOITIIIIdi	IVIAX.	L	$L_{\rm t}$	La	L _o	L_1
PSS2520N1D0729					500	544		604	630	729	
PSS2520N1D0829					600	644		704	730	829	
PSS2520N1D0929					700	744		804	830	929	
PSS2520N1D1029		20	6 560	14 600	800	844	54	904	930	1 029	26
PSS2520N1D1263		20	0 300	14 600	1 000	1 036	54	1 104	1 130	1 263	
PSS2520N1D1463					1 200	1 236		1 304	1 330	1 463	
PSS2520N1D1863					1 600	1 636		1 704	1 730	1 863	
PSS2520N1D2263	25				2 000	2 036		2 104	2 130	2 263	
PSS2525N1D0779	23				500	581		650	680	779	30
PSS2525N1D0879					600	681		750	780	879	
PSS2525N1D0979					700	781		850	880	979	
PSS2525N1D1079		25	6 560	14 600	800	881	63	950	980	1 079	
PSS2525N1D1313		23	0 300	14 000	1 000	1 073	05	1 150	1 180	1 313	
PSS2525N1D1513					1 200	1 273		1 350	1 380	1 513	
PSS2525N1D1913						1 600	1 673		1 750	1 780	1 913
PSS2525N1D2313					2 000	2 073		2 150	2 180	2 313	

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N-cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

										Unit: mm
Left shaft end		Lead accuracy			Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2		Standard volume of
(opposite	Target value	Error	Variation	run-out	preload torque		Fixed-	Fixed-	volume of nut	grease replenishing
driven side)	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
П		0.030	0.023	0.055	2.2 - 12.8	3.1	5 000	_		
П		0.035	0.025	0.065	2.2 - 12.8	3.4	5 000	_		
П		0.040	0.027	0.065	2.2 - 12.8	3.8	5 000	_		
П		0.040	0.027	0.080	2.2 - 12.8	4.2	4 280	_	3.9	2.0
I		0.046	0.030	0.100	1.8 - 14.8	5.0	2 850	3 920	3.9	2.0
I		0.054	0.035	0.100	1.8 - 14.8	5.8	2 030	2 820		
I		0.065	0.040	0.130	1.8 - 14.8	7.3	1 180	1 650		
I	0	0.077	0.046	0.170	1.8 - 14.8	8.8	770	1 080		
П		0.035	0.025	0.055	2.7 - 13.8	3.3	5 000	_		
П		0.035	0.025	0.065	2.7 - 13.8	3.7	5 000	_		
П		0.040	0.027	0.065	2.7 - 13.8	4.1	4 910	_		
П		0.040	0.027	0.080	2.7 - 13.8	4.4	3 910	_	4.3	2.2
I		0.046	0.030	0.100	1.8 - 14.8	5.3	2 640	3 620	4.3	2.2
I		0.054	0.035	0.100	1.8 - 14.8	6.0	1 900	2 630		
I		0.065	0.040	0.130	1.8 - 14.8	7.5	1 120	1 570		
I		0.077	0.046	0.170	1.8 - 14.8	9.1	740	1 040		

- 4. Use of NSK support unit is recommended. Refer to page B389 for details.5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

B129 B130 ⊥0.005*F*

<u></u> ⊥[0.011|*A*]-

Lt (quenching range)

2-thin plastic seal (synthetic plastic)

∕0.016 A

Shape ${\mathbb I}$

Shape I

M20×1.0

✓0.016 A

(High helix, Ultra high helix lead)

√0.022 A

-[⊥]0.005[*E*]

M20×1.0

_∕0.012*E*

Screw shaft ø25

Lead 30, 50

Unit: mm

Ball screw specification									
Preload type	Oversize ball preload (P-preload)								
Ball diameter/screw shaft root diameter	3.175 / 22.2								
Ball circle dia.	25.5								
Accuracy grade/axial play	C5 / 0								
Factory-packed grease	NSK grease LR3								

Recommended support unit

For drive side	For opposite to drive side						
(Fixed)	(Fixed)	(Simple)					
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)					
WBK20-11 (round)	WBK20-11 (round)						

Grease nipple (oil hole, M5x0.8 tap) Plug (oil hole, M5x0.8 tap)	A5° 45° 45° 45° 45° 45° 45° 45° 45° 45° 4	

	1							ı			
	Screw shaft	Lead	Basic load		Stroke		Nut	Screw shaft dimensions			ions
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length				
	d	l	C _a	C_{0a}	NOITIIIIdi	IVIAX.	L	$L_{\rm t}$	La	L _o	L_1
PSS2530N1D0779				14 600	500	570		650	680	779	
PSS2530N1D0879					600	670		750	780	879	
PSS2530N1D0979					700	770		850	880	979	
PSS2530N1D1079		30	6 560		800	870	74	950	980	1 079	30
PSS2530N1D1313		30	0 500		1 000	1 062	/4	1 150	1 180	1 313	30
PSS2530N1D1513					1 200	1 262		1 350	1 380	1 513	
PSS2530N1D1913					1 600	1 662		1 750	1 780	1 913	
PSS2530N1D2313	25				2 000	2 062		2 150	2 180	2 313	
PSS2550N1D0829	25				500	570		690	730	829	
PSS2550N1D0929					600	670		790	830	929	
PSS2550N1D1029					700	770		890	930	1 029	
PSS2550N1D1129		50	6 560	14 600	800	870	114	990	1 030	1 129	40
PSS2550N1D1363		50	0 360	14 000	1 000	1 062	114	1 190	1 230	1 363	40
PSS2550N1D1563			1 200	1 262		1 390	1 430	1 563			
PSS2550N1D1963			1 600	1 662		1 790	1 830	1 963			
PSS2550N1D2363				2 000	2 062		2 190	2 230	2 363		

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N-cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

										Unit: mm	
Left shaft end	Le	ad accura	асу	Shaft	Dynamic	Mass	Permissible rotatio	nal speed (min ⁻¹) *2		Standard volume of	
(opposite	Target value	Error	Variation	run-out	preload torque	IVIGSS	Fixed-	Fixed-	volume of nut	grease replenishing	
driven side)	Τ	$e_{\scriptscriptstyle \mathrm{p}}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)	
П		0.035	0.025	0.055	2.7 - 13.8	3.4	5 000	_			9
П		0.035	0.025	0.065	2.7 - 13.8	3.7	5 000	_			Ĭ
Π		0.040	0.027	0.065	2.7 - 13.8	4.1	4 980	_			
П		0.040	0.027	0.080	2.7 - 13.8	4.5	3 960	_	5.5	2.8	
I		0.046	0.030	0.100	1.8 - 14.8	5.3	2 670	3 650	5.5	2.8	
I		0.054	0.035	0.100	1.8 - 14.8	6.1	1 920	2 650			
I		0.065	0.040	0.130	1.8 - 14.8	7.6	1 130	1 580			
I	0	0.077	0.046	0.170	1.8 - 14.8	9.1	740	1 040			
П	U	0.035	0.025	0.065	5.4 - 17.6	3.8	5 000	_			
П		0.035	0.025	0.065	5.4 - 17.6	4.1	5 000	_			
П		0.040	0.027	0.080	5.4 - 17.6	4.5	4 750	_			
П		0.040	0.027	0.080	5.4 - 17.6	4.9	3 790	_	7.7	3.9	
I		0.046	0.030	0.100	4.1 - 19.6	5.8	2 570	3 470	7.7	3.9	
I		0.054	0.035	0.100	4.1 - 19.6	6.5	1 860	2 540			
I		0.065	0.040	0.130	4.1 - 19.6	8.0	1 100	1 520			
I		0.077	0.046	0.170	4.1 - 19.6	9.6	730	1 020			

- 4. Use of NSK support unit is recommended. Refer to page B389 for details.5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

Grease nipple (oil hole, M5×0.8 tap) Plug (oil hole, M5×0.8 tap)

Cross-section X-X

Screw shaft ø10

Lead 5

Unit: mm

Ball screw specification									
Preload type	Oversize ball preload (P-preload)								
Ball diameter/screw shaft root diameter	2.000 / 8.2								
Ball circle dia.	10.3								
Accuracy grade/axial play	C3 / 0								
Factory-packed grease	NSK grease LR2								

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK08-01C (square, clean)	WBK08S-01C (square, clean)
WBK08-11C (round, clean)	WBK08S-01B (low-profile, square)
WBK08-01B (low-profile, square)	
WBK08-11 (round)	

Unit: mm

l	_ead accuracy	/	Shaft run-out	Dynamic	Mass	Permissible rotational	Internal spatial	Standard volume of
Target value	Error	Variation		preload torque	iviass	speed (min ⁻¹) *2	volume of nut	grease replenishing
Т	$e_{\scriptscriptstyle \! p}$	$V_{\scriptscriptstyle m u}$	С	(N·cm) *1	(kg)	Fixed-Simple	(cm³)	(cm³)
	0.010	0.008	0.035	0.2-1.8	0.3			
0	0.012	0.008	0.045	0.2-2.0	0.3	5 000	0.8	0.4
	0.015	0.010	0.070	0.2-3.0	0.5			

1	LICE of NICK	gunnort unit	t is racommandad	1 Saa nage	R389 for d	عاندهم

9 4 37	0.014 A	2-thin plastic seal (synthetic plastic) X = 1	W C G 1322	E ⊥10.003 E	M8×1.0 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 		Lt (quenching range)	5 (8)	27	10
		L ₀	•	- 57	-

	Screw shaft	Lood	Basic load ratings (N)		Stroke		Screw shaft dimensions		
Ball screw No.	diameter	Lead	Dynamic	Static	Nominal	al Max.			
	d	l	C _a	$C_{\scriptscriptstyle 0a}$			L_{t}	L _a	L _o
USS1005N1D0221					100	133	162	175	221
USS1005N1D0321	10	5	2 930	4 790	200	233	262	275	321
USS1005N1D0521					400	433	462	475	521

Notes: 1. Indicates ball screw preload control value. Approximately 0.5 N·cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

Plug (oil hole, M5×0.8 tap)

Screw shaft ø12

Lead 5

Unit: mm

Ball screw specification						
Preload type	Oversize ball preload (P-preload)					
Ball diameter/screw shaft root diameter	2.000 / 10.2					
Ball circle dia.	12.3					
Accuracy grade/axial play	C3 / 0					
Factory-packed grease	NSK grease LR2					

Recommended support unit

For drive side For opposite to drive side (Fixed) (Simple) WBK08-01C (square, clean) WBK08S-01C (square, clean) WBK08-11C (round, clean) WBK08S-01B (low-profile, square WBK08-01B (low-profile, square) WBK08-11 (round)

Unit: mm

L	_ead accuracy	/	Chaft run aut	Dynamic	Mass	Permissible rotational	Internal spatial	Standard volume of
Target value	Error	Variation	Shaft run-out	preload torque	iviass	speed (min ⁻¹) *2	volume of nut	grease replenishing
Т	$e_{\scriptscriptstyle \! p}$	$V_{\scriptscriptstyle m u}$	С	(N·cm) *1	(kg)	Fixed-Simple	(cm³)	(cm³)
	0.010	0.008	0.035	0.2-1.8	0.3			
0	0.012	0.008	0.045	0.2-2.0	0.3	5 000	1.0	0.5
	0.016	0.012	0.070	0.2-3.0	0.7			

4. Use of NSK support unit is recommended. See	e page B389	for details
--	-------------	-------------

L ₂ (quenching range) $\frac{1}{2}$ $\frac{7}{8}$ $\frac{8}{27}$ $\frac{10}{37}$ $\frac{10}{10}$	0.014/A	2-thin plastic seal (synthetic plastic) (synth	M8×1.0 9 10.003E
		L _t (quenching range)	7 8 27 10
<u>Lo</u>	9-1-	La	37
	-	L ₀	

	Screw shaft		Basic load	load ratings (N) S		Stroke		Screw shaft dimensions		
Ball screw No.	diameter	Lead	Dynamic	Static	Nominal	nal Max.				
	d	l	C _a	$C_{\scriptscriptstyle 0a}$			L_{t}	L _a	L _o	
USS1205N1D0221					100	130	160	175	221	
USS1205N1D0321	12	2 5	3 200	5 860	200	230	260	275	321	
USS1205N1D0621					500	530	560	575	621	

Notes: 1. Indicates ball screw preload control value. Approximately 0.5 N·cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

B135

Plug (oil hole, M5×0.8 tap)

Screw shaft ø15

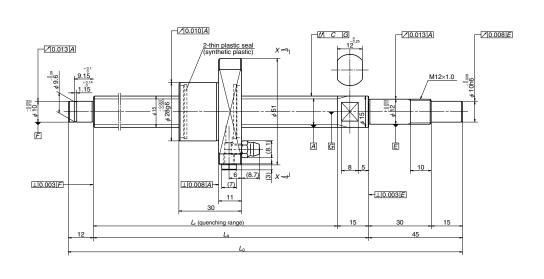
Lead 5

Unit: mm

Ball screw specification						
Preload type	Oversize ball preload (P-preload)					
Ball diameter/screw shaft root diameter	2.778 / 12.6					
Ball circle dia.	15.5					
Accuracy grade/axial play	C3 / 0					
Factory-packed grease	NSK grease LB2					

Factory-packed grease NSK grease

For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01C (square, clean)	WBK12S-01C (square, clean)
WBK12-11C (round, clean)	WBK12-01B (low-profile, square)
WBK12S-01B (low-profile, square)	
WRK12-11 (round)	


Recommended support unit

Unit: mm

B138

L	_ead accuracy	1	Shaft run-out	Dynamic	Mass	Permissible rotational	Internal spatial	Standard volume of
arget value	get value Error Variation T $e_{\scriptscriptstyle p}$ $V_{\scriptscriptstyle u}$			preload torque	IVIass	speed (min ⁻¹) *2	volume of nut	grease replenishing
Т			С	(N·cm) *1	(kg)	Fixed-Simple	(cm³)	(cm³)
	0.010	0.008	0.025	0.2-5.0	0.5	5 000		
_	0.012	0.008	0.035	0.2-5.0	0.6	5 000	2.0	1.0
0	0.015	0.010	0.045	0.2-6.0	0.9	5 000	2.0	1.0
	0.018	0.013	0.060	0.2-8.0	1.1	4 130		

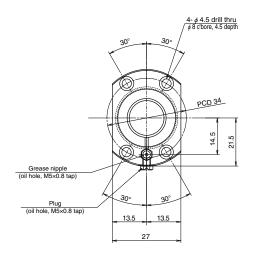
1	LICA of NICK	gunnort unit i	is recommended	anen aa2	R389 for d	_taile

	Screw shaft	اممط	Basic load ratings (N)		Stro	oke	Screw shaft dimensions		
Ball screw No.	diameter	Lead	Dynamic	Static	NI : 1	N 4			
	d	l	C _a	C_{0a}	Nominal	Max.	L_{t}	La	L _o
USS1505N1D0261					100	159	189	204	261
USS1505N1D0361	15	5	5 460	10 200	200	259	289	304	361
USS1505N1D0561 USS1505N1D0761	15	5			400	459	489	504	561
					600	653	689	704	761

Notes: 1. Indicates ball screw preload control value. Approximately 0.5 N·cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

Screw shaft ø12


Lead 10

Unit: mm

Ball screw s	pecification
Ball diameter/screw shaft root diameter	2.000 / 10.2
Accuracy grade/axial play	Ct7 / 0.010 or less
Factory-packed grease	NSK grease LR3

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)				
WBK08-01B (low-profile, square)	WBK12SF-01B (low-profile, square)				

Unit: mm

Lea Target value	Lead accuracy		January Dynamic protocal		Mass			Standard volume of grease replenishing	
T T	$e_{\scriptscriptstyle p}$	Variation V ₃₀₀	С	(N·cm)	(kg)	Fixed-Simple	(cm³)	(cm³)	
	0.120		0.080		0.5	5 000		0.5	
0	0.195	0.052	0.120	_	0.7	5 000	1.0		
	0.310		0.180		1.0	2 300			

- 4. The stroke and permissible rotational speed shown in the table are the values when the support unit recommended by NSK is used and Fixed-Supported (ball screw mounting method) is selected.
- 5. Permissible rotational speed varies when using cut screw shaft. It is necessary to calculate two items below, and whichever smaller is the permissible rotational speed.
- *Critical speed which is the resonance vibration of the shaft (page B47).
- *Maximum rotational speed 5 000 min⁻¹

2-thin plastic seal (synthetic plastic) 2-thin plastic seal (synthetic plastic) 2-thin plastic seal (synthetic plastic) 4	0 -02 10 -02 10 -02 -02 -02 -03 -03 -03 -03 -03 -03 -03 -03 -03 -03	4 E 9	M8 × 1.0	2. 90014F
L_t (quenching range)	L ₁	27	10	
- <u>La</u> Lo		. 37	-	
l+				

		Screw shaft	Lood	Basic load ratings (N)		Stro	oke	Nut	Screv	Screw shaft dimension		sions
Ball screw No.	diameter	Lead	Dynamic	Static		.,	length					
		d	l	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	Nominal	Max.	L	$L_{\rm t}$	La	L _o	L ₁
	FSS1210N1D0400 FSS1210N1D0600 FSS1210N1D0900				5 860	250	287		348	363	400	15
		12 10	10	3 200		450	487	43	548	563	600	
						750	787		848	863	900	

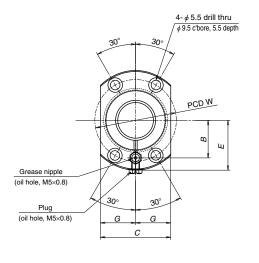
Notes:1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

- 2. Service temperature range is 0 to 80°C.
- 3. Use of NSK support unit is recommended. See page B389 for details.

B139 B140

Unit: mm

Screw shaft ø15


Lead 10, 20

Unit: mm

Ball screw s	pecification	l
Lead	10	20
Ball diameter/screw shaft root diameter	2.778 / 12.6	3.175 / 12.2
Accuracy grade/axial play	Ct7 / 0.01	0 or less
Factory-packed grease	NSK gre	ase LR3

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01B (low-profile, square)	WBK15SF-01B (low-profile, square)

Unit:	mm

Nut dimensions								Shaft Dynamic		Mass	Permissible rotational speed (min ⁻¹) *2	Internal spatial	Standard volume of	
								run-out	preload torque	IVIASS	F: 10: 1	volume of nut	grease replenishing	
L	D_1	D_2	W	В	С	Ε	G	С	(N·cm)	(kg)	Fixed-Simple	(cm³)	(cm³)	
								0.070		0.9	5 000	2.0	5 000	
43	28	51	39	18	31	25	15.5	0.125	25	1.7	2 300		1.0	
								0.200		2.3	1 020			
								0.070] - [1.0	5 000			
51	32	55	43	20	33	27	16.5	0.125		1.7	2 260	2.8	1.4	
								0.200		2.3	1 000			

- 4. The stroke and permissible rotational speed shown in the table are the values when the support unit recommended by NSK is used and Fixed-Supported (ball screw mounting method) is selected.
- 5. Permissible rotational speed varies when using cut screw shaft. It is necessary to calculate two items below, and whichever smaller is the permissible rotational speed.
- *Critical speed which is the resonance vibration of the shaft (page B47).
- *Maximum rotational speed 5 000 min⁻¹

φ 1000 φ 1000	20.020 A	2-thin plastic seal (synthetic plastic) $X \rightarrow 0$	A G	925 12 12 8 5	E 10	112×1.0 80 00 00 00 00 00 00 00 00 00 00 00 00
-		L _a		-	45	-

Ball screw No.	Screw shaft	Screw shaft		Basic load ratings (N)		Stroke		Screw shaft dimensions			Lead accuracy				
	diameter	Lead	Dynamic								Target value	Error	Variation		
	d	l	C _a	C_{0a}	Nominal	Max.	$L_{\rm t}$	La	L _o	L_1	T	$e_{\scriptscriptstyle p}$	V ₃₀₀		
FSS1510N1D0500					350	379	440	455	500			0.155			
FSS1510N1D1000		10	5 460	10 200	850	879	940	955	1 000	15	0	0.310	0.052		
FSS1510N1D1450	15	15			1 300	1 329	1 390	1 405	1 450			0.490			
FSS1520N1D0500		15	15				350	368	437	455	500			0.155	0.032
FSS1520N1D1000		20	5 070	8 730	850	868	937	955	1 000	18		0.310			
FSS1520N1D1450					1 300	1 318	1 387	1 405	1 450			0.490			

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

- 2. Service temperature range is 0 to 80°C.
- 3. Use of NSK support unit is recommended. See page B389 for details.

B141 B142 /0.025 A

/0.025 A / 0.014 E

15

Ė

⊢⊥0.006*E*

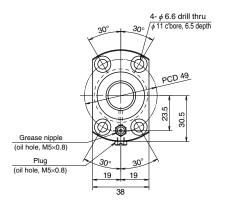
60

10 7

M15×1.0 ΕΘ

Screw shaft ø20

Lead 10, 20


Unit: mm

Unit: mm

Ball screw specification							
Ball diameter/screw shaft root diameter	3.175 / 17.2						
Accuracy grade/axial play	Ct7 / 0.010 or less						
Factory-packed grease	NSK grease LR3						

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)				
,,	WBK20SF-01B (low-profile, square				

L_t (quenching range)

2-thin plastic seal (synthetic plastic)

⊥|0.018|*A*|

Ball screw No.	Screw shaft	Lead	Basic load ratings (N)		Stroke		Nut	Screw shaft dimensions			
	diameter		Dynamic	Static	NI ! I	Max. length					
	d	l	C _a	$C_{\scriptscriptstyle 0a}$	Nominal		L	$L_{\rm t}$	La	L _o	L_1
FSS2010N1D0600			8 790	18 500	400	451	45	518	540	600	22
FSS2010N1D1000		10			800	851		918	940	1 000	
FSS2010N1D1450	20				1 250	1 301		1 368	1 390	1 450	
FSS2020N1D0600	7 20 [400	442		518	540	600	22
FSS2020N1D1000		20	5 900	11 700	800	842	54	918	940	1 000	
FSS2020N1D1450					1 250	1 292		1 368	1 390	1 450	

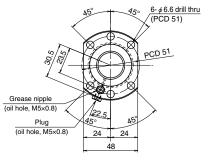
Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

- 2. Service temperature range is 0 to 80°C.
- 3. Use of NSK support unit is recommended. See page B389 for details.

Lead accuracy		Shaft	Dynamic preload	Mass	Permissible rotational speed (min ⁻¹) *2	micornai opaciai	Standard volume of	9		
Target value	Error	Variation	run-out	run-out	torque	IVIdSS		volume of nut	grease replenishing	Ĭ
T	$e_{\scriptscriptstyle p}$	V ₃₀₀	С	(N·cm)	(kg)	Fixed-Simple	(cm³)	(cm³)		
	0.195	0.12	0.085		1.7	5 000				
0.310 0.490 0.195 0.310 0.490	0.310		0.125	-	2.6	3 310				
	0.490		0.200		3.6	1 450	3.2	1.6		
	0.195		0.085		1.8	5 000	3.2	1.0		
	0.310		0.125		2.7	3 350				
		0.200		3.8	1 460					

- 4. The stroke and permissible rotational speed shown in the table are the values when the support unit recommended by NSK is used and Fixed-Supported (ball screw mounting method) is selected.
- 5. Permissible rotational speed varies when using cut screw shaft. It is necessary to calculate two items below, and whichever smaller is the permissible rotational speed.
- *Critical speed which is the resonance vibration of the shaft (page B47).
- *Maximum rotational speed 5 000 min⁻¹

B143 B144


Screw shaft ø25 Lead 10, 20, 25

Unit: mm

\vdash	Ball screw specification											
	Ball diameter/screw shaft root diameter	3.175 / 22.2										
	Accuracy grade/axial play	Ct7 / 0.010 or less										
	Factory-packed grease	NSK grease LR3										

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK20-01 (square)	WBK25SF-01 (square)

48

Unit: mm

B146

Lea	ad accura	асу	Shaft	Dynamic preload	Mass	Permissible rotational speed (min ⁻¹) *2	Internal spatial	Standard volume of	
Target value	Error	Variation	run-out	torque	iviass	Fixed-Simple	volume of nut	grease replenishing	
T	$e_{\scriptscriptstyle p}$	V ₃₀₀	С	(N·cm)	(kg)	rixeu-simple	(cm³)	(cm³)	
	0.155		0.065		2.6	5 000			
	0.310		0.090		4.0	4 590	4.7	2.4	
	0.490		0.130		5.8	1 970			
	0.155		0.065		2.6	5 000			
0	0.310	0.052	0.090	-	4.0	4 570	3.9	2.0	
	0.490		0.130		5.8	1 960			
	0.155		0.065		2.6	5 000			
	0.310		0.090		4.1	4 660	4.3	2.2	
	0.490		0.130		5.8	1 990			

- 4. The stroke and permissible rotational speed shown in the table are the values when the support unit recommended by NSK is used and Fixed-Supported (ball screw mounting method) is selected.
- Permissible rotational speed varies when using cut screw shaft. It is necessary to calculate two items below, and whichever smaller is the permissible rotational speed.
- *Critical speed which is the resonance vibration of the shaft (page B47).
- *Maximum rotational speed 5 000 min⁻¹

2-thin plastic seal (synthetic plastic) X = 12 10 L (quenching range)	M20 ×	0.014 E
L _a	80 + 27	
	+	
<u>L</u>		

	Screw shaft	Lead	Basic load	ratings (N)	Str	oke	Nut	Screw shaft dimensions			
Ball screw No.	diameter	Leau	Dynamic	Dynamic Static Nominal Max. length		length					
	d	l	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	Nominal Max.		L	L_{t}	La	L _o	L_1
FSS2510N1D0600		10		32 300	400	415	56	493	520	600	
FSS2510N1D1000			12 800		800	815		893	920	1 000	27
FSS2510N1D1450					1 250	1 265		1 343	1 370	1 450	
FSS2520N1D0600		20		14 600	400	418	54	494	520	600	
FSS2520N1D1000	25				800	818		894	920	1 000	26
FSS2520N1D1450			6 560		1 250	1 268		1 344	1 370	1 450	
FSS2525N1D0600			0 300	14 000	400	405	63	490	520	600	30
FSS2525N1D1000		25			800	805		890	920	1 000	
FSS2525N1D1450					1 250	1 255		1 340	1 370	1 450	

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

- 2. Service temperature range is 0 to 80°C.
- 3. Use of NSK support unit is recommended. See page B389 for details.

B-3-1.2 High Speed SS Series HSS Type

♦ Features

The HMS and HMD series, originally developed for machine tools, are an addition to NSK's lineup of standard ball screws. They have a wide range of applications, from general machines to high performance machines such as those requiring high speed and precision.

High speed

The new recirculation system that utilizes NSK's high speed and low noise technology more than doubles the d • n value from 70 000 to 160 000.

To extend the range of the lead to 20mm, high speed operation of over 60m/min. is possible.

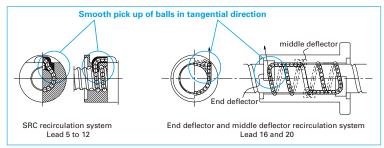


Fig 1 Ball recirculation system

Table 1 Allowable feed speed of combinations of shaft diameter and lead

shaft [mm] Lead iameter [mm]	5	10	12	16	20
32	25m/min	50m/min			
40		40m/min	48m/min	64m/min	80m/min
45		35m/min			
50		32m/min	38m/min		

^{*} Allowable speed needs to be calculated. See the permissible rotational speed in the dimensions table.

Low noise and vibrations

Compared to our conventional products, the average noise level has been reduced by more than 6dB, reducing the number of colliding balls and recirculation parts thanks to high speed, low noise technology.

The vibration level of the nut has also been reduced drastically.

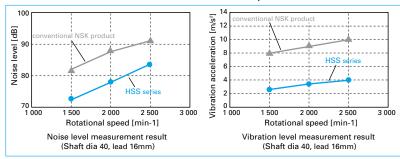


Table 2

Installation

Installation dimension are the same as those of a conventional SS series.

Compact

Achieved high-level stiffness and high load capacity equivalent to that of double nut preload by changing the double nut preload to the offset preload of a single nut, and compact sized nut. Adopted thin seals axially and shorten nut length.

Blank shaft ends

The blank shaft ends can be customized according to customers' requests. See page B27 in NSK's recommended design when drawing up plans for a shaft end. The support units available on page B389 in the case of NSK's recommended design. See "Technical Description: Shaft End Processing" (page B86) for procedures of shaft end processing and precautions.

Oil supply

2 oil holes, M6×1.0, are provided in the nut flange periphery are the end of the nut flange. A plug is standardly screwed into the periphery of the nut flange.

♦ Specifications

Accuracy grade and axial play

The available standard accuracy grade and axial play are show in Table 2.

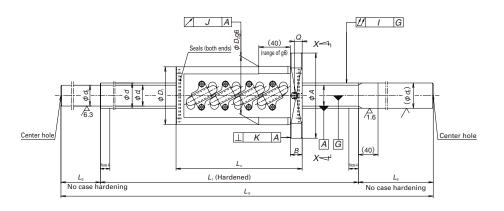
Table 2 Accuracy grade and axial play

Accuracy grade	C5
Axial play	0 mm (preloaded)

Dimension tables

Shape dimensions and specifications are listed for every shaft diameter and lead. See Table 3, the "List of pages".

♦ Other


The seal of the ball screw and recirculation parts are made of synthetic resin. Consult NSK when using the ball screws under extreme environments or special environments, or using special lubrican or oil.

For special environments, see pages B70 and D2. See pages B67 and D13 for lubricants.

Table 3 Combinations of screw shaft diameter and lead

Lead v shaft [mm] neter [mm]	5	10	12	16	20
32	B149	B149			
40		B151	B151	B153	B153
45		B155			
50		B155	B155		

(Fine lead)


6- \$X\$ drill thru C'bore \$Y\times Z 45" M6\times 1 (Oil hole, Plug) M6\times 1 (Oil hole)	6- \(\psi \) \(\text{drill thru} \) C'bore \(\psi \) \(\psi \) Q \(
	View <i>X-X</i> (HSS3205)

	Screw			Ball		Effective balls turns	Basic load	rating(N)		Dynamic					Ball	nut d	imens	ions
Reference No.	shaft dia.	Lead	Ball dia.	circle dia.	Root dia.	Tune ×	Dynamic	Static	Preload	friction torque, median	Dian	nete		Fla	nge		Overall length	
	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d,	Circuits	C _a	$C_{\scriptscriptstyle \mathrm{OB}}$	(N)	(N·cm)	D_1	D_2	Α	G	Н	В	Ln	W
HSS3205N1D0650																		
HSS3205N1D0950																		
HSS3205N1D1250	32 5	5	3.175	32.5	29.2 2.5X2 18500 56100 920	2.5X2	18500	56100	920	17.0	57	58	85	32	42	13	89	71
HSS3205N1D1550																		
HSS3205N1D1850																		
HSS3210N1D0850																		
HSS3210N1D1050																		
HSS3210N1D1450	32	10	6.350	33.0	26.4	2.5X2	46300	108000	2310	59.5	73	74	108	41	53.5	15	160	90
HSS3210N1D1850																		
HSS3210N1D2250																		

Notes: 1. Service temperature range is 0 to 60°C.

- 2. Use of NSK support unit is recommended. See page B389 for details.
- 3. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13
- 4. Imperfect hardened areas for one lead exists on both ends of a screw. Exercise care when stroke setting.
- 5. Permissible rotational speed: Calculated values obtained from the critical speed between the threaded length and NSK's recommended shaft end design. See page B27.

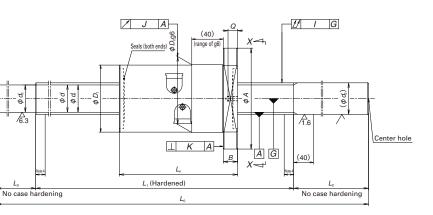
					Screw	/ shaf	t dime	ensior	ı	Lea	d accu	racy	F	Run-ou	t	Permissible rotatio		nal speed (min ⁻¹)	Internal	Standard	
Bolt hole		Oil hole	Threaded length	Shaft end right		Shaft end, left		Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpen- dicularity	Mass	Instal	lation	spatial volume of nut	volume of grease replenishing		
Χ	Y	Ζ	Q	Lt	d ₂	L ₂	d₃	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	$V_{\scriptscriptstyle \rm u}$	1	J	K	(kg)	Fixed-Free support	Fixed-Fixed support	(cm ³)	(cm ³)	
				400	20	200		50	650	-0.010	0.025	0.020	0.055			5.2	5000	5000			
				600		250	250 29.2 300	100	950	-0.014	0.030	0.023	0.065		9 0.013	7.0	5000	5000			
6.6	11	6.5	8	900	32	250		100	1250	-0.022	0.040	0.027	0.080	0.019		8.7	5000	5000	10	5	
				1150		300			100	1550	-0.028	0.046	0.030	0.100			10.5	3500	4700		
				1450		300		100	1850	-0.035	0.054	0.035	0.130			12.2	2200	2900			
				500		250		100	850	-0.012	0.027	0.020	0.065			8.9	5000	5000			
				700		250		100	1050	-0.017	0.035	0.025	0.080			10.0	5000	5000			
9	14	8.5	10	1050	32	300	26.4	100	1450	-0.025	0.046	0.030	0.100	0.019	0.013	12.2	4100	5000	43	22	
				1450	1450	300		100	1850	-0.035	0.054	0.035	0.130			14.3	2100	2800			
				1850		300		100	2250	-0.045	0.065	0.040	0.170			16.5	1200	1700			

C'bore ϕ Y×Z
AS AG
-
<u>ViewX-X</u>

6- φ X drill thru

	Screw			Ball		Effective balls turns	Basic load	rating(N)		Dynamic					Ball	nut d	imens	ions
Reference No.	shaft dia.	Lead	Ball dia.	circle dia.	Root dia.	Tune ×	Dynamic	Static	Preload	friction torque, median	Diar	nete		Fla	nge		Overall length	
	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d,	Circuits	C _a	$C_{\scriptscriptstyle{\mathrm{OB}}}$	(N)	(N·cm)	D_1	D_2	Α	G	Н	В	Ln	W
HSS4010N1D0950																		
HSS4010N1D1450	40	10	6.350	41.0	34.4	2.5X2	52000	137000	2600	74.5	81	82	124	47	61.5	18	163	102
HSS4010N1D2100	40	10	0.330	41.0	34.4	2.5/2	32000	13/000	2000	74.5	01	02	124	4/	01.0	10	103	102
HSS4010N1D2900																		
HSS4012N1D1450																		
HSS4012N1D2100	40	12	7.144	41.5	34.1	2.5X2	61000	155000	3050	96.0	85	86	128	48	63.5	18	187	106
HSS4012N1D2900																		

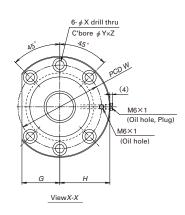
Notes: 1. Service temperature range is 0 to 60°C.


- 2. Use of NSK support unit is recommended. See page B389 for details.
- 3. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13
- 4. Imperfect hardened areas for one lead exists on both ends of a screw. Exercise care when stroke setting.
- 5. Permissible rotational speed: Calculated values obtained from the critical speed between the threaded length and NSK's recommended shaft end design. See page B27.

Unit	:	mm	

					Screw	/ shaf	t dime	ensior	1	Lea	d accu	racy	F	Run-ou	t		Permissible rotatio	nal speed (min ⁻¹)	Internal	Standard
Bolt	hole		Oil hole	Threaded length	Shaft rig	end, ht	Shaft le	t end, eft	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpen- dicularity	Mass	Instal	lation	spatial volume of nut	volume of grease replenishing
Χ	Y	Ζ	Q	$L_{\rm t}$	d ₂	L2	d₃	L ₃	Lo	Τ	$e_{\scriptscriptstyle p}$	$V_{\scriptscriptstyle \rm u}$	1	J	K	(kg)	Fixed-Free support	Fixed-Fixed support	(cm ³)	(cm ³)
				600		250		100	950	-0.014	0.030	0.023	0.050			13.5	4000	4000		
11	17.5	11	12	1050	40	300	34.4	100	1450	-0.025	0.046	0.030	0.070	0.005	0.015	17.9	4000	4000	52	26
11	17.5	11	12	1600	40	350	34.4	150	2100	-0.039	0.054	0.035	0.110	0.025	0.015	23.5	2200	3000	52	20
				2400		350		150	2900	-0.058	0.077	0.046	0.140			30.5	900	1300		
				1050		300		100	1450	-0.025	0.046	0.030	0.070			19.1	4000	4000		
11	17.5	11	12	1600	40	350	34.1	150	2100	-0.039	0.054	0.035	0.110	0.025	0.015	24.8	2200	3000	67	34
				2400		350		150	2900	-0.058	0.077	0.046	0.140			31.8	900	1300		

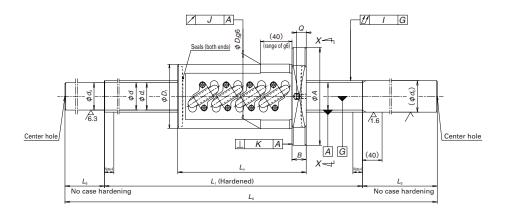
Center hole


(Fine · medium lead)

	Screw			Ball		Effective balls turns	Basic load	rating(N)		Dynamic					Ball	nut d	imens	ions
Reference No.	shaft dia.	Lead	Ball dia.	circle dia.	Root dia.	Tune ×	Dynamic	Static	Preload	friction torque, median	Diar	nete		Fla	nge		Overall length	
	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle m}$	d,	Circuits	C _a	$C_{\scriptscriptstyle \mathrm{OB}}$	(N)	(N·cm)	D_1	D_2	Α	G	Н	В	Ln	W
HSS4016N1D1450																		
HSS4016N1D2100	40	16	7.144	41.5	34.1	3.7X1	57100	130000	2850	104.0	85	86	128	48	63.5	18	160	106
HSS4016N1D2900																		
HSS4020N1D1450																		
HSS4020N1D2100	40	20	7.144	41.5	34.1	3.7X1	57100	130000	2850	116.5	85	86	128	48	63.5	18	192	106
HSS4020N1D2900																		

Notes: 1. Service temperature range is 0 to 60°C.

- 2. Use of NSK support unit is recommended. See page B389 for details.
- 3. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 4. Imperfect hardened areas for one lead exists on both ends of a screw. Exercise care when stroke setting.
- 5. Permissible rotational speed: Calculated values obtained from the critical speed between the threaded length and NSK's recommended shaft end design. See page B27.


Unit:mm

					Screv	/ shaf	t dime	ensior	1	Lea	d accu	racy	F	Run-ou	t		Permissible rotatio	nal speed (min ⁻¹)	Internal	Standard
Bolt	hole		Oil hole	Threaded length	Shafi riç	t end, jht	Shaft le		Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpen- dicularity	Mass	Instal	lation	spatial volume of nut	volume of grease replenishing
X	Y	Ζ	Q	L_{t}	d ₂	L ₂	d₃	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	V _u	1	J	K	(kg)	Fixed-Free support	Fixed-Fixed support	(cm ³)	(cm ³)
				1050		300		100	1450	-0.025	0.046	0.030	0.070			19.2	4000	4000		
11	17.5	11	11	1600	40	350	34.1	150	2100	-0.039	0.054	0.035	0.110	0.025	0.015	25.0	2200	3000	40	20
				2400		350		150	2900	-0.058	0.077	0.046	0.140			32.2	900	1300		
				1050		300		100	1450	-0.025	0.046	0.030	0.070			20.3	4000	4000		
11	17.5	11	11	1600	40	350	34.4	150	2100	-0.039	0.054	0.035	0.110	0.025	0.015	26.2	2200	3000	47	24
				2400		350		150	2900	-0.058	0.077	0.046	0.140			33.5	900	1300		

(Fine lead)

Nut models: ZFRC

Screw shaft ϕ 45, 50 Lead 10, 12

	G- \(\psi \times \text{drill thru} \) C'bore \(\psi \times \text{Y} \times \text{Z} \) \(\text{45}^{\circ} \) \(\text{M6} \times 1 \) \(\text{Oil hole, Plug} \) \(\text{M6} \times 1 \) \(\text{Oil hole} \)	
G	< H >	
Vie	wX-X	

	Screw			Ball		Effective balls turns	Basic load	rating(N)		Dynamic					Ball	nut d	imens	ions
Reference No.	shaft dia.	Lead	Ball dia.	circle dia.	Root dia.	Tune	Dynamic	Static	Preload	friction torque,	Diar	nete		Fla	nge		Overall	
	d	,	D _w	d _m	d.	× Circuits	Ca		(N)	median (N·cm)	<i>D</i> ₁	D ₂	A	G	Н	В	length	W
	и	ι	$\nu_{\rm w}$	u _m	u_r	Gilcuits	C _a	C _{oa}	(11)	(IA-CIII)	D_1	D_2	А	G	П	D	Ln	VV
HSS4510N1D1450																		
HSS4510N1D2100	45	10	6.350	46.0	39.4	2.5X2	54200	155000	2710	82.0	87	88	132	50	65.5	18	163	110
HSS4510N1D2900																		
HSS5010N1D1450																		
HSS5010N1D1850	50	10	6.350	51.0	44.4	2.5X2	57700	175000	2880	92.0	92	93	135	51	67	18	163	113
HSS5010N1D2350	50	10	0.350	51.0	44.4	2.5/2	57700	175000	2000	92.0	92	93	130	01	0/	10	103	113
HSS5010N1D2900																		
HSS5012N1D1450																		
HSS5012N1D2100	50	12	7.938	51.5	43.2	2.5X2	77600	214000	3880	136.5	99	100	146	55	72.5	22	193	122
HCCE012N1D2000																		

Notes: 1. Service temperature range is 0 to 60°C.

- 2. Use of NSK support unit is recommended. See page B389 for details.
- 3. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 4. Imperfect hardened areas for one lead exists on both ends of a screw. Exercise care when stroke setting.
- 5. Permissible rotational speed: Calculated values obtained from the critical speed between the threaded length and NSK's recommended shaft end design. See page B27.

Unit	:	mm	

					Screw	shaf	t dime	ensior	1	Lea	d accu	racy		Run-ou	t		Permissible rotatio	nal speed (min ⁻¹)	Internal	Standard
Bolt	hole		Oil hole	Threaded length	Shaft rig		Shaft le	end, ft	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	0.D.	Flange perpen- dicularity	Mass	Instal	lation	spatial volume of nut	volume of grease replenishing
Χ	Y	Ζ	Q	$L_{\rm t}$	d_2	L2	d₃	L ₃	Lo	T	$e_{\scriptscriptstyle \mathrm{p}}$	$V_{\rm u}$	1	J	K	(kg)	Fixed-Free support	Fixed-Fixed support	(cm ³)	(cm ³)
				1050		300		100	1450	-0.025	0.046	0.030	0.070			22.0	3500	3500		
11	17.5	11	12	1600	45	350	39.4	150	2100	-0.039	0.054	0.035	0.110	0.025	0.015	29.2	2500	3400	58	29
				2400		350		150	2900	-0.058	0.077	0.046	0.140			38.2	1100	1500		
				1050		300		100	1450	-0.025	0.046	0.030	0.070			26.3	3200	3200		
11	17.5	11	12	1450	50	300	44.4	100	1850	-0.035	0.054	0.035	0.090	0.005	0.015	31.9	3200	3200	64	32
П	17.5	11	12	1850	50	350	44.4	150	2350	-0.045	0.065	0.040	0.110	0.025	0.015	38.8	2100	2900	04	32
				2400		350		150	2900	-0.058	0.077	0.046	0.140			46.5	1200	1700		
				1050		300		100	1450	-0.025	0.046	0.030	0.070			28.5	3200	3200		
14	20	13	12	1600	50	350	43.2	150	2100	-0.039	0.054	0.035	0.110	0.025	0.015	37.3	2800	3200	99	50
				2400		350		150	2900	-0.058	0.077	0.046	0.140			48.2	1200	1600		

B-3-1.3 Finished Shaft End MA type, FA type, SA type

1. Order of the dimension tables

The tables begin with the smallest shaft diameter of each MA, FA, and SA type ball screws, and proceeds to the larger sizes. If ball screws have the same shaft diameter, those with smaller leads appear first. Page numbers of shaft diameter and lead combinations are shown in Table 1.

2. Dimension tables

Dimension tables show shapes/sizes as well as specification factors of each shaft diameter/ lead combination. Tables also contain data as follows:

Stroke

Nominal stroke: A reference for your use.

Maximum stroke: The limit stroke that the nut can move. The figure is obtained by subtracting the nut length from the effective threaded length

Lead accuracy

Lead accuracy is either C3 or C5 grades

 (L_1) .

T: Travel compensation

 $e_{\rm p}$: Tolerance on specified travel

 υ_u : Travel variation

See "Technical Description: Lead Accuracy"

Table 1 Combinations of screw shaft diameter and lead

Lead (mm) Screw shaft diameter (mm)	1	1.5	2	2.5	4	5	6
4	B159						
6	B161						
8	B163	B165	B167				
10			B169	B171	B181		
12			B173	B175		B183	
14						B187	
15							
16			B177	B179		B195	
20					B217	B219	
25					B221	B223	B225
28						B229	B233
20						B231	B235
32						B237	B241
						B239	B243
36							
40						B255	
45						·	
50							

(page B37) for the details of the codes.

●Permissible rotational speed

d • n: Limited by the relative peripheral speed between the

screw shaft and the nut.

Critical speed: Limited by the natural frequency of a ball screw shaft. Critical speed depends on the supporting condition of

screw shaft.

The lower of the two criteria, the d-n and critical speed, will determine the overall permissible rotational speed of the ball screw. For details, see "Technical Description: Permissible Rotational Speed" (page B47).

3. Other

The seal of the ball screw, ball recirculating deflector, and end cap are made of synthetic resin. Consult NSK when using our ball screws under extreme environments or in special environments, or if using special lubricant or oil. For special environments, see pages B70 and D2. For lubricants, see pages B67 and D13.

Note: For details of standard stock products, contact NSK.

8	10	12	16	20	25	32	40	50
	D.105							
D100	B185							
B189	B191			B193				
	ופום		B197	D133		B199		
	B201		D197	B203		D199	B205	
	B227			B207	B209		D200	B211
	5227			5207	3200			32
B245	B247				B213	B215		
	B249							
	B251							
	B253							
B257	B259	B263						
	B261	B265						
	B267							
	B269							
	B271							

B157 B158

View X-X

4-2.9 drill thru

PCD 15

Unit:	mm	

	Ball screw s	pecifications		
Product cl	assification	Preloaded Precise clearance		
Shaft dia. x Lead	/ Direction of turn	4×1,	/ Right	
Preload / Bal	I recirculation	P-preload / Defle	ctor (bridge type)	
Ball dia. / B	all circle dia.	0.800) / 4.2	
Screw shaft	root diameter	3	.2	
Effective to	urns of balls	1>	< 2	
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	315		
(N)	Static C _{0a}	37	70	
Axial play		0	0.005 or less	
Preload (N)		19.6	_	
Dynamic friction torque, (N·cm)		1.0 or less	0.3 or less	

Recommended support unit

Spacer ball

Factory-packed grease

For drive side (Fixed)	
WBK06-01A (square)	
WBK06-11 (round)	

None

NSK grease PS2

Unit: mm

Offic. Hill								
Scre	ew shaft le	ngth	Le	ead accura	су	Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition
$L_{\rm t}$	La	L。	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg/	Fixed - Free
44	55	85	0	0.008	0.008	0.015	0.024	3 000
64	75	105	0	0.008	0.008	0.020	0.026	3 000
94	105	135	0	0.008	0.008	0.025	0.028	3 000

C0.2 4	C0.2 C0.3 C0.3 R0.2 R0.2 R0.2 R0.2 R0.2 C0.3 C0.3 C0.3 C0.3 C0.3 C0.3 C0.3 C0.3
	7 7 7 1
< L _a	30
L _o	
1.7	71

Ball scr	Stroke		
Ball SCI	Nominal	Maximum	
Preloaded (MPFD)	IPFD) Precise clearance (MSFD)		
W0400MA-1PY-C3Z1	W0400MA-2Y-C3T1	20	32
W0400MA-3PY-C3Z1	W0400MA-4Y-C3T1	40	52
W0401MA-1PY-C3Z1 W0401MA-2Y-C3T1		70	82

Notes: 1. We recommend NSK support unit. See page B389 for details.

- 2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.
- 3. Ball nut does not have seal.
- 4. Contact NSK if the permissible rotational speed is to be exceeded.

C0.2

M2.5×0.45

Depth 5

 ∕ 0.009 A

⊥ 0.008 A →

11.5

15

L_t (hardened)

√ 0.005 E

C0.3 C0.3

C0.2

R0.2 max.

Ė

⊢⊥ 0.0025 *E*

22.5 30

M6×0.75

Screw shaft ø6

Lead 1

Unit: mm

l	Ball screw s _l	pecification	s
Product cla	assification	Preloaded	Precise clearance
Shaft dia. x Lead	/ Direction of turn	6×1,	/ Right
Preload / Bal	I recirculation	P-preload / De	flector (bridge)
Ball dia. / B	all circle dia.	0.800	0 / 6.2
Screw shaft	root diameter	5	.2
Effective to	urns of balls	1 :	< 3
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T
Basic load rating	Dynamic C _a	575	
(N)	Static C _{0a}	925	
Axia	l play	0	0.005 or less
Prelo	ad (N)	24.5	_
Dynamic friction torque,		1.3 or less	0.2 or loos
(N·cm)		1.3 or less	0.3 or less
Spacer ball		None	
Factory-pag	cked grease	NSK grease PS2	

4-43 4 drill thru

_4	-φ3.4 um umu
30° 30°	CD 18
<u>16</u>	
View X-X	

Recommended support unit

For drive side (Fixed)	
WBK06-01A (square)	
WBK06-11 (round)	

Unit: mi								
Screw shaft length			Lead accuracy		Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition	
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	П	(kg)	Fixed - Free
65	75	105	0	0.008	0.008	0.015	0.039	3 000
95	105	135	0	0.008	0.008	0.020	0.045	3 000
125	135	165	0	0.010	0.008	0.025	0.051	3 000

Pall cor	Stroke			
Ball screw No.		Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	Nominal	iviaxiiTluITI	
W0600MA-1PY-C3Z1	W0600MA-2Y-C3T1	40	50	
W0601MA-1PY-C3Z1	W0601MA-2Y-C3T1	70	80	
W0601MA-3PY-C3Z1	W0601MA-4Y-C3T1	100	110	

11 * * G

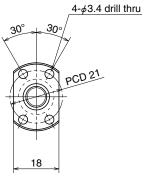
G

A

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.

3. Ball nut does not have seal.


4. Contact NSK if the permissible rotational speed is to be exceeded.

B161 B162

Lead 1

Unit: mm

Ball screw specifications						
Product cla	assification	Preloaded	Precise clearance			
Shaft dia. x Lead	/ Direction of turn	8×1,	/ Right			
Preload / Bal	l recirculation	P-preload / De	flector (bridge)			
Ball dia. / Ba	all circle dia.	0.800	0 / 8.2			
Screw shaft	root diameter	7	.2			
Effective to	irns of balls	1:	× 3			
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T			
Basic load	Dynamic $C_{\scriptscriptstyle a}$	670				
(N)	Static C _{0a}	1 290				
Axia	Axial play		0.005 or less			
Preload (N)		29.4	_			
l '	Dynamic friction torque, (N·cm)		0.5 or less			

30°/		
	7	
	PCD 21	
	-	
18		
iew X-X	_	

Recommended support unit

None

NSK grease PS2

Spacer ball

Factory-packed grease

For drive side (Fixed)	For opposite to drive side (Simple)
WBK08-01A (square)	WBK08S-01 (square)
WBK08-11 (round)	

Unit: mm

								OTHE THEFT
Screw shaft length			Lead accuracy		Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition	
$L_{\rm t}$	La	L。	T e_p v_u		\sqcup	(kg)	Fixed - Simple support	
80	92	138	0	0.008	0.008	0.025	0.073	3 000
110	122	168	0	0.010	0.008	0.030	0.084	3 000
140	152	198	0	0.010	0.008	0.030	0.095	3 000
190	202	248	0	0.010	0.008	0.035	0.11	3 000

0.008 A 0.0	$X = \begin{bmatrix} 0.009 & A \\ 80 & 60 \\ 99 & 4 \end{bmatrix}$ max. $12 4$ $16 L_1 \text{ (hardened)}$	## * G A G	10 0.005 E C0.2 C0.5 C0.5 R0.2 M8×1 4 (8) 27 10
9	L_{a}		37
<	L	0	

Pall cor	Stroke			
Dali Sci	Ball screw No.		N day diga cupa	
Preloaded (MPFD)	FD) Precise clearance (MSFD)		Maximum	
W0800MA-1PY-C3Z1	W0800MA-2Y-C3T1	40	59	
W0801MA-1PY-C3Z1	W0801MA-2Y-C3T1	70	89	
W0801MA-3PY-C3Z1	W0801MA-4Y-C3T1	100	119	
W0802MA-1PY-C3Z1	W0802MA-2Y-C3T1	150	169	

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.

3. Ball nut does not have seal.

4. Contact NSK if the permissible rotational speed is to be exceeded.

B163 B164

View X-X

 $4-\phi 3.4$ drill thru

l	Ball screw s	pecification	s
Product cl	assification	Preloaded	Precise clearance
Shaft dia. x Lead	/ Direction of turn	8 × 1.5	/ Right
Preload / Bal	I recirculation	P-preload / De	flector (bridge)
Ball dia. / B	all circle dia.	1.000	0 / 8.3
Screw shaft	root diameter	7	.0
Effective to	urns of balls	1 >	< 3
Accuracy grade /	Preload / Axial play	C3 / Z	C3/T
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	1 0	080
(N)	Static C _{0a}	1 980	
Axial play		0	0.005 or less
Preload (N)		49.0	_
Dynamic friction torque, (N·cm)		2.0 or less	0.5 or less
Spacer hall		No	ne

Spacer ball None

Recommended support unit

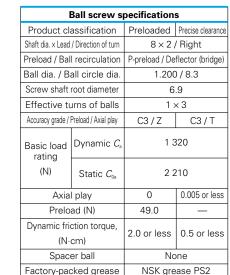
Factory-packed grease

NSK grease PS2

For drive side (Fixed)	For opposite to drive side (Simple)	
WBK08-01A (square)	WBK08S-01 (square)	
WBK08-11 (round)		

Unit: mm

Screw shaft length			Lead accuracy			Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition
$L_{\rm t}$	L _a	L _o	Т	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple support
80	92	138	0	0.008	0.008	0.025	0.082	3 000
110	122	168	0	0.010	0.008	0.030	0.093	3 000
140	152	198	0	0.010	0.008	0.030	0.10	3 000
190	202	2/18	0	0.010	0.008	0.035	0.12	3 000


L _t (hardened) 4 (8) 27 10 L _a 37	C0.5 R0.2 max.	Seals (two places) X = 1 18	1115		<u>√ 0.005 E</u> <u>C0.5</u>
		Lt (hardened)	4 (8)	27 10	
L _o	9	La	' ' >	≤ 37	
	,	Lo			

Pall cor	Stroke		
Ball screw No.		Nominal	Maximum
Preloaded (MPFD)	Precise clearance (MSFD)	INOTTIITIAI	IVIAXIITIUITI
W0800MA-3PY-C3Z1.5	W0800MA-4Y-C3T1.5	40	53
W0801MA-5PY-C3Z1.5	W0801MA-6Y-C3T1.5	70	83
W0801MA-7PY-C3Z1.5	W0801MA-8Y-C3T1.5	100	113
W0802MA-3PY-C3Z1.5	W0802MA-4Y-C3T1.5	150	163

- Notes: 1. We recommend NSK support unit. See page B389 for details.
 2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.
 3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 2

Unit: mm

4-φ3.4 drill thru
30° 30° PCD 23
≈ 20 →
View X-X

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK08-01A (square)	WBK08S-01 (square)
WBK08-11 (round)	

Unit: mm

B168

								Offic. Hilli
Screw shaft length			Le	Lead accuracy			Mass (kg)	Permissible rotational speed N (min-1) Supporting condition
$L_{\rm t}$	La	L _o	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	U	(kg)	Fixed - Simple support
80	92	138	0	0.008	0.008	0.025	0.09	3 000
110	122	168	0	0.010	0.008	0.030	0.10	3 000
140	152	198	0	0.010	0.008	0.030	0.11	3 000
190	202	248	0	0.010	0.008	0.035	0.13	3 000

C0.5 R0.2 max.	Seals (two places) X A G 22 4 26 L _t (hardened)	10	- 3	20.5 C0.5
9	La	} 	37	* 7
 	 L _o	>	₹	<u>→</u>
<	L 0			

Ball scr	Stroke			
Dali Sci	Nominal	Marriago		
Preloaded (MPFD)	Precise clearance (MSFD)	NOMinal	Maximum	
W0800MA-5PY-C3Z2	W0800MA-6Y-C3T2	40	49	
W0801MA-9PY-C3Z2	W0801MA-10Y-C3T2	70	79	
W0801MA-11PY-C3Z2	W0801MA-12Y-C3T2	100	109	
W0802MA-5PY-C3Z2	W0802MA-6Y-C3T2	150	159	

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

View X-X

 $4-\phi 4.5$ drill thru

	Offic. Hilli
Ball screw specifications	

Dan solett speemeations						
Product cla	assification	Preloaded	Precise clearance			
Shaft dia. x Lead	/ Direction of turn	10 × 2 / Right				
Preload / Bal	I recirculation	P-preload / De	flector (bridge)			
Ball dia. / B	all circle dia.	1.200	/ 10.3			
Screw shaft	root diameter	8	.9			
Effective to	urns of balls	1 × 3				
Accuracy grade /	Preload / Axial play	C3/Z C3/T				
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	1 490				
(N)	Static C _{0a}	2 850				
Axia	Axial play		0.005 or less			
Prelo	ad (NI)	59.9				

Preload (N) 58.8 Dynamic friction torque,

(N·cm) Spacer ball

Factory-packed grease

Recommended support unit

0.1 - 2.4

None

NSK grease PS2

For drive side (Fixed)	For opposite to drive side (Simple)	
WBK08-01A (square)	WBK08S-01 (square)	
WBK08-11 (round)		

Unit: mm

0.5 or less

	Olika Hilli								
Screw shaft length			Lead accuracy			out	Mass	Permissible rotational speed N (min-1) Supporting condition	
L_{t}	La	L _o	T	$e_{\scriptscriptstyle p}$	υ _u		(kg)	Fixed - Simple support	
100	112	158	0	0.008	0.008	0.020	0.13	3 000	
150	162	208	0	0.010	0.008	0.030	0.16	3 000	
200	212	258	0	0.010	0.008	0.030	0.19	3 000	
250	262	308	0	0.012	0.008	0.030	0.22	3 000	

(0.007 A) (0.007 A) (0.002 A)	ax.	Dlaces) X 1 A G	C0.2 R0.2 R0.2 max.	0.007 A 0.005 E 0.007 A 0.007
9	La			37
<u> </u>	L _o		<u> </u>	>

Ball scr	Stroke		
Dali Sci	Nominal	Maximum	
Preloaded (MPFD)	loaded (MPFD) Precise clearance (MSFD)		IVIAXIITIUITI
W1001MA-1PY-C3Z2	W1001MA-2Y-C3T2	50	67
W1001MA-3PY-C3Z2	W1001MA-4Y-C3T2	100	117
W1002MA-1PY-C3Z2	W1002MA-2Y-C3T2	150	167
W1002MA-3PY-C3Z2	W1002MA-4Y-C3T2	200	217

- Notes: 1. We recommend NSK support unit. See page B389 for details.

 2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.
 - 3. Contact NSK if the permissible rotational speed is to be exceeded.

	Ball screw specifications						
	Product cl	assification	Preloaded Precise clear				
	Shaft dia. x Lead	/ Direction of turn	10 × 2.5 / Right				
	Preload / Bal	I recirculation	P-preload / De	flector (bridge)			
	Ball dia. / B	all circle dia.	1.588	/ 10.4			
	Screw shaft	root diameter	8	.6			
	Effective to	urns of balls	1 × 3				
	Accuracy grade /	Preload / Axial play	C3 / Z	C3/T			
	Basic load rating (N)	Dynamic $C_{\scriptscriptstyle a}$	2 1	30			
		Static C _{0a}	3 640				
	Axial play Preload (N)		0	0.005 or less			
			98.1	_			
	l '	ction torque, cm)	0.2 – 2.9	0.5 or less			

Recommended support unit

None

NSK grease PS2

Spacer ball

Factory-packed grease

For drive side (Fixed)	For opposite to drive side (Simple)		
WBK08-01A (square)	WBK08S-01 (square)		
WBK08-11 (round)			

Unit: mm

Screw shaft length			Lead accuracy			out	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
100	112	158	0	0.008	0.008	0.020	0.14	3 000
150	162	208	0	0.010	0.008	0.030	0.17	3 000
200	212	258	0	0.010	0.008	0.030	0.20	3 000
250	262	308	0	0.012	0.008	0.030	0.23	3 000

(0.007 A) (0.007 A) (0.007 A) (0.007 A) (0.007 A) (0.007 A) (0.0025 A) (0.0025 A) (0.0025 A) (0.0025 A)	0.010 A	Seals (two places) X 1 1 1 1 1 1 1 1 1 1 1 1	# * # G A G			C0.5
9		La		> <	37	
·		Lo			>	

Pall cor	Stroke		
Ball screw No.		Nominal	Maximum
Preloaded (MPFD)	Precise clearance (MSFD)	NOTTIITIAI	IVIdXIIIIUIII
W1001MA-5PY-C3Z2.5	W1001MA-6Y-C3T2.5	50	63
W1001MA-7PY-C3Z2.5	W1001MA-8Y-C3T2.5	100	113
W1002MA-5PY-C3Z2.5	W1002MA-6Y-C3T2.5	150	163
W1002MA-7PY-C3Z2.5	W1002MA-8Y-C3T2.5	200	213

- Notes: 1. We recommend NSK support unit. See page B389 for details.
 2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.
 3. Contact NSK if the permissible rotational speed is to be exceeded.

B171 B172

View X-X

4-φ4.5 drill thru

UI	Πt.	П	ш	1
				_
				7

Ball screw specifications					
classification	Preloaded	Precise clearance			
ad / Direction of turn	12 × 2	/ Right			

Product cla	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	12 × 2 / Right		
Preload / Bal	I recirculation	P-preload / De	flector (bridge)	
Ball dia. / B	all circle dia.	1.200	/ 12.3	
Screw shaft	root diameter	10.9		
Effective to	urns of balls	1×3		
Accuracy grade / Preload / Axial play		C3 / Z C3 / T		
Basic load	Dynamic $C_{\scriptscriptstyle a}$	1 6	660	
(N)	Static C _{0a}	3 6	520	
	Shaft dia. x Lead Preload / Ball Ball dia. / B Screw shaft Effective to Accuracy grade / Basic load rating	Basic load rating	Shaft dia. x Lead / Direction of turn 12 x 2 Preload / Ball recirculation Ball dia. / Ball circle dia. 1.200 Screw shaft root diameter Effective turns of balls Accuracy grade / Preload / Axial play C3 / Z Basic load rating Dynamic C _a 16	

(N)	Static C _{0a}	3 620			
Axia	l play	0	0.005 or less		
Prelo	ad (N)	98.1	_		
,	ction torque,	0.4 – 3.4	1.0 or less		

(N·cm) Spacer ball

Factory-packed grease NSK grease PS2

	* *
For drive side (Fixed)	For opposite to drive side (Simple)
WBK10-01A (square)	WBK10S-01 (square)
WBK10-11 (round)	

Recommended support unit

None

	Offic. Hill							
Screw shaft length Lead accuracy		Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition				
$L_{\rm t}$	La	L _o	Т	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
110	125	180	0	0.010	0.008	0.020	0.20	3 000
160	175	230	0	0.010	0.008	0.030	0.24	3 000
210	225	280	0	0.012	0.008	0.030	0.28	3 000
260	275	330	0	0.012	0.008	0.040	0.32	3 000
310	325	380	0	0.012	0.008	0.040	0.36	3 000

L ₁ (hardened) 5 (10) 30 15 L ₂ 45	0.007 A 0.	99 5002 77 80 20 20 20 20 20 20 20 20 20 20 20 20 20	Pals (two places) X — 1 ES 3	# * G A G	(5)	C0.2		φ8h6	✓ 0.005 E C0.5
10 La 45		L _t (har	rdened)		5 (10	0) 30)	15	
	10		La		"	*	45	>	
$\stackrel{\longleftarrow}{\longleftarrow}$	<		Lo					>	

Pall cor	Stroke		
Ball screw No.		Nominal	Maximum
Preloaded (MPFD)	Precise clearance (MSFD)	INOITIIIIai	IVIdXIIIIUIII
W1201MA-1PY-C3Z2	W1201MA-2Y-C3T2	50	75
W1201MA-3PY-C3Z2	W1201MA-4Y-C3T2	100	125
W1202MA-1PY-C3Z2	W1202MA-2Y-C3T2	150	175
W1202MA-3PY-C3Z2	W1202MA-4Y-C3T2	200	225
W1203MA-1PY-C3Z2	W1203MA-2Y-C3T2	250	275

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

30° 30° PCD 30	4-φ4.5 drill thru
	PCD 30

View X-X

Ball screw specifications				
Product cl	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	12 × 2.5	5 / Right	
Preload / Bal	I recirculation	P-preload / De	flector (bridge)	
Ball dia. / B	all circle dia.	1.588	/ 12.4	
Screw shaft	root diameter	10).6	
Effective to	urns of balls	1 :	× 3	
Accuracy grade / Preload / Axial play		C3 / Z	C3 / T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	2.3	360	
(N)	Static C _{0a}	4.5	540	
Axia	l play	0	0.005 or less	
Preload (N)		98.1	_	
Dynamic friction torque,		0.4 – 3.4	10001000	
(N·cm)		0.4 – 3.4	1.0 or less	
Spac	er ball	No	ne	
Factory-pag	cked grease	NSK grease PS2		

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)					
WBK10-01A (square)	WBK10S-01 (square)					
WBK10-11 (round)						

	Unit: mm								
Scre	Screw shaft length			Lead accuracy			Mass (kg)	Permissible rotational speed N (min-1) Supporting condition	
$L_{\rm t}$	La	L。	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	
110	125	180	0	0.010	0.008	0.020	0.21	3 000	
160	175	230	0	0.010	0.008	0.030	0.25	3 000	
210	225	280	0	0.012	0.008	0.030	0.29	3 000	
260	275	330	0	0.012	0.008	0.040	0.33	3 000	
310	325	380	0	0.012	0.008	0.040	0.37	3 000	

(0.007 A) (0.007 A) (0.007 A) (0.003 A)	Seals (two places) X	# * * G A G	(5)	C0.2 R0.2 M10×1 L 0.003 E	0.005 E
 	 Lt (hardened)		5 (10)	3 0	15
10	 La		>	_* 45	
€	Lo				

Ball sci	Stroke		
Dali Sci	Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	NOTTIITIAI	IVIAXIITIUITI
W1201MA-5PY-C3Z2.5	W1201MA-6Y-C3T2.5	50	71
W1201MA-7PY-C3Z2.5	W1201MA-8Y-C3T2.5	100	121
W1202MA-5PY-C3Z2.5	W1202MA-6Y-C3T2.5	150	171
W1202MA-7PY-C3Z2.5	W1202MA-8Y-C3T2.5	200	221
W1203MA-3PY-C3Z2.5	W1203MA-4Y-C3T2.5	250	271

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

B175 B176

View X-X

 $4-\phi 5.5$ drill thru

M6×1

(oil hole)

Screw shaft ø16

Lead 2

Unit: mm

Ball screw specifications						
Product cl	assification	Preloaded	Precise clearance			
Shaft dia. x Lead	/ Direction of turn	16 × 2	/ Right			
Preload / Bal	I recirculation	P-preload / De	flector (bridge)			
Ball dia. / B	all circle dia.	1.588	/ 16.4			
Screw shaft	root diameter	14	1.6			
Effective to	urns of balls	1 :	× 4			
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T			
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	3 510				
(N)	Static C _{0a}	8 450				
Axia	l play	0	0.005 or less			
Prelo	ad (N)	147	_			
Dynamic friction torque, (N·cm)		0.5 – 4.9	1.5 or less			
Spac	er ball	None				
Factory-packed grease		NSK grease PS2				
Internal spatial v	olume of nut (cm³)	1.6				
Standard volume of q	rease replenishing (cm³)	0.8				

wolume of grease replenishing (cm³) 0.8 Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)				
WBK12-01A (square)	WBK12S-01 (square)				
WBK12-11 (round)					

Unit: mm

Coro	v oboft la	300			Permissible rotatio	nal speed N (min-1)			
Screv	w Shart is			out **	Mass (kg)	Supporting	condition		
$L_{\rm t}$	La	L _o	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	Ц	(Kg)	Fixed - Simple support	Fixed - Fixed
139	154	221	0	0.010	0.008	0.020	0.41	3 000	3 000
189	204	271	0	0.010	0.008	0.020	0.48	3 000	3 000
239	254	321	0	0.012	0.008	0.030	0.55	3 000	3 000
289	304	371	0	0.012	0.008	0.030	0.62	3 000	3 000
389	404	471	0	0.013	0.010	0.035	0.77	3 000	3 000

(C0.5 C0.2 C0.2 C0.5 C0.2 F0.2 ms	91 91 92 93 93 94 94 94 94 94 94 94 94 94 94 94 94 94	A G 35	70.010 A 0.005 E 802 C0.2 C0.5 C0.5 R0.2 M12×1 10.003 E 30 15
22	L _t (nardened)	10/610	45
<	Lo		

Ball scr	Stroke		
Ball Sci	Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	NOTTIITIAI	IVIdXIITIUITI
W1601MA-1PY-C3Z2	W1601MA-2Y-C3T2	50	93
W1601MA-3PY-C3Z2	W1601MA-4Y-C3T2	100	143
W1602MA-1PY-C3Z2	W1602MA-2Y-C3T2	150	193
W1602MA-3PY-C3Z2	W1602MA-4Y-C3T2	200	243
W1603MA-1PY-C3Z2	W1603MA-2Y-C3T2	300	343

Notes: 1. We recommend NSK support unit. See page B389 for details.

- Use of NSK grease PS2 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.
- 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.
- 5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

B177

29 View *X-X* 4-φ5.5 drill thru

M61

(oil hole)

Screw shaft ø16

Lead 2.5

Unit: mm

ı	Ball screw s _l	pecifications		
Product cl	assification	Preloaded Precise clearan		
Shaft dia. x Lead	/ Direction of turn	16 × 2.5	7 Right	
Preload / Bal	I recirculation	P-preload / De	flector (bridge)	
Ball dia. / B	all circle dia.	1.588	/ 16.4	
Screw shaft	root diameter	14	1.6	
Effective to	urns of balls	1:	< 4	
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	3 510		
(N)	Static C _{0a}	8 450		
Axia	l play	0	0.005 or less	
Prelo	ad (N)	147	_	
•	ction torque, cm)	0.5 – 4.9	1.5 or less	
Spac	er ball	None		
Factory-pag	cked grease	NSK grease PS2		
Internal spatial vo	olume of nut (cm³)	1.6		
Standard volume of gr	rease replenishing (cm³)	0.8		

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

Unit: mm

Screw shaft length		Load accuracy			Shaft run-		Permissible rotational speed N	nal speed N (min-1)		
Screv	Screw shart length		Lead accuracy		out **	Mass (kg)	Supporting	condition		
L_{t}	La	L。	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	Ц	(kg)	(Kg)	Fixed - Simple support	Fixed - Fixed
139	154	221	0	0.010	0.008	0.020	0.42	3 000	3 000	
189	204	271	0	0.010	0.008	0.020	0.49	3 000	3 000	
239	254	321	0	0.012	0.008	0.030	0.57	3 000	3 000	
289	304	371	0	0.012	0.008	0.030	0.64	3 000	3 000	
389	404	471	0	0.013	0.010	0.035	0.79	3 000	3 000	

22 L _a 45	M5×0.8 Depth 12 Depth 12 Depth 12	2 max.	Seals (two places) X X	# * G	412	70.010 A 9940 C 0.5 C 0.	<u> </u>
Lo	< 22 _{>} <		L _a		>	, 40 →	

Ball scr	St	roke	
Dali Sci	Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	INOMINAL	IVIAXIITIUITI
W1601MA-5PY-C3Z2.5	W1601MA-6Y-C3T2.5	50	89
W1601MA-7PY-C3Z2.5	W1601MA-8Y-C3T2.5	100	139
W1602MA-5PY-C3Z2.5	W1602MA-6Y-C3T2.5	150	189
W1602MA-7PY-C3Z2.5	W1602MA-8Y-C3T2.5	200	239
W1603MA-3PY-C3Z2.5	W1603MA-4Y-C3T2.5	300	339

Notes: 1. We recommend NSK support unit. See page B389 for details.

- Use of NSK grease PS2 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.
- 3. Contact NSK if permissible rotational speed is to be exceeded.
- 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.
- 5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

B179

Lead 4

Unit: mm

l	Ball screw s _l	pecification	s
Product cl	assification	Preloaded	Precise clearance
Shaft dia. x Lead	/ Direction of turn	10 × 4	/ Right
Preload / Bal	I recirculation	P-preload /	Return tube
Ball dia. / B	all circle dia.	2.000	/ 10.3
Screw shaft	root diameter	8	.2
Effective to	urns of balls	2.5	×1
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	1 730	2 740
(N)	Static C _{0a}	2 230	4 450
Axia	l play	0	0.005 or less
Prelo	ad (N)	98.1	_
Dynamic friction torque, (N·cm)		0.5 – 3.9	1.0 or less
Spacer ball		Yes	None
Factory-packed grease		NSK grease PS2	
Internal spatial v	olume of nut (cm³)	0	.8
Standard volume of g	rease replenishing (cm³)	0	.4

4-φ4.5 drill thru c'bore φ8×4.5 M6×1 (oil hole) 28 View X-X

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK10-01A (square)	WBK10S-01 (square)
WBK10-11 (round)	

Unit: mm

Scre	w shaft le	ngth	Le	ead accura	су	Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition
$L_{\rm t}$	L _a	L _o	T	$e_{\scriptscriptstyle p}$	$\upsilon_{_{\scriptscriptstyle \mathrm{u}}}$		(kg)	Fixed - Simple support
110	125	180	0	0.010	0.008	0.020	0.26	3 000
160	175	230	0	0.010	0.008	0.030	0.28	3 000
210	225	280	0	0.012	0.008	0.030	0.31	3 000
260	275	330	0	0.012	0.008	0.040	0.34	3 000
310	325	380	0	0.012	0.008	0.040	0.37	3 000
360	375	430	0	0.013	0.010	0.050	0.39	3 000

0.010 0.	10.008 A X 4 34 34	G (5)	C0.2 C0.5 Section Co.5 Co.5	✓ 0.005 E C0.5
<	L _t (hardened)	5 (10)	30 15	
10	La		45	
-	L _o			

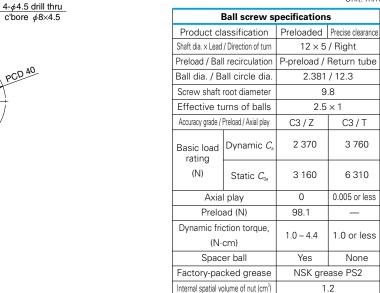
Rall sor	St	roke	
Dali Sci	Ball screw No.		
Preloaded (PFT)	Precise clearance (SFT)	Nominal	Maximum
W1001FA-1P-C3Z4	W1001FA-2-C3T4	50	69
W1001FA-3P-C3Z4	W1001FA-4-C3T4	100	119
W1002FA-1P-C3Z4	W1002FA-2-C3T4	150	169
W1002FA-3P-C3Z4	W1002FA-4-C3T4	200	219
W1003FA-1P-C3Z4	W1003FA-2-C3T4	250	269
W1003FA-3P-C3Z4	W1003FA-4-C3T4	300	319

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Use of NSK grease PS2 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

View X-X


M6×1

(oil hole)

Screw shaft ø12

Lead 5

Unit: mm

Standard volume of grease replenishing (cm3)

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK10-01A (square)	WBK10S-01 (square)
WBK10-11 (round)	

Unit: mm

B184

0.6

Scre	ew shaft le	ngth	Le	ead accura	СУ	Shaft run- out **	Mass	Permissible rotational speed N (min-1) Supporting condition
$L_{\rm t}$	L _a	L _o	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
110	125	180	0	0.010	0.008	0.020	0.35	3 000
160	175	230	0	0.010	0.008	0.030	0.38	3 000
210	225	280	0	0.012	0.008	0.030	0.42	3 000
260	275	330	0	0.012	0.008	0.040	0.46	3 000
310	325	380	0	0.012	0.008	0.040	0.50	3 000
410	425	480	0	0.015	0.010	0.050	0.58	3 000
510	525	580	0	0.016	0.012	0.065	0.66	3 000

0.007 A 0.007	Seals (two places) X R0.2 max. Seals (two places) X A A L (hardened)	* G 12 0.010 A 0.005 E 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	ج لزااها بلغاناها)	***
10	< L _a	45
	L_{\circ}	*

Pall cor	St	roke	
Dali Sci	Ball screw No.		
Preloaded (PFT)	Precise clearance (SFT)	Nominal	Maximum
W1201FA-1P-C3Z5	W1201FA-2-C3T5	50	63
W1201FA-3P-C3Z5	W1201FA-4-C3T5	100	113
W1202FA-1P-C3Z5	W1202FA-2-C3T5	150	163
W1202FA-3P-C3Z5	W1202FA-4-C3T5	200	213
W1203FA-1P-C3Z5	W1203FA-2-C3T5	250	263
W1204FA-1P-C3Z5	W1204FA-2-C3T5	350	363
W1205FA-1P-C3Z5	W1205FA-2-C3T5	450	463

Notes: 1. We recommend NSK support unit. See page B389 for details.

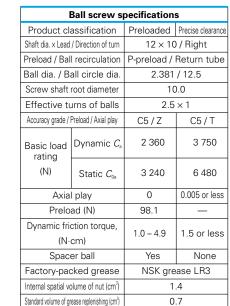
Use of NSK grease PS2 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

View X-X

 $4-\phi 4.5$ drill thru

c'bore $\phi 8 \times 4.5$


M6×1

(oil hole)

Screw shaft ø12

Lead 10

Unit: mm

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK10-01A (square)	WBK10S-01 (square)
WBK10-11 (round)	

Unit: mm

Scre	ew shaft le	ngth	Le	ead accura	су	Shaft run- out **	Mass	Permissible rotational speed N (min-1) Supporting condition
L _t	La	L _o	Т	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
160	175	230	0	0.020	0.018	0.035	0.43	3 000
210	225	280	0	0.023	0.018	0.035	0.47	3 000
310	325	380	0	0.023	0.018	0.050	0.56	3 000
410	425	480	0	0.027	0.020	0.060	0.64	3 000
510	525	580	0	0.030	0.023	0.075	0.72	3 000

(0.010 A) (0.010	.2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	96000	Seals (two places) Li (0.010 A) - 40 Li (hardened)	X 10 X 10	# * * G		(5)	C0.2 R0.2 M10×1 M10×1 30	-0.008 48h6	✓ 0.008 E C0.5
10			La			1		45		
				Lo						

Ball sci	Stroke		
Dali Sci	Nominal	Maximum	
Preloaded (LPFT)	Precise clearance (LSFT)	NOTTIITIAI	IVIdXIIIIUIII
W1201FA-5P-C5Z10	W1201FA-6-C5T10	100	103
W1202FA-5P-C5Z10	W1202FA-6-C5T10	150	153
W1203FA-3P-C5Z10	W1203FA-4-C5T10	250	253
W1204FA-3P-C5Z10	W1204FA-4-C5T10	350	353
W1205FA-3P-C5Z10	W1205FA-4-C5T10	450	453

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

B185

Lead 5

Unit: mm

l	Ball screw s _l	pecification	s			
Product cl	assification	Preloaded	Precise clearance			
Shaft dia. x Lead	/ Direction of turn	14 × 5	/ Right			
Preload / Bal	I recirculation	P-preload /	Return tube			
Ball dia. / B	all circle dia.	3.175	/ 14.5			
Screw shaft	root diameter	11	.2			
Effective to	urns of balls	2.5	×1			
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T			
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	4 280	6 790			
(N)	Static C _{0a}	5 840	11 700			
Axia	l play	0	0.005 or less			
Prelo	ad (N)	147	_			
,	ction torque, cm)	1.5 – 6.9	2.0 or less			
Spac	er ball	Yes None				
Factory-pag	cked grease	NSK grease LR3				
Internal spatial vo	olume of nut (cm³)	2.2				
Standard volume of gr	rease replenishing (cm³)	1	.1			

M6×1 (oil hole)	$ \frac{4-\phi 5.5 \text{ drill thru}}{\text{c'bore } \phi 9.5 \times 5.5} $
30° 30	
≥ 34	→
View X-X	_

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

Unit: mm

									Onit. mm	
Coro	v shaft le	anath	Lo				N 4	Permissible rotational speed N (min-1)		
Sciev	v Silait it	engui	Le	Lead accuracy		out **	Mass (kg)	Supporting condition		
$L_{\rm t}$	La	L _o	Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed	
189	204	271	0	0.010	0.008	0.020	0.52	3 000	3 000	
239	254	321	0	0.012	0.008	0.030	0.57	3 000	3 000	
339	354	421	0	0.013	0.010	0.035	0.67	3 000	3 000	
439	454	521	0	0.015	0.010	0.045	0.77	3 000	3 000	
539	554	621	0	0.016	0.012	0.045	0.87	3 000	3 000	
689	704	771	0	0.018	0.013	0.055	1.0	3 000	3 000	

Notes: 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

<u>L₀</u>	M5×0.8 Depth 12 M5×0.8 Depth 12 22	0.010 A 0.010 A	deals (two places) 6 X 10 10 10 10 10 10 10 10 10	# * G A G	CO.2	.2	✓ 0.006 E
	•		Lo				

Pall cor	Stroke				
Ball Sci	Ball screw No.				
Preloaded (PFT)	Precise clearance (SFT)	Nominal	Maximum		
W1401FA-1P-C3Z5	W1401FA-2-C3T5	100	143		
W1402FA-1P-C3Z5	W1402FA-2-C3T5	150	193		
W1403FA-1P-C3Z5	W1403FA-2-C3T5	250	293		
W1404FA-1P-C3Z5	W1404FA-2-C3T5	350	393		
W1405FA-1P-C3Z5	W1405FA-2-C3T5	450	493		
W1406FA-1P-C3Z5	W1406FA-2-C3T5	600	643		

Notes: 1. We recommend NSK support unit. See page B389 for details.

Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space.
 See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

B187

B188

3

View X-X

For drive side

(Fixed)

WBK12-01A (square)

WBK12-11 (round)

L 189

239

289

339

389

439

489

539

589

639 689

789

Screw shaft length

204

254

304

354

404

454

504

554

604

654

704

804

Recommended support unit

271

321

371

421

471

521

571

621

671

721

771

871

4-φ5.5 drill thru

For opposite to drive side

(Simple)

WBK12S-01 (square)

0

0

0

0

0

0

0

0

0

0

0

0

M6×1

(oil hole)

Screw shaft ø14

Lead 8

Unit: mm

Ball screw specifications Product classification Preloaded Precise clearance 14×8 / Right

147 Preload (N) 1.5 - 7.8(N·cm) None

Spacer ball Yes NSK grease LR3 Factory-packed grease Internal spatial volume of nut (cm3) 2.1 Standard volume of grease replenishing (cm3 1.1

Shaft run-

Shaft dia. x Lead / Direction of turn Preload / Ball recirculation | P-preload / Return tube 3.175 / 14.5 Ball dia. / Ball circle dia Screw shaft root diameter 11.2 Effective turns of balls 2.5×1 Accuracy grade / Preload / Axial play C5 / Z C5 / T 4 280 6 790 Basic load | Dynamic C. rating Static C_{0a} 5 840 11 700 0 0.005 or less Axial play Dynamic friction torque, 2.4 or less

Unit: mm

3 000

3 000

3 000

B190

Permissible rotational speed N (min-1)

Lead accuracy			** Mac		Termissible rotational speed in (min)			
Lead accuracy		out ** Mass (kg)		Supporting condition				
г	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	ⅈⅈ	(kg)	Fixed - Simple support	Fixed - Fixed		
)	0.020	0.018	0.025	0.56	3 000	3 000		
)	0.023	0.018	0.035	0.61	3 000	3 000		
)	0.023	0.018	0.035	0.67	3 000	3 000		
)	0.025	0.020	0.040	0.72	3 000	3 000		
)	0.025	0.020	0.040	0.78	3 000	3 000		
)	0.027	0.020	0.050	0.83	3 000	3 000		
)	0.027	0.020	0.050	0.88	3 000	3 000		
)	0.030	0.023	0.050	0.94	3 000	3 000		
)	0.030	0.023	0.065	0.99	3 000	3 000		

3 000

3 000

2 830

Notes: 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

0.025

0.025

0.025

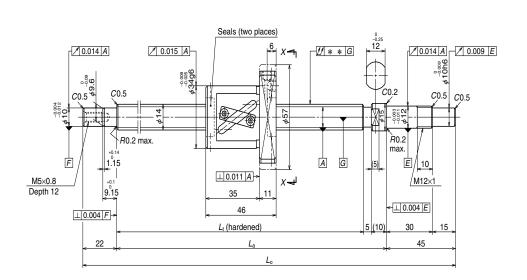
0.065

0.065

0.085

1.0

1.1

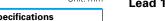

1.2

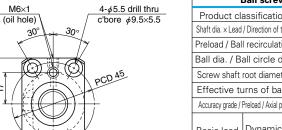
5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

0.035

0.035

0.035


D. "	Stroke		
Ball sc	rew No.	Manainal	Massinassina
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	Maximum
W1401FA-3P-C5Z8	W1401FA-4-C5T8	100	137
W1402FA-3P-C5Z8	W1402FA-4-C5T8	150	187
W1402FA-5P-C5Z8	W1402FA-6-C5T8	200	237
W1403FA-3P-C5Z8	W1403FA-4-C5T8	250	287
W1403FA-5P-C5Z8	W1403FA-6-C5T8	300	337
W1404FA-3P-C5Z8	W1404FA-4-C5T8	350	387
W1404FA-5P-C5Z8	W1404FA-6-C5T8	400	437
W1405FA-3P-C5Z8	W1405FA-4-C5T8	450	487
W1405FA-5P-C5Z8	W1405FA-6-C5T8	500	537
W1406FA-3P-C5Z8	W1406FA-4-C5T8	550	587
W1406FA-5P-C5Z8	W1406FA-6-C5T8	600	637
W1407FA-1P-C5Z8	W1407FA-2-C5T8	700	737


Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded

Unit: mm Lead 10

View X-X

34

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)			
WBK12-01A (square)	WBK12S-01 (square)			
WBK12-11 (round)				

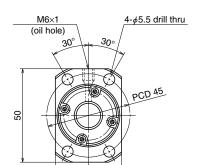
E	Ball screw s _l	pecification	s	
Product cla	assification	Preloaded	Precise clearanc	
Shaft dia. x Lead	/ Direction of turn	15 × 10) / Right	
Preload / Bal	l recirculation	P-preload / Return tube		
Ball dia. / Ba	all circle dia.	3.175 / 15.5		
Screw shaft	root diameter	12	2.2	
Effective to	irns of balls	2.5	×1	
Accuracy grade / F	Preload / Axial play	C5 / Z	C5 / T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	4 450	7 070	
(N)	Static C _{0a}	6 380	12 800	
Axial	l play	0	0.005 or less	
Prelo	ad (N)	147	_	
l '	ction torque, cm)	1.5 – 7.8	2.4 or less	
Space	er ball	Yes	None	
Factory-pac	ked grease	NSK grease LR3		
Internal spatial vo	olume of nut (cm³)	2.3		
Standard volume of gr	ease replenishing (cm³)	1	.2	

B192

									Offit. Hilli
Scro	w shaft le	anath	١۵	ad accur	201/	Shaft run-		Permissible rotational speed N (min-1)	
30161	v Silait I	əriyur	L	au accur	асу	out **	Mass (kg)	Supporting	g condition
L_{t}	La	L _o	Τ	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple support	Fixed - Fixed
189	204	271	0	0.020	0.018	0.025	0.61	3 000	3 000
239	254	321	0	0.023	0.018	0.035	0.67	3 000	3 000
289	304	371	0	0.023	0.018	0.035	0.74	3 000	3 000
339	354	421	0	0.025	0.020	0.040	0.80	3 000	3 000
389	404	471	0	0.025	0.020	0.040	0.86	3 000	3 000
439	454	521	0	0.027	0.020	0.050	0.93	3 000	3 000
489	504	571	0	0.027	0.020	0.050	1.0	3 000	3 000
539	554	621	0	0.030	0.023	0.050	1.1	3 000	3 000
589	604	671	0	0.030	0.023	0.065	1.1	3 000	3 000
639	654	721	0	0.035	0.025	0.065	1.2	3 000	3 000
689	704	771	0	0.035	0.025	0.065	1.2	3 000	3 000
789	804	871	0	0.035	0.025	0.085	1.4	3 000	3 000
889	904	971	0	0.040	0.027	0.085	1.5	2 430	3 000
1 089	1 104	1 171	0	0.046	0.030	0.110	1.8	1 600	2 250

Notes: 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).


Ball scr	Stroke			
Dali 3Ci	Dali screw No.			
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	Maximum	
W1501FA-1P-C5Z10	W1501FA-2-C5T10	100	132	
W1502FA-1P-C5Z10	W1502FA-2-C5T10	150	182	
W1502FA-3P-C5Z10	W1502FA-4-C5T10	200	232	
W1503FA-1P-C5Z10	W1503FA-2-C5T10	250	282	
W1503FA-3P-C5Z10	W1503FA-4-C5T10	300	332	
W1504FA-1P-C5Z10	W1504FA-2-C5T10	350	382	
W1504FA-3P-C5Z10	W1504FA-4-C5T10	400	432	
W1505FA-1P-C5Z10	W1505FA-2-C5T10	450	482	
W1505FA-3P-C5Z10	W1505FA-4-C5T10	500	532	
W1506FA-1P-C5Z10	W1506FA-2-C5T10	550	582	
W1506FA-3P-C5Z10	W1506FA-4-C5T10	600	632	
W1507FA-1P-C5Z10	W1507FA-2-C5T10	700	732	
W1508FA-1P-C5Z10	W1508FA-2-C5T10	800	832	
W1510FA-1P-C5Z10	W1510FA-2-C5T10	1 000	1 032	

Notes: 1. We recommend NSK support unit. See page B389 for details.

Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Unit: mm Lead 20

View X-X

36

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

l	Ball screw s	pecification	s	
Product cl	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	15 × 20	/ Right	
Preload / Bal	I recirculation	P-preload / End cap		
Ball dia. / B	all circle dia.	3.175 / 15.5		
Screw shaft	root diameter	12	2.2	
Effective to	urns of balls	1.7	× 1	
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T	
Basic load	Dynamic $\mathcal{C}_{\scriptscriptstyle a}$	3 870	5 070	
(N)	Static C _{0a}	5 820	8 730	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	147	_	
l '	ction torque, cm)	1.5 – 7.8	2.4 or less	
Spac	er ball	Yes	None	
Factory-page	cked grease	NSK gre	ase LR3	
Internal spatial v	olume of nut (cm³)	1	.9	

1.0

|--|

Scrov	v shaft le	nath	Lo	ad accura	201	Shaft run- out ** Mass f f (kg)		Permissible rotational speed N (min-1)		
30161	v Siidilit	ziigui	Le		acy			Supporting condition		
L_{t}	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>11</i>	(Kg)	Fixed - Simple support	Fixed - Fixed	
186	204	271	0	0.020	0.018	0.025	0.61	3 000	3 000	
236	254	321	0	0.023	0.018	0.035	0.68	3 000	3 000	
286	304	371	0	0.023	0.018	0.035	0.75	3 000	3 000	
336	354	421	0	0.025	0.020	0.040	0.81	3 000	3 000	
386	404	471	0	0.025	0.020	0.040	0.88	3 000	3 000	
436	454	521	0	0.027	0.020	0.050	0.95	3 000	3 000	
486	504	571	0	0.027	0.020	0.050	1.0	3 000	3 000	
536	554	621	0	0.030	0.023	0.050	1.1	3 000	3 000	
586	604	671	0	0.030	0.023	0.065	1.1	3 000	3 000	
636	654	721	0	0.035	0.025	0.065	1.2	3 000	3 000	
686	704	771	0	0.035	0.025	0.065	1.3	3 000	3 000	
786	804	871	0	0.035	0.025	0.085	1.4	3 000	3 000	
886	904	971	0	0.040	0.027	0.085	1.5	2 440	3 000	
1 086	1 104	1 171	0	0.046	0.030	0.110	1.8	1 610	2 240	

Standard volume of grease replenishing (cm3)

Notes: 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

Ball scr	Stroke		
Dali 30i	Nominal	Maximum	
Preloaded (UPFC)	Precise clearance (USFC)	rvorriiriai	WidXiiiidiii
W1501FA-3PG-C5Z20	W1501FA-4G-C5T20	100	135
W1502FA-5PG-C5Z20	W1502FA-6G-C5T20	150	185
W1502FA-7PG-C5Z20	W1502FA-8G-C5T20	200	235
W1503FA-5PG-C5Z20	W1503FA-6G-C5T20	250	285
W1503FA-7PG-C5Z20	W1503FA-8G-C5T20	300	335
W1504FA-5PG-C5Z20	W1504FA-6G-C5T20	350	385
W1504FA-7PG-C5Z20	W1504FA-8G-C5T20	400	435
W1505FA-5PG-C5Z20	W1505FA-6G-C5T20	450	485
W1505FA-7PG-C5Z20	W1505FA-8G-C5T20	500	535
W1506FA-5PG-C5Z20	W1506FA-6G-C5T20	550	585
W1506FA-7PG-C5Z20	W1506FA-8G-C5T20	600	635
W1507FA-3PG-C5Z20	W1507FA-4G-C5T20	700	735
W1508FA-3PG-C5Z20	W1508FA-4G-C5T20	800	835
W1510FA-3PG-C5Z20	W1510FA-4G-C5T20	1 000	1 035

Notes: 1. We recommend NSK support unit. See page B389 for details.

Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

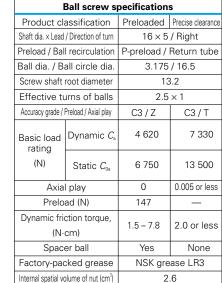
3. Contact NSK if the permissible rotational speed is to be exceeded.

B193

View X-X

 $4-\phi 5.5$ drill thru

c'bore φ9.5×5.5


M6×1

(oil hole)

Screw shaft ø16

Lead 5

Unit: mm

Recommended support unit

Standard volume of grease replenishing (cm3)

	• • •
For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

Unit: mm

Coro	v shaft le	onath	١٥	and accuracy		Shaft run-	N 4	Permissible rotational speed N (min-1)	
Sciev	/V SHAIL I	engui	Lead accuracy		асу	out ** Mass - + + (kg)		Supporting	g condition
L_{t}	L _a	L _o	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	LJ	(kg)	Fixed - Simple support	Fixed - Fixed
189	204	271	0	0.010	0.008	0.020	0.70	3 000	3 000
289	304	371	0	0.012	0.008	0.030	0.83	3 000	3 000
389	404	471	0	0.013	0.010	0.035	0.97	3 000	3 000
489	504	571	0	0.015	0.010	0.045	1.1	3 000	3 000
689	704	771	0	0.018	0.013	0.055	1.4	3 000	3 000
889	904	971	0	0.021	0.015	0.075	1.6	2 570	3 000

Notes: 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

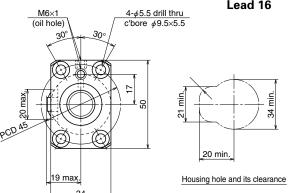
M5×0.8 Depth 12	0.010 A 8 0 9 0 5 5 1.11 9.15 0.003 F	-	Seals (two places) 6 X 10.008 A 31 11 X 42 L ₁ (hardened)	# * G	F n	_	0.006 E
	22		L _a			45	
			L_0				

Ball scr	St	Stroke		
Dali SCI	Nominal	Maximum		
Preloaded (PFT)	Precise clearance (SFT)	Norminal	IVIAXIITIUITI	
W1601FA-1P-C3Z5	W1601FA-2-C3T5	100	141	
W1602FA-1P-C3Z5	W1602FA-2-C3T5	200	241	
W1603FA-1P-C3Z5	W1603FA-2-C3T5	300	341	
W1604FA-1P-C3Z5	W1604FA-2-C3T5	400	441	
W1606FA-1P-C3Z5	W1606FA-2-C3T5	600	641	
W1608FA-1P-C3Z5	W1608FA-2-C3T5	800	841	

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.


B195

B196

ew shaft	root diameter	13.2				
ective to	urns of balls	2.5 × 1				
ıracy grade /	Preload / Axial play	C3 / Z	C3 / T			
sic load	Dynamic $C_{\scriptscriptstyle a}$	4 620	7 330			
(N)	Static C _{0a}	6 750	13 500			
Axia	l play	0	0.005 or less			
Prelo	ad (N)	147	_			
namic fri	ction torque,	1.5 – 7.8	2.0 or less			
(N·	cm)	1.5 - 7.0	2.0 01 1655			
Spac	er ball	Yes	None			

1.3

View X-X

Recommended support unit						
For drive side (Fixed)	For opposite to drive side (Simple)					
WBK12-01A (square)	WBK12S-01 (square)					
WBK12-11 (round)						

Ball screw specifications								
Product cl	assification	Preloaded	Precise clearance					
Shaft dia. x Lead	/ Direction of turn	16 × 16	7 Right					
Preload / Bal	I recirculation	P-preload /	Return tube					
Ball dia. / B	all circle dia.	3.175	/ 16.75					
Screw shaft	root diameter	13	3.4					
Effective to	urns of balls	1.5	×1					
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T					
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	3 600	4 710					
(N)	Static C _{0a}	5 410	8 110					
Axia	l play	0	0.005 or less					
Prelo	ad (N)	147	_					
l '	ction torque, cm)	1.5 – 7.8	2.4 or less					
Spac	er ball	Yes	None					
Factory-page	cked grease	NSK grease LR3						
Internal spatial v	olume of nut (cm³)	2.1						
Standard volume of gr	rease replenishing (cm³)	1	.1					

Unit: mm

B198

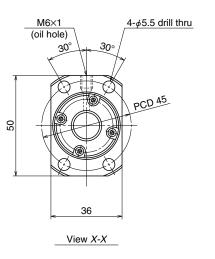
									Unit: mm
Soros	Screw shaft length		Lead accuracy			Shaft run-	N 4	Permissible rotational speed N (min-1)	
30161	v Shart it	engui	LE	au accur	асу	out **	Mass (kg)	Supporting	g condition
$L_{\rm t}$	L _a	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(Kg)	Fixed - Simple support	Fixed - Fixed
184	204	271	0	0.020	0.018	0.025	0.69	3 000	3 000
234	254	321	0	0.023	0.018	0.035	0.77	3 000	3 000
284	304	371	0	0.023	0.018	0.035	0.84	3 000	3 000
334	354	421	0	0.025	0.020	0.040	0.92	3 000	3 000
384	404	471	0	0.025	0.020	0.040	0.99	3 000	3 000
434	454	521	0	0.027	0.020	0.050	1.1	3 000	3 000
484	504	571	0	0.027	0.020	0.050	1.1	3 000	3 000
534	554	621	0	0.030	0.023	0.050	1.2	3 000	3 000
584	604	671	0	0.030	0.023	0.065	1.3	3 000	3 000
634	654	721	0	0.035	0.025	0.065	1.4	3 000	3 000
684	704	771	0	0.035	0.025	0.065	1.4	3 000	3 000
784	804	871	0	0.035	0.025	0.085	1.6	3 000	3 000
884	904	971	0	0.040	0.027	0.085	1.7	2 720	3 000
1 084	1 104	1 171	0	0.046	0.030	0.110	2.0	1 790	2 480

Notes: 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

Seals (two places) <u>-</u>[∄ * * G **∕** 0.014 A ∕ 0.015 A C0.5 C0.5 R0.2 max. R0.2 max. Ė/_10_ A (5) ⊥ 0.011 A → M5×0.8 Depth 12 /M12×1 44 <⊥ 0.004 E 56 ⊥ 0.004 F 30 Lt (hardened) 45 22

	Stroke				
Ball so	Ball screw No.				
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	Maximum		
W1601FA-3P-C5Z16	W1601FA-4-C5T16	100	122		
W1602FA-3P-C5Z16	W1602FA-4-C5T16	150	172		
W1602FA-5P-C5Z16	W1602FA-6-C5T16	200	222		
W1603FA-3P-C5Z16	W1603FA-4-C5T16	250	272		
W1603FA-5P-C5Z16	W1603FA-6-C5T16	300	322		
W1604FA-3P-C5Z16	W1604FA-4-C5T16	350	372		
W1604FA-5P-C5Z16	W1604FA-6-C5T16	400	422		
W1605FA-1P-C5Z16	W1605FA-2-C5T16	450	472		
W1605FA-3P-C5Z16	W1605FA-4-C5T16	500	522		
W1606FA-3P-C5Z16	W1606FA-4-C5T16	550	572		
W1606FA-5P-C5Z16	W1606FA-6-C5T16	600	622		
W1607FA-1P-C5Z16	W1607FA-2-C5T16	700	722		
W1608FA-3P-C5Z16	W1608FA-4-C5T16	800	822		
W1610FA-1P-C5Z16	W1610FA-2-C5T16	1 000	1 022		


Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space.

3. Contact NSK if permissible rotational speed is to be exceeded.

Lead 32

Unit: mm

Ball screw specifications							
Product cl	assification	Preloaded	Precise clearance				
Shaft dia. x Lead	/ Direction of turn	16 × 32	! / Right				
Preload / Bal	I recirculation	P-preload	/ End cap				
Ball dia. / B	all circle dia.	3.175	/ 16.75				
Screw shaft	root diameter	13	3.4				
Effective to	urns of balls	0.7	× 2				
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T				
Basic load rating		4 000					
(N)	Static C _{0a}	6 690					
Axia	l play	0	0.005 or less				
Prelo	ad (N)	118	_				
	ction torque, cm)	1.5 – 9.8	2.4 or less				
Spac	er ball	None					
Factory-pag	cked grease	NSK grease LR3					
Internal spatial vo	olume of nut (cm³)	2.0					
Standard volume of gr	rease replenishing (cm³)	1.0					

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

Unit: mm

									Offic. Hilli
Soros	w shaft le	nath	Lead accuracy		Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1)		
30161	/V SHAIL I	engui			eau accuracy.		Supporting condition		
$L_{\rm t}$	La	L。	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	Ш	(Ng)	Fixed - Simple support	Fixed - Fixed
382	404	471	0	0.025	0.020	0.040	0.90	3 000	3 000
582	604	671	0	0.030	0.023	0.065	1.2	3 000	3 000
882	904	971	0	0.040	0.027	0.085	1.7	2 670	3 000
1 282	1 304	1 371	0	0.054	0.035	0.150	2.3	1 250	1 740

Notes: 5. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

6. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

22 L _a 45	0.014 A 0.014 A 0.0014 A	7 0.015 A 5 X 10 10.5 A 10	A G 5	R0.2 / 10 / M12×1 / M12×1
1: :1:	22	La		45
L _o		Lo		

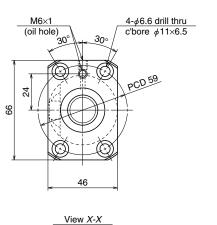
Ball scr	Stroke		
Ddil SCI	Nominal	Maximum	
Preloaded (UPFC)	Precise clearance (USFC)	NOTTIITIAI	IVIAXIITIUITI
W1603FA-7PGX-C5Z32	W1603FA-8GX-C5T32	300	342
W1605FA-5PGX-C5Z32	W1605FA-6GX-C5T32	500	542
W1608FA-5PGX-C5Z32	W1608FA-6GX-C5T32	800	842
W1612FA-1PGX-C5Z32	W1612FA-2GX-C5T32	1 200	1 242

Notes: 1. We recommend NSK support unit. See page B389 for details.

Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Ball nut does not have seal.

4. Contact NSK if the permissible rotational speed is to be exceeded.


B199

B200

3

Lead 10

Unit: mm

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK15-01A (square)	WBK15S-01 (square)
WBK15-11 (round)	

ı	Ball screw s	pecification	s
Product classification Preloaded Precise c			Precise clearance
Shaft dia. x Lead	/ Direction of turn	20 × 10) / Right
Preload / Bal	I recirculation	P-preload /	Return tube
Ball dia. / B	all circle dia.	3.969	9 / 21
Screw shaft	root diameter	16	3.9
Effective to	urns of balls	2.5	×1
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T
Basic load rating	Dynamic C _a	6 880	10 900
(N)	Static C _{Oa}	10 800	21 700
Axia	l play	0	0.005 or less
Prelo	ad (N)	196	_
'	ction torque, cm)	2.0 – 11.8	2.9 or less
Spac	er ball	Yes	None
Factory-packed grease		NSK grease LR3	
Internal spatial vo	olume of nut (cm³)	4	.7
Standard volume of gr	rease replenishing (cm³)	2	.4

Unit: mm 😾

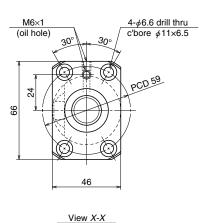
Sarov	Screw shaft le		Lo	Lead accuracy			Shaft run-	Permissible rotational speed N (m	
Sciev	v Silail I	ziigtii	Lea	au duculi	асу	out **	Mass (kg)	Supporting	g condition
$L_{\rm t}$	La	L。	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	U	(Ng)	Fixed - Simple support	Fixed - Fixed
289	314	399	0	0.023	0.018	0.035	1.4	3 000	3 000
389	414	499	0	0.025	0.020	0.040	1.6	3 000	3 000
489	514	599	0	0.027	0.020	0.050	1.9	3 000	3 000
589	614	699	0	0.030	0.023	0.065	2.1	3 000	3 000
689	714	799	0	0.035	0.025	0.065	2.3	3 000	3 000
789	814	899	0	0.035	0.025	0.085	2.5	3 000	3 000
889	914	999	0	0.040	0.027	0.085	2.8	3 000	3 000
989	1 014	1 099	0	0.040	0.027	0.110	3.0	2 710	3 000
1 089	1 114	1 199	0	0.046	0.030	0.110	3.2	2 220	3 000
1 189	1 214	1 299	0	0.046	0.030	0.150	3.4	1 860	2 570
1 289	1 314	1 399	0	0.054	0.035	0.150	3.7	1 580	2 190

Notes: 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

M6×1.0 Depth 15 Depth 15	1	Seals (two places) 6 X 10.011 A 41 13 54 L ₁ (hardened)	# * G A G	10 (15	R0.2 max. E 15 M15×	947 C0.5 C0.5
25	_	La		1 1	60)
	15	Lo			75	

Ball so	Stroke		
Dali SC	Tew No.	Nominal	Maximum
Preloaded (LPFT)	Precise clearance (LSFT)	NOTTIITIAI	IVIAXIITIUITI
W2002FA-1P-C5Z10	W2002FA-2-C5T10	200	229
W2003FA-1P-C5Z10	W2003FA-2-C5T10	300	329
W2004FA-1P-C5Z10	W2004FA-2-C5T10	400	429
W2005FA-1P-C5Z10	W2005FA-2-C5T10	500	529
W2006FA-1P-C5Z10	W2006FA-2-C5T10	600	629
W2007FA-1P-C5Z10	W2007FA-2-C5T10	700	729
W2008FA-1P-C5Z10	W2008FA-2-C5T10	800	829
W2009FA-1P-C5Z10	W2009FA-2-C5T10	900	929
W2010FA-1P-C5Z10	W2010FA-2-C5T10	1 000	1 029
W2011FA-1P-C5Z10	W2011FA-2-C5T10	1 100	1 129
W2012FA-1P-C5Z10	W2012FA-2-C5T10	1 200	1 229


Notes: 1. We recommend NSK support unit. See page B389 for details.

Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 20

Unit: mm

Recommended support unit

	• • •
For drive side (Fixed)	For opposite to drive side (Simple)
WBK15-01A (square)	WBK15S-01 (square)
WBK15-11 (round)	

ı	Ball screw s	pecification	s
Product classification Preloaded Precise cle			Precise clearance
Shaft dia. x Lead	/ Direction of turn	20 × 20) / Right
Preload / Bal	I recirculation	P-preload /	Return tube
Ball dia. / B	all circle dia.	3.969	9 / 21
Screw shaft	root diameter	16	3.9
Effective to	urns of balls	1.5	×1
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	5 370	7 040
(N)	Static C _{Oa}	8 450	12 700
Axia	l play	0	0.005 or less
Prelo	ad (N)	196	_
'	ction torque, cm)	2.0 – 11.8	2.9 or less
Spac	er ball	Yes	None
Factory-packed grease		NSK grease LR3	
Internal spatial vo	olume of nut (cm³)	4	.2
Standard volume of gr	rease replenishing (cm³)	2	.1

Unit: mm 😾

Screw shaft length Lead accuracy Shaft runout ** Lt										Ø111t: 111111	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cara		ما در م	اما					Permissible rotational speed N (min		
$L_{\rm t}$ $L_{\rm a}$ $L_{\rm o}$ T $e_{\rm p}$ $v_{\rm u}$ $L_{\rm o}$ Fixed - Simple support Fixed - Fixed 310 335 420 0 0.023 0.018 0.040 1.6 3 000 3 000 410 435 520 0 0.027 0.020 0.050 1.8 3 000 3 000 510 535 620 0 0.030 0.023 0.050 2.0 3 000 3 000 610 635 720 0 0.030 0.023 0.065 2.3 3 000 3 000 710 735 820 0 0.035 0.025 0.085 2.5 3 000 3 000 810 835 920 0 0.040 0.027 0.085 2.7 3 000 3 000 910 935 1 020 0 0.046 0.030 0.110 3.2 2 630 3 000 1 110 1 135 1 220 0	Screv	v snart ie	ength	Lea	ad accura	асу			Supporting	condition	
410 435 520 0 0.027 0.020 0.050 1.8 3 000 3 000 510 535 620 0 0.030 0.023 0.050 2.0 3 000 3 000 610 635 720 0 0.030 0.023 0.065 2.3 3 000 3 000 710 735 820 0 0.035 0.025 0.085 2.5 3 000 3 000 810 835 920 0 0.040 0.027 0.085 2.7 3 000 3 000 910 935 1 020 0 0.040 0.027 0.110 3.0 3 000 3 000 1 010 1 035 1 120 0 0.046 0.030 0.110 3.4 2 160 2 970	L _t	La	L。	Т	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed	
510 535 620 0 0.030 0.023 0.050 2.0 3 000 3 000 610 635 720 0 0.030 0.023 0.065 2.3 3 000 3 000 710 735 820 0 0.035 0.025 0.085 2.5 3 000 3 000 810 835 920 0 0.040 0.027 0.085 2.7 3 000 3 000 910 935 1 020 0 0.040 0.027 0.110 3.0 3 000 3 000 1 010 1 035 1 120 0 0.046 0.030 0.110 3.4 2 160 2 970	310	335	420	0	0.023	0.018	0.040	1.6	3 000	3 000	
610 635 720 0 0.030 0.023 0.065 2.3 3 000 3 000 710 735 820 0 0.035 0.025 0.085 2.5 3 000 3 000 810 835 920 0 0.040 0.027 0.085 2.7 3 000 3 000 910 935 1 020 0 0.040 0.027 0.110 3.0 3 000 3 000 1 010 1 035 1 120 0 0.046 0.030 0.110 3.2 2 630 3 000 1 110 1 135 1 220 0 0.046 0.030 0.110 3.4 2 160 2 970	410	435	520	0	0.027	0.020	0.050	1.8	3 000	3 000	
710 735 820 0 0.035 0.025 0.085 2.5 3 000 3 000 810 835 920 0 0.040 0.027 0.085 2.7 3 000 3 000 910 935 1 020 0 0.040 0.027 0.110 3.0 3 000 3 000 1 010 1 035 1 120 0 0.046 0.030 0.110 3.2 2 630 3 000 1 110 1 135 1 220 0 0.046 0.030 0.110 3.4 2 160 2 970	510	535	620	0	0.030	0.023	0.050	2.0	3 000	3 000	
810 835 920 0 0.040 0.027 0.085 2.7 3 000 3 000 910 935 1 020 0 0.040 0.027 0.110 3.0 3 000 3 000 1 010 1 035 1 120 0 0.046 0.030 0.110 3.2 2 630 3 000 1 110 1 135 1 220 0 0.046 0.030 0.110 3.4 2 160 2 970	610	635	720	0	0.030	0.023	0.065	2.3	3 000	3 000	
910 935 1 020 0 0.040 0.027 0.110 3.0 3 000 3 000 1 010 1 035 1 120 0 0.046 0.030 0.110 3.2 2 630 3 000 1 110 1 135 1 220 0 0.046 0.030 0.110 3.4 2 160 2 970	710	735	820	0	0.035	0.025	0.085	2.5	3 000	3 000	
1 010 1 035 1 120 0 0.046 0.030 0.110 3.2 2 630 3 000 1 110 1 135 1 220 0 0.046 0.030 0.110 3.4 2 160 2 970	810	835	920	0	0.040	0.027	0.085	2.7	3 000	3 000	
1 110 1 135 1 220 0 0.046 0.030 0.110 3.4 2 160 2 970	910	935	1 020	0	0.040	0.027	0.110	3.0	3 000	3 000	
	1 010	1 035	1 120	0	0.046	0.030	0.110	3.2	2 630	3 000	
1 210 1 235 1 320 0 0 046 0 030 0 150 3 7 1 810 2 500	1 110	1 135	1 220	0	0.046	0.030	0.110	3.4	2 160	2 970	
7 2 7 7 2 8 7 7 2 8 7 7 2 8 7 8 7 8 7 8	1 210	1 235	1 320	0	0.046	0.030	0.150	3.7	1 810	2 500	
1 510 1 535 1 620 0 0.054 0.035 0.180 4.4 1 150 1 610	1 510	1 535	1 620	0	0.054	0.035	0.180	4.4	1 150	1 610	

Notes: 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

(0.014 A) (0.015	Seals (two places) 8 X I I I I I I I I I I I I I I I I I I	(5)	0.3 C0.5 C0.5 R0.2 max. E
25	<u>L</u> a	-	60
•	Lo		

Pall co	Stroke		
Dali SC	Ball screw No.		Maximum
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	IVIAXIITIUITI
W2003FA-3P-C5Z20	W2003FA-4-C5T20	200	241
W2004FA-3P-C5Z20	W2004FA-4-C5T20	300	341
W2005FA-3P-C5Z20	W2005FA-4-C5T20	400	441
W2006FA-3P-C5Z20	W2006FA-4-C5T20	500	541
W2007FA-3P-C5Z20	W2007FA-4-C5T20	600	641
W2008FA-3P-C5Z20	W2008FA-4-C5T20	700	741
W2009FA-3P-C5Z20	W2009FA-4-C5T20	800	841
W2010FA-3P-C5Z20	W2010FA-4-C5T20	900	941
W2011FA-3P-C5Z20	W2011FA-4-C5T20	1 000	1 040
W2012FA-3P-C5Z20	W2012FA-4-C5T20	1 100	1 141
W2015FA-1P-C5Z20	W2015FA-2-C5T20	1 400	1 441

Notes: 1. We recommend NSK support unit. See page B389 for details.

Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

Contact NSK if the permissible rotational speed is to be exceeded.

∕ 0.015 A

⊥ 0.011 A →

20 10 11

41

Lt (hardened)

R0.2 max.

1 0.014 A

+0.14 1.15

⊥ 0.004 F >

25

10.15

F

M6×1.0

Depth 15

_ 1 0.009 E

C0.5

0.014 A

R0.2

max.

14 (15)

Ė 15

⊥ 0.004 *E*

40

M15×1

60

-0.011 φ12h6

C0.5

20

Screw shaft ø20

Lead 40

Unit: mm

M6×1 oil hole) 30	4-φ5.5 drill thru	_
30 30	/ –	Pro Shaft
0 0	<u> </u>	rel
	PCO	Ball
) 	Scre
	1/	Eff
		Accu
40	E	Bas ra
View X-X	_	

$4-\phi 5.5$ drill thru			
_ 30 /		Ball screw s	pecific
- 30 / 	Product c	lassification	Prelo
	Shaft dia. x Lead	d / Direction of turn	2
PCD 48	Preload / Ba	II recirculation	P-p
POL	Ball dia. / B	all circle dia.	
	Screw shaft	root diameter	
	Effective t	urns of balls	
	Accuracy grade /	Preload / Axial play	C5
	Basic load rating	Dynamic C _a	
<u>J</u> →	(N)	Static C _{0a}	
X-X	Axia	l play	C
	Prelo	oad (N)	14
	Dynamic fr	iction torque,	2.0 -
	l (N	·cm)	2.0 -

Ball screw specifications				
Product cl	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	20 × 40) / Right	
Preload / Bal	I recirculation	P-preload	/ End cap	
Ball dia. / B	all circle dia.	3.175	/ 20.75	
Screw shaft	root diameter	17	7.4	
Effective to	urns of balls	0.7	×2	
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	4 490		
(N)	Static C _{0a}	8 640		
Axia	l play	0	0.005 or less	
Prelo	ad (N)	148	_	
	ction torque, cm)	2.0 – 11.8	2.9 or less	
Spac	er ball	None		
Factory-pag	cked grease	NSK gre	ase LR3	
Internal spatial vo	olume of nut (cm³)	2	.8	
Standard volume of gr	ease replenishing (cm³)	1	.4	

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK15-01A (square)	WBK15S-01 (square)
WBK15-11 (round)	

Unit: mm

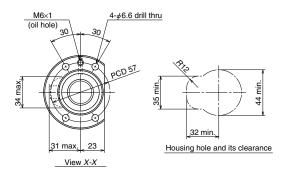
Screv	v shaft le	ength	Lea	ad accura	эсу	Shaft run- out **	Mass	Permissible rotatio	
L _t	La	L _o	Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
506	535	620	0	0.030	0.023	0.050	1.7	3 000	3 000
706	735	820	0	0.035	0.025	0.085	2.2	3 000	3 000
906	935	1 020	0	0.040	0.027	0.110	2.7	3 000	3 000
1 106	1 135	1 220	0	0.046	0.030	0.110	3.1	2 210	3 000
1 306	1 335	1 420	0	0.054	0.035	0.150	3.6	1 570	2 160
1 706	1 735	1 820	0	0.065	0.040	0.230	4.6	910	1 270

Notes: 5. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

6. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

Dell ee	vous Na	St	roke
Preloaded (UPFC)	rew No. Precise clearance (USFC)	Nominal	Maximum
W2005FA-5PGX-C5Z40	W2005FA-6GX-C5T40	400	459
W2007FA-5PGX-C5Z40	W2007FA-6GX-C5T40	600	659
W2009FA-5PGX-C5Z40	W2009FA-6GX-C5T40	800	859
W2011FA-5PGX-C5Z40	W2011FA-6GX-C5T40	1 000	1 059
W2013FA-1PGX-C5Z40	W2013FA-2GX-C5T40	1 200	1 259
W2017FA-1PGX-C5Z40	W2017FA-2GX-C5T40	1 600	1 659

 $X \rightarrow \mathbb{Z} \times \mathbb{Z}$


À G

- Notes: 1. We recommend NSK support unit. See page B389 for details.
 - 2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.
 - 3. Ball nut does not have seal.
 - 4. Contact NSK if the permissible rotational speed is to be exceeded.

B205 B206

Lead 20

Unit: mm

Ball screw specifications				
Product cla	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	25 × 20) / Right	
Preload / Bal	I recirculation	P-preload /	Return tube	
Ball dia. / B	all circle dia.	4.762	/ 26.25	
Screw shaft	root diameter	21	1.3	
Effective to	urns of balls	2.5	×1	
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	9 900	15 700	
(N)	Static C _{0a}	16 400	32 800	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	343	_	
	ction torque, cm)	3.9 – 24.5	4.9 or less	
Spac	er ball	Yes	None	
Factory-pag	cked grease	NSK gre	ase LR3	
Internal spatial vo	olume of nut (cm³)	1	2	
Chandard unlump of a	ease replenishing (cm³)		6	

Recommended support unit

For drive side	For opposite	to drive side
(Fixed)	(Fixed)	(Simple)
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)
WBK20-11 (round)	WBK20-11 (round)	

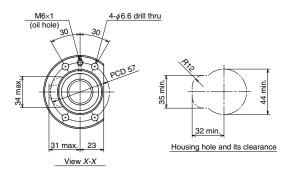
Unit: mm

									01116. 111111
Coro	w shaft le	onath	La	Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)	
Sciev	w snan i	engui	Le	au accura	асу	out **	Mass (kg)	Supporting	g condition
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	\Box	(kg)	Fixed - Simple support	Fixed - Fixed
750	780	913	0	0.035	0.025	0.055	4.0	2 800	2 800
950	980	1 113	0	0.040	0.027	0.070	4.7	2 800	2 800
1 150	1 180	1 313	0	0.046	0.030	0.090	5.4	2 590	2 800
1 350	1 380	1 513	0	0.054	0.035	0.090	6.2	1 860	2 550
1 550	1 580	1 713	0	0.054	0.035	0.120	6.9	1 400	1 940
1 750	1 780	1 913	0	0.065	0.040	0.120	7.6	1 090	1 520
2 150	2 180	2 313	0	0.077	0.046	0.160	9.1	720	1 000

C0.5 (0.013 A) (0.3 9.5 P.	A G (10)	R0.2 max. E 16 M20×1
-	L _t (hardened)	10 (20)	53 27
- 53	₹ La		80
-	L,)	*

Pall cor	Ball screw No.		roke
Dali Sci	EW NO.	Nominal	Maximum
Preloaded (LPFT)	Precise clearance (LSFT)	INOMINAL	iviaximum
W2507FA-1P-C5Z20	W2507FA-2-C5T20	600	640
W2509FA-1P-C5Z20	W2509FA-2-C5T20	800	840
W2511FA-1P-C5Z20	W2511FA-2-C5T20	1 000	1 040
W2513FA-1P-C5Z20	W2513FA-2-C5T20	1 200	1 240
W2515FA-1P-C5Z20	W2515FA-2-C5T20	1 400	1 440
W2517FA-1P-C5Z20	W2517FA-2-C5T20	1 600	1 640
W2521FA-1P-C5Z20	W2521FA-2-C5T20	2 000	2 040

Notes: 1. We recommend NSK support unit. See page B389 for details.


Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

B207

Lead 25

Unit: mm

Ball screw specifications				
	assification		Precise clearance	
Shaft dia. × Lead	/ Direction of turn	25×25	/ Right	
Preload / Bal	I recirculation	P-preload /	Return tube	
Ball dia. / B	all circle dia.	4.762	/ 26.25	
Screw shaft	root diameter	21	.3	
Effective to	urns of balls	1.5	×1	
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	7 730	10 100	
(N)	Static C _{0a}	12 700	19 100	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	294	_	
•	ction torque, cm)	3.9 – 24.5	4.9	
Spac	er ball	Yes	None	
Factory-pag	cked grease	NSK gre	ase LR3	
Internal spatial vo	olume of nut (cm³)	7	.5	
Standard volume of or	ease replenishing (cm³)	3	.8	

Recommended support unit

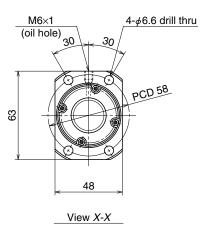
For drive side	For opposite	to drive side
(Fixed)	(Fixed)	(Simple)
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)
WBK20-11 (round)	WBK20-11 (round)	

Unit: mm

Screw shaft length		Lead accuracy		Shaft run-	N 4	Permissible rotational speed N (min-1)			
30161	v Shart i	zngui	Le	au accur	асу	out **	Mass (kg)	Supporting	g condition
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple support	Fixed - Fixed
750	780	913	0	0.035	0.025	0.055	4.0	2 800	2 800
950	980	1 113	0	0.040	0.027	0.070	4.7	2 800	2 800
1 150	1 180	1 313	0	0.046	0.030	0.090	5.4	2 580	2 800
1 350	1 380	1 513	0	0.054	0.035	0.090	6.2	1 850	2 550
1 550	1 580	1 713	0	0.054	0.035	0.120	7.0	1 400	1 930
1 750	1 780	1 913	0	0.065	0.040	0.120	7.7	1 090	1 510
2 150	2 180	2 313	0	0.077	0.046	0.160	9.1	710	1 000

M20×1 / 16 F 1	C0.3 SS	Seals (two places) L (hardened)	X ¬	100		945 00.5 C0.5
53	4	L _a		-	80	
-		L ₀				

Pall cor	Ball screw No.					
Dali Sci	Dali Sciew No.					
Preloaded (LPFT)	Preloaded (LPFT) Precise clearance (LSFT)		Maximum			
W2507FA-3P-C5Z25	W2507FA-4-C5T25	600	646			
W2509FA-3P-C5Z25	W2509FA-4-C5T25	800	846			
W2511FA-3P-C5Z25	W2511FA-4-C5T25	1 000	1 046			
W2513FA-3P-C5Z25	W2513FA-4-C5T25	1 200	1 246			
W2515FA-3P-C5Z25	W2515FA-4-C5T25	1 400	1 446			
W2517FA-3P-C5Z25	W2517FA-4-C5T25	1 600	1 646			
W2521FA-3P-C5Z25	W2521FA-4-C5T25	2 000	2 046			


Notes: 1. We recommend NSK support unit. See page B389 for details.

Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space.
 See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 50

Unit: mm

l	Ball screw s _l	pecification	s	
Product cl	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	25 × 50) / Right	
Preload / Bal	I recirculation	P-preload	/ End cap	
Ball dia. / B	all circle dia.	3.969	9 / 26	
Screw shaft	root diameter	21	1.9	
Effective to	urns of balls	0.7	×2	
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	6	690	
(N)	Static C _{0a}	13	500	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	196	_	
,	ction torque, cm)	2.9 – 21.5	4.9 or less	
Spac	er ball	No	ne	
Factory-pag	cked grease	NSK grease LR3		
Internal spatial vo	olume of nut (cm³)	4.2		
Standard volume of gr	ease renlenishing (cm³)	2.1		

Recommended support unit

For drive side	For opposite to drive side					
(Fixed)	(Fixed)	(Simple)				
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)				
WBK20-11 (round)	WBK20-11 (round)					

Unit: mm

Screw shaft leng		∍ngth	Lead accui		эсу	Shaft run- out **	Mass (kg)	Permissible rotation	
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
844	880	1 013	0	0.040	0.027	0.070	4.1	2 800	2 800
1 144	1 180	1 313	0	0.046	0.030	0.090	5.3	2 600	2 800
1 644	1 680	1 813	0	0.065	0.040	0.120	7.2	1 250	1 720
2 144	2 180	2 313	0	0.077	0.046	0.160	9.1	730	1 010

C0.5 0.013 A C C C C C C C C C C C C C C C C C C	0.3 PRO.2 max. 10.011 A 12.55 12.13	02 ** G ** G ** A G **		0.3	0.5 0.5 0.5	0.010 E
	L _t (hardened)	16	(20)	53	<u>27</u>	
53	L _a			80	>	
<u> </u>	L	0				

Ball scr	Sti	roke	
Dali SCI	Nominal	Maximum	
Preloaded (UPFC)	Precise clearance (USFC)	ivorninai	iviaximum
W2508FA-1PGX-C5Z50	W2508FA-2GX-C5T50	700	780
W2511FA-5PGX-C5Z50	W2511FA-6GX-C5T50	1 000	1 080
W2516FA-1PGX-C5Z50	W2516FA-2GX-C5T50	1 500	1 580
W2521FA-5PGX-C5Z50	W2521FA-6GX-C5T50	2 000	2 080

Notes: 1. We recommend NSK support unit. See page B389 for details.
2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space.
See page D16 for details.

3. Ball nut does not have seal.

4. Contact NSK if the permissible rotational speed is to be exceeded.

B211 B212

View X-X

4-φ9 drill thru

35 min.

Housing hole and its clearance

M6×1

(oil hole)

Screw shaft ø32

Lead 25

Unit: mm

C5/T

17 900

41 800

0.005 or less

_

7.8 or less

8.8

Ball screw s	pecification	s
Product classification	Preloaded	Pi
Shaft dia. × Lead / Direction of turn	32 × 25	/ ز
Preload / Ball recirculation	P-preload /	Re
Ball dia. / Ball circle dia.	4.762	/ 3
Screw shaft root diameter	28	3.3
E 6 6 1 11	0.5	_

Precise clearance 32×25 / Right reload / Return tube 4.762 / 33.25 28.3 2.5 × 1 Effective turns of balls Accuracy grade / Preload / Axial play C5 / Z 11 300 Dynamic C_a Basic load rating

20 900 Static C_{0a} Axial play 0 441 Preload (N) Dynamic friction torque, 6.8 - 31.5

(N·cm)

Standard volume of grease replenishing (cm3)

Spacer ball Yes Factory-packed grease NSK grease LR3 Internal spatial volume of nut (cm3) 17.5

Recommended support unit

For drive side	For opposite to drive side					
(Fixed)	(Fixed)	(Simple)				
WBK25-01W (square)	WBK25-01W (square)	WBK25S-01W (square)				
WRK25-11 (round)	WRK25-11 (round)					

Unit: mm

Canana ala aft la cantla					Shaft run- out **		Permissible rotational speed N (min-1)		
Screv	Screw shaft length		Lead accuracy		Leau accuracy		Mass (kg)	Supporting	g condition
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$v_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
1 180	1 219	1 376	0	0.046	0.030	0.090	9.3	2 180	2 180
1 680	1 719	1 876	0	0.065	0.040	0.120	12.3	1 600	2 180
2 180	2 219	2 376	0	0.077	0.046	0.160	15.4	930	1 300
2 780	2 819	2 976	0	0.093	0.054	0.200	19.1	570	800

 2005 2014 625 621 23.9	 	Seals (two places) L 0.013 A 92 15 117 L (hardened)	х -ц	25.9	0.5	18 A 0.010 E
62	-	L _a		-	95	
						*

Ball scr	Stroke		
Dali Sci	Nominal	Marriagnas	
Preloaded (LPFT)	Precise clearance (LSFT)	Nominai	Maximum
W3211FA-1P-C5Z25	W3211FA-2-C5T25	1 000	1 046
W3216FA-1P-C5Z25	W3216FA-2-C5T25	1 500	1 546
W3221FA-1P-C5Z25	W3221FA-2-C5T25	2 000	2 046
W3227FA-1P-C5Z25	W3227FA-2-C5T25	2 600	2 646

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

B213

View X-X

4-φ9 drill thru

_35 min. Housing hole and its clearance

M6×1

(oil hole)

Screw shaft ø32

Lead 32

Unit: mm

I	screw	specification	s
-		_	

Ball screw specifications					
Product cla	assification	Preloaded	Precise clearance		
Shaft dia. x Lead	/ Direction of turn	32 × 32 / Right			
Preload / Bal	I recirculation	P-preload / Return tube			
Ball dia. / B	all circle dia.	4.762 / 33.25			
Screw shaft	root diameter	28.3			
Effective to	urns of balls	1.5	× 1		
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T		
Basic load rating (N)	Dynamic <i>C</i> _a	8 800	11 500		
	Static C _{0a}	16 600	24 800		
Axia	l play	0	0.005 or less		
Preload (N)		392	_		
Dynamic friction torque, (N·cm)		6.9 – 31.5	7.8 or less		
Spacer ball		Yes	None		
Factory-packed grease		NSK grease LR3			
Internal spatial volume of nut (cm³)		14			
Standard volume of gr	ease replenishing (cm³)		7		

Recommended support unit

For drive side	For opposite to drive side			
(Fixed)	(Fixed)	(Simple)		
WBK25-01W (square)	WBK25-01W (square)	WBK25S-01W (square)		
WBK25-11 (round)	WBK25-11 (round)			

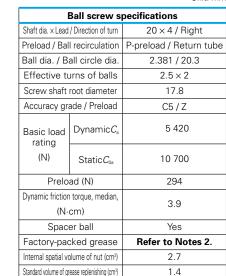
Unit: mm

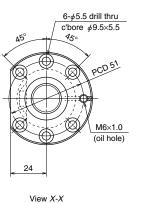
Carayy aboft langth				Shaft run-		Permissible rotational speed N (min-1)			
Sciev	Screw shaft length		l re	au accur	d accuracy out **		Mass (kg)	Supporting	condition
L_{t}	La	L _o	Т	$e_{\scriptscriptstyle \mathrm{p}}$	υu		(Ng)	Fixed - Simple support	Fixed - Fixed
1 180	1 219	1 376	0	0.046	0.030	0.090	9.3	2 180	2 180
1 680	1 719	1 876	0	0.065	0.040	0.120	12.3	1 590	2 180
2 180	2 219	2 376	0	0.077	0.046	0.160	15.4	930	1 290
2 780	2 819	2 976	0	0.093	0.054	0.200	19.1	570	790

C1 C1	R0.3 max.	A G (12)	94022 C0.5	C1
62	L_{t} (nardened)	× 12 × (21).	95	1
- 02 ->=	L _o	,	 <	

Ball scr	Stroke		
Ball Sci	Nominal	Maximum	
Preloaded (LPFT)	Precise clearance (LSFT)	Norminal	IVIAXIITIUITI
W3211FA-3P-C5Z32	W3211FA-4-C5T32	1 000	1 054
W3216FA-3P-C5Z32	W3216FA-4-C5T32	1 500	1 554
W3221FA-3P-C5Z32	W3221FA-4-C5T32	2 000	2 054
W3227FA-3P-C5Z32	W3227FA-4-C5T32	2 600	2 654

Notes: 1. We recommend NSK support unit. See page B389 for details.


2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.


3. Contact NSK if the permissible rotational speed is to be exceeded.

B215

Lead 4

Unit: mm

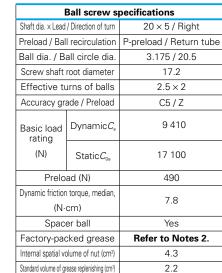
Recommended support unit

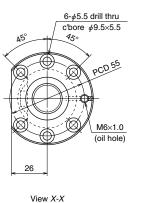
For drive side (Fixed)	For opposite to drive side (Simple)	OA
WBK15-01A (square)	WBK15S-01 (square)	
WBK15-11 (round)		

Unit: mm

Office this									
Load agained		Shaft run-		Permissible rotational speed N (min-1)					
L	Lead accuracy		out ** Mass (kg)		Supporting condition				
Т	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed			
-0.005	0.023	0.018	0.045	1.1	3 000	3 000			
-0.007	0.023	0.018	0.045	1.2	3 000	3 000			
-0.009	0.025	0.020	0.055	1.5	3 000	3 000			
-0.011	0.027	0.020	0.070	1.7	3 000	3 000			
-0.014	0.030	0.023	0.085	1.9	3 000	3 000			
-0.016	0.035	0.025	0.085	2.1	3 000	3 000			

(0.014 A) (0.014 A) (0.003 F) (0.0014 A) (0.003 F) (0.0014 A) (0.003 F) (0.0014 A) (0.003 F) (0.0014 A) (0.003 F) (0.0014 A) (0.0014 A) ((A) 0.015 A	Seals (two places) X	# * G	8 9 9	70.018 70.018 70.018 70.2	_0.011 ∳12h6	Ø 0.012 E
		Lt (hardened)		25	40	20	
25		L _a		-	60	-	
 		Lo					


Ball screw No.	Stro	oke	Screw shaft length			
	Nominal	Maximum				
	Norminal	IVIAXIITIUITI	$L_{\rm t}$	La	L。	
W2002SA-1P-C5Z4	150	170	225	250	335	
W2002SA-2P-C5Z4	200	220	275	300	385	
W2003SA-1P-C5Z4	300	320	375	400	485	
W2004SA-1P-C5Z4	400	420	475	500	585	
W2005SA-1P-C5Z4	500	520	575	600	685	
W2006SA-1P-C5Z4	600	620	675	700	785	


Notes: 1. We recommend NSK support unit. See page B389 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.
- 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.
- 5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

Lead 5

Unit: mm

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)	OA
WBK15-01A (square)	WBK15S-01 (square)	
WBK15-11 (round)		

Unit: mm

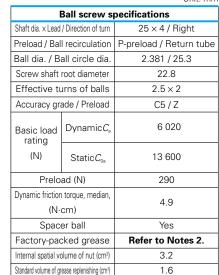
Lood accuracy		Shaft run-		Permissible rotational speed N (min-1)		
Lead accuracy		out **	Mass	Supporting condition		
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
-0.005	0.023	0.018	0.045	1.3	3 000	3 000
-0.007	0.023	0.018	0.045	1.4	3 000	3 000
-0.009	0.025	0.020	0.055	1.6	3 000	3 000
-0.011	0.027	0.020	0.070	1.8	3 000	3 000
-0.014	0.030	0.023	0.085	2.0	3 000	3 000
-0.019	0.035	0.025	0.110	2.5	3 000	3 000

C0.5 P C0.3 C0.3 F C0.3	0.015 A	Seals (two places) X - 1 Li 0.011 A 11 45 56	# * G	8 8 9 9 9 9 9	CO.3 RO.2 M15×1 +10.005 E	ο.011 φ 12h6	Ø 0.012 E
		Lt (hardened)		25	40	20	
25		La		· · ·	60	-	
ļ. '		Lo			1		

	Str	oke	- Screw shaft length			
Ball screw No.	Nominal	Maximum				
	Norminal	IVIAXIITIUITI	$L_{\rm t}$	L _a	L _o	
W2002SA-3P-C5Z5	150	163	225	250	335	
W2002SA-4P-C5Z5	200	213	275	300	385	
W2003SA-2P-C5Z5	300	313	375	400	485	
W2004SA-2P-C5Z5	400	413	475	500	585	
W2005SA-2P-C5Z5	500	513	575	600	685	
W2007SA-1P-C5Z5	700	713	775	800	885	

Notes: 1. We recommend NSK support unit. See page B389 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.


3. Contact NSK if the permissible rotational speed is to be exceeded.

4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

Lead 4

Unit: mm

ſ	6-\phi 5.5 drill thru c'bore \phi 9.5 \times 5.5
15	PCD 57 M6×1.0 (oil hole)
26	

View X-X

Recommended support unit

or drive side	For opposite to drive side					
(Fixed)	(Fixed)	(Simple)				
VBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	-			
WBK20-11 (round)	WBK20-11 (round)					

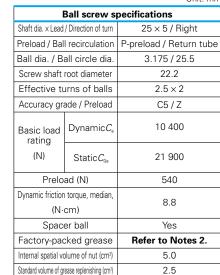
Unit: mm

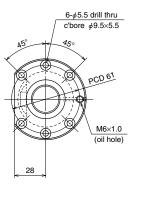
Left side shaft	Lead accuracy		out ** Mass		Permissible rotational speed N (min-1) Supporting condition		
end	T	$e_{\scriptscriptstyle m p}$ $v_{\scriptscriptstyle m u}$		(kg)		Fixed - Simple support	Fixed - Fixed
П	-0.005	0.023	0.018	0.035	1.6	2 800	_
П	-0.006	0.023	0.018	0.035	1.8	2 800	_
П	-0.009	0.025	0.020	0.040	2.2	2 800	<u> </u>
П	-0.011	0.027	0.020	0.050	2.5	2 800	_
I	-0.014	0.030	0.023	0.060	3.0	2 800	2 800
I	-0.018	0.035	0.025	0.075	3.7	2 800	2 800

10.014 Shape II	C0.5 R0.2 max.	L _o 15.35 15.35 35.6.14 -C0.3	6 25 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Seals (two places	A G	22	C0.3 850	1100- CO.5	✓ 0.012 E
	⊥0.005 F →	_	L	t (hardened)		30	53	27	
	53			La		-11	80	1	
				Lo			1-		
	ı							-1	1

	Str	oke	Screw shaft length			
Ball screw No.	Namainal	Maximum	Screw shart length			
	Nominal	iviaximum	$L_{\rm t}$	$L_{\rm a}$	L _o	
W2502SA-1P-C5Z4	150	166	220	250	349	
W2502SA-2P-C5Z4	200	216	270	300	399	
W2503SA-1P-C5Z4	300	316	370	400	499	
W2504SA-1P-C5Z4	400	416	470	500	599	
W2505SA-1P-C5Z4	500	516	570	600	733	
W2507SA-1P-C5Z4	700	716	770	800	933	

Notes: 1. We recommend NSK support unit. See page B389 for details.


2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.


Contact NSK if the permissible rotational speed is to be exceeded.

4. The maximum stroke is -8 mm when Fixed-Fixed is used for left shaft end shape I.

Lead 5

Unit: mm

View	X-X

Reco	mmen	ded s	noggu	t unit

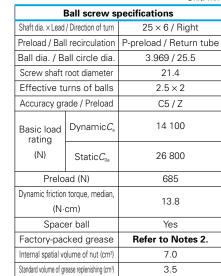
For drive side	For opposite to drive side				
(Fixed)	(Fixed)	(Simple)	4		
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)			
WBK20-11 (round)	WBK20-11 (round)				

Unit: mm

Left side	Le	ad accura	ісу	Shaft run- out ** Mass		Permissible rotational speed N (min-1)		
shaft				Out ^ ^		Supporting condition		
end	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed	
П	-0.005	0.023	0.018	0.035	1.8	2 800	_	
П	-0.006	0.023	0.018	0.035	2.0	2 800		
П	-0.009	0.025	0.020	0.040	2.3	2 800	_	
П	-0.011	0.027	0.020	0.050	2.7	2 800	_	
I	-0.014	0.030	0.023	0.060	3.1	2 800	2 800	
Ι	-0.016	0.035	0.025	0.075	3.4	2 800	2 800	
I	-0.018	0.035	0.025	0.075	3.8	2 800	2 800	
Ι	-0.023	0.040	0.027	0.090	4.5	2 800	2 800	
I	-0.028	0.046	0.030	0.120	5.2	2 520	2 800	

Shape II	CO.3 A G	10 14	80.2 max.	CO.5 CO.5
⊥[0.005]F]-	L _i (hardened)	30	53	27
53	L _a	·	80	
	L _o		•	

	Stroke		Screw shaft length			
Ball screw No.	Nominal	Maximum	Screw shart length			
	Nominal	IVIAXIITIUITI	$L_{\rm t}$	$L_{\rm a}$	L _o	
W2502SA-3P-C5Z5	150	159	220	250	349	
W2502SA-4P-C5Z5	200	209	270	300	399	
W2503SA-2P-C5Z5	300	309	370	400	499	
W2504SA-2P-C5Z5	400	409	470	500	599	
W2505SA-2P-C5Z5	500	509	570	600	733	
W2506SA-1P-C5Z5	600	609	670	700	833	
W2507SA-2P-C5Z5	700	709	770	800	933	
W2509SA-1P-C5Z5	900	909	970	1 000	1 133	
W2511SA-1P-C5Z5	1 100	1 109	1 170	1 200	1 333	


Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

- 3. Contact NSK if the the permissible rotational speed is to be exceeded.
- 4. The maximum stroke is -8 mm when Fixed-Fixed is used for left shaft end shape I.

Lead 6

Unit: mm

6-ø5.5 drill thru
c'bore φ9.5×5.5
A5° 45° PCD 64 M6×1.0 (oil hole)

View X-X

3003	Screw shaf
-	Effective
	Accuracy g
M6×1.0 (oil hole)	Basic load rating (N)
	Prel
	Dynamic friction
	(N

Recommended support unit

or drive side	For opposite to drive side				
(Fixed)	(Fixed)	(Simple)	ç		
VBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	-		
WBK20-11 (round)	WBK20-11 (round)				

Unit: mm

L	ead accurad	су	Shaft run- out **	Mass (kg)	Permissible rotational speed N (m Supporting condition	
Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$			Fixed - Simple support	Fixed - Fixed
-0.009	0.025	0.020	0.050	2.5	2 800	2 800
-0.014	0.030	0.023	0.060	3.2	2 800	2 800
-0.018	0.035	0.025	0.075	3.9	2 800	2 800
-0.028	0.046	0.030	0.120	5.2	2 450	2 800

C0.5 0.017 A C0 C0.5 0.00 C0 C0.5 0.00 C0 C0.5 0.00 C0 C	प्रि विशेष्ट के स्थापन के स	Seals (two places) X - 1 1	## * G	10 14	70.01 80.2 80.2 M20x	C0.5 C0.5
53		$L_{\rm t}$ (hardened)		30	53	27
÷ 33	*	Lo		*		—

	Stroke		Screw shaft length			
Ball screw No.	Nisasiasi	N. 4	Screw shart length			
	Nominal	Maximum	$L_{\rm t}$	L _a	L _o	
W2503SA-3P-C5Z6	250	302	370	400	533	
W2505SA-3P-C5Z6	450	502	570	600	733	
W2507SA-3P-C5Z6	650	702	770	800	933	
W2511SA-2P-C5Z6	1 050	1 102	1 170	1 200	1 333	

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

- 3. Contact NSK if the permissible rotational speed is to be exceeded.
- 4. The maximum stroke is -8 mm when Fixed-Fixed is used for left shaft end shape I.

B225 B226

Lead 10

Unit: mm

$6-\phi6.6$ drill thru c'bore *ϕ*11×6.5 M6×1.0 32

View X-X

Recommended support unit

For drive side	For opposite to drive side			
(Fixed)	(Fixed)	(Simple)	9	
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	ſ	
WBK20-11 (round)	WBK20-11 (round)			

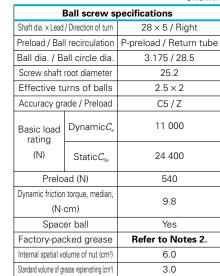
Unit: mm

B228

			Shaft run-		Permissible rotation	nal speed N (min-1)
L	ead accurad	cy	out ** Mass		out ** Mass Supporting conditio	
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
-0.009	0.025	0.020	0.050	3.2	2 800	2 800
-0.014	0.030	0.023	0.060	3.8	2 800	2 800
-0.018	0.035	0.025	0.075	4.5	2 800	2 800
-0.023	0.040	0.027	0.090	5.2	2 800	2 800
-0.028	0.046	0.030	0.120	5.9	2 390	2 800
-0.035	0.054	0.035	0.150	6.9	1 490	2 060

C0.5 (0.017 A) (R0.2 max.	Seals (two places) X - 1 Seals (two places)	# * G	10 14	70.3 80.2 80.2 M20x1 FU.0.005 E	CO. 1150 CO.	Ø 0.012 E
		L _t (hardened)		30	53	27	
53	L _a 80 →						
-		Lo				-	

	Str	oke	Screw shaft length			
Ball screw No.	Nominal	Maximum	Sciew shart length			
			$L_{\rm t}$	$L_{\rm a}$	L _o	
W2503SA-4P-C5Z10	250	283	370	400	533	
W2505SA-4P-C5Z10	450	483	570	600	733	
W2507SA-4P-C5Z10	650	683	770	800	933	
W2509SA-2P-C5Z10	850	883	970	1 000	1 133	
W2511SA-3P-C5Z10	1 050	1 083	1 170	1 200	1 333	
W2514SA-1P-C5Z10	1 350	1 383	1 470	1 500	1 633	


Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

- 3. Contact NSK if the permissible rotational speed is to be exceeded.
- 4. The maximum stroke is -8 mm when Fixed-Fixed is used for left shaft end shape I.

Lead 5

Unit: mm

	6-\phi6.6 drill thru c'bore \phi11×6.5
A5°	PCD 69
	PCDS
	M6×1.0 (oil hole)
31	

View X-X

or drive side	For opposite to drive side				
(Fixed)	(Fixed)	(Simple)	ę		
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	ſ		
WBK20-11 (round)	WBK20-11 (round)				

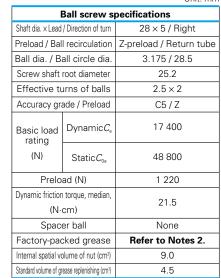
Recommended support unit

Unit: mm

Left side		ad accura	101/	Shaft run-		Permissible rotational speed N (min-1)		
shaft	Le	au accura	iCy	out **	Mass	Supporting condition		
end	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple support	Fixed - Fixed	
П	-0.006	0.023	0.018	0.035	2.5	2 500	_	
П	-0.009	0.025	0.020	0.040	2.9	2 500	_	
П	-0.011	0.027	0.020	0.050	3.3	2 500	_	
I	-0.014	0.030	0.023	0.060	3.8	2 500	2 500	
I	-0.018	0.035	0.025	0.075	4.7	2 500	2 500	
I	-0.024	0.040	0.027	0.090	5.6	2 500	2 500	
I	-0.028	0.046	0.030	0.120	6.5	2 500	2 500	

Shape I	15.3 1.35 (6.14) 1.35 (6.14)	95gg	Seals (two places) X Line 10.013 A 44	# * G	10 14	20.3 R0.2 max. E 16 M20×1		Ø 0.012 E
	⊥0.005 F → 12		Lt (hardened)		30	53	27	
-	53		La		-	80		_
-			Lo					-

	Str	oke	- Screw shaft length			
Ball screw No.	Namainal	Marriage				
	Nominal	Maximum	$L_{\rm t}$	$L_{\rm a}$	L _o	
W2802SA-1P-C5Z5	200	208	270	300	399	
W2803SA-1P-C5Z5	300	308	370	400	499	
W2804SA-1P-C5Z5	400	408	470	500	599	
W2805SA-1P-C5Z5	450	502	558	600	733	
W2807SA-1P-C5Z5	650	702	758	800	933	
W2809SA-1P-C5Z5	850	902	958	1 000	1 133	
W2811SA-1P-C5Z5	1 050	1 102	1 158	1 200	1 333	


Notes: 1. We recommend NSK support unit. See page B389 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.
- 4. The maximum stroke is -2 mm when Fixed-Fixed is used for left shaft end shape I.

B229

Lead 5

Unit: mm

Γ	6-\phi6.6 drill thru c'bore \phi11×6.5
A5°	PCD 69 M6×1.0 (oil hole)
31	(6.1.16.6)

View X-X

Recommended support unit

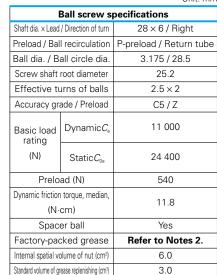
For drive side	For opposite	to drive side	
(Fixed)	(Fixed)	(Simple)	9
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	ſ
WBK20-11 (round)	WBK20-11 (round)		

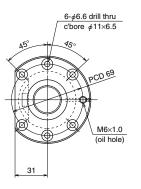
Unit: mm

Left side shaft	Le	ad accura	ісу	Shaft run- out **	Mass	Permissible rotatio Supporting	
end	Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.006	0.023	0.018	0.035	2.8	2 500	_
П	-0.009	0.025	0.020	0.040	3.2	2 500	_
П	-0.011	0.027	0.020	0.050	3.7	2 500	_
I	-0.013	0.030	0.023	0.060	4.2	2 500	2 500
I	-0.018	0.035	0.025	0.075	5.1	2 500	2 500
I	-0.023	0.040	0.027	0.090	5.9	2 500	2 500
I	-0.028	0.046	0.030	0.120	6.8	2 500	2 500

Shape II \$\frac{19}{50.000} \frac{L}{19} \frac{L}{L}\$ \$\frac{10.014 \lambda}{19} \frac{L}{L}\$ \$\frac{15.35^{\cdot{0.14}}}{0.000}\$ \$\frac{1}{50.000}\$ \$\frac{50.000}{50.000}\$ \$\frac{50.0000}{50.000}\$ \$\frac{50.000}{50.000}\$ \$\frac{50.000}{50.000}\$ \$\frac{50.0000}{5	Seals (two places) X = 10.019 A	222	C0.3 C0.5 C0.5 R0.2 max. E 16 M20×1
⊥0.005 F - 12	L ₁ (hardened)	30	53 27
53	La	٠.	80
. '	Lo		<u>'</u>

	Str	oke	Screw shaft lengtl		ath
Ball screw No.	Nominal	Maximum	Screw shart length		
	NOTTITIAL	IVIAXIIIIUIII	$L_{\rm t}$	$L_{\rm a}$	L _o
W2802SA-2Z-C5Z5	150	178	270	300	399
W2803SA-2Z-C5Z5	250	278	370	400	499
W2804SA-2Z-C5Z5	350	378	470	500	599
W2805SA-2Z-C5Z5	450	472	558	600	733
W2807SA-2Z-C5Z5	650	672	758	800	933
W2809SA-2Z-C5Z5	850	872	958	1 000	1 133
W2811SA-2Z-C5Z5	1 050	1 072	1 158	1 200	1 333


Notes: 1. We recommend NSK support unit. See page B389 for details.


- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.
- 4. The maximum stroke is -2 mm when Fixed-Fixed is used for left shaft end shape I.

B231 B232

Lead 6

Unit: mm

View X-X

Recommended support unit

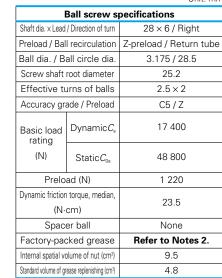
or drive side	For opposite to drive side		
(Fixed)	(Fixed)	(Simple)	ç
VBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	-
WBK20-11 (round)	WBK20-11 (round)		

Unit: mm

Left side	Lead accuracy		Shaft run-	Mass	Permissible rotational speed N (min-1)		
shaft				out **		Supporting	condition
end	T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.009	0.025	0.020	0.040	3.0	2 500	_
П	-0.014	0.030	0.023	0.060	3.9	2 500	_
I	-0.018	0.035	0.025	0.075	4.9	2 500	2 500
I	-0.023	0.040	0.027	0.090	5.8	2 500	2 500
I	-0.028	0.046	0.030	0.120	6.6	2 500	2 500

Shape II	Seals (two places) X 1 10.019 A Seals (two places) X 1 Line 10.013 A Seals (two places) Seals (two places) X 1 Seals (two places) X 1 Seals (two places)	A G 10 14	C0.3 C0.5 0.017 A 0.0	C0.5
12 12	Lt (hardened)	30	53 27	_
53	L _a	-	80	-
	Lo		-	-

	Str	oke	Screw shaft length		ath
Ball screw No.	Namainal		Sciew shart length		
	Nominal	Maximum	$L_{\rm t}$	L_{a}	L。
W2803SA-3P-C5Z6	250	301	370	400	499
W2805SA-3P-C5Z6	450	501	570	600	699
W2807SA-3P-C5Z6	650	695	758	800	933
W2809SA-3P-C5Z6	850	895	958	1 000	1 133
W2811SA-3P-C5Z6	1 050	1 095	1 158	1 200	1 333


Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

- 3. Contact NSK if the permissible rotational speed is to be exceeded.
- 4. The maximum stroke is -2 mm when Fixed-Fixed is used for left shaft end shape I.

Lead 6

Unit: mm

Γ	6-\phi 6.6 drill thru c'bore \phi 11×6.5
45°	450
	PCD 69
	M6×1.0 (oil hole)
31	

View	X-X	

Recommended support unit

For drive side	For opposite to drive side				
(Fixed)	(Fixed) (Fixed)		9		
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	•		
WBK20-11 (round)	WBK20-11 (round)				

Unit: mm

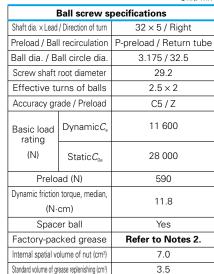
B236

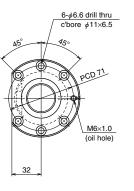
Left side shaft	Lead accuracy		Shaft run- out ** Mass	Permissible rotational speed N (min-1) Supporting condition			
end	T	$e_{\scriptscriptstyle \mathrm{p}}$	υu	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.009	0.025	0.020	0.040	3.4	2 500	_
П	-0.014	0.030	0.023	0.060	4.3	2 500	_
I	-0.018	0.035	0.025	0.075	5.3	2 500	2 500
I	-0.023	0.040	0.027	0.090	6.2	2 500	2 500
I	-0.028	0.046	0.030	0.120	7.1	2 500	2 500

	L ₀ 15.35 % 1	A G 10 14	C0.3 C0.5 R0.2 M20×1 #10.005 E	C0.5
⊥0.005 F →	12 L _t (hardened)	30	53 27	
< 53 →	La		80	-
•	L _o			

	Stro	oke	Screw shaft length		
Ball screw No.	NI - mai mal	N.A			
	Nominal	Maximum	$L_{\rm t}$	L_{a}	L。
W2803SA-4Z-C5Z6	250	265	370	400	499
W2805SA-4Z-C5Z6	450	465	570	600	699
W2807SA-4Z-C5Z6	650	659	758	800	933
W2809SA-4Z-C5Z6	850	859	958	1 000	1 133
W2811SA-4Z-C5Z6	1 050	1 059	1 158	1 200	1 333

Notes: 1. We recommend NSK support unit. See page B389 for details.


Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.


3. Contact NSK if the permissible rotational speed is to be exceeded.

4. The maximum stroke is -2 mm when Fixed-Fixed is used for left shaft end shape I.

Lead 5

Unit: mm

View X-X

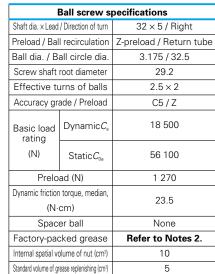
Recommend	led sup	port	unit

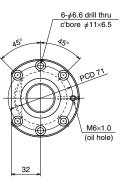
or drive side	For opposite to drive side					
(Fixed)	(Fixed)	(Simple)	٤			
/BK25-01W (square)	WBK25-01W (square)	WBK25S-01W (square)	-			
WBK25-11 (round)	WBK25-11 (round)					

Unit: mm

							OTHE: THIN
Left side	Lead accuracy		Shaft run- out ** Mass		Permissible rotational speed N (min-1)		
shaft					Supporting condition		
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle \sf u}$	<i>L1</i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.006	0.023	0.018	0.040	3.1	2 180	_
П	-0.009	0.025	0.020	0.050	3.7	2 180	_
П	-0.011	0.027	0.020	0.050	4.2	2 180	_
П	-0.014	0.030	0.023	0.060	4.8	2 180	_
I	-0.016	0.035	0.025	0.075	5.6	2 180	2 180
I	-0.018	0.035	0.025	0.075	6.1	2 180	2 180
I	-0.023	0.040	0.027	0.090	7.3	2 180	2 180
I	-0.028	0.046	0.030	0.120	8.5	2 180	2 180
I	-0.035	0.054	0.035	0.150	10.2	2 100	2 180

Shape II	C0.5 C0.5	27	8,000 8,000	1941028 C1 C1
⊥[0.006]F] >	L _t (hardened)	35	62	33
< 62 ≥	La		95	─
	L _o			


	Stro	oke	- Screw shaft length		
Ball screw No.	Niereinel	N 4 i			
	Nominal	Maximum	$L_{\rm t}$	La	L _o
W3202SA-1P-C5Z5	150	201	265	300	415
W3203SA-1P-C5Z5	250	301	365	400	515
W3204SA-1P-C5Z5	350	401	465	500	615
W3205SA-1P-C5Z5	450	501	565	600	715
W3206SA-1P-C5Z5	550	601	665	700	857
W3207SA-1P-C5Z5	650	701	765	800	957
W3209SA-1P-C5Z5	850	901	965	1 000	1 157
W3211SA-1P-C5Z5	1 050	1 101	1 165	1 200	1 357
W3214SA-1P-C5Z5	1 350	1 401	1 465	1 500	1 657


Notes: 1. We recommend NSK support unit. See page B389 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.
- 4. The maximum stroke is -9 mm when Fixed-Fixed is used for left shaft end shape I.

Lead 5

Unit: mm

View X-X

Recommended	support	unit
-------------	---------	------

For drive side, for opposite to drive side (Fixed)	
WRK25DE-31H (round)	

Jnit: mm

B240

							Unit: mm
Left side	Lead accuracy		Shaft run- out **		Permissible rotational speed N (min-1)		
shaft				Mass	Supporting	g condition	
end	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.007	0.023	0.018	0.040	3.5	2 180	_
П	-0.009	0.025	0.020	0.050	4.1	2 180	_
П	-0.012	0.027	0.020	0.060	4.7	2 180	_
П	-0.014	0.030	0.023	0.060	5.3	2 180	_
I	-0.016	0.035	0.025	0.075	6.1	2 180	2 180
I	-0.019	0.035	0.025	0.090	6.7	2 180	2 180
I	-0.024	0.040	0.027	0.090	7.9	2 180	2 180
I	-0.028	0.046	0.030	0.120	9.0	2 180	2 180
I	-0.036	0.054	0.035	0.150	10.8	2 100	2 180

Shape II	0.014 A 16.35 1.35 6.31 16.35 6.31 1.35 1.35 6.31 1.35 1.	C 0.019 A	Seals (two places) X — 1 10.013 A 12 86	M * * (C0.5 M25×1.5 26 M25×1.5 26		0.013 E
			Lt (hardened)	20,	89	51	
	89		La		140	>	
			Lo				

	Stro	oke	- Screw shaft length			
Ball screw No.	Nominal	Maximum				
	Nominal	IVIAXIITIUITI	$L_{\rm t}$	La	L。	
W3202SA-2Z-C5Z5	150	186	280	300	460	
W3203SA-2Z-C5Z5	250	286	380	400	560	
W3204SA-2Z-C5Z5	350	386	480	500	660	
W3205SA-2Z-C5Z5	450	486	580	600	760	
W3206SA-2Z-C5Z5	550	586	680	700	929	
W3207SA-2Z-C5Z5	650	686	780	800	1 029	
W3209SA-2Z-C5Z5	850	886	980	1 000	1 229	
W3211SA-2Z-C5Z5	1 050	1 086	1 180	1 200	1 429	
W3214SA-2Z-C5Z5	1 350	1 386	1 480	1 500	1 729	

- Notes: 1. We recommend NSK support unit. See page B389 for details.
 - Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
 - 3. Contact NSK if the permissible rotational speed is to be exceeded.
 - 4. The maximum stroke is -9 mm when Fixed-Fixed is used for left shaft end shape I.

C1 R0.3

R0.3 max.

✓ 0.019 A

11 * * G

12 15 2 E

[20]

M25×1.5

33

← ⊥ 0.006 E

62

95

Seals (two places)

⊥ 0.013 A

51

Lt (hardened)

63

∕ 0.014 A

∕ 0.017 A

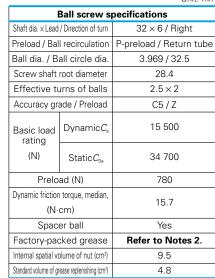
Shape II

Shape I

M25×1.5

_20_F

⊥ 0.006 F


62

0.017 A 0.013 E

Screw shaft ø32

Lead 6

Unit: mm

	6-\(\phi 6.6\) drill thru c'bore \(\phi 11 \times 6.5\)
450	PCD 75
	M6×1.0 (oil hole)
34	

	45	95° PCD 75
M6×1.0 (oil hole)	34	

View X-X

Recommended support unit

For drive side	For opposite	to drive side	
(Fixed)	(Fixed)	(Simple)	9
WBK25-01W (square)	WBK25-01W (square)	WBK25S-01W (square)	1
WBK25-11 (round)	WBK25-11 (round)		

Unit: mm

Left side	Lead accuracy		Shaft run-		Permissible rotatio	nal speed N (min-1)	
shaft			out **	Mass	Supporting condition		
end	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.009	0.025	0.020	0.050	3.8	2 180	_
П	-0.014	0.030	0.023	0.060	5.0	2 180	_
I	-0.018	0.035	0.025	0.075	6.3	2 180	2 180
I	-0.023	0.040	0.027	0.090	7.4	2 180	2 180
I	-0.028	0.046	0.030	0.120	8.5	2 180	2 180
I	-0.035	0.054	0.035	0.150	10.2	2 050	2 180

	Str	oke	Carous aboft langth						
Ball screw No.	Nominal	Maximum	Screw shaft length						
			L_{t}	La	L。				
W3203SA-3P-C5Z6	250	294	365	400	515				
W3205SA-3P-C5Z6	450	494	565	600	715				
W3207SA-3P-C5Z6	650	694	765	800	957				
W3209SA-3P-C5Z6	850	894	965	1 000	1 157				
W3211SA-3P-C5Z6	1 050	1 094	1 165	1 200	1 357				

Notes: 1. We recommend NSK support unit. See page B389 for details.

W3214SA-3P-C5Z6

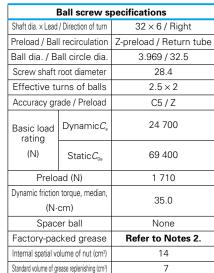
2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

1 394

1 465

1 500

1 657


3. Contact NSK if the permissible rotational speed is to be exceeded.

4. The maximum stroke is -9 mm when Fixed-Fixed is used for left shaft end shape I.

1 350

Lead 6

Unit: mm

	6-φ6.6 drill thru c'bore φ11×6.5
45°	450
	PCD 75
	M6×1.0 (oil hole)
34	

View X-X

Recommended support unit

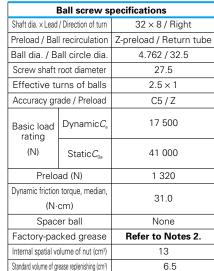
For drive side, for opposite to drive side (Fixed)
WBK25DF-31H (round)

Unit: mm

Permissible rotational speed N (min-1)			Mass	Shaft run-	Load accuracy			Left side	
	Supporting condition			out **	Lead accuracy		Le	shaft	
æd	Fixed - Fixed	Fixed - Simple support	(kg)	<i>L1</i>	$\upsilon_{\scriptscriptstyle u}$	$e_{\scriptscriptstyle p}$	T	end	
	_	2 180	4.5	0.050	0.020	0.025	-0.009	П	
	_	2 180	5.6	0.060	0.023	0.030	-0.014	П	
	2 180	2 180	7.0	0.090	0.025	0.035	-0.019	I	
	2 180	2 180	8.1	0.090	0.027	0.040	-0.024	I	
	2 180	2 180	9.3	0.120	0.030	0.046	-0.028	I	
	2 180	2 060	11.0	0.150	0.035	0.054	-0.036	I	
	2 180 2 180	2 180 2 180 2 180 2 180	5.6 7.0 8.1 9.3	0.060 0.090 0.090 0.120	0.023 0.025 0.027 0.030	0.030 0.035 0.040 0.046	-0.014 -0.019 -0.024 -0.028	II I I I I	

Shape II	L ₀ 16.35 0.019 A 0.0019 A 0.0019 A	Seals (two places) X —	A G	20.5	-0.013 <i>φ</i> 20h6	0.013 E
⊥ 0.006 F →	L _t	(hardened)	20	89	51	
<u>₹</u>	•	L _a	,	140		

Ball screw No.	Stro	oke	Screw shaft length			
	Nominal	Maximum				
	ivominai	Iviaximum	L_{t}	La	L。	
W3203SA-4Z-C5Z6	250	273	380	400	560	
W3205SA-4Z-C5Z6	450	473	580	600	760	
W3207SA-4Z-C5Z6	650	673	780	800	1 029	
W3209SA-4Z-C5Z6	850	873	980	1 000	1 229	
W3211SA-4Z-C5Z6	1 050	1 073	1 180	1 200	1 429	
W3214SA-4Z-C5Z6	1 350	1 373	1 480	1 500	1 729	


Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 8

Unit: mm

	i-φ9 drill thru
	oore ϕ 14×8.5
 < 	

View X-X

Standard volume of grease replenishing (cm ³)	6.5

For drive side, for opposite to drive side (Fixed) WBK25DF-31H (round)

Recommended support unit

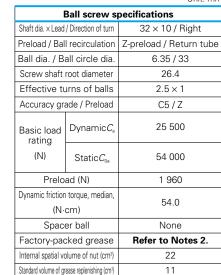
Init: mm

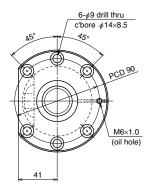
	Unit: mm								
Left side Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)					
		acy	out **	Mass	Supporting condition				
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed		
П	-0.009	0.025	0.020	0.050	4.7	2 180	_		
П	-0.014	0.030	0.023	0.060	5.8	2 180	_		
I	-0.019	0.035	0.025	0.090	7.2	2 180	2 180		
I	-0.024	0.040	0.027	0.090	8.3	2 180	2 180		
I	-0.036	0.054	0.035	0.150	11.1	1 960	2 180		

Shape II C1 R0.3 Max. 10.017 A C0.5 Shape I C1 R0.3 R0.3	L ₀ 16.35 CO.5 X = 1 10.013 A 15 10.013 A	A G	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	94000 C1 C	013 E
⊥[0.006]F]→	L _t (hardened)	20	89	51	
89	La	>=	140		
-	L _o				

	Str	oke	Screw shaft length			
Ball screw No.	Niereinel	N. 4				
	Nominal	Maximum	$L_{\rm t}$	La	L。	
W3203SA-5Z-C5Z8	250	290	380	400	560	
W3205SA-5Z-C5Z8	450	490	580	600	760	
W3207SA-5Z-C5Z8	650	690	780	800	1 029	
W3209SA-5Z-C5Z8	850	890	980	1 000	1 229	
W3214SA-5Z-C5Z8	1 350	1 390	1 480	1 500	1 729	

Notes: 1. We recommend NSK support unit. See page B389 for details.


2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.


3. Contact NSK if the permissible rotational speed is to be exceeded.

B245

Lead 10

Unit: mm

View X-X

Recommended support unit

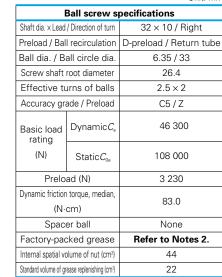
For drive side, for opposite to drive side (Fixed)
WBK25DF-31H (round)

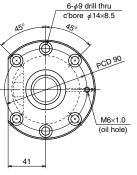
Unit: mm

							Offic. Hilli	
Left side	Left side shaft end $ au$ Lead accuracy $ au$		Shaft run-		Permissible rotational speed N (min-1)			
shaft			ю	out **	Mass	Supporting condition		
end			$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple support	Fixed - Fixed	
П	-0.009	0.025	0.020	0.050	5.5	2 180	_	
П	-0.012	0.027	0.020	0.060	6.0	2 180	_	
П	-0.014	0.030	0.023	0.060	6.6	2 180	_	
I	-0.016	0.035	0.025	0.075	7.4	2 180	2 180	
I	-0.019	0.035	0.025	0.090	7.9	2 180	2 180	
I	-0.024	0.040	0.027	0.090	9.0	2 180	2 180	
I	-0.028	0.046	0.030	0.120	10.1	2 180	2 180	
I	-0.036	0.054	0.035	0.150	11.7	1 920	2 180	
I	-0.043	0.065	0.040	0.200	13.3	1 310	1 810	

Shape II	16.35 35 ⁶³ CO.5 Seals (two places) X A A G A G A G A G A G A G A G A G A G	**	C0.5 C0.5 M25×1.5 26 M2006 E	0013 ∳20h6	0.013 E
⊥[0.006] <i>F</i>]	→ L _I (hardened)	20,	89	51	
89	L _a L _o	•	140		

	Str	oke	Screw shaft length			
Ball screw No.	Nominal	Maximum	Solow Shart longth			
	inominai	Iviaximum	$L_{\rm t}$	La	L _o	
W3203SA-6Z-C5Z10	250	272	380	400	560	
W3204SA-3Z-C5Z10	350	372	480	500	660	
W3205SA-6Z-C5Z10	450	472	580	600	760	
W3206SA-3Z-C5Z10	550	572	680	700	929	
W3207SA-6Z-C5Z10	650	672	780	800	1 029	
W3209SA-6Z-C5Z10	850	872	980	1 000	1 229	
W3211SA-5Z-C5Z10	1 050	1 072	1 180	1 200	1 429	
W3214SA-6Z-C5Z10	1 350	1 372	1 480	1 500	1 729	
W3217SA-1Z-C5Z10	1 650	1 672	1 780	1 800	2 029	


Notes: 1. We recommend NSK support unit. See page B389 for details.


- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.

B247

Lead 10

Unit: mm

45° 45°	
PCD 90	
M6×1.0	
(oil hole)	
41	

View X-X

Recommended support unit

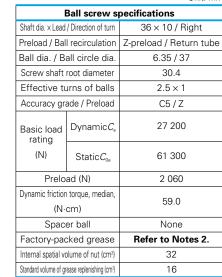
For drive side, for opposite to drive side (Fixed)
WBK25DFD-31H (round)

Unit: mm

	Onie III						
Left side shaft	Lead accuracy		Shaft run-	Permissible rotational speed N (min-1)			
			out **	Mass	Supporting	g condition	
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.009	0.025	0.020	0.050	7.5	2 180	_
П	-0.012	0.027	0.020	0.060	8.1	2 180	_
П	-0.014	0.030	0.023	0.060	8.6	2 180	_
I	-0.016	0.035	0.025	0.075	9.5	2 180	2 180
I	-0.019	0.035	0.025	0.090	10.0	2 180	2 180
I	-0.024	0.040	0.027	0.120	11.1	2 180	2 180
I	-0.028	0.046	0.030	0.120	12.2	2 180	2 180
I	-0.036	0.054	0.035	0.150	13.8	2 050	2 180
I	-0.043	0.065	0.040	0.200	15.4	1 380	1 910

Shape II	1.35°° CO.5 Seals (two places) No.5 Seals (two places)	** G	.013 E
⊥ 0.0	<u>L₁ (hardened)</u> 20	104 51	
104	L _a L _o	155	

	Stro	oke	Screw shaft length		
Ball screw No.	Nominal	Maximum			
	INOMINAL	IVIAXIITIUITI	$L_{\rm t}$	L_{a}	L _o
W3203SA-7D-C5Z10	150	182	380	400	575
W3204SA-4D-C5Z10	250	282	480	500	675
W3205SA-7D-C5Z10	350	382	580	600	775
W3206SA-4D-C5Z10	450	482	680	700	959
W3207SA-7D-C5Z10	550	582	780	800	1 059
W3209SA-7D-C5Z10	750	782	980	1 000	1 259
W3211SA-6D-C5Z10	950	982	1 180	1 200	1 459
W3214SA-7D-C5Z10	1 250	1 282	1 480	1 500	1 759
W3217SA-2D-C5Z10	1 550	1 582	1 780	1 800	2 059


Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 10

Unit: mm

6-\$11 drill thru cbore \$17.5x11 450 PCD 98 M6×1.0 (oil hole)

View X-X

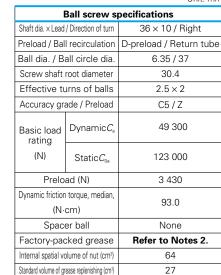
For drive side		For opposite to drive side	
	(Fixed)	(Simple)	9
	WBK30DF-31H (round)	WBK25DF-31H (round)	F

Unit: mm

Left side shaft	Lead accuracy		Shaft run- out ** Mass		Permissible rotational speed N (min-1) Supporting condition		
end	Т	$e_{\scriptscriptstyle m p}$	υu	<i>11</i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.012	0.027	0.020	0.040	7.4	1 940	_
П	-0.016	0.035	0.025	0.050	8.8	1 940	_
I	-0.024	0.040	0.027	0.065	11.1	1 940	1 940
I	-0.033	0.054	0.035	0.100	13.9	1 940	1 940
I	-0.043	0.065	0.040	0.130	16.6	1 510	1 940

Shape II C1 R0.3 R0.3	Seals (two places) X - 1 10.019 A	C0.5 C1
⊥0.006 F →	L _t (hardened)	20 89 61
89	La	150
	Lo	

	Str	oke	Screw shaft length		
Ball screw No.	Nominal	Maximum			
			L_{t}	La	L。
W3604SA-1Z-C5Z10	350	370	480	500	670
W3606SA-1Z-C5Z10	550	570	680	700	870
W3609SA-1Z-C5Z10	850	870	980	1 000	1 239
W3613SA-1Z-C5Z10	1 250	1 270	1 380	1 400	1 639
W3617SA-1Z-C5Z10	1 650	1 670	1 780	1 800	2 039


Notes: 1. We recommend NSK support unit. See page B389 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 10

Unit: mm

$ \frac{6-\phi 11 \text{ drill thru}}{\text{c'bore } \phi 17.5 \times 11} $
45° 45°
PCD 98
M6×1.0 (oil hole)
45

View X-X

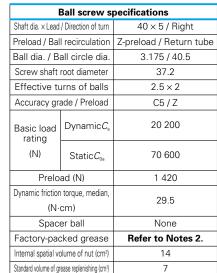
Recommended	support	unit

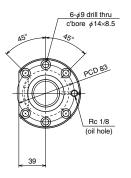
For drive side (Fixed)	For opposite to drive side (Fixed)	
WBK30DFD-31H (round)	WBK25DFD-31H (round)	ľ

Unit: mm

Left side	ا ا	ad accura	acv	Shaft run-	D 4	Permissible rotational speed N (min-1)			
shaft			тсу	out **	Mass	Supporting condition			
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed		
П	-0.012	0.027	0.020	0.040	9.3	1 940	_		
П	-0.016	0.035	0.025	0.050	10.7	1 940	_		
I	-0.024	0.040	0.027	0.080	13.1	1 940	1 940		
I	-0.033	0.054	0.035	0.100	15.9	1 940	1 940		
I	-0.043	0.065	0.040	0.130	18.6	1 600	1 940		

12 E 193		<u> </u>		
<u>⊥0.006</u> F) → L _i (hardened)	20	104	61	
104 L ₂		165	-	


	Str	oke	Screw shaft length			
Ball screw No.	Nominal	Maximum	Jorew Shart length			
	Nominal	IVIAXIITIUITI	$L_{\rm t}$	L_{a}	L _o	
W3604SA-2D-C5Z10	250	280	480	500	685	
W3606SA-2D-C5Z10	450	480	680	700	885	
W3609SA-2D-C5Z10	750	780	980	1 000	1 269	
W3613SA-2D-C5Z10	1 150	1 180	1 380	1 400	1 669	
W3617SA-2D-C5Z10	1 550	1 580	1 780	1 800	2 069	


Notes: 1. We recommend NSK support unit. See page B389 for details.

- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 5

Unit: mm

view	X-X

|--|

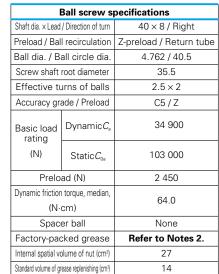
For drive side, for opposite to drive side (Fixed)	
WBK30DF-31H (round)	

Unit: mm

							Onit. min		
Left side		ad aggura	201	Shaft run-		Permissible rotational speed N (min-1)			
shaft	Lead accuracy		асу	out **	Mass	Supporting	g condition		
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed		
П	-0.009	0.025	0.020	0.035	6.3	1 750	_		
П	-0.014	0.030	0.023	0.040	8.1	1 750	_		
I	-0.019	0.035	0.025	0.065	10.3	1 750	1 750		
I	-0.024	0.040	0.027	0.065	12.2	1 750	1 750		
I	-0.028	0.046	0.030	0.080	14.0	1 750	1 750		
I	-0.038	0.054	0.035	0.100	17.7	1 750	1 750		

Shape II C Shape I	988 4 1.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17.75 17.75	\$440 \$640 \$640 \$640 \$640 \$640 \$640 \$640		X 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# * * G		2 E M30×1.5 26	0α13 φ25h6	0.013 E
	⊥ 0.006 F →			L _t (hardened)			20	89	61	l
	89	L _a						150	ı	

	Stro	oke	Screw shaft length			
Ball screw No.	Namainal	N A a v dima v v ma				
	Nominal	Maximum	$L_{\rm t}$	L_{a}	L。	
W4003SA-1Z-C5Z5	250	284	380	400	572	
W4005SA-1Z-C5Z5	450	484	580	600	772	
W4007SA-1Z-C5Z5	650	684	780	800	1 039	
W4009SA-1Z-C5Z5	850	884	980	1 000	1 239	
W4011SA-1Z-C5Z5	1 050	1 084	1 180	1 200	1 439	
W4015SA-1Z-C5Z5	1 450	1 484	1 580	1 600	1 839	


Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 8

Unit: mm

_	6-\phi 9 drill thru c'bore \phi 14×8.5
45°	450
	PCD 90
	Rc 1/8
41	(oil hole)

View X-X

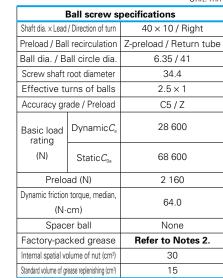
For drive side, for opposite to drive side (Fixed)	
WBK30DF-31H (round)	

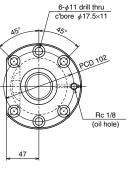
Unit: mm

							Unit: mm	
Left side	Load agguragy			Shaft run-		Permissible rotational speed N (min-1)		
shaft Lead accuracy		iCy	out **	Mass	Supporting condition			
end	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg) Fixed - Simple support		Fixed - Fixed	
П	-0.009	0.025	0.020	0.035	7.4	1 750	_	
П	-0.014	0.030	0.023	0.040	9.2	1 750	_	
I	-0.019	0.035	0.025	0.065	11.3	1 750	1 750	
I	-0.024	0.040	0.027	0.065	13.1	1 750	1 750	
I	-0.028	0.046	0.030	0.080	14.9	1 750	1 750	
I	-0.038	0.054	0.035	0.100	18.5	1 750	1 750	

Shape II 22 61 17.75	Seals (two places) X -	* G	24	°313 φ25h6	0.013 E
⊥[0.006]F	L _t (hardened)	20	89	61	
89	La	-7*	150		
	Lo		-	-	

	Stro	oke	Screw shaft length			
Ball screw No.	N		Screw Shart length		igui	
	Nominal	Maximum	L_{t}	L_{a}	L。	
W4003SA-2Z-C5Z8	200	243	380	400	572	
W4005SA-2Z-C5Z8	400	443	580	600	772	
W4007SA-2Z-C5Z8	600	643	780	800	1 039	
W4009SA-2Z-C5Z8	800	843	980	1 000	1 239	
W4011SA-2Z-C5Z8	1 000	1 043	1 180	1 200	1 439	
W4015SA-2Z-C5Z8	1 400	1 443	1 580	1 600	1 839	


Notes: 1. We recommend NSK support unit. See page B389 for details.


2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 10

Unit: mm

View	X-X	

Recommended supp	ort	unit
------------------	-----	------

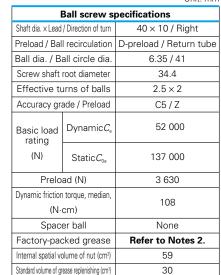
For drive side, for opposite to drive side (Fixed)
WBK30DF-31H (round)

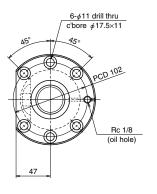
Unit: mm

	Offic. Hill								
Left side	Lead accuracy			Shaft run-	Mass	Permissible rotational speed N (min-1)			
shaft			,	out **		Supporting condition			
end	T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed		
П	-0.012	0.027	0.020	0.040	8.7	1 750	_		
П	-0.014	0.030	0.023	0.040	9.6	1 750	_		
П	-0.016	0.035	0.025	0.050	10.4	1 750	_		
I	-0.019	0.035	0.025	0.065	11.7	1 750	1 750		
I	-0.024	0.040	0.027	0.065	13.4	1 750	1 750		
I	-0.028	0.046	0.030	0.080	15.1	1 750	1 750		
I	-0.033	0.054	0.035	0.100	16.9	1 750	1 750		
I	-0.038	0.054	0.035	0.100	18.6	1 750	1 750		
I	-0.043	0.065	0.040	0.130	20.3	1 710	1 750		
I	-0.057	0.077	0.046	0.170	25.5	940	1 320		

Shape II	L ₂ 17.7.5 17.7.5 17.5 17.5 17.5 17.5 17.5	* * G	C1	425h6	0.013 E
<u> </u>	∠ Lt (hardened)	20	89	61	
89	< L _a		150		
	L _o				

	Str	oke	Screw shaft length				
Ball screw No.	N		Sciew shart length				
	Nominal	Maximum	$L_{\rm t}$	La	L。		
W4004SA-1Z-C5Z10	350	370	480	500	672		
W4005SA-3Z-C5Z10	450	470	580	600	772		
W4006SA-1Z-C5Z10	550	570	680	700	872		
W4007SA-3Z-C5Z10	650	670	780	800	1 039		
W4009SA-3Z-C5Z10	850	870	980	1 000	1 239		
W4011SA-3Z-C5Z10	1 050	1 070	1 180	1 200	1 439		
W4013SA-1Z-C5Z10	1 250	1 270	1 380	1 400	1 639		
W4015SA-3Z-C5Z10	1 450	1 470	1 580	1 600	1 839		
W4017SA-1Z-C5Z10	1 650	1 670	1 780	1 800	2 039		
W4023SA-1Z-C5Z10	2 250	2 270	2 380	2 400	2 639		


Notes: 1. We recommend NSK support unit. See page B389 for details.


2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 10

Unit: mm

View X-X

Recommended	support	unit
-------------	---------	------

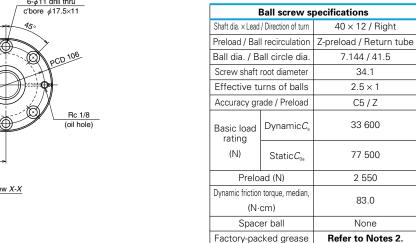
For drive side, for opposite to drive side (Fixed) WBK30DFD-31H (round)

Init: mm

						Unit: mm		
Load agouragy			Shaft run-		Permissible rotational speed N (min-1)			
	au accura		out **		Supporting condition			
T	$e_{\scriptscriptstyle p}$	υu	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed		
-0.012	0.027	0.020	0.040	11.0	1 750	_		
-0.014	0.030	0.023	0.040	11.9	1 750	_		
-0.016	0.035	0.025	0.050	12.7	1 750	_		
-0.019	0.035	0.025	0.065	14.1	1 750	1 750		
-0.024	0.040	0.027	0.080	15.8	1 750	1 750		
-0.028	0.046	0.030	0.080	17.5	1 750	1 750		
-0.033	0.054	0.035	0.100	19.3	1 750	1 750		
-0.038	0.054	0.035	0.100	21.0	1 750	1 750		
-0.043	0.065	0.040	0.130	22.7	1 750	1 750		
-0.057	0.077	0.046	0.170	27.9	980	1 370		
	7 -0.012 -0.014 -0.016 -0.019 -0.024 -0.028 -0.033 -0.038 -0.043	T e _p -0.012 0.027 -0.014 0.030 -0.016 0.035 -0.019 0.035 -0.024 0.040 -0.028 0.046 -0.033 0.054 -0.038 0.065	-0.012 0.027 0.020 -0.014 0.030 0.023 -0.016 0.035 0.025 -0.019 0.035 0.025 -0.024 0.040 0.027 -0.028 0.046 0.030 -0.033 0.054 0.035 -0.038 0.054 0.035 -0.043 0.065 0.040	Lead accuracy out ** T ep vu Lf -0.012 0.027 0.020 0.040 -0.014 0.030 0.023 0.040 -0.016 0.035 0.025 0.050 -0.019 0.035 0.025 0.065 -0.024 0.040 0.027 0.080 -0.028 0.046 0.030 0.080 -0.033 0.054 0.035 0.100 -0.043 0.065 0.040 0.130	T ep vu L Mass (kg) -0.012 0.027 0.020 0.040 11.0 -0.014 0.030 0.023 0.040 11.9 -0.016 0.035 0.025 0.050 12.7 -0.019 0.035 0.025 0.065 14.1 -0.024 0.040 0.027 0.080 15.8 -0.028 0.046 0.030 0.080 17.5 -0.033 0.054 0.035 0.100 19.3 -0.038 0.054 0.035 0.100 21.0 -0.043 0.065 0.040 0.130 22.7	Lead accuracy out ** (kg) Mass (kg) Supporting Fixed - Simple support -0.012 0.027 0.020 0.040 11.0 1 750 -0.014 0.030 0.023 0.040 11.9 1 750 -0.016 0.035 0.025 0.050 12.7 1 750 -0.019 0.035 0.025 0.065 14.1 1 750 -0.024 0.040 0.027 0.080 15.8 1 750 -0.028 0.046 0.030 0.080 17.5 1 750 -0.033 0.054 0.035 0.100 19.3 1 750 -0.038 0.054 0.035 0.100 21.0 1 750 -0.043 0.065 0.040 0.130 22.7 1 750		

Shape II 17.75	C	1 2008 84008		0.013 E
**************************************	20	104	61	
104 L _a	*	165		

	Stro	oke	Screw shaft length			
Ball screw No.	Niereinel	N 4 i	Sciew shart length			
	Nominal	Maximum	$L_{\rm t}$	La	L。	
W4004SA-2D-C5Z10	250	280	480	500	687	
W4005SA-4D-C5Z10	350	380	580	600	787	
W4006SA-2D-C5Z10	450	480	680	700	887	
W4007SA-4D-C5Z10	550	580	780	800	1 069	
W4009SA-4D-C5Z10	750	780	980	1 000	1 269	
W4011SA-4D-C5Z10	950	980	1 180	1 200	1 469	
W4013SA-2D-C5Z10	1 150	1 180	1 380	1 400	1 669	
W4015SA-4D-C5Z10	1 350	1 380	1 580	1 600	1 869	
W4017SA-2D-C5Z10	1 550	1 580	1 780	1 800	2 069	
W4023SA-2D-C5Z10	2 150	2 180	2 380	2 400	2 669	


Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 12

Unit: mm

6-φ11 drill thru
/ c'bore φ17.5×11
A6° 45° PCD 106 Rc 1/8 (oil hole)

View X-X

Recommended	support	unit
nccommicnaca	Juppoit	uiiit

Internal spatial volume of nut (cm3)

Standard volume of grease replenishing (cm3)

For drive side, for opposite to drive side (Fixed)
WBK30DF-31H (round)

33

17

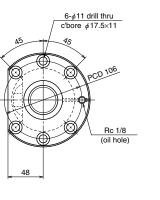
Unit: mm

B264

Load agguragy		Shaft run-		Permissible rotational speed N (min-1)			
Lead accuracy		out ** Mass		Supporting condition			
Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed	
-0.016	0.035	0.025	0.050	11.6	1 750	1 750	
-0.024	0.040	0.027	0.065	14.2	1 750	1 750	
-0.033	0.054	0.035	0.100	17.7	1 750	1 750	
-0.043	0.065	0.040	0.130	21.2	1 710	1 750	
-0.060	0.077	0.046	0.170	27.2	870	1 210	

C1 C1 C1 R0.3 max. P2 26 M30×1.5		A G	2 E M30×1.5 26	29 09 09 09 09 09 09 09 09 09 09 09 09 09	*0.2 0 10
-	L _t (hardened)	20	89	61	
89	L _a L _o		150		

	Str	oke	Screw shaft length		
Ball screw No.			Screw shart length		igtii
	Nominal	Maximum	$L_{\rm t}$	La	L _o
W4006SA-3Z-C5Z12	500	556	680	700	939
W4009SA-5Z-C5Z12	800	856	980	1 000	1 239
W4013SA-3Z-C5Z12	1 200	1 256	1 380	1 400	1 639
W4017SA-3Z-C5Z12	1 600	1 656	1 780	1 800	2 039
W4024SA-1Z-C5Z12	2 300	2 356	2 480	2 500	2 739


Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 12

Unit: mm

٧	iev	v)	(-,	Χ

ı	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	40 × 12 / Right
Preload / Bal	I recirculation	D-preload / Return tube
Ball dia. / B	all circle dia.	7.144 / 41.5
Screw shaft	root diameter	34.1
Effective to	urns of balls	2.5 × 2
Accuracy gra	ade / Preload	C5 / Z
Basic load rating	Dynamic <i>C</i> _a	61 000
(N)	Static C _{0a}	155 000
Prelo	ad (N)	4 310
Dynamic friction torque, median, (N-cm)		137
Spac	er ball	None
Factory-pag	cked grease	Refer to Notes 2.
Internal spatial vo	olume of nut (cm³)	76
Standard volume of gr	ease replenishing (cm³)	38

Recommended support unit

For drive side, for opposite to drive side (Fixed)	
WBK30DED-31H (round)	

Unit: mm

							Offit. Hilli
	Lood coourse.			Shaft run-		Permissible rotatio	nal speed N (min-1)
	Lead accuracy			out **	Mass (kg)	Supporting	g condition
	Τ	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(Kg)	Fixed - Simple support	Fixed - Fixed
	-0.016	0.035	0.025	0.050	14.8	1 750	1 750
	-0.024	0.040	0.027	0.080	17.4	1 750	1 750
	-0.033	0.054	0.035	0.100	20.9	1 750	1 750
	-0.043	0.065	0.040	0.130	24.3	1 750	1 750
	-0.060	0.077	0.046	0.170	30.4	910	1 270

C1 C1 C1 R0.3 max. F L10.006 F	0.025 A Seals (two places) Seals (two places) 105 12 90 225	X = 18 X = 1		A 0.013 E
	L _t (hardened)	20	104	61
104	<u>L</u> a		165	
-	L _o			>

	Str	oke	Screw shaft length		
Ball screw No.	Nominal	Maximum	Jorew Shart length		1911
	INOMINAL	IVIAXIITIUITI	$L_{\rm t}$	La	L _o
W4006SA-4D-C5Z12	400	448	680	700	969
W4009SA-6D-C5Z12	700	748	980	1 000	1 269
W4013SA-4D-C5Z12	1 100	1 148	1 380	1 400	1 669
W4017SA-4D-C5Z12	1 500	1 548	1 780	1 800	2 069
W4024SA-2D-C5Z12	2 200	2 248	2 480	2 500	2 769

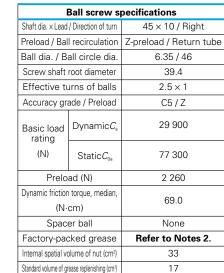
Notes: 1. We recommend NSK support unit. See page B389 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

50

View X-X


6-φ11 drill thru c'bore φ17.5×11

Rc 1/8

Screw shaft ø45

Lead 10

Unit: mm

Recommended support unit

For drive side, for opposite to drive side (Fixed) WBK35DF-31H (round)

1 390

Unit: mm

Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)		
Lead accuracy		out ** Mass		Supporting condition		
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg) Fixed - Simple support		Fixed - Fixed
-0.016	0.035	0.025	0.050	13.4	1 550	1 550
-0.024	0.040	0.027	0.065	16.7	1 550	1 550
-0.033	0.054	0.035	0.100	21.2	1 550	1 550
-0.043	0.065	0.040	0.130	25.6	1 550	1 550

990

33.4

C1 C	0.018 A C1 C1 R0.3 max. 14 M35×1.5	\$\frac{1}{2} \frac{1}{2} \frac	is (two places) X A G 15 A 18 X A	-	CI	φ30h6	0.015 E
	4	L _t (harde	•	20	92	63	
	<u>92</u>		La Lo		155		

	Str	oke	Screw shaft length		
Ball screw No.	N		Screw shart length		igtii
	Nominal	Maximum	L_{t}	L_{a}	L。
W4506SA-1Z-C5Z10	550	568	680	700	947
W4509SA-1Z-C5Z10	850	868	980	1 000	1 247
W4513SA-1Z-C5Z10	1 250	1 268	1 380	1 400	1 647
W4517SA-1Z-C5Z10	1 650	1 668	1 780	1 800	2 047
W4524SA-1Z-C5Z10	2 350	2 368	2 480	2 500	2 747

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

B267 B268

-0.060

0.077

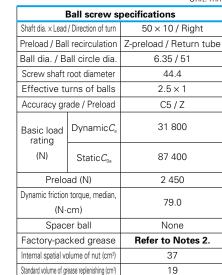
0.046

0.170

51

View X-X

6-ø11 drill thru


(oil hole)

c'bore *ϕ*17.5×11

Screw shaft ø50

Lead 10

Unit: mm

Recommended support unit

For drive side, for opposite to drive side (Fixed)	ş
WBK40DF-31H (round)	

	Unit: mm						
Load accuracy			Shaft run-		Permissible rotational speed N (min-1)		
L	ead accurad		out ** Mass		Supporting condition		
Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed	
-0.014	0.030	0.023	0.050	14.8	1 400	1 400	
-0.019	0.035	0.025	0.065	17.6	1 400	1 400	
-0.024	0.040	0.027	0.080	20.3	1 400	1 400	
-0.028	0.046	0.030	0.080	23.1	1 400	1 400	
-0.036	0.054	0.035	0.100	27.3	1 400	1 400	
-0.048	0.065	0.040	0.130	34.2	1 400	1 400	
-0.062	0.093	0.054	0.170	42.5	1 030	1 400	

C1 (4)	0.018 A C1 10.018 A R0.3 max. F 10.006 F	Seals (two places) X 0.025 A	C1 C
	92	L _t (hardened)	20 92 78 170
	₹ 32 ¥	L _a L _o	sk 1/0

	Stro	oke	Screw shaft length			
Ball screw No.	Namainal	Marriagrama	Screw shart length		igui	
	Nominal	Maximum	$L_{\rm t}$	La	L。	
W5005SA-1Z-C5Z10	450	468	580	600	862	
W5007SA-1Z-C5Z10	650	667	780	800	1 062	
W5009SA-1Z-C5Z10	850	868	980	1 000	1 262	
W5011SA-1Z-C5Z10	1 050	1 068	1 180	1 200	1 462	
W5014SA-1Z-C5Z10	1 350	1 368	1 480	1 500	1 762	
W5019SA-1Z-C5Z10	1 850	1 868	1 980	2 000	2 262	
W5025SA-1Z-C5Z10	2 450	2 468	2 580	2 600	2 862	

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

B269

51

View X-X

Screw shaft ø50

Lead 10

Unit: mm

		Offit. Itil
ı	pecifications	
Shaft dia. x Lead	/ Direction of turn	50 × 10 / Right
Preload / Bal	I recirculation	Z-preload / Return tube
Ball dia. / B	all circle dia.	6.35 / 51
Screw shaft	root diameter	44.4
Effective to	urns of balls	2.5 × 2
Accuracy gra	ade / Preload	C5 / Z
Basic load rating	Dynamic C _a	57 700
(N)	Static C _{0a}	175 000
Prelo	ad (N)	4 020
,	torque, median, cm)	137
Spacer ball		None
Factory-pag	cked grease	Refer to Notes 2.
Internal spatial vo	olume of nut (cm³)	59
Standard volume of gr	ease replenishing (cm³)	30

6-φ11 drill thru			
c'bore <i>ϕ</i> 17.5×11	ı	Ball screw	
45°	Shaft dia. x Lead	/ Direction of turr	
	Preload / Bal	l recirculation	
PCD 113	Ball dia. / B	all circle dia	
	Screw shaft	root diameter	
<i>₱₣</i> ₽ ₽	Effective turns of balls		
	Accuracy grade / Preload		
Rc 1/8 (oil hole)	Basic load	Dynamic <i>C</i>	
	(N)	Static C _{0a}	
	Preload (N)		
<u>x</u>	Dynamic friction	torque, median	

Recommended support unit

For drive side, for opposite to drive side (Fixed)
WBK40DFD-31H (round)

						Unit: mm
Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)		
L	eau accurac	Зу	out **	Mass	Supporting	condition
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
-0.014	0.030	0.023	0.050	16.8	1 400	1 400
-0.019	0.035	0.025	0.065	19.6	1 400	1 400
-0.024	0.040	0.027	0.080	22.3	1 400	1 400
-0.028	0.046	0.030	0.080	25.1	1 400	1 400
-0.036	0.054	0.035	0.100	29.3	1 400	1 400
-0.048	0.065	0.040	0.130	36.2	1 400	1 400
-0.062	0.093	0.054	0.170	44.6	1 060	1 400

C1 C1 C1 C1 F0.3 14 18 F1.3 M40×1.5	0.025 A	Seals (two places) X Li 0.015 A 18 163	A G	- 09 PA	1.5	္ခ် - တို့အ - တို့ - တို - တိ - တို - တို - တို - တို - တိ - တို - တို - တိ - တို - တို - တိ - တို - တို - တိ - တို - တို - တို - တိ - တိ - တိ - တိ - တိ - တိ - တိ - တိ	0.015 E
		Lt (hardened)		20 10)7	78	
107	•			185	-		
-		Lo					

	Stro	oke	Screw shaft length			
Ball screw No.	Nominal	Maximum	Scrow Shart length			
			$L_{\rm t}$	La	L。	
W5005SA-2Z-C5Z10	350	408	580	600	892	
W5007SA-2Z-C5Z10	550	608	780	800	1 092	
W5009SA-2Z-C5Z10	750	808	980	1 000	1 292	
W5011SA-2Z-C5Z10	950	1 008	1 180	1 200	1 492	
W5014SA-2Z-C5Z10	1 250	1 308	1 480	1 500	1 792	
W5019SA-2Z-C5Z10	1 750	1 808	1 980	2 000	2 292	
W5025SA-2Z-C5Z10	2 350	2 408	2 580	2 600	2 892	

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

B271

B-3-1.4 Finished Shaft End Ball Screws Made of Stainless Steel KA Type

1. Order of the dimension tables

The tables begin with the smallest shaft diameter ball screw, and proceeds to larger sizes. If ball screws have the same shaft diameter, those with smaller leads appear first. Page numbers of shaft diameter and lead combinations are shown in **Table 1**.

2. Dimension tables

The dimension tables show shapes/sizes as well as specification factors of each shaft diameter/lead combination. Tables also contain data as follows:

Stroke

Nominal stroke: A reference for your use.

Maximum stroke: The stroke limit that the nut
can move.

●Lead accuracy

Lead accuracy is C3 and C5 grades.

- T: Travel compensation
- e_p : Tolerance on specified travel
- ນູ: Travel variation

See "Technical Description: Lead Accuracy" (page B37) for details of the codes.

Permissible rotational speed

d • n : Limited by the relative peripheral speed between screw shaft and

nut.

Critical speed: Limited by the natural frequency

of a ball screw shaft. Critical speed depends on the supporting condition of screw shaft.

The lower of the two criteria, the d-n and critical speed, will determine the overall permissible rotational speed of the ball screw. For details, see "Technical Description: Permissible Rotational Speed" (page B47).

3. Material

A martensitic stainless steel is used. A special heat treatment technology provides the ball groove section with sufficient hardness which produces high load carrying capacity and durability.

4. Other

Seal of the ball screw, ball recirculating deflector, and end cap are made of synthetic resin. Consult NSK when using the ball screws under extreme environments or special environments, or using special lubricant or oil.

For special environments, see pages B70 and D2. See pages B67 and D13 for lubricants.

Note: For details of standard stock products, contact NSK.

Table 1 Combinations of screw shaft diameter and lead

Lead (mm) Screw shaft diameter (mm)	1	2
6	B275	
8	B277	B279
10		B281
12		B285
15		
16		B295
20		

5	10	20
B287	B289	
	B291	B293
		B297
	<u> </u>	B287 B289

B273 B274

(Fine lead)

Nut model: MPFD

Screw shaft ø6

Lead 1

Unit: mm

OTILL.	111111	

Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	6×1/Right			
Preload / Bal	I recirculation	P-preload / Deflector (bridge)			
Ball dia. / B	all circle dia.	0.800 / 6.2			
Screw shaft	root diameter	5.2			
Effective to	urns of balls	1 × 3			
Accuracy gr	ade / Preload	C3 / Z			
Basic load rating	Dynamic C _a	470			
(N)	Static C _{0a}	680			
Axia	l play	0			
Preload (N)		24.5			
Dynamic fri	ction torque,	1.3 or less			
(N·	cm)	1.5 01 1855			
Spac	er ball	None			

Factory-packed grease

4-¢3.4 drill thru	M3×0.5 (oil hole) 30°
Vie	16

Refer to Notes 1.

					Unit: mm
	and annura	20.7	Shaft run- out **		Permissible rotational speed N (min-1)
L	ead accurad	au accuracy		Mass	Supporting condition
Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>f_f</i> (kg)		Fixed - Simple support
0	0.010	0.008	0.025	0.06	3 000

(15) (0.008 A) (1/4 * * G 0.009 A) (1/4 * G	Ls (stroke range) 8 3.5 X 1 1.0.008 A 1.5 6 X 21 L	R1 (3)	R0.2 7 M6×0.75	CO.3 0.005 E
<	L ₁	(7)	22.5 7.5	'
9	La	>	<u>30</u>	>
<	L ₀			>

	Stroke L _s		Thread length			
Ball screw No.	N1 : 1		Tillead leligtii			
	Nominal	Maximum	\mathcal{L}_{t}	L_1	La	Lo
W0601KA-3PY-C3Z1	100	102	125	128	135	174

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

2. Ball nut does not have seal.

3. Contact NSK if the permissible rotational speed is to be exceeded.

B275 B276 (Fine lead)

Nut model: MPFD

NSN

Screw shaft ø8

Lead 1

Unit: mm

Ball screw specifications						
Shaft dia. x Lead	/ Direction of turn	8×1/Right				
Preload / Bal	I recirculation	P-preload / Deflector (bridge)				
Ball dia. / B	all circle dia.	0.800 / 8.2				
Screw shaft	root diameter	7.2				
Effective to	urns of balls	1×3				
Accuracy gr	ade / Preload	C3 / Z				
Basic load	Dynamic $C_{\scriptscriptstyle a}$	545				
(N)	Static C _{0a}	955				
Axial play		0				
Preload (N)		29.4				
Dynamic fri	ction torque,	1.0 or loss				
(N·	cm)	1.8 or less				

4-φ3.4 drill thru	M3×0.5 (oil hole)
	(oil noie) 30° PCD 21
_	View X-X

Recommended support unit

None Refer to Notes 1.

Spacer ball

Factory-packed grease

For drive side (Fixed)	For opposite to drive side (Free)	
WBK08-01C (square, clean)	WBK08S-01C (square, clean)	
WBK08-11C (round, clean)		

Unit: mm

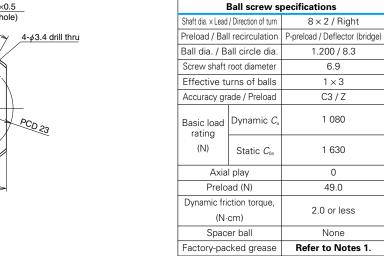
	and annura	21.4	Shaft run- out ** Mass		Permissible rotational speed N (min-1)	
L	ead accurad	ЗУ			out **	l out
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	
0	0.010	0.008	0.035	0.12	3 000	

0.008 A 0.008 A 0.008 A CO RO.2 RO.2 RO.2 RO.2 RO.3 RO.3	2	3.5 X 1		8	0.005 E
	_	<u>L</u> t	4 (8)	27	10
< 9 >	<	La	7	37	-
-		L _o			→

	Stroke L _s		Thread length			
Ball screw No.			Triread length			
	Nominal	Nominal Maximum	$L_{\rm t}$	L ₁	La	L _o
W0802KA-1PY-C3Z1	150	155	190	194	202	248

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.


2. Ball nut does not have seal.

3. Contact NSK if the permissible rotational speed is to be exceeded.

B277 B278

Lead 2

Unit: mm

M3×0.5 (oil hole) 30° 4-¢3.4 drill thru
PCD 23
20
View X-X

Recommended support unit

Internal spatial volume of nut (cm3)

Standard volume of grease replenishing (cm3)

For drive side (Fixed)	For opposite to drive side (Free)	3
WBK08-01C (square, clean)	WBK08S-01C (square, clean)	
WBK08-11C (round, clean)		

0.34

0.17

Unit: mm

	and annura		Shaft run-			
L	ead accurad	ЗУ	out **		Supporting condition	
T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	
0	0.010	0.008	0.035	0.13	3 000	

√ 0.008 A	2) 10.009 A	Ls (stroke range) Seals /(two places) 3 X	14	10	<u> </u>	0.005 E
87 C0.2	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	(two places)		C0.2	C0	.5 C0.5
F C0.5 R0.2 max0.1 0.8 -0.1 6.8	A	10.008 A × 6		R0.2 max. [9 M8×1	, 64
<u> </u>	-	28	4	< ⊥ 0.00	025[<i>E</i>]	
9		L ₁	77 7	(8)	27 37	10
<		L)			

	Stroke L _s		Thread length			
Ball screw No.	Nisasiasi	N 4 i		IIIIGau		
	Nominal	Maximum	$L_{\rm t}$	L_1	La	L。
W0802KA-5PY-C3Z2	150	154	190	194	202	248

1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

2. Contact NSK if the permissible rotational speed is to be exceeded.

B279

(Fine lead)

Screw shaft ø10

Lead 2

Unit: mm

I	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	10 × 2 / Right
Preload / Bal	I recirculation	P-preload / Deflector (bridge)
Ball dia. / Ba	all circle dia.	1.200 / 10.3
Screw shaft	root diameter	8.9
Effective to	urns of balls	1 × 3
Accuracy gra	ade / Preload	C3 / Z
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	1 210
(N)	Static C _{0a}	2 110
Axia	l play	0
Prelo	ad (N)	58.8
,	ction torque, cm)	0.10 – 2.5
Space	er ball	None
Factory-pag	cked grease	Refer to Notes 1.
Internal spatial vo	olume of nut (cm³)	0.44
Standard volume of gr	ease replenishing (cm³)	0.22

4-φ4.5 drill thru	M3×0.5
\	(oil hole)
	30 30 PCD 27 View X-X

Recommended support unit

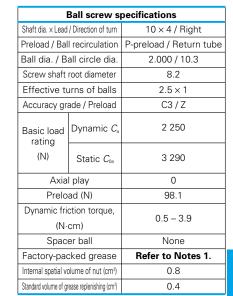
For drive side (Fixed)	For opposite to drive side (Free)
WBK08-01C (square, clean)	WBK08S-01C (square, clean)
WBK08-11C (round, clean)	

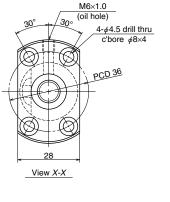
B282

L	Lead accuracy		Shaft run- out ** Mass		Permissible rotational speed N (min-1) Supporting condition	
T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	
0	0.012	0.008	0.030	0.22	3 000	

(33)	Ls (stroke range)	14 10		
CO.5 RO.2 max. F. 0.0025 F. 9	0.009 A Seals (two places) 3 X 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(width of flats) (6) 4	0.5 C0.5	0.005 E
* * *		L _o **		
1-				

Ball screw No.	Strol	ke L _s	Thread length			
	N1 ' 1					
	Nominal	Maximum	$L_{\rm t}$	$L_{\scriptscriptstyle 1}$	L _a	L _o
W1002KA-3PY-C3Z2	200	203	250	254	262	308


Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.


Use of NSK Clean Grease LG2 is recommended.

2. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 4

Unit: mm

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)
WBK10-01C (square, clean)	WBK10S-01C (square, clean)
WBK10-11C (round, clean)	

Unit: mm

L	Lead accuracy		Shaft run- out ** Mass		Permissible rotational speed N (min-1) Supporting condition	
T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	
0	0.010	0.008	0.030	0.29	3 000	
0	0.013	0.008	0.050	0.39	3 000	

(37) (37)	Ls (stroke range) Seals (two places) 10.008 A 24 34 10.008 B 10.008 B	13 12 0.05 C0.2 C0.5	
	L ₁	5 (10) 30 15	
10	<u>La</u>	45	
•	L _o		

Ball screw No.	Strol	ke L _s	Thread length			
	Nominal	Maximum	$L_{\rm t}$	L ₁	L _a	L _o
W1001KA-3P-C3Z4	100	110	160	165	175	230
W1003KA-3P-C3Z4	300	310	360	365	375	430

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

 $2. \ \mbox{Contact NSK}$ if the permissible rotational speed is to be exceeded.

Lead 2

Unit: mm

E	Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	12 × 2 / Right				
Preload / Ball	l recirculation	P-preload / Deflector (bridge)				
Ball dia. / Ba	all circle dia.	1.200 / 12.3				
Screw shaft	root diameter	10.9				
Effective to	irns of balls	1×3				
Accuracy gra	ade / Preload	C3 / Z				
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	1 360				
(N)	Static C _{0a}	2 680				
Axial	l play	0				
Prelo	ad (N)	98.1				
Dynamic frie	ction torque,	04-34				
(N-	cm)	0.4 - 3.4				
Space	er ball	None				
Factory-pag	ked grease	Refer to Notes 1.				
Internal spatial vo	olume of nut (cm³)	0.53				

M3×0.5 (oil hole)	4-¢4.5 drill thru
24	PCD 29
View X-X	

Recommended support unit

Standard volume of grease replenishing (cm²)

For drive side (Fixed)	For opposite to drive side (Free)	
WBK10-01C (square, clean)	WBK10S-01C (square, clean)	
WBK10-11C (round, clean)		

Unit: mm

B286

0.27

Lead accuracy		Shaft run- out ** Mass		Permissible rotational speed N (min-1) Supporting condition	
T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
0	0.010	0.008	0.030	0.24	3 000
0	0.012	0.008	0.040	0.36	3 000

CO.5 RO.2 max. point 199 199 199 199 199 199 199 199 199 19	10.008 A A A A A A A A A A A A A A A A A A	13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R0.2 10 M10×1
⊥0.003 F	<u>L_t</u> L ₁	 3 (10)	30 15
10	<u>La</u>		45
 			

Ball screw No.	Strol	ke L _s	Thread length				
		N		meau length			
	Nominal	Maximum	$L_{\rm t}$	L ₁	La	L _o	
W1201KA-3PY-C3Z2	100	109	160	165	175	230	
W1203KA-1PY-C3Z2	250	259	310	315	325	380	

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

2. Contact NSK if the permissible rotational speed is to be exceeded.

(Fine lead)

Nut model: PFT

View X-X

M6×1.0 (oil hole) $4-\phi 4.5$ drill thru

c'bore ∮8×4

NSN

Screw shaft ø12

Lead 5

Unit: mm

i	Ball screw s	pecifications		
Shaft dia. x Lead	/ Direction of turn	12 × 5 / Right		
Preload / Bal	I recirculation	P-preload / Return tube		
Ball dia. / Ba	all circle dia.	2.381 / 12.3		
Screw shaft	root diameter	9.8		
Effective turns of balls		2.5 × 1		
Accuracy gra	ade / Preload	C3 / Z		
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	3 070		
(N)	Static C _{0a}	4 670		
Axia	l play	0		
Prelo	ad (N)	98.1		
,	ction torque, cm)	1.0 – 4.4		
Space	er ball	None		
Factory-pag	cked grease	Refer to Notes 1.		
Internal spatial vo	olume of nut (cm³)	1.2		
Standard volume of grease replenishing (cm³)		0.6		

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)	Š
WBK10-01C (square, clean)	WBK10S-01C (square, clean)	
WBK10-11C (round, clean)		

Unit: mm

			Shaft run-		Permissible rotational speed N (min-1)
L	ead accurad	ЗУ	out **	Mass	Supporting condition
Т	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
0	0.012	0.008	0.040	0.47	3 000
0	0.016	0.012	0.065	0.66	3 000

(40)	Ls (stroke range)	12 0.25	
C0.2 C0.2 C0.2 F R0.2 G max. T7.9°	0.010 A Seals 5 X	A G (width of flats) (7) 5	(0.005 E)

Ball screw No.	Strol	ke L₅	Thread length			
	Niereinel	N 4 i	Triread length			
	Nominal	Maximum $L_{\rm t}$ $L_{\rm 1}$	L_1	La	L _o	
W1202KA-3P-C3Z5	200	208	260	265	275	330
W1205KA-1P-C3Z5	450	458	510	515	525	580

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.

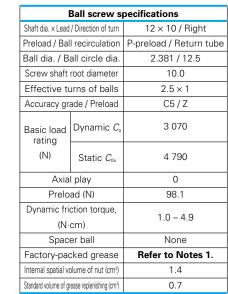
Use of NSK Clean Grease LG2 is recommended.

2. Contact NSK if the permissible rotational speed is to be exceeded.

B287 B288

View X-X

M6×1.0


(oil hole)

 $\frac{4-\phi 4.5 \text{ drill thru}}{\text{c'bore } \phi 8 \times 4}$

Screw shaft ø12

Lead 10

Unit: mm

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)	3
VBK10-01C (square, clean)	WBK10S-01C (square, clean)	
WBK10-11C (round, clean)		

Unit: mm

Lead accuracy		Shaft run- out ** Mass	Permissible rotational speed N (min-1) Supporting condition		
Т	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$	<i>f_f</i> (kg)		Fixed - Simple support
0	0.023	0.018	0.050	0.56	3 000
0	0.030	0.023	0.075	0.72	3 000

(44)	Ls (stroke range)	13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
(0.010 A) (0.00 (0.000 A) (0.000 A)	V-4L	70.015 A 0.008 E	φ8h6
C0.5 R0.2 R0.2 R0.2 R0.2 R0.2 R0.2 R0.2 R0.2	10.010 A 10 X	Right Righ	
= 10.000 1	<u>L_t</u> L ₁	(10) 30 15	
10	L _a	45	
	L _o	·	

	Strol	ke L _s	Thread length			
Ball screw No.	Nominal	N 4 i	Tillead length			
		Maximum	$L_{\rm t}$	L_1	La	L _o
W1203KA-3P-C5Z10	250	253	310	315	325	380
W1205KA-3P-C5Z10	450	453	510	515	525	580

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

2. Contact NSK if the permissible rotational speed is to be exceeded.

B289

Screw shaft ø15

Lead 10

Unit: mm

l	Ball screw s	pecifications	
Shaft dia. x Lead	/ Direction of turn	15 × 10 / Right	
Preload / Bal	I recirculation	P-preload / Return tube	
Ball dia. / B	all circle dia.	3.175 / 15.5	
Screw shaft	root diameter	12.2	
Effective to	urns of balls	2.5 × 1	
Accuracy gr	ade / Preload	C5 / Z	
Basic load rating (N)	Dynamic $C_{\scriptscriptstyle a}$	5 780	
	Static C _{0a}	9 430	
Axia	l play	0	
Preload (N)		147	
Dynamic fri	ction torque,	45.70	
(N·	cm)	1.5 – 7.9	
Spacer ball		None	
Factory-packed grease		Refer to Notes 1.	
Internal spatial v	olume of nut (cm³)	2.3	
Standard volume of gr	rease replenishing (cm³)	1.4	

M6×1.0	4-ø5.5 drill thru
(oil hole)	c'bore \(\phi 9.5 \times 5.5 \)
(oil hole)	300
	_
	*
(2)	(∞)
X	
/////	PCD 45
+ + + + + + + + + + + + + + + + + + + +	#1-1-
	// //
	<i>()</i> /
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	× /
	(ET)]
- 34	
View X-	<i>x</i> .
	

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)	3
WBK12-01C (square, clean)	WBK12S-01C (square, clean)	
WBK12-11C (round, clean)		

Unit: mm

					Offit. Hilli
Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)	
		001	Mass	Supporting condition	
T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
0	0.027	0.020	0.050	0.99	3 000
0	0.035	0.025	0.065	1.2	3 000
0	0.046	0.030	0.110	1.7	1 610

80 0 C0.5 880 0 C0.5 880 0 C0.5 880 0 C0.5	(two places)	** * G
9.15 9.15 1.10.004 F	11 x 40 L _o	G

Ball screw No.	Strol	ke L _s	Thread length		
	Nominal	Maximum			
	Nominai	iviaximum	$L_{\rm t}$	L_{a}	L_{\circ}
W1504KA-3P-C5Z10	400	427	489	504	561
W1506KA-3P-C5Z10	600	627	689	704	761
W1510KA-1P-C5Z10	1 000	1 027	1 089	1 104	1 161

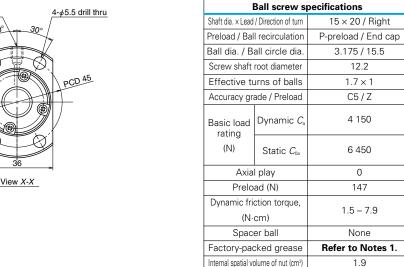
Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

2. Contact NSK if the permissible rotational speed is to be exceeded.

B291


(Medium lead)

Nut model: UPFC

Screw shaft ø15

Lead 20

Unit: mm

M6×1.0 (oil hole) 30° 30°	4-φ5.5 drill thru
36	PCD 45
View X-X	- ≈1

Recommended support unit

Standard volume of grease replenishing (cm3)

For drive side (Fixed)	For opposite to drive side (Free)	3
WBK12-01C (square, clean)	WBK12S-01C (square, clean)	
WBK12-11C (round, clean)		

1.0

Unit: mm

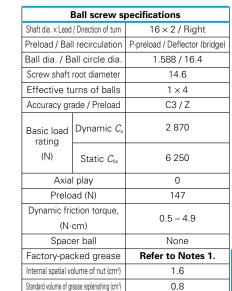
L	Lead accuracy		Shaft run- out ** Mass	Mass	Permissible rotational speed N (min ⁻¹) Supporting condition	
T	e _P	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	
0	0.027	0.020	0.050	1.0	3 000	
0	0.035	0.025	0.065	1.3	3 000	
0	0.046	0.030	0.110	1.8	1 610	

C0.5 R0.2 R0.2 R0.2 R0.2 R0.2 R0.2 R0.2 R0.2	0.2	C0.5 C	© 2.5.
12 da Lo	- 45	>	

	Strol	ke L _s	Thread length		
Ball screw No.	Nominal	N 4 i			
		Maximum	L_{t}	La	L _o
W1504KA-7PG-C5Z20	400	424	486	504	561
W1506KA-7PG-C5Z20	600	624	686	704	761
W1510KA-3PG-C5Z20	1 000	1 024	1 086	1 104	1 161

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.


2. Contact NSK if the permissible rotational speed is to be exceeded.

B293

Screw shaft ø16

Lead 2

Unit: mm

M6×1.0 (oil hole)	30° + 30°	4-φ5.5 drill thru
(3 3 3)		
_		
		CD 35
	29	
	View X-X	

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)	
WBK12-01C (square, clean)	WBK12S-01C (square, clean)	
WBK12-11C (round, clean)		

Unit: mm

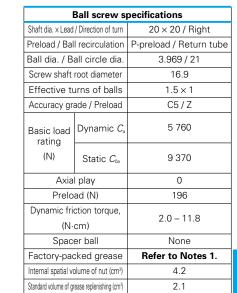
Lead accuracy		Shaft run- out **	Mass	Permissible rotational speed N (min-1)	
				Supporting condition	
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
0	0.010	0.008	0.020	0.46	3 000
0	0.013	0.010	0.035	0.75	3 000

70.007 A Seals (two places) 5 X (two places) 6 X (two places) 6 X (two places) 7 X (two places) 7 X (two places) 7 X (two places) 8 X (two places) 8 X (two places) 8 X (two places) 9 X (two pla
C0.5 R0.2 R0.2 R0.2 R0.2 R0.2 R0.2 R0.2 R0.2
□ 0.003 F → 5 (10) 30 15
L_3 L_3 L_5 L_5

	Strol	ke L _s	- Thread length		
Ball screw No.	Nisasiasi	N 4 i			
	Nominal	Maximum	L_{t}	La	L _o
W1601KA-3PY-C3Z2	100	137	189	204	261
W1603KA-1PY-C3Z2	300	337	389	404	461

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.


Use of NSK Clean Grease LG2 is recommended.

2. Contact NSK if the permissible rotational speed is to be exceeded.

Screw shaft ø20

Lead 20

Unit: mm

M6×1.0 (oil hole)	4-\$6.6 drill thru c'bore \$11×6.5
46	
View X-X	

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)	3
WBK15-01C (square, clean)	WBK15S-01C (square, clean)	
WBK15-11C (round, clean)		

Unit: mm

B298

					Offit: Hilli
Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)	
		out **	Mass	Supporting condition	
T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		<i>f_f</i> (kg)	Fixed - Simple support
0	0.030	0.023	0.050	2.0	3 000
0	0.035	0.025	0.085	2.5	3 000
0	0.046	0.030	0.110	3.4	2 160

	Strol	ke L _s	Thread length					
Ball screw No.	Nominal	Maximum	Tillodd lorigti					
	Nominal	IVIAXIITIUITI	$L_{\rm t}$	L _a	L _o			
W2005KA-3P-C5Z20	400	434	510	535	608			
W2007KA-3P-C5Z20	600	634	710	735	808			
W2011KA-3P-C5Z20	1 000	1 034	1 110	1 135	1 208			

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

2. Contact NSK if the permissible rotational speed is to be exceeded.

B-3-1.5 Blank Shaft End MS Type, FS Type, SS Type

1. Order of the dimension tables

The dimension table begins with the smallest shaft diameter of each MS, FS and SS type ball screws, and proceed to larger sizes. If ball screws have the same shaft diameter, those with smaller leads appear first. Page numbers of shaft diameter and lead combinations are shown in the **Table 1**.

2. Dimension tables

The dimension tables show shapes/sizes as well as specification factors of each shaft diameter/lead combination. Tables also contain data as follows:

Lead accuracy

Lead accuracy is either C3 or C5 grades.

T: Travel compensation

e_n: Tolerance of specified travel

 $\upsilon_{\shortparallel}$: Travel variation

See "Technical Description: Lead Accuracy" (page B37) for details of the codes.

Permissible rotational speed

d • n: Limited by the relative peripheral speed between the screw shaft and the nut.

Critical speed: Limited by the natural

frequency of a ball screw shaft. Critical speed depends on the supporting condition of screw shaft. Criterion of maximum rotational speed

: 3 000 min⁻¹

The lower of the two criteria, d·n and critical speed, will determine the overall permissible rotational speed of the ball screw. For details, see "Technical Description: Permissible Rotational Speed" (page B47).

3. Shaft end processing

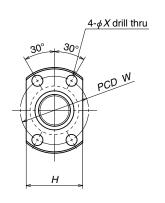
MS, FS, and SS types require shaft end processing to your specification. The exclusive support units (page B389) are available to design the bearing seats. See "Configuration of shaft end" (page B27 and following pages) when

using a support unit. See "Technical Description: Shaft End Processing" (page B86) for procedures of shaft end processing and precautions.

4. Other

The seals of the ball screw, ball recirculating deflectors and end caps are made of synthetic resin. Consult NSK when using the ball screws under extreme environments or special environments, or using special lubricant or oil. For special environments, see pages B70 and D2. See pages B67 and D13 for lubricants.

Note: For details of standard stock products, contact NSK.


Table 1 Combinations of screw shaft diameter and lead

Screw shaft diameter(mm)	1	1.5	2	2.5	4	5	6
4	B301						
6	B301						
8	B301	B303	B303				
10			B303	B305	B309		
12			B305	B305		B309	
14						B311	
15							
16			B307	B307		B315	
20					B321	B321	
25					Daga	B323	B323
25					B323	B325	D323
28						B327	B327
28						B329	B329
						B331	B331
32						B333	B333
						B335	БЗЗЗ
36							
40						B337	
40						1007	
45							
50							

8	10	12	16	20	25	32	40	50
	B309							
B311								
	B311			B313				
			B315			B313		
	B315			B315			B313	
	B325			B317	B317			B317
	B327			5017	5017			5017
	B335							
B333	B337				B319	B319		
	B339							
	B337							
	B339							
	B341	DO44						
B341	B343	B341						
	B345	B343						
	B347							
	B345							
	B347							

B299 B300

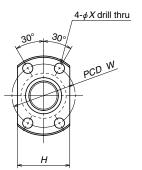
Screw shaft ø4, ø6, ø8, Lead 1

View X-X

Unit: mm

diı	mensio	ns	Sc	rew s	haf	t dir	nen	sion	s	Lea	ad acc	uracy	F	Run-ou	it	Mass	Permissible rotational	MS
Overall length	Bolt W	hole X	Threaded length	Shaft e	end,	1	Shaft e	1	Overall length	_			Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed N (min-1)	
Ln	VV	Λ	_t	d_2	<i>L</i> ₁	L ₂	u ₃	L ₃	Lo	1	$e_{\scriptscriptstyle \mathrm{D}}$	$\upsilon_{\scriptscriptstyle u}$	1	J	K		, , , , , ,	
12	15	2.9	80	6.0	4	40	3.3	10	130	0	0.008	0.008	0.030	0.009	0.008	0.026	3 000	
15	18	3.4	125	8.0	4	50	5.3	15	190	0	0.010	0.008	0.030	0.009	0.008	0.063	3 000	
16	21	3.4	110 190	10.2	4	60	7.3	25	195 275	0	0.010	0.008	0.030	0.009	1 () ()()8	0.11	3 000	

Conter hole	C0.2	X - 1	C0.5 Conter hole	
	<u>L₃</u>	L _t (hardened)	L ₂	
	Not case hardened	L_{\circ}	Not case hardened	
	-	Nut type code: MSFD	7	


(Fine lead: Deflector (bridge) type)

Ball screw No.	Stroke Max. <i>L</i> _r - <i>L</i> _n	Screw shaft dia.	Lead	Ball dia.	Ball circle dia. d _m	Root dia.	Effective ball	1)	ad rating N) Static	Axial play Max.	Outside dia.		ut lang	
	—t —n	d_1		Dw	u _m	G _r		$C_{\scriptscriptstyle \rm a}$	C_{0a}		D	Α	Н	В
W0400MS-1Y-C3T1	68	4	1	0.8	4.2	3.2	2	315	370	0.005	10	20	14	3
W0601MS-1Y-C3T1	110	6	1	0.8	6.2	5.2	3	575	925	0.005	12	24	16	3.5
W0801MS-1Y-C3T1 W0802MS-1Y-C3T1	94 174	8	1	0.8	8.2	7.2	3	670	1 290	0.005	14	27	18	4

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Ball nut does not have seal.
- 4. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

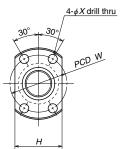
Screw shaft ø8 Lead 1.5, 2 Screw shaft ø10 Lead 2

View X-X

		Seals (two places)	I G	
C0.1	C0.2	X-1 	6.3(or/)	C0.5
		L _n	Min.	
	L ₃	L_{t} (hardened)	L ₂	
	Not case harder	ned L _o	Not case hardened	

(Fine lead: Deflector (bridge) type)

Nut type	code:	MSFD
----------	-------	------


Ball screw No.	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective ball	1)	ad rating V) Static	Axial play	Outside dia.	Nı	ut Flange	
	L_{t} - L_{n}	$d_{\scriptscriptstyle 1}$	l	$D_{\rm w}$	d _m	d_{r}	turns	$C_{\rm a}$	C_{0a}	Max.	D	Α	Н	В
W0801MS-2Y-C3T1.5	88	8	1.5	1.0	8.3	7.0	3	1 080	1 980	0.005	15	28	19	4
W0802MS-2Y-C3T1.5	168	0	1.5	1.0	0.5	7.0	3	1 000	1 900	0.005	15	20	19	4
W0801MS-3Y-C3T2	84	8	2	1.2	8.3	6.9	3	1 220	2 210	0.005	16	29	20	4
W0802MS-3Y-C3T2	164	0		1.2	0.5	0.3	3	1 320	2 2 1 0	0.003	10	23	20	4
W1001MS-1Y-C3T2	122	10	2	1.2	10.3	8.9	3	1 /00	2 850	0.005	18	35	22	5
W1002MS-1Y-C3T2	222	10	2	1.2	10.3	0.9	3	1 430	2 000	0.005	10	33	22	5

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by dn value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

dim	ensio	ns	S	Screw	sha	ft di	mensi	ons		Lead accurac			F	Run-ou	ıt	Mass	Permissible rotational
Overall length	Bolt	hole	Threaded length	Shaft o	end, r	ight	Shaft end, left		Overall		Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange	(kg)	speed
Ln	W	X	$L_{\rm t}$	d ₂	L ₁	L2	d ₃	L ₃	length L_{\circ}	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)
22	22	3.4	110	10.2	Λ	60	7.2	25	195	0	0.010	0 008	0.030	n nna	0.008	0.12	3 000
22	22	3.4	190	10.2	4	00	7.2	25	275	0	0.010	0.000	0.050	0.003	0.000	0.15	3 000
26	23	3.4	110	10.2	1	60	7.0	25	195		0.010	0 000	0.030	0 000	0.008	0.12	3 000
20	23	3.4	190	10.2	4	00	7.0	25	275	١	0.010	0.006	0.050	0.009	0.006	0.15	3 000
28	27	4.5	150	12.2	1	70	9.0	30	250	0	0.010	0.008	0.035	0 000	0.008	0.22	3 000
20	21	4.5	250	12.2	4	70	9.0	30	350	U	0.012	0.008	0.050	0.009	0.006	0.17	3 000

Lead 2.5 Screw shaft ø12 Lead 2, 2.5

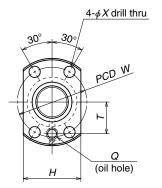
View X-X

Co.1	C0.2	Seals (two places) X A B L A G	G G G G G G G G G G	Co.5
	L ₃	$L_{\rm t}$ (hardened)	L ₂	
	Not case harde	ened L _o	Not case hardened	

Nut type code: MSFD

(Fine lead: Deflector (bridge) type)

Ball screw No.	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	ball	1)	ad rating V) Static	Axial play	Outside dia.		Nut Flange	e
	L_{t} - L_{n}	$d_{\scriptscriptstyle 1}$	l	$D_{\rm w}$	d _m	d_{r}	turns	$C_{\rm a}$	C_{0a}	Max.	D	Α	Н	В
W1001MS-2Y-C3T2.5	118	10	0.5	4 500	10.4	0.0		2 120	2 640	0.005	10	00	00	_
W1002MS-2Y-C3T2.5	218	10	2.5	1.588	10.4	8.6	3	2 130	3 640	0.005	19	36	23	5
W1202MS-1Y-C3T2	182	12	2	1 200	12.3	10.9	3	1 660	3 630	0.005	20	37	24	5
W1203MS-1Y-C3T2	282	12	_	1.200	12.3	10.9	3	1 000	3 020	0.005	20	3/	24	5
W1202MS-2Y-C3T2.5	178	12	2.5	1.588	12.4	10.6	3	2 360	1 510	0.005	21	38	25	5
W1203MS-2Y-C3T2.5	278	12	2.5	1.300	12.4	10.0	3	2 300	14 340	0.005	21	30	25	0


Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by dn value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

dim	ensio	ns	S	Screw	sha	ft di	mensi	ons		Le	ad acc	uracy	R	un-ou		Mass	Permissible rotational	=
Overall length	Bolt	hole	Threaded length	Shaft e	end, r	ight	Shaft en	d, left	Overall		Deviation	Variation	Shaft straightness	Nut 0.D.	Flange	(kg)	speed	30
Ln	W	X	$L_{\rm t}$	d ₂	L ₁	L2	d ₃	L ₃	length L_{\circ}	T	$e_{\scriptscriptstyle p}$	υu	I	J	K		N (min-1)	
32	28	4.5	150	12.2	4	70	8.7	30	250	0	0.010	0.008	0.035	0.010	0.008	0.23	3 000	
32	20	4.5	250	12.2	4	70	0.7	30	350	U	0.012	0.006	0.050	0.010	0.006	0.28	3 000	
28	29	4.5	210	14.2	5	80	11.0	35	325	0	0.012	0.008	0.050	0.010	0.008	0.36	3 000	
20	23	4.5	310	14.2	5	80	11.0	35	425	0	0.012	0.008	0.060	0.010	0.000	0.44	3 000	
32	30	4.5	210	14.2	5	80	10.7	35	325	0	0.012	0.008	0.050	0.010	0.008	0.37	3 000	
JZ	30	4.5	310	14.2	3	00	10.7	33	425	U	0.012	0.000	0.060	0.010	0.000	0.45	3 000	

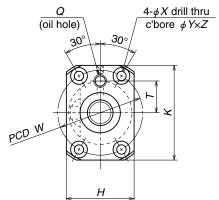
Unit: mm

Screw shaft ø16 Lead 2, 2.5

View X-X

			Seals (two places)	r∯ I G		
			X ~ 1			
C0.1	C0.2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				C0.5
- 	6.3	\$\phi \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V V		6.3 (or/)	
Center hole		1	⊥ K A > X → B	A G	70.3 (017)	Center hole
		< -	L _n	Min. <u>L₁</u>		
	L ₃		Lt (hardened)		L ₂	
	Not case harden	ed	Lo	N	ot case hardened	

Nut type code: MSFD


Ball screw No.	Stroke Max. L _t -L _n		Lead	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> _r	Effective hall	1)	ad rating (V) Static C_{0a}	Axial play	Outside dia.	F A	lang H	Nut e B		Bolt	hole
W1602MS-1Y-C3T2	210	16	2	1.588	16.4	116	4	2 510	8 450	0.005	25	44	29	10	40	35	5 5
W1604MS-1Y-C3T2	360	10	4	1.500	10.4	14.0	4	3 310	0 400	0.005	25	44	29	10	40	30	0.5
W1602MS-2Y-C3T2.5	206	16	2 -	1.588	16.4	116	4	2 510	0 150	0.005	25	44	29	10	44	٥.	5.5
W1604MS-2Y-C3T2.5	356	10	2.5	1.388	110.4	14.0	4	3 310	0 450	0.005	25	44	29	10	44	აე	0.5

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

dimens	ions	Scr	ew s	.2 30 100 14.7 40 -		ıs	Lea	ad acc	uracy	F	Run-ou	t	Mass	Permissible rotational	Internal spatial	or groups	NS		
Oil h	ole	Threaded length	Shaft	end,	right	Shaft e	nd, left	Overall length		Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	(cm³)	replenishing	
Q	Τ	$ {L_{ m t}}$	$d_{\scriptscriptstyle 2}$	L_1	L_2	d_3	L ₃	Ľ。	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	Ĭ	J	K		N (min-1)	(01117	(cm³)	
M6×1	16	250	16.2	20	100	117	40	390	Λ	0.012	0.008	0.035	0.010	0.008	0.71	3 000	1.5	0.8	
IVIOXI	-	400	10.2	30	100	14.7	40	540	U	0.013	0.010	0.050	0.010	0.000	0.93			0.0	
M6×1	16	250	16.2	20	100	117	40	390	0	0.012	0.008	0.035	0.010	0.008	0.73	3 000	1.5	0.8	
IVIOXI	10	400	10.2	30	100	14.7	40	540	U	0.013	0.010	0.050	0.010	0.006	0.95	3 000	1.5	0.0	

Screw shaft ø10 Lead 4 Screw shaft ø12 Lead 5, 10

View X-X

Unit: mm

dimens	ions	5	Scre	ew	sha	aft (dime	nsi	ons	Le	ad acc	curacy	F	Run-ou	it	Mass	Permissible rotational	Internal spatial	or grouss	-
Oil h	ole	Threaded length	Sha	ft er	nd, r	ight	Shaft en	d, left	Overall length		Deviation	Variation	Shaft	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	(0003)	replenishing	
Q	Τ	L _t	$d_{\scriptscriptstyle 2}$	Lu	L_1	L_2	$d_{\scriptscriptstyle 3}$	L ₃	Lo	Τ	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min ⁻¹)	(CIII)	(cm³)	
		160							265		0.010	0.008	0.030			0.34				
M6×1	14	260	14	5	40	70	8.2	35	365	0	0.012	0.008	0.040	0.010	0.008	0.39	3 000	0.86	0.43	Н
		360							465		0.013	0.010	0.050			0.45				
		150							255		0.010	0.008	0.030			0.44				
M6×1	15	250	14	5	40	70	9.8	35	355	0	0.012	0.008	0.040	0.010	0.008	0.52	3 000	1.2	0.6	
		450							555		0.015	0.010	0.065			0.67				
N/Gv/1	15	250	1 1	0	40	70	10.0	2 =	355	0	0.023	0.018	0.050	0.012	0.010	0.57	2 000	1 /	0.7	
M6×1	15	450	14	Q	40	70	10.0	(၁၁	555	U	0.027	0.020	0.075	0.012	0.010	0.74	3 000	1.4	0.7	

Seals (two paces) -11 I G J A $\phi d_2 + 0.2$ X-1 C0.5 C0.2 C0.5 $X \rightarrow A G$ K A Center hole Center hole В Lt (hardened) Not case hardened Not case hardened

Nut type code: SFT, LSFT


Ball screw No.	Stroke Max. <i>L</i> _t - <i>L</i> _n	Screw shaft dia. d_1	Lead <i>l</i>		Ball circle dia. d _m	Root dia.	Turns	Dynamic	1)	Axial	Outside dia. D	F A	=lar H	nge K	N B	ut Overall length L _n	B W	olt	ho Y	le Z
W1001FS-1-C3T4	126																			
W1002FS-1-C3T4	226	10	4	2.000	10.3	8.2	2.5×1	2 740	4 450	0.005	26	46	28	42	10	34	36	4.5	8	4.5
W1003FS-1-C3T4	326																			
W1201FS-1-C3T5	110																			
W1202FS-1-C3T5	210	12	5	2.381	12.3	9.8	2.5×1	3 760	6 310	0.005	30	50	32	45	10	40	40	4.5	8	4.5
W1204FS-1-C3T5	410																			
W1202FS-2-C5T10	200	12	10	2 201	10 5	100	2 Ev1	2 750	6 400	0.005	20	ΕO	5	1 E	10	-	40	1 [0	4.5
W1204FS-2-C5T10	400	12	10	2.301	12.5	10.0	Z.5X1	3 / 50	0 400	0.005	30	50	SΖ	45	10	50	40	4.5	0	4.5

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

3. The permissible rotational speed is determined by d n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

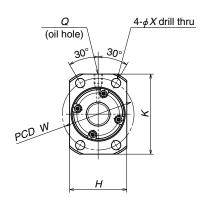
Screw shaft ø14 Lead 5, 8 Screw shaft ø15 Lead 10

View X-X

Unit: mm

dimens	ions			V S	haf	t di	men	sio		Le	ad acc	uracy	F	Run-ou	it	Mass	Permissible rotational	Internal spatial volume of nut	or grouss
Oil h	ole	Threaded length	Sha	ft ei	nd, r	ight	Shaft en	d, left	Overall length		Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange nemendicularity	(kg)	speed	(cm³)	replenishing
Q	Τ	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	$L_{\rm u}$	L_1	L_2	$d_{\scriptscriptstyle 3}$	L ₃	Lo	Τ	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(61117	(cm³)
M6×1	17	350	15	5	40	100	11.2	40	490	Λ	0.013	0.010	0.035	0.012	0 000	0.78	3 000	2.0	1.0
IVIOXI	17	600	10	Ü	40	100	11.2	40	740	U	0.016	0.012	0.055	0.012	0.006	1.0	3 000	2.0	1.0
M6×1	17	500	15	8	40	100	11.2	40	640	Λ	0.027	0.020	0.065	0.015	0.011	1.0	3 000	2.0	1.0
IVIOXI	17	800	10	0	40	100	11.2	40	940	0	0.035	0.025	0.085	0.015	0.011	1.3	3 000	2.0	1.0
		400							570		0.025	0.020	0.050			1.0			
M6×1	17	600		8	10	120	12.2	E۷	770	Λ	0.030	0.023	0.065	0.015	0 011	1.3	3 000	2.3	1.2
IVIOXI	17	900	13	0	40	120	12.2	50	1 070	U	0.040	0.027	0.110	0.015	0.011	1.7	3 000	2.3	1.2
		1 100						1	1 270		0.046	0.030	0.150			1.9			

Seals (two places) C0.5 C0


Nut type code: SFT, LSFT

Ball screw No.	Stroke Max. <i>L</i> _t - <i>L</i> _n	Screw shaft dia. d ₁	Lead <i>l</i>	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root dia.	Turns	(N Dynamic		Axial	Outside dia.	A	Flar <i>H</i>	nge K	N B	Overall length	B W	olt X	ho Y	е <i>Z</i>
W1403FS-1-C3T5	310	14	5	2 175	115	11 2	2 5 1	6 700	11 700	0.005	21	57	24	50	11	40	15	5 5	0 5	E E
W1406FS-1-C3T5	560	14	ລ	3.175	14.5	11.2	2.001	0 /90	11 700	0.005	54	57	34	50	11	40	45	5.5	9.0	5.5
W1405FS-1-C5T8	454	14	8	2 175	115	11 0	2 5.71	6 700	11 700	0.005	24	E 7	24	ΕΛ	11	16	1 =		0 E	
W1408FS-1-C5T8	754	14	0	3.175	14.5	11.2	Z.5X1	0 /90	11 700	0.005	54	57	34	50	11	40	45	5.5	9.5	5.5
W1504FS-1-C5T10	349																			
W1506FS-1-C5T10	549	15	10	2 175	155	12.2	2 5 1	7 070	12 000	0.005	21	57	24	50	11	Б 1	15	5 5	0 5	5.5
W1509FS-1-C5T10	849	10	10	3.175	15.5	12.2	Z.5X1	7 070	12 000	0.005	34	57	34	100	111	01	45	0.5	9.5	ວ.ວ
W1511FS-1-C5T10	1 049																			

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

Screw shaft ø15 Lead 20 Screw shaft ø16 Lead 32 Screw shaft ø20 Lead 40

View X-X

	1	JA	$M \mid I \mid G$	
C0.5	C0.3 6.3 Not case ha	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	L_{u} L_{1} L_{2} Not case hardened	C0.5 Center hole
	inol case na	ardened	inoi case nardened	

Nut type code: USFC

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d_1	Lead	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root dia. <i>d</i> ,	Turns	(N Dynamic		Axial play Max.	Outside dia.	Α		ang <i>K</i>	Nut ge		Overall length L	Bolt W	
W1504FS-2G-C5T20	355																		
W1506FS-2G-C5T20	555	1.5	20	2 175	15.5	10.0	1.7×1	5 070	Q 720	0.005	24	e e	20	EΛ	10	11	4.5	4.5	E E
W1509FS-2G-C5T20	855	15	20	3.1/5	10.0	12.2	1./XI	5 070	0 / 30	0.005	34	ວວ	30	อบ	10	11	45	45	5.5
W1511FS-2G-C5T20	1 055																		
W1609FS-2GX-C5T32	866	10	20	0 175	10.75	10.4	0.70	4 000	6 600	0.005	2.4		2	١,	10	10 F	0.4	4.5	
W1613FS-1GX-C5T32	1 266	16	32	3.1/5	16./5	13.4	0.7XZ	4 000	0 090	0.005	34	ხხ	36	50	10	10.5	34	45	5.5
W2011FS-1GX-C5T40	1 059	20	40	0 175	00.75	17 /	0.70	4 400	0.640	0.005	20	F0	40	F0	10	11	41	40	
W2017FS-1GX-C5T40	1 659	20	40	3.1/5	20./5	17.4	0.7XZ	4 490	0 040	0.005	38	ეგ	40	52	10	П	41	48	5.5

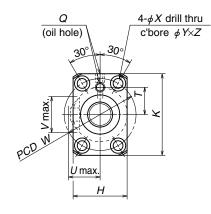
Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299
 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is
 Fixed-Fixed.

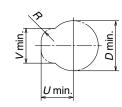
dimens	ions	Sc	rev	N S	haf	t di	men	sio	ns	Le	ad acc	curacy	F	Run-ou	ıt	Mass	Permissible rotational	Internal spatial volume of nut	or ground	0.
Oil h	ole	Threaded length	Sha	ft e	nd, r	ight	Shaft en	d, left	Overall length	Travel com- pensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	(cm³)	replenishing	
Q	T	L_{t}	d_2	$L_{\rm u}$	L_1	L_2	d₃	L ₃	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	Ĭ	J	K		N (min ⁻¹)	(0111)	(cm³)	
		400							570		0.025	0.020	0.050			1.0				
N 1 C 1		600	15.0	12	40	120	100	E0	770		0.030	0.023	0.065	0.015	0 011	1.3	2 000	1.0	1.0	
M6×1	5	900	10.2	13	40	120	12.2	00	1 070	U	0.040	0.027	0.110	0.015	0.011	1.7	3 000	1.9	1.0	
		1 100							1 270		0.046	0.030	0.150			2.0				
N 1 C - 1	Ŀ	900	10.0	10	40	150	10.4	CO	1 110	_	0.040	0.027	0.110	0.015	0 011	1.9	2 000	2.0	1.0	
M6×1	5	1 300	10.2	19	40	150	13.4	טט	1 510	0	0.054	0.035	0.150	0.015	0.011	2.5	3 000	2.0	1.0	
N 1 C 1	Е	1 100	20.2	22	co	150	17.4	00	1 330	^	0.046	0.030	0.150	0.015	0.011	3.5	2 000	2.7	1.4	
M6×1	5	1 700	ZU.Z	22	lου	เวบ	17.4	ĮδU	1 020	U	0.065	0.040	0.200	0.015	0.011	4.0	3 000	2.7	1.4	

C0.5

Not case hardened


Center hole

C0.5


Not case hardened

Center hole

Screw shaft ø16 Lead 5, 16 Screw shaft ø20 Lead 10, 20

View X-X

Housing hole and its clearance (only applicable to shaft dia. ϕ 16, lead 16)

Nut type code: SFT, LSFT

Lo

В

⊥ *K A*

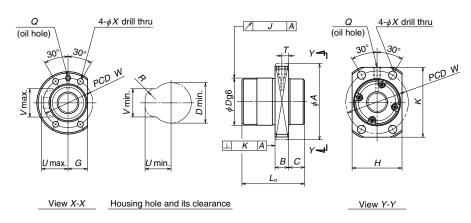
Lt (hardened)

Seals (two places)

 $X \rightarrow$

Ball screw No.	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Turns	1)	۷)	Axial					Ν	ut				
Dall Screw IVO.	l . · .		1	D _w	dia.	d,	X.	Dynamic	Static	play Max.	Outside dia.	- 1	Flar	nge)	Overall length	В	olt	ho	le
	$L_{t}-L_{n}$	u_1	ι	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	$u_{\rm r}$	Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	r v i dizc.	D	Α	Н	Κ	В	L	W	X	Υ	Ζ
W1605FS-1-C3T5	458	16	5	3.175	16.5	13.2	2.5×1	7 330	13 500	0.005	4 0	63	4 0	55	11	12	51	5 5	9.5	5.5
W1609FS-1-C3T5	858	10	3	0.170	10.5	10.2	2.5/1	7 000	10 000	0.003	+0	00	70	55	•	72	01	5.5	0.0	0.0
W1606FS-1-C5T16	544	1.0	10	0 175	10.75	10.4	1 51	4 710	0.110	0 005	24	E-7	24		10	E.C.	4.5	- -	٥ ٦	E E
W1611FS-1-C5T16	1 044	16	16	3.175	10.75	13.4	1.5X1	4 / 10	8 110	0.005	34	0/	34	อบ	12	90	45	ე.ე	9.5	5.5
W2009FS-1-C5T10	846	00	10	0.000	0.4	100	0 5 4	40.000	04 700	0 005	4.0	7.4	40	00	10	- 4			4.4	0 -
W2013FS-1-C5T10	1 246	20	10	3.969	Z I	16.9	2.5X1	10 900	21 /00	0.005	46	/4	46	рр	13	54	59	0.0		6.5
W2010FS-1-C5T20	937	20	20	2 000	0.1	10.0	1 51	7.040	10 700	0.005	40	71	40	cc	10	co	EΟ	C C	11	C E
W2015FS-1-C5T20	1 437	20	20	3.969	2	10.9	1.5×1	/ 040	12 /00	0.005	40	/4	40	OO	13	ರಿತ	ว9	6.6	11	6.5

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.


- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

Unit: mm

	dir	ner	nsions			crev	/ sh	naft	dir	nens	sior	าร	Lea	ad acc	uracy	R	un-oı	ut	Mass		Internal spatial volume of nut	Standard volume of grease	2
Proj	ecting	tube	Oil ho	ole	Threaded length	Shaf	t en	d, riç	ght	Shaft en	d, left	Overall length		Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed N (min-1)	(cm³)	replenishing	
U	V	R	Q	T	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	Lu	L_1	L ₂	d₃	L ₃	Ľ _o	Τ	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$	Ĭ	J	K		IA (HIIII -)	(0111)	(cm³)	
			M6×1	17	500	16.2	_ E	40	150	13.2	ല	710	0	0.015	0.010	0.055	0.012	0 000	1.4	3 000	2.6	1.3	
			IVIOXI	'/	900	10.2	5	40	150	13.2	00	1 110	U	0.021	0.015	0.095	0.012	0.000	1.9	3 000	2.0	1.5	
10	20	0	N 4 C: . 1	17	600	100	10	40	150	10.4	00	810	0	0.030	0.023	0.085	0.015	0 011	1.5	3 000	0.1	1 1	
19	20	ğ	M6×1	1 /	1 100	16.2	10	40	150	13.4	00	1 310	U	0.046	0.030	0.150	0.015	0.011	2.3	2 480	2.1	1.1	
			NAO 4	0.4	900	00.0	4.0	00	150	100		1 130		0.040	0.027	0.110	0.045	0.011	3.2	3 000	4.7	0.4	
	_	_	M6×1	24	1 300	20.2	10	60	150	16.9	80	1 530	0	0.054	0.035	0.150	0.015	0.011	4.1	2 190	4.7	2.4	
			NAC1	2.4	1 000	20.2	10	co	150	10.0	00	1 230	^	0.040	0.027	0.110	0.015	0.011	3.6	3 000	4.0	0.1	
_	_	_	M6×1	24	1 500	20.2	13	υÜ	100	16.9	δÜ	1 730	U	0.054	0.035	0.200	0.015	0.011	4.8	1 610	4.2	2.1	

B315 B316

Screw shaft ø25 Lead 20, 25, 50

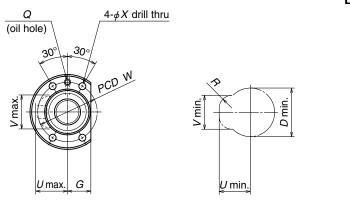
Nut type code: USFC

Unit: mm

	din	ner	sions			crev	v s	haf	t dir	men	sior		Le	ad acc			un-oı		Mass	Permissible rotational	Internal spatial volume of nut	Standard volume of grease	33
oje	ecting	tube	Oil ho	ole	Threaded length	Sha	ıft er	nd, r	ight	Shaft e	nd, left	Overall length		Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	(cm³)	replenishing	
IJ	V	R	Q	Т	L,	d_2	Lu	L_1	L ₂	d₃	L ₃	L _o	Τ	$e_{\scriptscriptstyle D}$	$\upsilon_{\scriptscriptstyle u}$	Ĭ	J	K		N (min-1)	(0111)	(cm³)	
1	O.E.	10	MCv.1		1 350	0E 0	10	70	200	21.2	100	1 650	٥	0.054	0.035	0.120	0.015	0.011	6.8	2 550	10	6.0	
31	35	12	M6×1	_	2 150	25.2	13	//	200	Z1.3	100	2 450	U	0.077	0.046	0.160	0.015	0.011	9.8	1 000	12	6.0	
	0.4	10	N 10 1		1 350	05.0	4.5	70	000	04.0	100	1 650	_	0.054	0.035	0.120	0.015	0.011	6.8	2 540	10	F 0	
32	34	12	M6×1	_	2 150	25.2	15	/0	200	21.3	100	2 450	0	0.077	0.046	0.160	0.015	0.011	9.8	1 000	10	5.0	
			1.10.1	_	1 500	05.0		7.0	000	04.0	100	1 800	_	0.054	0.035	0.120	0.045	0.014	7.3	1 250	.	0.7	
-			M6×1	6	2 150	25.2	26	/0	200	21.9	100	2 450	0	0.077	0.046	0.160	0.015	0.011	9.8	1 000	5.3	2.7	

[/ J A	Seals (two places)	[H] I G	
Co.5 Conter hole	96 <i>Q</i> 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	X - A B C L _n	1.6	Co.5
_ L ₃		L_{t} (hardened)	L ₂	
Not case	hardened	Lo	Not case hardened	

Nut type code: LSFT


Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d_1	Lead <i>l</i>		Ball circle dia. d _m	MOOL	Turns	Dynamic	۱)	Axial	Nut type code	Outside dia.	Α	G		Nut		С	Overall length	Bolt	
W2513FS-1-C5T20 W2521FS-1-C5T20		125	20	4.762	26.25	21.3	2.5×1	15 700	32 800	0.005	LSFT	44	71	23	_	_	12	8	96	57	6.6
W2513FS-2-C5T25 W2521FS-2-C5T25		125	25	4.762	26.25	21.3	1.5×1	10 100	19 100	0.005	LSFT	44	71	23		_	12	10	90	57	6.6
W2515FS-1GX-C5T50 W2521FS-3GX-C5T50		125	50	3.969	26	21.9	0.7×2	6 700	13 500	0.005	USFC	46	70	_	48	63	12	13	50	58	6.6

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

Screw shaft ø32 Lead 25, 32

Housing hole and its clearance

Unit: mm

d	ime	nsic	ons	Sc	crev	v sł	naft	t din	nen:	sion	ıS	Le	ad acc	curacy	F	lun-oı	ut	Mass	Permissible rotational	Internal spatial volume of nut	Standard volume of grease	곲
Proje <i>U</i>	ecting t	tube R	Oil hole	Threaded length	Sha d ₂	ft er	nd, r L₁	ight <i>L</i> ₂	Shaft e	nd, left	Overall length	Travel com- persation T	Deviation e_	Variation $\mathbf{v}_{\cdot\cdot}$	Shaft straightness T	Nut O.D. eccentricity	Flange perpendicularity K	(kg)	speed N (min-1)	(cm³)	replenishing (cm³)	
34	42	12	M6×1	1 700	32.3	15	70	250	28.3	120	2 070	10	0.065	0.040		เก ก19	0.013	13.8	2 180	17	8.5	
0.4	40	10	N40: -1	2 7001 700	20.0	10	70	050	20.2		3 070 2 070		0.093 0.065				0.010	13.9	800 2 180	15	7.5	
34	42	12	M6×1	2 700	32.3	19	/0	250	28.3	120	3 070	U	0.093	0.054	0.210	0.019	0.013	20.0	790	15	7.5	

View X-X

		Seals (two places)	1 G	
C0.5	C0.3	X A A G	7.6 Min.	C0.5
	L ₃	$L_{\rm t}$ (hardened)	L ₂	
No	ot case hardened	Lo	Not case hardened	

(Medium, High helix lead: Tube type)

Nut type code: LSFT

Ball screw No.	Stroke Max.		Lead	Ball dia.	Ball circle	Root	Effective ball turns Turns	Basic loa	ad rating J)	Axial				Ν	ut			
W3217FS-1-C5T25 1 W3227FS-1-C5T25 2 W3217FS-2-C5T32 1	l		,		dia.	ļ ,	. ×	Dynamic	Static	play Max.	Outside dia.		Flar	nge		Overall length	Bolt	hole
	L_{t} - L_{n}	d_1	ı	$D_{\rm w}$	$d_{\rm m}$	$d_{\rm r}$	Circuits	$C_{\rm a}$	$C_{\scriptscriptstyle 0a}$	iviax.	D	Α	G	В	С	L	W	X
	1 583	32	25	1 762	22.25	20.2	2.5×1	17 000	/1 ONN	0 005	E1	85	26	15	10	117	67	9
	2 583	32	25	4.702	33.23	20.5	2.581	17 300	41 000	0.005	51	00	20	15	10	117	07	9
	1 591	22	22	4 760	22.25	20.2	1.5×1	11 500	24 000	0.005	E1	O.E.	26	15	12	109	67	
	2 591	32	32	4.702	33.25	28.3	1.0X1	11 500	24 800	0.005	ונ	85	26	15	12	109	0/	9

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

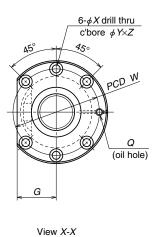
3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

C0.5

Not case hardened

Center hole

 $/\!\!/ J A$


Center hole

G

Min. L₁

Not case hardened

Lead 4, 5

Nut type code: PFT

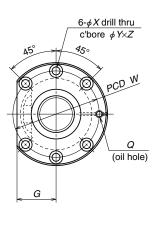
 \bot K A

Lt (hardened)

Seals (two places)

	Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. <i>d</i> 1	Lead <i>l</i>	Ball dia.	Ball circle dia. d _m	Root dia.	lurns	Dynamic	ad rating V) Static C _{0a}	Preload	Dynamic friction torque, median (N·cm)	Uutside dia	_	ang		Overall length		hole
									L _a	C _{0a}			ν	A	U		L _n	100	1
ı	W2003SS-1P-C5Z4	251																	
	W2005SS-1P-C5Z4	451	20	4	2.381	20.3	17.8	2.5×2	5 420	10 700	290	3.9	40	63	24	11	49	51	5.5
	W2008SS-1P-C5Z4	751																	
	W2003SS-2P-C5Z5	244																	
	W2005SS-2P-C5Z5	444	20	_	2 175	20 E	17.2	2 5.2	0 410	17 100	400	7.0	11	67	26	11	EC		
	W2007SS-1P-C5Z5	644	20	5	3.1/5	20.5	17.2	2.5×2	9 4 10	17 100	490	7.8	44	0/	20		56	55	ວ.ວ
_	W2010SS-1P-C5Z5	944																	

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.


- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d-n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is

U	nit:	mm

dir	ner	nsions	Scr	ew	sha	aft d	lime	nsic			d accu	,		ในท-oเ	ıt	Mass		spatial	Standard volume	SS
Bolt	hole	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange nemendicularity	(kg)	эроои	volume of nut	of grease replenishing	
Y	Z	Q	$L_{\rm t}$	d_2	L_1	L_2	d_3	L ₃	Lo	T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$	Ĭ	J	K		N (min ⁻¹)	(cm³)	(cm³)	
9.5 5.5			300			150		_	450	-0.007	0.023	0.018	0.055			1.5				
9.5	5.5	M6×1	500	20.2	40	150	17.8	50	700	-0.012	0.027	0.020	0.085	0.015	0.011	2.0	3 000	2.7	1.4	
9.5 5			800			200		100	1 100	-0.019	0.035	0.025	0.140			2.9				
			300			150		_	450	-0.007	0.023	0.018	0.055			1.6				
0.5		MCv4	500	20.2	40	150	170	50	700	-0.012	0.027	0.020	0.085	0.015	0.011	2.2	2 000	4.0	2.0	
9.5	5.5	M6×1	700	20.2	40	200	17.2	100	1 000	-0.017	0.035	0.025	0.110	0.015	0.011	2.8	3 000	4.3	2.2	
			1 000			200		100	1 300	-0.024	0.040	0.027	0.180			3.5				

B321 B322

Lead 4, 5, 6

View X-X

Center hole

Center hole

Conter hole

Conter hole

Conter hole

Conter hole

Conter hole

La

Not case hardened

La

Not case hardened

La

Not case hardened

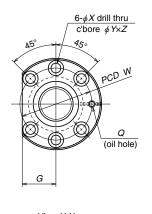
La

Not case hardened

Nut type code: PFT

Ball screw No.	Stroke Max. L _t -L _n	shaft dia.	Lead	Ball dia.	Ball circle dia. d _m	Root dia.	Turns	(N Dvnamic	ad rating N) Static C _{0a}	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.	FI A	anç <i>G</i>	Nut ge B		Bolt W	
W2503SS-1P-C5Z4	252																	
W2506SS-1P-C5Z4	552	25	4	2.381	25.3	22.8	2.5×2	6 020	13 600	290	4.9	46	69	26	11	48	57	5.5
W2510SS-1P-C5Z4	952																	
W2503SS-2P-C5Z5	245																	
W2505SS-1P-C5Z5	445	25	5	3.175	25.5	22.2	2 5/2	10 400	21 000	540	8.8	E0	72	าด	11	55	61	5.5
W2508SS-1P-C5Z5	745	25)	3.175	25.5	22.2	2.002	10 400	21 300	540	0.0	50	/3	20	11	33	01	5.5
W2512SS-1P-C5Z5	1 145																	İ
W2504SS-1P-C5Z6	338																	
W2508SS-2P-C5Z6	738	25	6	3.969	25.5	21.4	2.5×2	14 100	26 800	690	13.8	53	76	29	11	62	64	5.5
W2512SS-2P-C5Z6	1 138																	

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.


- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

Unit: mm

dir	ner	nsions		ew						Lead	d accu	ıracy	F	lun-ou	ıt	Mass	Permissible rotational	spatial	Standard volume	00
Bolt	hole	Oil hole	Threaded length	Shaft	end	, right	Shaft e	end, left	Overall length	Travel compensation	Deviation	Variation	Shaft	Nut O.D.	Flange perpendicularity	(kg)	speed	volume of nut	of grease replenishing	
Y	Z	Q	L _t	d_2	L_1	L ₂	d ₃	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm³)	(cm³)	
			300			150		_	450	-0.007	0.023	0.018	0.040			2.2				
9.5	5.5	M6×1	600	25.2	40	200	22.8	100	900	-0.014	0.030	0.023	0.075	0.015	0.011	3.8	2 800	3.2	1.6	
			1 000			200		100	1 300	-0.024	0.040	0.027	0.120			5.2				
			300			200		_	500	-0.007	0.023	0.018	0.040			2.5				Т
0 5	E E	M6×1	500	25.2	10	200	22.2	50	750	-0.012	0.027	0.020	0.060	0.015	0 011	3.4	2 800	5.2	2.6	
9.0	3.5	IVIOXI	800	20.2	40	250	22.2	100	1 150	-0.019	0.035	0.025	0.090	0.015	0.011	4.8	2 000	0.2	2.0	
			1 200			300		100	1 600	-0.029	0.046	0.030	0.120			6.3				
			400			200		_	600	-0.010	0.025	0.020	0.050			3.0				
9.5	5.5	M6×1	800	25.2	40	250	21.4	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	4.8	2 800	7.0	3.5	
			1 200			300		100	1 600	-0.029	0.046	0.030	0.120			6.3				

B323 B324

Lead 5, 10

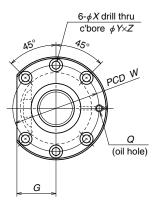
View X-X

Co.s.	5 C0.5	Seals (two places) X A B L A G	7 G C1	enter hole
	£3 ><	L _t (hardened)	>< L ₂ >	
	Not case hardene	L _o	Not case hardened	

Nut type code: ZFD

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d_1	Lead	Ball dia.	Ball circle dia. d _m	dia.	Turns	(N Dvnamic	ad rating N) Static Coa	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.	FI A	anç G	Nut	Overall length	Bolt	$\overline{}$
W2502SS-1ZY-C5Z5	184																	
W2504SS-3ZY-C5Z5	334																	
W2506SS-2ZY-C5Z5	534	25	5	3.175	25.75	22.4	1×3	9 790	22 900	740	13.8	40	63	24	11	66	51	5.5
W2509SS-1ZY-C5Z5	834																	
W2512SS-3ZY-C5Z5	1 134																	
W2504SS-4ZY-C5Z10	312																	
W2506SS-3ZY-C5Z10	512																	
W2508SS-3ZY-C5Z10	712	25	10	4.762	26.25	21.3	1×2	11 400	21 400	880	21.5	42	69	26	15	88	55	6.6
W2511SS-1ZY-C5Z10	1 012																	
W2515SS-2ZY-C5Z10	1 412																i	

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.


- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299
 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is
 Fixed-Fixed.

Unit: mm

dir	ner	nsions	Scr	ew	sha	aft d	lime	nsic	ons		d accu	,		ในท-oเ		Mass		spatial	Standard volume	00
Bolt	hole	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft strainhtness	Nut O.D.	Flange nemendicularity	(kg)	specu	volume of nut	of grease replenishing	
Y	Z	Q	$L_{\rm t}$	d_2	L_1	L_2	d₃	L ₃	Ľ	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm³)	(cm³)	
			250			200		_	450	-0.005	0.023	0.018	0.040			2.1				
			400			200		50	650	-0.009	0.025	0.020	0.060			2.8				H
9.5	5.5	M6×1	600	25.2	40	250	22.4	100	950	-0.013	0.030	0.023	0.075	0.015	0.011	3.9	2 800	5.4	2.7	
			900			250		100	1 250	-0.021	0.040	0.027	0.090			4.9				
			1 200			300		100	1 600	-0.028	0.046	0.030	0.120			6.2				
			400			200		50	650	-0.008	0.025	0.020	0.060			3.0				
			600			250		100	950	-0.012	0.030	0.023	0.075			4.1				
11	11 6.5 M6	M6×1	800	25.2	60	250	21.3	100	1 150	-0.017	0.035	0.025	0.090	0.015	0.011	4.8	2 800	9.0	4.5	
			1 100			300		100	1 500	-0.024	0.046	0.030	0.120			6.0				
	6.5 M6×1	1 500			300		100	1 900	-0.034	0.054	0.035	0.150			7.4					

B325 B326

Screw shaft ø25 Lead 10 Screw shaft ø28 Lead 5, 6

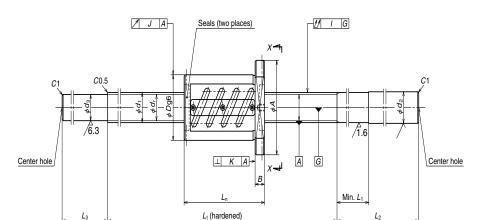
View X-X

Center hole	C0.5	$X \leftarrow 1$ $Y \leftarrow $	71.6 Min. L ₁	C1 Center hole
	L ₃	L _t (hardened)	L ₂	
	Not case harden	:d	Not case hardened	

Seals (two places)

Nut type code: PFT

Ball screw No.	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective ball turns Turns		ad rating ()	Preload	Dynamic friction torque,			ı	Nut	t		
Ball Screw No.	L _t -L _n	d_1	l	D _w	$d_{\rm m}$	aia.	× Circuits	Dynamic <i>C</i> _a	Static C _{Oa}	(N)	median (N·cm)	Outside dia. D	FI A	anç G	ge B	Overall length Ln	Bolt W	
W2504SS-2P-C5Z10	319																	
W2507SS-1P-C5Z10	619	25	10	4.762	25.5	20.5	1 5,/2	11 600	10 000	590	13.8	58	85	22	15	81	71	6.6
W2510SS-2P-C5Z10	919	20	10	4.702	25.5	20.5	1.002	11 000	19 000	590	13.0	500	00	SZ	10	01	/ 1	0.0
W2515SS-1P-C5Z10	1 419																	
W2804SS-1P-C5Z5	344																	
W2806SS-1P-C5Z5	544	28	5	3.175	28.5	25.2	2.5×2	11 000	24 400	540	9.8	55	85	21	12	26	60	6.6
W2808SS-1P-C5Z5	744	20	١	3.173	20.5	25.2	2.5/2	11 000	24 400	540	3.0	00	00	31	12	30	03	0.0
W2812SS-1P-C5Z5	1 144																	
W2804SS-3P-C5Z6	337																	
W2806SS-3P-C5Z6	537	28	6	3.175	28 5	25.2	2.5×2	11 000	24 400	540	10.8	55	85	21	12	63	60	6.6
W2808SS-3P-C5Z6	737	20	0	3.173	20.0	20.2	2.082	11 000	24 400	540	10.0	55	00	υı	12	03	UJ	0.0
W2812SS-3P-C5Z6	1 137																	

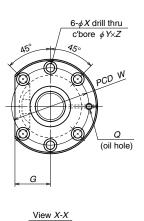

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

dir	ner	nsions	Scr	ew	sha	aft d	lime	nsic	ons	Lead	d accu	ıracy	F	ในท-oเ	ıt	Mass		spatial	Standard volume	8
Bolt	hole	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	эроои	volume of nut	of grease replenishing	
Y	Z	Q	$L_{\rm t}$	d_2	L_1	L_2	d₃	L ₃	Ľ	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	Ĭ	J	K		N (min-1)	(cm³)	(cm³)	
			400			200		50	650	-0.010	0.025	0.020	0.060			3.8				
11	6 5	M6×1	700	25.2	60	250	20.5	100	1 050	-0.017	0.035	0.025	0.090	0 010	0.013	5.1	2 800	9.7	4.9	H
11	0.5	IVIOXI	1 000	25.2	00	250	20.5	100	1 350	-0.024	0.040	0.027	0.120	0.013	0.013	6.1		9.7	4.3	
			1 500			300		100	1 900	-0.036	0.054	0.035	0.150			8.0	2 050			
			400			200		_	600	-0.010	0.025	0.020	0.050			3.7				
11	6.5	MCv1	600	28.2	10	250	25.2	100	950	-0.014	0.030	0.023	0.075	0.019	0.013	5.2	2 500	6.1	3.1	
11	0.0	M6×1	800	20.2	40	250	25.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	6.1	2 500	0.1	3.1	
			1 200			300		100	1 600	-0.029	0.046	0.030	0.120			8.1				
			400			200		_	600	-0.010	0.025	0.020	0.050			3.8				
11	G E	MCv1	600	28.2	10	250	25.2	100	950	-0.014	0.030	0.023	0.075	0.010	0.012	5.3	2 500	6.1	2.1	
11	0.5	M6×1	800	20.2	40	250	23.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	6.2	2 500	0.1	3.1	
			1 200			300		100	1 600	-0.029	0.046	0.030	0.120			8.2				

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299
and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is
Fixed-Fixed.

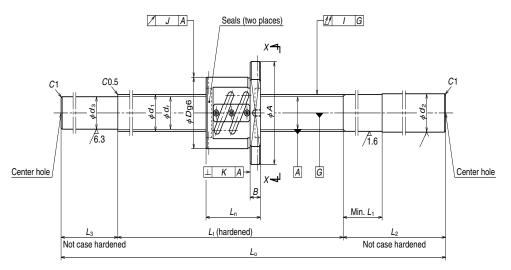
Not case hardened


Nut type code: ZFT

Not case hardened

Ball screw No.	Stroke Max. L _t -L _o	shaft dia.	Lead 1	Ball dia. <i>D</i> ,,	Ball circle dia. dm	Root dia.	Effective ball turns Turns X Circuits	(N Dvnamic	ad rating V) Static	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.	FI	anç	Nut ge	Overall length	Bolt	hole
	Lt Ln	U ₁		D_{w}	u _m	u _r	Circuits	$C_{\scriptscriptstyle \mathrm{a}}$	C_{0a}		(IN-CITI)	D	Α	G	В	L	W	X
W2804SS-2Z-C5Z5	314																	
W2806SS-2Z-C5Z5	514	28	5	2 175	20 E	25.2	2.5×2	17 ///	10 0UU	1 225	21.5	55	85	21	12	98	60	6.6
W2808SS-2Z-C5Z5	714	20	5	3.173	20.5	25.2	2.5^2	17 400	40 000	1 225	21.0	33	00	J1	12	00	03	0.0
W2812SS-2Z-C5Z5	1 114																	
W2804SS-4Z-C5Z6	301																	
W2806SS-4Z-C5Z6	501	28	6	2 175	28 5	25.2	2.5×2	17 //00	18 8UU	1 1 225	22.5	55	85	21	12	aa	60	6.6
W2808SS-4Z-C5Z6	701] 20		0.170	20.5	25.2	2.5^2	17 400	40 000	1 223	22.0	00	00	١٥١	12	00	03	0.0
W2812SS-4Z-C5Z6	1 101]																

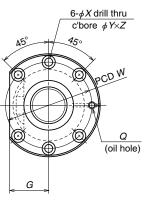
Notes: 1. Use of NSK support unit is recommended. See page B389 for details.


- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

Unit: mm

dir	ner	nsions		ew						Lead	d accu	ıracy	F	lun-ou	ıt	Mass	Permissible rotational	spatial	Standard volume	SS
Bolt	hole Z	Oil hole	Threaded length	Shaft d ₂	end L1	, right	-1	nd, left	Overall length	Travel compensation	Deviation $e_{\scriptscriptstyle 0}$	Variation	Shaft straightness I	Nut O.D. eccentricity	Flange perpendicularity K	(kg)	speed N(min-1)	volume of nut (cm³)	of grease replenishing (cm³)	
			400			200			600	-0.010	-	u	0.050	U	K	4.7				
11	C E	MCv.1	600	28.2	10	250	25.2	100	950	-0.014	0.030	0.023	0.075	0.010	0.010	5.5	2 500	0.0	4.0	
11	6.5	M6×1	800	Z8.Z	40	250	25.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	6.4	2 500	9.2	4.6	
			1 200			300		100	1 600	-0.029	0.046	0.030	0.120			8.4				
			400			200		_	600	-0.010	0.025	0.020	0.050			4.2				
11	6 5	M6×1	600	28.2	10	250	25.2	100	950	-0.014	0.030	0.023	0.075	0.019	0.012	5.7	2 500	9.5	4.8	
''	11 6.5 N	IVIOAI	800	20.2	40	250	25.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	6.6	2 300	9.0	4.0	
			1 200			300		100	1 600	-0.029	0.046	0.030	0.120			8.6				

B329 B330

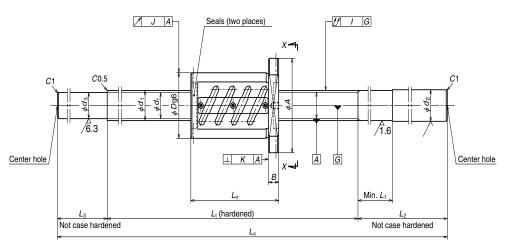


Nut type code: PFT

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d ₁	Lead <i>l</i>	Ball dia. <i>D</i> _w	Ball circle dia. d _m	dia.	Turns	(N Dynamic	ad rating N) Static C_{0a}	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia. D		Nut lang <i>G</i>		Overall length L _n
W3204SS-1P-C5Z5	344															
W3206SS-1P-C5Z5	544															
W3208SS-1P-C5Z5	744	32	5	3.175	32.5	29.2	2.5×2	11 600	28 000	590	10.8	58	85	32	12	56
W3212SS-1P-C5Z5	1 144															
W3215SS-1P-C5Z5	1 444															
W3206SS-3P-C5Z6	537															
W3210SS-1P-C5Z6	937	32	6	3.969	32.5	28.4	2.5×2	15 500	34 700	780	15.6	62	89	34	12	63
W3215SS-3P-C5Z6	1 437															

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

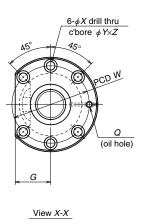


View X-X

Unit: mm

	(dim	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	lun-oı		Mass	Permissible rotational	spatiai	volume	88
_ \	В V	olt X	hole Y	e	Oil hole	Threaded length	Shaft d ₂	end,	right L_2	Shaft e	nd, left <i>L</i> ₃	Overall length L_{\circ}	Travel compensation	Deviation $e_{\scriptscriptstyle m D}$	Variation $\mathbf{v}_{\scriptscriptstyle \mathrm{u}}$	Shaft straightness I	Nut O.D. eccentricity <i>J</i>	Flange perpendicularity <i>K</i>	(kg)	speed N (min-1)	of nut (cm³)	ranlanishinn	
						400	_		200		50	650	-0.010	0.025	0.020	0.060			4.8				
						600			250		100	950	-0.014	0.030	0.023	0.075			6.5				
7	1	6.6	11	6.5	M6×1	800	32.3	40	250	29.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	7.7	2 180	6.9	3.5	
						1 200			300		100	1 600	-0.029	0.046	0.030	0.120			10.3				
						1 500			300		100	1 900	-0.036	0.054	0.035	0.150			12.1				
						600			250			950	-0.014	0.030	0.023	0.075			6.7				
7	5	6.6	11	6.5	M6×1	1 000	32.3	40	300	28.4	100	1 400	-0.024	0.040	0.027	0.120	0.019	0.013	9.2	2 180	9.4	4.7	
						1 500			300			1 900	-0.036	0.054	0.035	0.150			12.1				

B331 B332

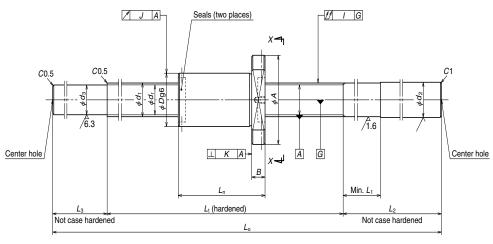


Nut type code: ZFT

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d ₁	Lead <i>l</i>	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> _r	Effective ball turns Turns × Circuits	Dasic lor (N Dynamic		Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut ang <i>G</i>		Overall length Ln
W3204SS-2Z-C5Z5	314															
W3206SS-2Z-C5Z5	514															
W3208SS-2Z-C5Z5	714	32	5	3.175	32.5	29.2	2.5×2	18 500	56 100	1 270	22.5	58	85	32	12	86
W3212SS-2Z-C5Z5	1 114															
W3215SS-2Z-C5Z5	1 414															
W3206SS-4Z-C5Z6	501															
W3210SS-2Z-C5Z6	901	32	6	3.969	32.5	28.4	2.5×2	24 700	69 400	1 720	34.5	62	89	34	12	99
W3215SS-4Z-C5Z6	1 401															
W3206SS-5Z-C5Z8	518															
W3210SS-3Z-C5Z8	918	32	8	4.762	32.5	27.5	2.5×1	17 500	41 000	1 320	30.5	66	100	38	15	82
W3215SS-5Z-C5Z8	1 418															

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

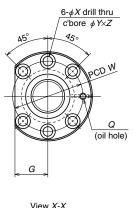
- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.
- 3. The permissible rotational speed is determined by d n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.



Unit: mm

	dim	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	F	lun-oı	ut	Mass	Permissible rotational	Internal spatial	Standard volume	SS
E	Bolt	hole	Э	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed		of grease replenishing	
W	X	Y	Ζ	Q	$L_{\rm t}$	d_{2}	L_1	L_2	$d_{\scriptscriptstyle 3}$	L_3	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm³)	(cm³)	
					400			200		50	650	-0.010	0.025	0.020	0.060			5.1				
					600			250		100	950	-0.014	0.030	0.023	0.075			6.9				
71	6.6	11	6.5	M6×1	800	32.3	40	250	29.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	8.0	2 180	10	5.0	
					1 200			300		100	1 600	-0.029	0.046	0.030	0.120			10.1				
					1 500			300		100	1 900	-0.036	0.054	0.035	0.150			12.4				
					600			250		_	950	-0.014	0.030	0.023	0.075			7.1				
75	6.6	11	6.5	M6×1	1 000	32.3	40	300	28.4	100	1 400	-0.024	0.040	0.027	0.120	0.019	0.013	9.7	2 180	15	7.5	
					1 500			300		_	1 900	-0.036	0.054	0.035	0.150			12.6				
					600			250		_	950	-0.014	0.030	0.023	0.075			7.3				
82	9	14	8.5	M6×1	1 000	32.3	50	300	27.5	100	1 400	-0.024	0.040	0.027	0.120	0.019	0.013	9.8	2 180	7.9	4.0	
					1 500			300		_	1 900	-0.036	0.054	0.035	0.150			12.6				

B333 B334

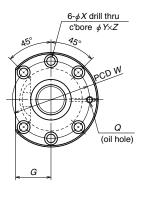

(Fine lead: Deflector (bridge) type)

Nut type code: ZFD

Dell aggress Ma	Stroke Max.		Lead	Ball dia.	Ball circle	Root dia.	Effective ball turns Turns	Basic loa		Preload	Dynamic friction			Nut		
Ball screw No.	L _t -L _n	d ₁	l	D _w	$dia.$ d_m	d _r		Dynamic $C_{\scriptscriptstyle a}$	Static C _{0a}	(N)	torque, median (N·cm)	Outside dia.	A FI	lang <i>G</i>	je B	Overall length
W3204SS-3ZY-C5Z5	323															
W3206SS-6ZY-C5Z5	523															
W3209SS-1ZY-C5Z5	823	32	5	3.175	32.75	29.4	4	14 200	40 700	1 080	19.6	48	75	29	12	77
W3212SS-3ZY-C5Z5	1 123															
W3216SS-1ZY-C5Z5	1 523															
W3205SS-3ZY-C5Z10	380															
W3207SS-3ZY-C5Z10	580															
W3210SS-6ZY-C5Z10	880	32	10	6.35	33.75	27.1	3	25 900	52 800	1 860	49.0	54	88	34	15	120
W3214SS-3ZY-C5Z10	1 280															
W3218SS-3ZY-C5Z10	1 680															

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.



View X-X

	dim	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	lun-ou	ut	Mass	Permissible rotational	Internal spatial	Standard volume	8
	3olt	hole)	Oil hole	Threaded length	Shaft	end	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	volume of nut	of grease replenishing	
W	X	Y	Ζ	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	$L_{\scriptscriptstyle 1}$	L_2	d₃	L ₃	L。	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)		(cm³)	
					400			200		50	650	-0.009	0.025	0.020	0.060			4.6				
					600			250		100	950	-0.013	0.030	0.023	0.075			6.4				H
61	6.6	11	6.5	M6×1	900	32.3	40	250	29.4	100	1 250	-0.021	0.040	0.027	0.090	0.015	0.011	8.1	2 180	22	11	
					1 200			300		100	1 600	-0.028	0.046	0.030	0.120			10.2				Г
					1 600			300		100	2 000	-0.037	0.054	0.035	0.150			12.6				
					500			250		100	850	-0.010	0.027	0.020	0.075			6.2				
					700			250		100	1 050	-0.015	0.035	0.025	0.090			7.3				
70	9	14	8.5	M6×1	1 000	32.3	60	300	27.1	100	1 400	-0.022	0.040	0.027	0.120	0.019	0.013	9.3	2 180	23	12	
					1 400			350		120	1 870	-0.032	0.054	0.035	0.150			11.9				
					1 800			350		120	2 270	-0.041	0.065	0.040	0.200			14.1				

Unit: mm

Screw shaft ø32, ø36 Lead 10 Screw shaft ø40 Lead 5

View X-X

		Seals (two places) X-1	G
Conter hole	C0.5 6.3		C1 Center hole
	L ₃	$ \begin{array}{c} $	Min. L ₁
	Not case hardened	L _o	Not case hardened

Nut type code: ZFT

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d_1	Lead <i>l</i>	Ball dia.	Ball circle dia. d _m	dia.	Effective ball turns Turns × Circuits	Dynamic	۷)	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.	FI A	Nu lang		Overall length
W3205SS-1Z-C5Z10	400							O _a	O _{0a}				А	U	ט	∠ n
W3207SS-1Z-C5Z10	600															
W3210SS-4Z-C5Z10	900	32	10	6.350	33	26.4	2.5×1	25 500	54 000	1 960	50	74	108	41	15	100
W3214SS-1Z-C5Z10	1 300															
W3218SS-1Z-C5Z10	1 700															
W3607SS-1Z-C5Z10	597															
W3612SS-1Z-C5Z10	1 097	36	10	6.350	37	30.4	2.5×1	27 200	61 300	2 060	56	75	120	45	18	103
W3620SS-1Z-C5Z10	1 897															
W4006SS-1Z-C5Z5	511															
W4010SS-1Z-C5Z5	911	40	5	3.175	40.5	37.2	2.5×2	20 200	70 600	1 420	28.5	67	101	39	15	89
W4016SS-1Z-C5Z5	1 511															

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

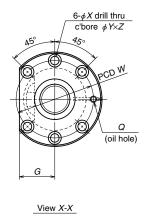
2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.

3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

	din	nens	sion	S	Sc	rew	sh	aft c	dime	nsio	ns	Lead	accu	racy	F	ในท-oเ	ut	Mass	Permissible rotational	Internal spatial	Standard volume	SS
	3olt	hole	9	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	volume of nut	of grease replenishing	
W	X	Y	Ζ	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	L_1	L ₂	d ₃	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm ³)		
					500			250		100	850	-0.012	0.027	0.020	0.075			7.5				
					700			250		100	1 050	-0.017	0.035	0.025	0.090			8.5	2 180			
90	9	14	8.5	M6×1	1 000	32.3	60	300	26.4	100	1 400	-0.024	0.040	0.027	0.120	0.019	0.013	10.5]2 100	22	11	
					1 400			350		120	1 870	-0.034	0.054	0.035	0.150			13.1				
					1 800			350		120	2 270	-0.043	0.065	0.040	0.200			15.2	1 820			
					700			300		100	1 100	-0.017	0.035	0.025	0.065			10.9				
98	11	17.5	11	M6×1	1 200	36.3	60	350	30.4	120	1 670	-0.029	0.046	0.030	0.100	0.019	0.013	14.9	1 940	27	14	
					2 000			350		120	2 470	-0.048	0.065	0.040	0.130			20.4				
					600			300			1 000	-0.014	0.030	0.023	0.050			11.1				
83	9	14	8.5	Rc1/8	1 000	40.3	50	300	37.2	100	1 400	-0.024	0.040	0.027	0.080	0.019	0.013	14.8	1 750	14	7.0	
					1 600			350			2 050	-0.038	0.054	0.035	0.130			20.8				

B337 B338


Not case hardened

Center hole

/ J A

Seals (two places)

Center hole

L₁ (hardened)

⊥ K A →

A G

Min. L₁

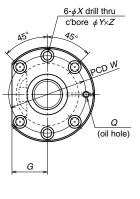
Not case hardened

Nut type code: DFT

Ball screw No.	Stroke Max. L _t -L _n		Lead <i>l</i>	Ball dia. D _w	Ball circle dia. d _m	Root dia. <i>d</i> _r	Effective ball turns Turns X Circuits	Dynamic	J)	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.	F A	Nu lang <i>G</i>		Overall length
W3205SS-2D-C5Z10	310															
W3207SS-2D-C5Z10	510															
W3210SS-5D-C5Z10	810	32	10	6.350	33	26.4	2.5×2	46 300	108 000	3 240	83	74	108	41	15	190
W3214SS-2D-C5Z10	1 210															
W3218SS-2D-C5Z10	1 610															
W3607SS-2D-C5Z10	507															
W3612SS-2D-C5Z10	1 007	36	10	6.350	37	30.4	2.5×2	49 300	123 000	3 430	93	75	120	45	18	193
W3620SS-2D-C5Z10	1 807															

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.


 See page D13 for details
- The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299
 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is
 Fixed-Fixed.

Unit:	mm

	din	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	lun-oı	ut	Mass	I CIIIII99IDIG	Internal spatial	Standard volume	SS
E	3olt	hole	9	Oil hole	Threaded length	Shaft	end,	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	volume of nut	of grease replenishing	
W	X	Y	Z	Q	$L_{\rm t}$	d_2	L_1	L_2	d₃	L ₃	L _o	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	Κ		N (min-1)	(cm³)		
					500			250		100	850	-0.012	0.027	0.020	0.075			9.5				
					700			250		100	1 050	-0.017	0.035	0.025	0.090			10.6	2 180			
90	9	14	8.5	M6×1	1 000	32.3	60	300	26.4	100	1 400	-0.024	0.040	0.027	0.120	0.019	0.013	12.5	2 100	57	29	
					1 400			350		120	1 870	-0.034	0.054	0.035	0.150			15.1				
					1 800			350		120	2 270	-0.043	0.065	0.040	0.200			17.2	1 910			
					700			300		100	1 100	-0.017	0.035	0.025	0.065			12.8				
98	11	17.5	11	M6×1	1 200	36.3	60	350	30.4	120	1 670	-0.029	0.046	0.030	0.100	0.019	0.013	16.8	1 940	67	34	
					2 000			350		120	2 470	-0.048	0.065	0.040	0.130			22.3				

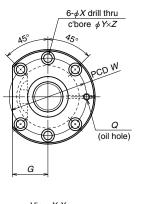
B339 B340

Lead 8, 10, 12

View X-X

Conter hole	Seals (two places) X A B L B B C C C C C C C C C C C	C1 C1 Center hole
L ₃	L _t (hardened)	L ₂
Not case hardened	L _o	Not case hardened

Nut type code: ZFT


Ball screw No.	Stroke Max.		Lead	Ball dia.	Ball circle	Root dia.	Effective ball turns Turns	Basic loa		Preload	Dynamic friction			Nut		
Ball screw No.			,		dia.	uiu.	X	Dynamic	Static	(N)	torque, median	Outside dia.	F	lang	ie .	Overall length
	$L_{t}-L_{n}$	d_1	l	D_w	$d_{\rm m}$	d_{r}	Circuits	Ca	C_{0a}		(N·cm)	D	Α	G	В	L _n
W4007SS-1Z-C5Z8	570															
W4012SS-1Z-C5Z8	1 070	40	8	4.762	40.5	35.5	2.5×2	34 900	103 000	2 450	64	74	108	41	15	130
W4018SS-1Z-C5Z8	1 670															
W4007SS-2Z-C5Z10	597															
W4010SS-2Z-C5Z10	897															
W4014SS-1Z-C5Z10	1 297	40	10	6.350	41	34.4	2.5×1	28 600	68 600	2 160	64	82	124	47	18	103
W4018SS-2Z-C5Z10	1 697															
W4024SS-1Z-C5Z10	2 297															
W4010SS-4Z-C5Z12	883															
W4016SS-2Z-C5Z12	1 483	40	12	7.144	41.5	34.1	2.5×1	33 600	77 500	2 550	83	86	128	48	18	117
W4025SS-1Z-C5Z12	2 383															

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

 See page D13 for details
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

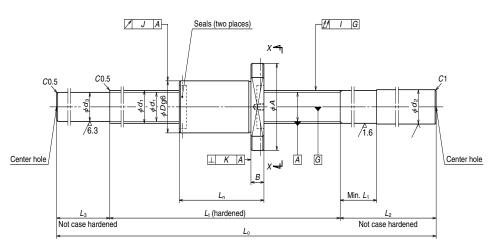
	dim	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	lun-ou	ut	ı	Permissible rotational	spatial	volume	SS
Е	3olt	hole	Э	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity		(kg)	speed	volume of nut	of grease replenishing	
W	X	Y	Ζ	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	$L_{\scriptscriptstyle 1}$	L_2	d_3	L ₃	Ľ	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	Ĭ	J	Κ		N (min-1)	(cm³)	(cm³)	
					700			300		100	1 100	-0.017	0.035	0.025	0.065			13.0				
90	9	14	8.5	Rc1/8	1 200	40.3	50	350	35.5	100	1 650	-0.029	0.046	0.030	0.100	0.019	0.013	18.0	1 750	27	14	
					1 800			350		120	2 270	-0.043	0.065	0.040	0.130			23.5				
					700			300		100	1 100	-0.017	0.035	0.025	0.065			13.3				
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			15.9				
102	11	17.5	11	Rc1/8	1 400	40.3	60	350	34.4	120	1 870	-0.034	0.054	0.035	0.100	0.025	0.015	20.0	1 750	30	15	
					1 800			350		120	2 270	-0.043	0.065	0.040	0.130			23.4				
					2 400			400		150	2 950	-0.058	0.077	0.046	0.170			29.4				
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			16.7	4 750			
106	11	17.5	11	Rc1/8	1 600	40.3	70	350	34.1	150	2 100	-0.038	0.054	0.035	0.130	0.025	0.015	22.9	1 750	35	18	
					2 500			400		150	3 050	-0.060	0.077	0.046	0.170			31.1	1 220			

View X-X

Conter hole		X - A G Min. L ₁	ter hole
_ L ₃	L_{t} (hardened)	L ₂	
Not case hardened	Lo	Not case hardened →	

Nut type code: DFT

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d_1	Lead <i>l</i>	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> _r	Effective ball turns Turns × Circuits	Dynamic	1)	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut lang <i>G</i>		Overall length
W4007SS-3D-C5Z10	507							- a	- Ua						_	<u>-n</u>
W4010SS-3D-C5Z10	807															
W4014SS-2D-C5Z10	1 207	40	10	6.350	41	34.4	2.5×2	52 000	137 000	3 630	108	82	124	47	18	193
W4018SS-3D-C5Z10	1 607															
W4024SS-2D-C5Z10	2 207															
W4010SS-5D-C5Z12	775															
W4016SS-3D-C5Z12	1 375	40	12	7.144	41.5	34.1	2.5×2	61 000	155 000	4 310	138	86	128	48	18	225
W4025SS-2D-C5Z12	2 275															


Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

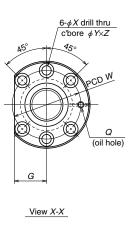
- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

Unit: mm

	din	nens	sion	ıS	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	lun-oı		Mass	Permissible rotational	Internal spatial	volume	SS
	3olt	hole	e	Oil hole	Threaded length	Shaft	end,	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	volume of nut	replenishing	
W	X	Y	Z	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	L_1	L_2	d₃	L ₃	L _o	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	Ĭ	J	K		N (min-1)	(cm³)	(cm³)	
					700			300		100	1 100	-0.017	0.035	0.025	0.065			15.5				
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			18.1	4 750			Н
102	102 11 17.5 11	11	Rc1/8	1 400	40.3	60	350	34.4	120	1 870	-0.034	0.054	0.035	0.100	0.025	0.015	22.2	1 750	74	37		
			1 800			350		120	2 270	-0.043	0.065	0.040	0.130			25.6						
					2 400			400		150	2 950	-0.058	0.077	0.046	0.170			31.6	1 370			
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			19.7	1 750			
106	11	17.5	11	Rc1/8	1 600	40.3	70	350	34.1	150	2 100	-0.038	0.054	0.035	0.130	0.025	0.015	25.8	1 750	93	47	
				2 500			400		150	3 050	-0.060	0.077	0.046	0.170			34.0	1 260				

B343 B344

(Fine lead: Deflector (bridge) type)

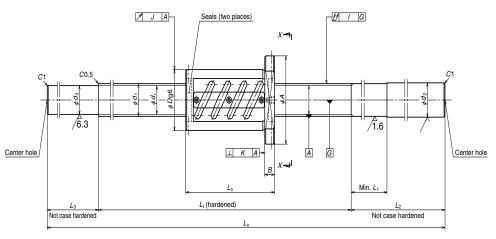

Nut type code: ZFD

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d ₁	Lead <i>l</i>	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root dia. <i>d</i> ,	Effective ball turns	Basic loa (N Dynamic <i>C</i> _a	۷)	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut lang <i>G</i>		Overall length L _n
W4007SS-4ZY-C5Z10	557															
W4010SS-6ZY-C5Z10	857															
W4014SS-3ZY-C5Z10	1 257	40	10	6.350	41.75	35.1	4	38 400	93 300	2 840	83	62	104	40	18	143
W4018SS-4ZY-C5Z10	1 657															
W4024SS-3ZY-C5Z10	2 257															
W5007SS-1ZY-C5Z10	557															
W5010SS-3ZY-C5Z10	857															
W5015SS-3ZY-C5Z10	1 357	50	10	6.350	51.75	45.1	4	43 600	122 000	3 240	108	72	114	44	18	143
W5020SS-3ZY-C5Z10	1 857															
W5026SS-3ZY-C5Z10	2 457															

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

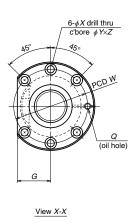
3. The permissible rotational speed is determined by d-n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.



Unit: mm

dimensions Screw shaft din Bolt hole Oil hole Threaded Shaft end, right Sh								lime	nsio	ns	Lead	accu	racy	R	lun-oı	ut	Mass	Permissible rotational	spatial	Standard volume	SS	
E	3olt	hole	9	Oil hole	Threaded length	Shaft	end	, right	Shaft e	end, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange nemendicularity	(kg)	speed	volume of nut	of grease replenishing	
W	X	Y	Ζ	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	$L_{\scriptscriptstyle 1}$	L ₂	d ₃	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle \sf u}$	Ĭ	J	K		N (min-1)	(cm³)	(cm³)	
					700			300		100	1 100	-0.015	0.035	0.025	0.065			12.1				
					1 000			300		100	1 400	-0.022	0.040	0.027	0.080			14.7	1 750			
82 11 17.	17.5	11	Rc1/8	1 400	40.3	60	350	35.1	120	1 870	-0.032	0.054	0.035	0.100	0.019	0.013	18.9	1 750	32	16		
				1 800			350		120	2 270	-0.041	0.065	0.040	0.130			22.5					
					2 400			400		150	2 950	-0.056	0.077	0.046	0.170			28.5	1 320			
					700			300		100	1 100	-0.015	0.035	0.025	0.065			18.3				
92 11 17				1 000			300		100	1 400	-0.022	0.040	0.027	0.080			22.5					
	11	17.5	11	Rc1/8	1 500	50.3	60	400	45.1	150	2 050	-0.034	0.054	0.035	0.130	0.019	0.013	31.8	1 400	39	20	
					2 000			400		150	2 550	-0.046	0.065	0.040	0.170			38.9				
					2 600			500		200	3 300	-0.060	0.093	0.054	0.220			49.5				

B345 B346



Nut type code: ZFT

Dall a servicible	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective ball turns Turns	Basic loa		Preload	Dynamic friction			Nut		
Ball screw No.			,	_	dia.		X	Dynamic	Static	(N)	torque, median	Outside dia.	F	ang	е	Overall length
	$L_{t}-L_{n}$	d_1	l	D_w	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	C _a	C_{0a}		(N·cm)	D	Α	G	В	L
W4510SS-1Z-C5Z10	897															
W4516SS-1Z-C5Z10	1 497	45	10	6.350	46	39.4	2.5×1	29 900	77 300	2 260	69	88	132	50	18	103
W4525SS-1Z-C5Z10	2 397															
W5010SS-1Z-C5Z10	897															
W5015SS-1Z-C5Z10	1 397	50	10	6.350	51	44.4	2.5×1	31 800	87 400	2 450	78	93	135	51	18	102
W5020SS-1Z-C5Z10	1 897	50	10	0.330	01	44.4	2.5X1	31 000	07 400	2 400	/0	93	133	01	10	103
W5026SS-1Z-C5Z10	2 497															
W5010SS-2Z-C5Z10	837															
W5015SS-2Z-C5Z10	1 337	337		0.050	E1	111	0.5.0	F7 700	175 000	4 000	100	00	105	E1	10	100
W5020SS-2Z-C5Z10	1 837	50	10	6.350	51	44.4	2.5×2	57 700	1/5 000	4 UZU 	138	93	135	51	18	163
W5026SS-2Z-C5Z10	2 437															

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

	din	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	lun-oı	ut	Mass	Permissible rotational	spatial	Standard volume	SS
	3olt	hole	Э	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	volume of nut	of grease replenishing	
W	X	Y	Ζ	Q	$L_{\rm t}$	d_2	L_1	L_2	$d_{\scriptscriptstyle 3}$	L ₃	L _o	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm³)	(cm³)	
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			19.7	1 550			
110	11	17.5	11	Rc1/8	1 600	45.3	60	400	39.4	150	2 150	-0.038	0.054	0.035	0.130	0.025	0.015	28.1	1 000	34	17	
					2 500			450		150	3 100	-0.060	0.077	0.046	0.170			38.8	1 400			
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			23.8				
113	11	17.5	11	Rc1/8	1 500	50.3	60	400	44.4	150	2 050	-0.036	0.054	0.035	0.130	0.025	0.015	32.9	1 400	37	19	
113		17.5	11	NC 1/6	2 000	50.5	00	400	44.4	150	2 550	-0.048	0.065	0.040	0.170	0.025	0.015	39.8	1 400	3/	19	
					2 600			450		150	3 200	-0.062	0.093	0.054	0.220			48.9				
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			25.5				
110	113 11 17.5	11	D ₀ 1/0	1 500	50.3	60	400	111	150	2 050	-0.036	0.054	0.035	0.130	0.025	0.015	34.6	1 400	E0.	30		
113		17.5		Rc1/8	2 000	00.3	00	400	44.4	150	2 550	-0.048	0.065	0.040	0.170	0.025	0.015	41.5	1 400	59	30	
				2 600			450		150	3 200	-0.062	0.093	0.054	0.220			50.7					

B-3-1.6 Ball Screws for Transfer Equipment

1. Features

Transporting mechanism

A series with accuracy grades of Ct7 and Ct10 only demonstrates high ball screw performance for transporting mechanism of Cartesian type robots and single axis actuators.

The following types are categorized ball screw for transfer equipment. VFA and RMA types have finished shaft ends. RMS type, R series of RNFTL, RNFBL, RNCT, RNFCL, and RNSTL types have blank shaft ends. Table 1 Classifications of ball screws for transfer equipment

Finished shaft end	VFA type, RMA type
	RMS type
D	R Series
Blank shaft end	RNFTL type, RNFBL type
	RNCT type, RNFCL type, RNSTL type

• Interchangeable screw shaft and ball nut

Screw shaft and nut assembly components are sold separately, and randomly-matched. The maximum axial play after assembly is shown in the dimension tables.

2. Specifications

(1) Ball recirculation system

Figs. 1, 2, and 3 show the structures of ball return tube, deflector (bridge type), and end cap ball recirculation systems.

Deflector (bridge type) recirculation system has the feature of compact nut outside diameter for small lead. End cap recirculation system is for screws with high helix lead and multiple start threads. Since the leads are in the range larger than 1.3 times of the screw shaft diameter, it is suitable for high-speed operation.

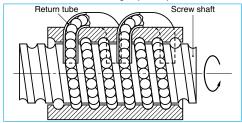


Fig. 1 Structure of return tube recirculation system B349

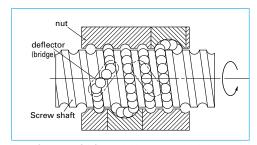


Fig. 2 Structure of deflector (bridge type) recirculation system

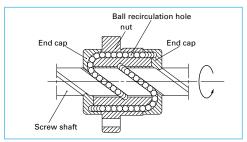


Fig. 3 Structure of end cap recirculation system

(2) Accuracy grade and axial play

Standard lead accuracy and axial play are shown on **Table 2**. Axial play varies with internal specification. Refer to the dimension tables.

Table 2 Accuracy grade and axial play

Accuracy grade	VFA type, RMA type, RMS type: Ct7 R Series: Ct10
Accuracy grade	R Series: Ct10
Axial play	See dimension tables

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Table 3 Allowable d·n value and the criterion of maximum rotational speed

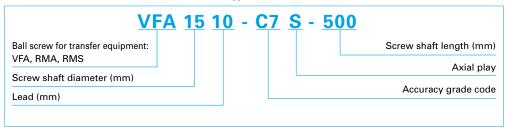
Allowable d∙n value	50 000 or less
Criterion of maximum rotational speed	3 000 min ⁻¹

d•n value: shaft dia. d [mm] × rotational speed n [min⁻¹]

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

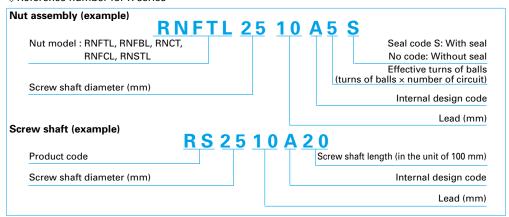
3. Product categories

Ball screws for transfer equipment have models as follows.


Table 4 Product categories of ball screws for transfer equipment

Nut model	Shape	Flange shape	Recirculation system	Preload system	Page
VFA		Flanged rectangular	Return tube type	Non- preload Slight axial play	353 - B358
RMA RMS		Flanged Circular II	Deflector (bridge) type	Non- preload Slight axial play	B359 - B372
RNFTL		Flanged Circular I Projecting tube type	Return tube type	Non- preload Slight axial play	B373 - B378
RNFBL	tasaaraaraa	Flanged Circular II	Return tube type	Non- preload Slight axial play	B379 - B380
RNCT		V-thread (no flange) Projecting tube type	Return tube type	Non- preload Slight axial play	B381 - B382
RNFCL		Flanged Circular II	End cap type	Non- preload Slight axial play	B383 - B386
RNSTL	innunanaa	Square type	Return tube type	Non- preload Slight axial play	B387 – B388

4. Structure of reference number


The followings describe the structure of "Reference number for ball screw".

♦ Reference number for VFA, RMA, and RMS types

○Reference number for R series

5. Combinations of shaft diameter and lead

Combinations of shaft diameter and lead are shown below.

For details of standard stock products, contact NSK.

Table 5 Combinations of shaft diameter and lead for VFA, RMA, RMS types

Lead Screw shaft diameter	1	1.5	2	10	20
6	B359, 371				
8	B361, 371	B363, 371	B365, 371		
10			B367, 371		
12			B369, 371	B353	
15				B355	B357

Table 6 Combinations of shaft diameter and lead for R series

Screw shaft						Lead (m	ım)								
diameter (mm)	3	4	5	6	8	10	12	16	20	25	32	40	50	64	80
10	○B373 △B381			○B373●B379											
12					○B373 ●B379		○B377©B383								
14			○B373 ●B379 △B381 □B387												
15									©B383						<u> </u>
16						○B373		○B377 ○B383			◎B385				
18					○B373 ●B379 △B381 □B387										
20			○B373 ●B379 △B381 □B387			○B373 ●B379 □B387			○B377 ○B383			○B385			
25			○B373 ●B379 △B381 □B387			○B359 ●B365 △B367 □B373				○B377 ○B383			◎B385		
28				○B375 ●B379 △B381 ■B387											
32						○B375 ●B379 △B381 □B387					○B377 ○B383			◎B385	
36						○B375 ●B379 △B381 □B387									
40						○B375△B381 ●B379						○B377 ○B383			◎B385
45							○B375 △B381□B387								
50						○B375 △B381		○B375 △B381					©B383		

O: RNFTL ●: RNFBL △: RNCT O: RNFCL □: RNSTL

6. Precautions for designing

As shown in the illustration on Page B83 and B103, general precautions for ball screw.

(1) Nut assembly

When delivered, the nut of R series is separated from the screw shaft, and inserted into an arbor shaft. The nut must be inserted to the screw shaft when mounting ball screw.

(a) Consideration to end configuration of screw shaft

The balls may fall out during moving the assembled nut from the arbor to the screw shaft if the sizes and shapes of the arbor and the screw shaft are not appropriate.

If the end of the ball groove can touch the end of the arbor, connect both ends and move the assembled nut from the arbor to the screw shaft (Fig. 4). If the end face of the arbor cannot connect to the end face of the screw because of configuration of both ends of screw shaft, wrap a tape outside of ball screw shaft so that the layers of tape is equal

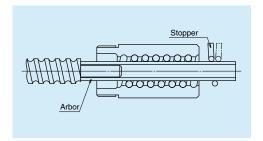


Fig. 4 Inserting nut into screwshaft

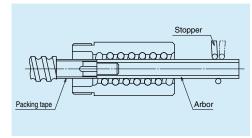


Fig. 5 Arbor and shaft end configuration

with the outside diameter of the arbor (Fig. 5). If there is a key way or a nick along the way, fill such gaps prior to moving the ball nut.

(b) Installation of arbor

Confirm the correct nut orientation for installation.

Remove the stop ring on the side from where the assembled nut is to be removed. Align the centers of the screw shaft and the arbor while pressing firmly the screw shaft end against the arbor.

(c) Moving the nut

Slide the nut until it lightly touches the shoulder of the ball groove section, and stop it. Turn the ball nut to the direction so that it moves to the ball grooves, while pressing the arbor to the screw shaft. Do not separate the arbor from the screw shaft until the ball groove end appears completely in the ball nut.

(2) Shaft end configuration

RMS type and R seriese must be machining of blank shaft ends. See page B27, use of NSK suport unit.

(a) Cutting screw shaft

Carry out the same process as "(1) Machining of blank shaft ends of precision ball screws" above.

(b) Annealing the shaft end (Heat the section of the shaft end to be machined with an acetylene torch. Then gradually cool it in ambient atmosphere.)

* The area not machined loses hardness if exposed to heat. This may shorten the all screw life. Cool with water the areas where should not be heated to avoid heat conduction.

(c) Turning by lathe

Cut to the length, turn shaft end steps, turn thread screw, and provide the center hole. Refer to JIS B1192 which sets standards for the shaft end accuracy.

(d) Processing by grinding

Apply the same precautions as for cutting for centering, securing nut, and work rest. Grind sections where the bearings and a "Spann ring" are installed.

(e) Milling processing

Process keyways and tooth seats for lock washers.

(f) Deburring, washing, and rust prevention Wash with clean white kerosene after processing. Apply lubricant for immediate use. For later use, apply rust preventive agent.

Note: Contact NSK if nut is accidentally removed.

φ3

(oil hole)

40

⊥ 0.014 A >

50

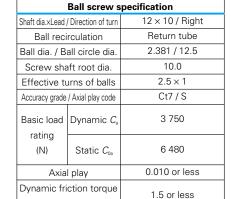
Lt (hardened)

5.5

4.5

Lo

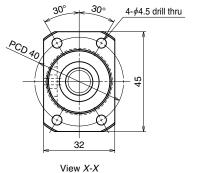
11 * * G


Min. 180

(range of 12h8 dia.)

25

C0.5


√ 0.014 E

(N·cm)

Spacer ball

Reference of grease replenishing amount

Factory-packed grease
Internal spatial volume of nut (cm3)

Recommended support unit

None

NSK grease LR3

1.4

0.7

For drive side (Fixed)	For opposite to drive side (Simple)	
WBK10-01A (square)	WBK12SF-01 (square)	
WBK10-11 (round)		

Ball screw No.	Str	oke	Screw shaft length			
	Nominal	Maximum Screw s		ew snart ier	nart length	
	Nominal	(L_t -nut length)	L_{t}	$L_{\rm a}$	L。	
VFA1210C7S-410	250	260	310	365	410	
VFA1210C7S-610	450	460	510	565	610	

Collar

 $(\phi 14.5)$

5.5

30

Ė

φ4 drill 9 deep

√ 0.025 A

10

/M10×1

45

<⊥ 0.008 *E*

30

C0.5 C0.5

15

G

Notes: 1. We recommend NSK support units (page B389). WBK12SF-01 (on simple support side) supports ball screw directly on shaft outside diameter.

- 2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.
- 3. Permissible rotational speed is determined by d · n value and critical speed. See pages B47 and B349.

Load accuracy		Shaft		Permissible rotational speed N (min ⁻¹)		
L	ead accurac	ЗУ	run-out**	Mass (kg)	Supporting	g condition
Т	$e_{\scriptscriptstyle m p}$	υ ₃₀₀			Fixed - Simple support	Fixed - Free
0	0.085	0.052	0.100	0.56	3 000	3 000
0	0.155	0.052	0.160	0.73	3 000	1 300

B353 B354

 ϕ 3.5 (oil hole) <u>⊥</u>0.018 A

> 40 52

Lt (hardened)

Min. 230

(range of 15h8 dia.)

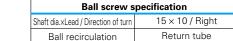
25

√ 0.014 E

C0.5 C0.5

15

C0.3


Ė, 10

/M12×1

<⊥ 0.008 E

30 45

Screw sha	att root dia.	12.2
Effective to	urns of balls	2.5 × 1
Accuracy grade	/ Axial play code	Ct7 / S
Basic load	Dynamic $C_{\scriptscriptstyle a}$	7 070
rating (N)	Static C _{0a}	12 800
Axial play		0.010 or less
Dynamic friction torque (N·cm)		2.5 or less
Spac	er ball	None
Factory-pag	cked grease	NSK grease LR3
Internal spatial v	olume of nut (cm³)	2.3

Recommended support unit

Reference of grease replenishing amount

1.2

For drive side (Fixed)	For opposite to drive side (Simple)	41.
WBK12-01A (square)	WBK15SF-01 (square)	2
WBK12-11 (round)		

30	30°	4- ∳6 drill thru
PCD 45		
		25
	34	<u> </u>
	View X-X	

	Stroke		Caracus ab aft la aath		
Ball screw No.	Maminal	Maximum	Screw shaft length		
	Nominal	(L _t -nut length)	L_{t}	La	L。
VFA1510C7S-500	300	348	400	455	500
VFA1510C7S-700	500	548	600	655	700
VFA1510C7S-1000	800	848	900	955	1 000

11 * * G

G

30

À

Lo

Notes: 1. We recommend NSK support units (page B389). WBK12SF-01 (on simple support side) supports ball screw directly on shaft outside diameter.

2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Permissible rotational speed is determined by d · n value and critical speed. See pages B47 and B349.

L	ead accurac	ÇY	Shaft run-out**	Mass	Permissible rotatio	·
Т	e p	V ₃₀₀	<i>11</i>	(kg)	Fixed - Simple support	•
0	0.120	0.052	0.075	0.89	3 000	2 600
0	0.195	0.052	0.110	1.1	3 000	1 150
0	0.310	0.052	0.180	1.5	2 340	510

B355 B356

 ϕ 3.5 (oil hole)

⊥ 0.018 A >

57

Lt (hardened)

Min. 230

(range of 15h8 dia.)

25

0.014 E

φ4 drill 12 deep

12.5 C0.3

30

√ 0.030 A

10

15

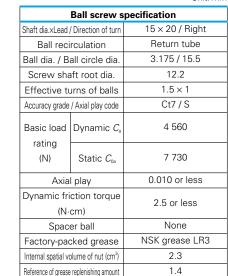
/M12×1

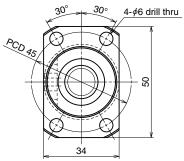
⊢⊥ 0.008 *E*

30

45

11 * * G


G


A

Screw shaft ø15

Lead 20

Unit: mm

PCD 45	3	4	50	<u>.</u>
	View	<i>X-X</i>		

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)		
WBK12-01A (square)	WBK15SF-01 (square)		
WBK12-11 (round)			

Ball screw No.	Str	oke	Screw shaft length		
	Nominal	Maximum			
		(L _t -nut length)	$L_{\rm t}$	La	L。
VFA1520C7S-500	300	343	400	455	500
VFA1520C7S-700	500	543	600	655	700
VFA1520C7S-1000	800	843	900	955	1 000

Notes: 1. We recommend NSK support units (page B389). WBK12SF-01 (on simple support side) supports ball screw directly on shaft outside diameter.

2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

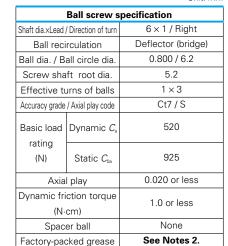
3. Permissible rotational speed is determined by d · n value and critical speed. See pages B47 and B349.

Unit: mm

	Landanaurani		Shaft		Permissible rotational speed N (min ⁻¹)		
	ead accurac	Э	run-out**	Mass (kg)	Supporting condition		
Т	$e_{\scriptscriptstyle m p}$	$v_{\scriptscriptstyle 300}$	\sqcup	(kg)	Fixed - Simple support	Fixed - Free	
0	0.120	0.052	0.075	0.94	3 000	2 630	
0	0.195	0.052	0.110	1.2	3 000	1 160	
0	0.310	0.052	0.180	1.6	2 350	510	

B357 B358 Not case hardened

Max. 7


හිට් **ග**

C0.3

Screw shaft ø6

Lead 1

Unit: mm

φ24 - + -	PCD 18
V	2-\$\phi_3.4 \text{ drill thru}

View X-X

Recommended support unit

For drive side (Fixed)	
WBK04R-11 (round)	

	Stroke		Screw shaft length	
Ball screw No.	Nominal	Maximum Screw shart		art length
		$(L_t$ -Nut length)	L_{t}	L _o

124

224

15

 L_0^{+2}

L_t (hardened)

 $X \longrightarrow$

G

11 ** G

 $\phi 4$ f8

Max. 7

R0.15

Or less

7.5

Not case hardened

15

139

239

M4×0.5

ø3h9

6

C0.3,C0.3

Notes: 1. We recommend NSK support bearing kit (page B401).

RMA0601C7S-160

RMA0601C7S-260

Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d-n value and critical speed. See pages B47 and B349.

100

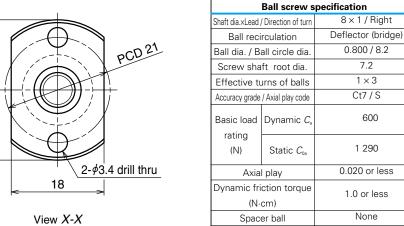
200

Lead accuracy		Shaft run-out**	Mass (kg)	Permissible rotational speed	
Target compensation ${\cal T}$	Deviation $e_{\scriptscriptstyle p}$	Variation $\upsilon_{\scriptscriptstyle 300}$		(119)	N (min ⁻¹)
0	0.052	0.052	0.060	0.045	3 000
0	0.085	0.052	0.090	0.065	3 000

Unit: mm

B360

B359


160

260

Screw shaft ø8

Lead 1

Unit: mm

φ27 +	PCD 21
V	2-\$3.4 drill thru

Recommended su	upport unit

Factory-packed grease

See Notes 2.

For drive side (Fixed)	
WBK06R-11 (round)	

Unit:	mm

Lead accuracy			Shaft run-out**	Mass (kg)	Permissible rotational speed
Target compensation T	Deviation $e_{\scriptscriptstyle p}$	Variation $\upsilon_{\scriptscriptstyle 300}$		(Ng/	N (min ⁻¹)
0	0.052	0.052	0.060	0.085	3 000
0	0.085	0.052	0.090	0.12	3 000

Not case harde Max. 7	ned16	X - 1	CO.3 CO.3 O O O O O O O O O O O O O O O O O O O	M6×0.75 C0.3 C0.3
	L _t (hardened))	26	8
		L _o ⁺² 0		
K				

Ball screw No.	Stroke		Carayy aboft langth	
	Nominal	Maximum	Screw shaft length	
	NOTTIITAI	(L_t -Nut length)	$L_{\rm t}$	L_{\circ}
RMA0801C7S-180	100	130	146	180
RMA0801C7S-280	200	230	246	280

Notes: 1. We recommend NSK support bearing kit (page B401).

2. Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B349.

 $\frac{-0.05}{-0.15}$

Not case hardened

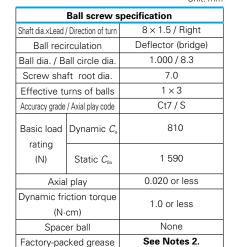
Max. 7

C0.3

M6×0.75

φ4.5h9

8


7.5

C0.3 C0.3

Screw shaft ø8

Lead 1.5

Unit: mm

φ28 +\-	PCD 22
<u>v</u>	2-\$\phi_3.4 \text{ drill thru}

View X-X

Recommended support unit

For drive side (Fixed)	
WBK06R-11 (round)	

Ball screw No.	Str	oke	Screw shaft length	
	Nominal	Maximum		
	INOFFIITIAI	(L_t -Nut length)	L_{t}	L。
RMA0801.5C7S-180	100	124	146	180
RMA0801.5C7S-280	200	224	246	280

 χ

11 ** G

9

Max. 7

0

G

4

L₀⁺²0

22

L_t (hardened)

C0.3

φ6f8

Not case hardened

26

Notes: 1. We recommend NSK support bearing kit (page B401).

Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d-n value and critical speed. See pages B47 and B349.

Lead accuracy			Shaft run-out**	Mass (kg)	Permissible rotational speed
Target compensation ${\cal T}$	Deviation $e_{\scriptscriptstyle p}$	Variation $\upsilon_{\scriptscriptstyle 300}$		(Ng)	N (min⁻¹)
0	0.052	0.052	0.060	0.093	3 000
0	0.085	0.052	0.090	0.13	3 000

Unit: mm

1.0 or less

None

See Notes 2.

Ball screw specification					
Shaft dia.xLead	Direction of turn	8 × 2 / Right			
Ball reci	rculation	Deflector (bridge)			
Ball dia. / B	all circle dia.	1.200 / 8.3			
Screw sha	ft root dia.	6.9			
Effective to	urns of balls	1×3			
Accuracy grade / Axial play code		Ct7 / S			
	Dynamic $C_{\scriptscriptstyle a}$	1 070			
rating (N)	Static C _{0a}	1 950			
Axial play		0.020 or less			

PCD 23 ϕ 29 2-*ϕ*3.4 drill thru 20

View X-X

Recommended support unit

Dynamic friction torque

(N·cm)

Spacer ball

Factory-packed grease

For drive side (Fixed)	
WBK06R-11 (round)	

Unit:	mm

Lead accuracy		Shaft run-out**	Mass (kg)	Permissible rotational speed	
Target compensation T	Deviation $e_{\scriptscriptstyle p}$	Variation $v_{\scriptscriptstyle 300}$		(Ng)	N (min ⁻¹)
0	0.052	0.052	0.060	0.10	3 000
0	0.085	0.052	0.090	0.14	3 000

Co.3 Mex. 7 Co.3 Co. We will be a second of the second of	3
L _t (Hardened) 26 8	
L_0^{+2}	

Ball screw No.	Stroke		Screw shaft length	
	Nominal	Maximum Screw shart leng		art ierigtri
	NOTTIITIAI	(L_t -Nut length)	L_{t}	L。
RMA0802C7S-180	100	120	146	180
RMA0802C7S-280	200	220	246	280

Notes: 1. We recommend NSK support bearing kit (page B401).

2. Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d-n value and critical speed. See pages B47 and B349.

\$1.00 \$1.00 \$1.00

C0.3

の≬

Not case hardened

Max. 7

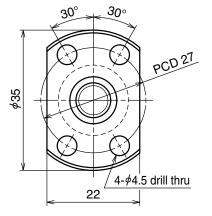
M8×1

 ϕ 6h9

10

9

C0.5 C0.5


	Ball screw s	pecification
Shaft dia.xLead	/ Direction of turn	10 × 2 / Right
Ball reci	rculation	Deflector (bridge)
Ball dia. / B	all circle dia.	1.200 / 10.3
Screw shaft root dia.		8.9
Effective turns of balls		1 × 3
Accuracy grade / Axial play code		Ct7 / S
	Dynamic C _a	1 210
rating (N)	Static C _{0a}	2 510
Axial play		0.020 or less

Dynamic friction torque

(N·cm)

Spacer ball

Factory-packed grease

View X-X

Recommended support unit

For drive side (Fixed)	
WBK08-01A (square)	
WBK08-11 (round)	ı

Unit: mm

B368

1.0 or less

None

See Notes 2.

Lead accuracy Shaft run-out**		Mass (kg)	Permissible rotational speed		
Target compensation T	Deviation $e_{\scriptscriptstyle p}$	Variation $v_{\scriptscriptstyle 300}$	_		N (min ⁻¹)
0	0.085	0.052	0.070	0.19	3 000
0	0.085	0.052	0.100	0.25	3 000

Ball screw No.	Str	oke	Screw shaft length	
	Nominal	Maximum		
		(L_t -Nut length)	L_{t}	L_{\circ}
RMA1002C7S-250	150	173	201	250
RMA1002C7S-350	250	273	301	350

 χ

11 ** G

12

Max. 7

 ϕ 11.5

Ġ

5

L₀⁺²0

28

L_t (hardened)

C0.3

 ϕ 8f8

Not case hardened

39

Notes: 1. We recommend NSK support bearing kit (page B389).

2. Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B349.

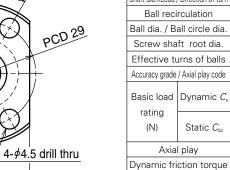
0.020 or less

1.0 or less

None

See Notes 2.

Shaft dia.xLead	Direction of turn	12 × 2 / Right		
Ball reci	rculation	Deflector (bridge)		
Ball dia. / B	all circle dia.	1.200 / 12.3		
Screw sha	ft root dia.	10.9		
Effective to	urns of balls	1×3		
Accuracy grade	/ Axial play code	Ct7 / S		
Basic load rating (N)	Dynamic $C_{\scriptscriptstyle a}$	1 350		
	Static C _{0a}	3 190		


Axial play

(N·cm)

Spacer ball

Factory-packed grease

Ball screw specification

View X-X

24

Recommended support unit

For drive side (Fixed)
WBK10-01A (square)
WBK10-11 (round)

U	ınıt:	mm

Lead accuracy			Shaft run-out**	Mass (kg)	Permissible rotational speed
Target compensation T	Deviation <i>e</i> _p	Variation $v_{\scriptscriptstyle 300}$. 6.	N (min ⁻¹)
0	0.060	0.052	0.070	0.26	3 000
0	0.085	0.052	0.100	0.34	3 000

Not case hardened Max. 7	X-1 	CO.3 CO.3 CO.3 Not case hardened Max. 7	M10×1 C0.5 C0.5 648
	nardened)	45	15
€	L ₀ ⁺² 0		

	Stro	oke	Screw shaft length				
Ball screw No.	Nominal	Maximum	Screw shart length				
	NOTTITIAL	(L_t -Nut length)	L_{t}	L_{\circ}			
RMA1202C7S-250	150	162	190	250			
RMA1202C7S-350	250	262	290	350			

Notes: 1. We recommend NSK support bearing kit (page B389).

2. Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d-n value and critical speed. See pages B47 and B349.

Screw shaft ø6

Lead 1
Screw shaft ø8
Lead 1, 1.5, 2
Screw shaft ø10, ø12
Lead 2

Scr PCD W 2-\phi 3.4 drill thru H

A-\phi 4.5 drill thru

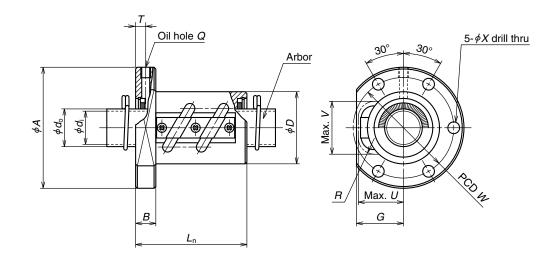
View X-X (for screw shaft of 6 and 8 dia.)

View X-X (for screw shaft of 10 and 12 dia.)

Unit: mm

Nut dimensions Screw shaft dimension								ons	Le	ead accur	Shaft run-out**	Mass	Permissible rotational		
						Effective thread length	Shaf	t end	Overall length	Target compensation	Deviation	Variation	<i>f f</i>	(Kg)	speed
D	Α	Н	В	Ln	W	L _t	L ₁	$d_{\scriptscriptstyle 2}$	L _o	T	$e_{\scriptscriptstyle p}$	υ ₃₀₀			N (min ⁻¹)
12	24	16	3.5	15	18	250	50	4	300	0	0.085	0.052	0.09	0.075	
14	27	18		16	21									0.13	
15	28	19	4	22	22	250	50	6	300	0	0.085	0.052	0.09	0.14	3 000
16	29	20		26	23									0.15	
18	35	22	5	28	27	290	60	8	350	0	0.085	0.052	0.10	0.25	
20	37	24	5	28	29	290	60	10	350	0	0.085	0.052	0.10	0.35	

	X - ¶		
C0.3		C0.3	1 /
9000	G	5	业
Not case hardened Max. 7	>	Not case hardened Max. 7 L ₁ (un-carburizing area)	
E (mardonou	L ₀ ⁺⁵ 0	> (un ourbuilzing arou)	

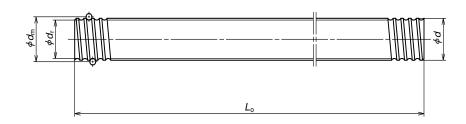

Ball screw No.	Stroke	Shaft			Ball circle	Root	Effective	Basic loa	Axial play	
Ball Screw No.	Max. <i>L</i> _t -L _n	dia. <i>d</i>	Lead <i>l</i>	Ball dia.	dia. d _m	dia.	turns of balls	Dynamic $C_{\scriptscriptstyle a}$	Static C _{0a}	Max.
RMS0601C7S-300	235	6	1	0.800	6.2	5.3	3	520	925	0.02
RMS0801C7S-300	234		1	0.800	8.2	7.3		600	1 290	
RMS0801.5C7S-300	228	8	1.5	1.000	8.3	7.2	3	810	1 590	0.02
RMS0802C7S-300	224		2	1.200	8.3	7.0		1 070	1 950	
RMS1002C7S-350	262	10	2	1.200	10.3	9.0	3	1 210	2 510	0.02
RMS1202C7S-350	262	12	2	1.200	12.3	11.0	3	1 350	3 190	0.02

Notes: 1. We recommend NSK support unit (page B389) or support kit (page B401).

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Seal is not installed.

4. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B349.


	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls		ad rating	Axial	Ball nut dimensions
Ball nut No.	d	l	D _w	dia. d _m	d _r	Turns × Circuits	Dynamic C_a	N) Static C₀₃		Outside dia.
RNFTL 1003A3.5	10	3	2.381	10.65	8.1	3.5×1	3 780	6 730	0.10	20
RNFTL 1006A2.5S	10	6	2.381	10.65	8.1	2.5×1	2 830	4 810	0.10	20
RNFTL 1208A2.5S	12	8	2.778	12.65	9.6	2.5×1	3 730	6 560	0.10	25
RNFTL 1404A3.5S	14	4	2.778	14.5	11.5	3.5×1	5 370	10 800	0.10	25
RNFTL 1405A2.5S	14	5	3.175	14.5	11.0	2.5×1	5 260	9 720	0.10	30
RNFTL 1610A2.5 RNFTL 1610A2.5S	16	10	3.175	16.75	13.3	2.5×1	5 660	11 500	0.10	30
RNFTL 1808A3.5 RNFTL 1808A3.5S	18	8	4.762	18.5	13.6	3.5×1	13 200	25 800	0.15	34
RNFTL 2005A2.5 RNFTL 2005A2.5S	20	5	3.175	20.5	17.0	2.5×1	6 360	14 200	0.10	40
RNFTL 2010A2.5 RNFTL 2010A2.5S	20	10	4.762	21.25	16.2	2.5×1	10 900	21 800	0.15	40
RNFTL 2505A5 RNFTL 2505A5S	25	5	3.175	25.5	22.0	2.5×2	12 800	36 300	0.10	42
RNFTL 2510A2.5 RNFTL 2510A2.5S	25	10	6.25	26	10.0	2.5×1	17 500	35 200	0.20	44
RNFTL 2510A5 RNFTL 2510A5S	25	10	6.35	26	19.0	2.5×2	31 800	70 300	0.20	44

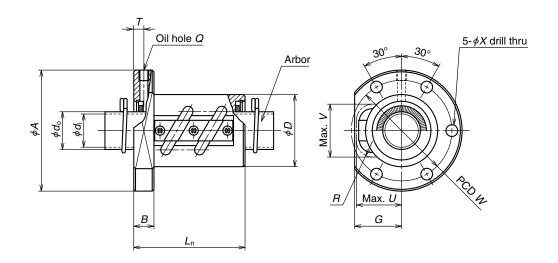
Notes: 1. Protruding portion of tube does not interfere with ball nut housing if its dimensions corresponding to U and V are large

2. Actual screw shaft length may become slightly longer than nominal length L_n due to manufacturing tolerance.

3. Only ball nut part numbers ending "S" are equipped with seals. External dimensions of those with seals are the same as those without.

In ball nut side view drawing, above the center line there is a seal, and beneath it there is no seal. Seal for those with shaft diameter of 14 mm or less is made of synthetic resin. Seal for those of 16 mm or more is a "Brush" seal

Unit: mm

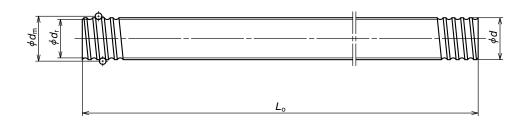

																					_
				Ba	ll nut	dimensio	ns				Nut		bor			rew s		Shaft	Internal spatial	Standard volume	
F	lang	е	Length	Bolt	hole	Oil ho	ole	Proje	ecting	tube	Mass.	Outside dia.	Bore	Stan	dard l	ength	Screw shaft	mass/m	volume of nut	of greas replenishing	,
Α	G	В	L	W	Χ	Q	Т	U	V	R	(kg)	$d_{\scriptscriptstyle 0}$	d		L _o		No.	(kg)	(cm ³)	(cm³)	
40	15	6	34	30	4.5	M3×0.5	3.0	15	15	7	0.092	8.1	6.1	400	800	-	RS1003A··	0.50	-	-	
40	15	6	36	30	4.5	M3×0.5	3.5	15	15	5	0.095	8.1	6.1	400	800	-	RS1006A··	0.56	1.1	0.6	
45	19	8	46	35	4.5	M3×0.5	5.5	19	18	7	0.18	9.6	7.6	400	800	-	RS1208A··	0.74	1.8	0.9	L
50	19	10	43	40	4.5	M6×1	5.0	19	20	7	0.20	11.5	9.5	500			RS1404A··	1.02	2.0	1.0	
50	22	10	45	40	4.5	M6×1	5.0	22	21	8	0.26	11.0	9.0	500	1 000	-	RS1405A··	1.00	2.4	1.2	
53	23	10	54	41	5.5	M6×1	5.5	23	22.5	8	0.28	13.3	11.3	500	1 000	1 500	RS1610A··	1.37	2.7	1.4	
63	27	12	58	49	6.6	M6×1	6.0	27	27	8	0.43	13.6	11.6	500	1 000	1 500	RS1808A··	1.60	5.2	2.6	
60	28	10	46	50	4.5	M6×1	5.0	28	27	10	0.42	17.0	14.6	500	1 000	2 000	RS2005A··	2.17	3.5	1.8	
67	30	12	59	53	6.6	M6×1	6.0	30	29	12	0.55	16.2	13.8	500	1 000	2 000	RS2010A··	2.18	7.1	3.6	
71	28	12	66	57	6.6	M6×1	6.0	28	31	10	0.62	22.0	19.6	1 000	2 000	2 500	RS2505A··	3.47	6.5	3.3	
80	34	15	62	62	9	M6×1	7.5	34	37	17	0.75	19.0	16.6	1 000	2 000	2 500	RS2510A··	3.13	13	6.5	
80	34	15	92	62	9	M6×1	7.5	34	37	17	0.75	19.0	10.0	1 000	2 000	2 300	nozo10A	3.13	18	9.0	

4. Nut assembly with arbor and screw shaft are separate at time of delivery.5. Value obtained by diving standard screw shaft length by 100 mm will be entered at end of the part number where

6. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.

7. Internal spatial volume of nut and volume of grease to be replenished are values for ball screws with seals. Recommended amount for replenishing is approximately 50% of nut's internal space. For ball screws without seals, apply grease to screw shaft surface or move ball nut by hand while filling them with grease so that grease permeates all areas. See page D16 for details.

Ball nut No.	Shaft dia.	Lead <i>l</i>	Ball dia.	Ball circle dia. d _m	Root dia.	Effective turns of balls Turns × Circuits		oad rating (N) Static Coa	Axial play Max.	Ball nut dimensions Outside dia. D
RNFTL 2806A2.5 RNFTL 2806A2.5S	- 28	6	3.175	28.5	25.0	2.5×1	7 430	20 300	0.10	50
RNFTL 2806A5 RNFTL 2806A5S	20	0	3.175	28.5	25.0	2.5×2	13 500	40 600	0.10	50
RNFTL 3210A5 RNFTL 3210A5S	32	10	6.35	33.75	27.0	2.5×2	35 700	92 200	0.20	55
RNFTL 3610A2.5 RNFTL 3610A2.5S	26	10	6.35	37	30.0	2.5×1	21 000	51 000	0.20	60
RNFTL 3610A5 RNFTL 3610A5S	36	10		07	30.0	2.5×2	38 100	102 000	0.20	60
RNFTL 4010A7 RNFTL 4010A7S	40	10	6.35	41.75	35.0	3.5×2	53 500	164 000	0.20	65
RNFTL 4512A5 RNFTL 4512A5S	45	12	7.144	46.5	39.0	2.5×2	49 600	147 000	0.23	70
RNFTL 5010A7 RNFTL 5010A7S	50	10	6.35	51.75	45.0	3.5×2	59 500	205 000	0.20	80
RNFTL 5016A5 RNFTL 5016A5S	50	16	9.525	52	42.0	2.5×2	99 900	293 000	0.23	85


Notes: 1. Protruding portion of tube does not interfere with ball nut housing if its dimensions corresponding to U and V are large

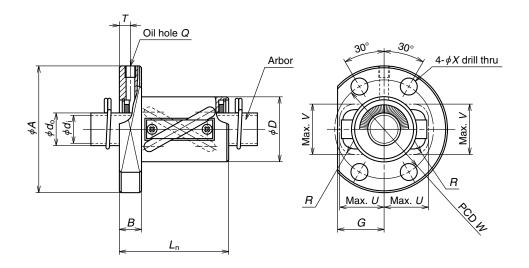
enough.

2. Actual screw shaft length may become slightly longer than nominal length L_o due to manufacturing tolerance.

3. Only ball nut part numbers ending "S" are equipped with seals. External dimensions of those with seals are the same

In ball nut side view drawing, above the center line there is a seal, and beneath it there is no seal. Seal for those with shaft diameter of 14 mm or less is made of synthetic resin. Seal for those of 16 mm or more is a "Brush" seal.

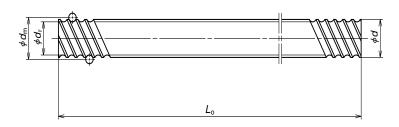
Unit: mm


				Ва	ll nut (dimensio	ns				Nut	Ar	bor		Sc	rew sł	naft	Shaft	Internal spatial	Standard volume
F	lang	е	Length	Bolt	hole	Oil ho	ole	Proj	ecting	tube	Mass.	Outside dia.	Bore	Stan	dard I	ength	Screw	mass/m	volume	of greas replenishing
Α	G	В	L	W	Χ	Q	T	U	V	R	(kg)	d ₀	d _i		L。		shaft No.	(kg)	(cm³)	(cm³)
79	33	15	55	65	6.6	M6×1	7.5	33	34	10	0.85	25.0	22.6	1 000	2 000	2 500	RS2806A··	4.47	5.9	3.0
79	33	15	79	65	6.6	M6×1	7.5	33	34	10	1.07	25.0	22.0	1 000	2 000	2 500	N32000A	4.47	8.4	4.2
97	39	18	97	75	11	M6×1	9.0	39	42	17	1.55	27.0	24.6	1 000	2 000	3 000	RS3210A··	5.53	29	15
102	42	18	68	80	11	M6×1	9.0	42	46	17	1.47	20.0	27.6	1 000	2 000	3 000	RS3610A··	6.91	21	11
102	42	18	98	80	11	M6×1	9.0	42	46	17	1.80	30.0	27.0	1 000	2 000	3 000	1133010A	0.91	33	17
114	44	20	120	90	14	M6×1	10.0	44	50	20	2.49	35.0	31.8	2 000	3 000	4 000	RS4010A··	8.87	42	21
130	47	22	116	100	18	M6×1	11.0	47	55	20	3.07	39.0	35.8	2 000	3 000	4 000	RS4512A··	11.16	49	25
140	52	22	122	110	18	M6×1	11.0	52	59	20	4.06	45.0	41.8	2 000	3 000	4 000	RS5010A··	14.15	53	27
163	57	28	146	125	22	M6×1	14.0	57	63	25	6.42	42.0	38.8	2 000	3 000	4 000	RS5016A··	13.48	94	47

4. Nut assembly with arbor and screw shaft are separate at time of delivery.

5. Value obtained by diving standard screw shaft length by 100 mm will be entered at end of the part number where marked with ·

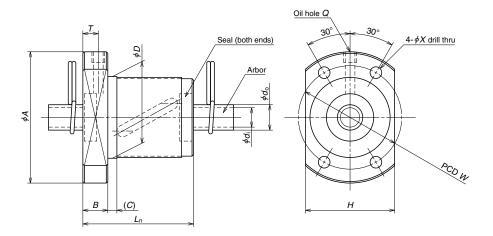
6. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.


7. Internal spatial volume of nut and volume of grease to be replenished are values for ball screws with seals. Recommended amount for replenishing is approximately 50% of nut's internal space. For ball screws without seals, apply grease to screw shaft surface or move ball nut by hand while filling them with grease so that grease permeates all areas. See page D16 for details.

Ball nut No.	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns X	Dynamic	ad rating N) Static	Axial play Max.	Ball nut dimensions Outside dia.
	-	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d _r	Circuits	$C_{\scriptscriptstyle \rm a}$	$C_{\scriptscriptstyle 0a}$	TVIOX.	D
RNFTL 1212A3	12	12	2.381	12.65	10.1	1.5×2	3 360	6 270	0.10	24
RNFTL 1616A3 RNFTL 1616A3S	16	16	2.778	16.65	13.6	1.5 × 2	4 880	9 650	0.10	30
RNFTL 2020A3 RNFTL 2020A3S	20	20	3.175	20.75	17.3	1.5 × 2	7 010	15 400	0.10	35
RNFTL 2525A3 RNFTL 2525A3S	25	25	3.969	26	22.0	1.5 × 2	10 500	24 100	0.12	45
RNFTL 3232A3 RNFTL 3232A3S	32	32	4.762	33.25	28.0	1.5 × 2	15 300	37 100	0.15	55
RNFTL 4040A3 RNFTL 4040A3S	40	40	6.35	41.75	35.0	1.5 × 2	24 400	61 600	0.20	70

Notes: 1. Protruding portion of tube does not interfe	e with ball nut housing if its dimensions corresponding to U and V are large
enough.	

- Actual screw shaft length may become slightly longer than nominal length L₀ due to manufacturing tolerance.
 Only ball nut part numbers ending "S" are equipped with seals. External dimensions of those with seals are the same
 - In ball nut side view drawing, above the center line there is a seal, and beneath it there is no seal. Seal for those with shaft diameter of 14 mm or less is made of synthetic resin. Seal for those of 16 mm or more is a



B378

							Ball nut dimensions Nut Arbor Screw shaft Shaft Internal Sandar volume													
			Ва	ll n	ut dir	mensio	ns				Nut	Arl	bor		Scr	ew s	shaft	Shaft	Internal spatial	Standard volume
FI	lang	е	Length	Во	lt hole	Oil h	ole	Proje	cting	tube	Mass.	Outside dia.	Bore	Stand	dard le	ength	Screw	mass/m	volume	of greas replenishing
Α	G	В	L	W	X	Q	T	U	V	R	(kg)	$d_{\scriptscriptstyle 0}$	di		L_{\circ}		shaft No.	(kg)	(cm³)	replenishing (cm³)
44	17	8	44	34	4.5	M3 × 0.5	4.0	17	16	5	0.16	10.1	8.1	400	800	-	RS1212A··	0.74	1.7	0.9
55	22	10	50	43	6.6	M6 × 1	5.0	22	22	7	0.29	13.6	11.6	500	1 000	1 500	RS1616A··	1.37	2.8	1.4
68	25	12	59	52	9	M6 × 1	6.0	25	27	8	0.49	17.3	14.9	500	1 000	2 000	RS2020A··	2.19	4.9	2.5
80	31	12	69	63	9	M6 × 1	6.0	31	32	10	0.80	22.0	19.6	1 000	2 000	2 500	RS2525A··	3.43	9.1	4.6
100	37	15	84	80	11	M6 × 1	7.5	37	40	12	1.46	28.0	25.6	1 000	2 000	3 000	RS3232A··	5.71	19	9.5
120	46	18	103	95	14	M6 × 1	9.0	46	49	15	2.69	35.0	31.8	2 000	3 000	4 000	RS4040A··	8.82	39	20

- 4. Nut assembly with arbor and screw shaft are separate at time of delivery.
- 5. Value obtained by diving standard screw shaft length by 100 mm will be entered at end of the part number where
- 6. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.
 7. Internal spatial volume of nut and volume of grease to be replenished are values for ball screws with seals. Recommended amount for replenishing is approximately 50% of nut's internal space. For ball screws without seals, apply grease to screw shaft surface or move ball nut by hand while filling them with grease so that grease permeates all areas. See page D16 for details.

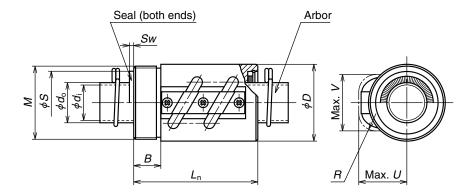
Unit: mm


Ball nut No.	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	Basic lo	ad rating N)	Axial	Ball nut dimensions Outside dia.
Dali Hut No.	d	l	$D_{\rm w}$	d _m	d,	× Circuits	Dynamic C _a	Static $C_{\scriptscriptstyle oa}$	play Max.	D
RNFBL 1006A2.5S	10	6	2.381	10.65	8.1	2.5×1	2 830	4 810	0.10	26
RNFBL 1208A2.5S	12	8	2.778	12.65	9.6	2.5×1	3 730	6 560	0.10	29
RNFBL 1404A3.5S	14	4	2.778	14.5	11.5	3.5×1	5 370	10 800	0.10	31
RNFBL 1405A2.5S	14	5	3.175	14.5	11.0	2.5×1	5 260	9 720	0.10	32
RNFBL 1808A3.5S	18	8	4.762	18.5	13.6	3.5×1	13 200	25 800	0.15	50
RNFBL 2005A2.5S	20	5	3.175	20.5	17.0	2.5×1	6 360	14 200	0.10	40
RNFBL 2010A2.5S	20	10	4.762	21.25	16.2	2.5×1	10 900	21 800	0.15	52
RNFBL 2505A2.5S	25	5	3.175	25.5	22.0	2.5×1	7 070	18 200	0.10	43
RNFBL 2505A5S	Z5	5	3.175	20.5	22.0	2.5×2	12 800	36 300	0.10	43
RNFBL 2510A2.5S	25	10	6.35	26	19.0	2.5×1	17 500	35 200	0.20	60
RNFBL 2510A5S	25	10	0.35	20	19.0	2.5×2	31 800	70 300	0.20	60
RNFBL 2806A2.5S	28	6	3.175	28.5	25.0	2.5×1	7 430	20 300	0.10	50
RNFBL 2806A5S	28	O	3.175	20.5	25.0	2.5×2	13 500	40 600	0.10	50
RNFBL 3210A2.5S	32	10	6.35	33.75	27.0	2.5×1	19 700	46 100	0.20	67
RNFBL 3210A5S	32	10	0.35	33.79	27.0	2.5×2	35 700	92 200	0.20	07
RNFBL 3610A2.5S	36	10	6.35	37	30.0	2.5×1	21 000	51 000	0.20	70
RNFBL 3610A5S	36	10	0.35	37	30.0	2.5×2	38 100	102 000	0.20	_ ′0
RNFBL 4010A5S	40	10	6.35	41.75	35.0	2.5×2	40 100	116 000	0.20	76

Notes: 1. Actual screw shaft length may become slightly longer than nominal length L_0 due to manufacturing tolerance.

2. Nut assembly with arbor and screw shaft are separate at time of delivery.

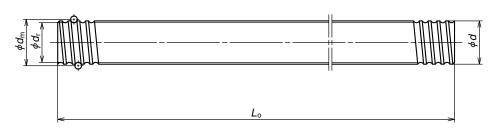
B379


3. Value obtained by diving standard screw shaft length by 100 mm will be entered at end of the part number where marked with · · .

Unit: mm

			Ball	nut	dimer	nsions				Ark	or		Sc	rew sh	aft		Internal	Standard
F	lange)	Len			hole	Oil hol	е	Nut	Outside dia.		Star	ndard le			Shaft	spatial	volume
Α	Н	В	Overall length L _n	(C)	W	X	Q	Т	Mass. (kg)	d _o	d_{i}		L.		Screw shaft No.	mass/m (kg)	volume of nut (cm)	of greas replenishing (cm³)
42	29	8	36	3	34	4.5	M3×0.5	5.0	0.16	8.1	6.1	400	800	Ī	RS1006A··	0.56	1.1	0.6
45	32	8	44	3	37	4.5	M3×0.5	5.5	0.21	9.6	7.6	400	800	_	RS1208A··	0.81	1.6	0.8
50	37	10	40	4	40	4.5	M6×1	5.0	0.25	11.5	9.5	500	1 000	ĺ	RS1404A··	1.02	2.4	1.2
50	38	10	40	4	40	4.5	M6×1	5.0	0.26	11.0	9.0	500	1 000	_	RS1405A··	1.00	1.9	1.0
80	60	12	61	4	65	6.6	M6×1	6.0	1.00	13.6	11.6	500	1 000	1 500	RS1808A··	1.60	5.8	2.9
60	46	10	40	4	50	4.5	M6×1	5.0	0.37	17.0	14.6	500	1 000	2 000	RS2005A··	2.17	2.8	1.4
82	64	12	61	5	67	6.6	M6×1	6.0	1.05	16.2	13.8	500	1 000	2 000	RS2010A··	2.18	7.6	3.8
67	50	10	40 55	4	55	5.5	M6×1	5.0	0.40	22.0	19.6	1 000	2 000	2 500	RS2505A··	3.47	3.5 4.7	1.8
96	72	15	66 96	5	78	9.0	M6×1	7.5	1.52 1.99	19.0	16.6	1 000	2 000	2 500	RS2510A··	3.13	14 19	7.0 9.5
80	60	12	47 65	5	65	6.6	M6×1	6.0	0.70 0.87	25.0	22.6	1 000	2 000	2 500	RS2806A··	4.47	4.5 7.6	
103	78	15	67 97	5	85	9.0	M6×1	7.5	1.72 2.25	27.0	24.6	1 000	2 000	3 000	RS3210A··	5.53		10 14
110	82	17	69 99	5	90	11.0	M6×1	8.5	1.97 2.53	30.0	27.6	1 000	2 000	3 000	RS3610A··	6.91		11 15
116	88	17	99	5	96	11.0	M6×1	8.5	2.86	35.0	31.8	2 000	3 000	4 000	RS4010A··	8.87	36	18

- 4. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.
- 5. Seal for those with shaft diameter of 14 mm or less is made of synthetic resin. Seal for those of 16 mm or more is a "Brush" seal.
- 6. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.



Ball nut No.	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls Turns	Basic Id	ad rating N)	Axial play	Ball nut dimensions Outside dia.
Bail Hut No.	d	l	$D_{\rm w}$	d _m	d _r	× Circuits	Dynamic C _a	Static C _{oa}	Max.	D Outside did.
RNCT 1003A3.5	10	3	2.381	10.65	8.1	3.5×1	3 780	6 730	0.10	20
RNCT 1404A3.5S	14	4	2.778	14.5	11.5	3.5×1	5 370	10 800	0.10	25
RNCT 1405A2.5S	14	5	3.175	14.5	11.0	2.5×1	5 260	9 720	0.10	30
RNCT 1808A3.5 RNCT 1808A3.5S	18	8	4.762	18.5	13.6	3.5 × 1	13 200	25 800	0.15	34
RNCT 2005A2.5 RNCT 2005A2.5S	20	5	3.175	20.5	17.0	2.5 × 1	6 360	14 200	0.10	40
RNCT 2505A5 RNCT 2505A5S	25	5	3.175	25.5	22.0	2.5 × 2	12 800	36 300	0.10	42
RNCT 2510A5 RNCT 2510A5S	25	10	6.35	26	19.0	2.5 × 2	31 800	70 300	0.20	44
RNCT 2806A5 RNCT 2806A5S	28	6	3.175	28.5	25.0	2.5 × 2	13 500	40 600	0.10	50
RNCT 3210A5 RNCT 3210A5S	32	10	6.35	33.75	27.0	2.5 × 2	35 700	92 200	0.20	55
RNCT 3610A5 RNCT 3610A5S	36	10	6.35	37	30.0	2.5 × 2	38 100	102 000	0.20	60
RNCT 4010A7 RNCT 4010A7S	40	10	6.35	41.75	35.0	3.5 × 2	53 500	164 000	0.20	65
RNCT 4512A5 RNCT 4512A5S	45	12	7.144	46.5	39.0	2.5 × 2	49 600	147 000	0.23	70
RNCT 5010A7 RNCT 5010A7S	50	10	6.35	51.75	45.0	3.5 × 2	59 500	205 000	0.20	80
RNCT 5016A5 RNCT 5016A5S	50	16	9.525	52	42.0	2.5 × 2	99 900	293 000	0.23	85

Notes: 1. Protruding portion of tube does in	not interfere with ball nut housing if its dimensions	corresponding to U and V are large
enough.		

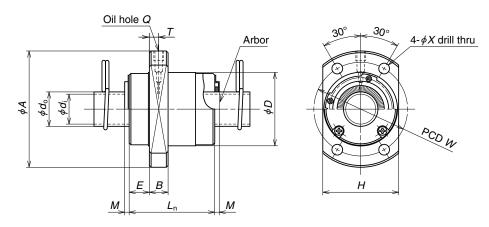
In ball nut side view drawing, above the center line there is a seal, and beneath it there is no seal.

Seal for those with shaft diameter of 14 mm or less is made of synthetic resin. Seal for those of 16 mm or more is a "Brush" seal.

Unit: mm

Ва	all nu	t dime	nsion	S		Nut	Seal dim	ensions	Ark	oor		Sc	rew sl	haft	Shaft	Internal	Standard volume
V-thread	l	Length	Proje	ecting	tube	Mass.	Diameter	Thickness	Outside dia.	Bore	Stand	dard le	ngth	Screw shaft	mass/m	volume	
М	В	Ln	U	V	R	(kg)	S	Sw	$d_{\scriptscriptstyle 0}$	d _i		L _o		No.	(kg)		(cm ³)
M18 × 1	10	38	15	15	7	0.049	-	-	8.1	6.1	400			RS1003A··	0.50	-	-
M24 × 1	10	43	19	20	7	0.083	-	-	11.5	9.5		1 000		RS1404A	1.02	2.7	
M26 × 1.5	10	45	22	21	8	0.15	-	-	11.0	9.0	500	1 000	-	RS1405A··	1.00	3.1	1.6
M32 × 1.5	12	58	27	27	8	0.21	28.5	2.5	13.6	11.6	500	1 000	1 500	RS1808A··	1.60	6.6	3.3
M36 × 1.5	12	48	28	27	10	0.28	29.5	2.5	17.0	14.6	500	1 000	2 000	RS2005A··	2.17	4.8	2.4
M40 × 1.5	15	69	28	31	10	0.38	34.5	2.5	22.0	19.6	1 000	2 000	2 500	RS2505A··	3.47	8.4	4.2
M42 × 1.5	15	92	34	37	17	0.49	38.5	2.5	19.0	16.6	1 000	2 000	2 500	RS2510A··	3.13	21	1
M45 × 1.5	15	79	33	34	10	0.68	37.5	2.5	25.0	22.6	1 000	2 000	2 500	RS2806A··	4.47	9.7	4.9
M50 × 1.5	18	97	39	42	17	0.79	45.5	2.5	27.0	24.6	1 000	2 000	3 000	RS3210A··	5.53	32	16
M55 × 2	18	98	42	46	17	0.97	50.5	3.0	30.0	27.6	1 000	2 000	3 000	RS3610A··	6.91	32	16
M60 × 2	25	125	44	50	20	1.37	54.5	3.0	35.0	31.8	2 000	3 000	4 000	RS4010A··	8.87	51	26
M65 × 2	30	124	47	55	20	1.42	60.5	3.0	39.0	35.8	2 000	3 000	4 000	RS4512A··	11.16	60	30
M75 × 2	40	140	52	59	20	2.41	64.5	3.0	45.0	41.8	2 000	3 000	4 000	RS5010A··	14.15	76	38
M80 × 2	40	158	57	63	25	3.14	68.5	3.0	42.0	38.8	2 000	3 000	4 000	RS5016A··	13.48	114	57

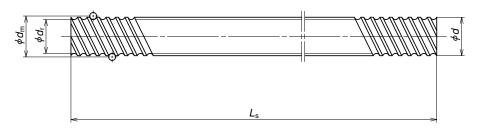
4. Nut assembly with arbor and screw shaft are separate at time of delivery.


5. Value obtained by diving standard screw shaft length by 100 mm will be entered at end of the part number where

6. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.

 Internal spatial volume of nut and volume of grease to be replenished are values for ball screws with seals.
 Recommended amount for replenishing is approximately 50% of nut's internal space. For ball screws without seals, apply grease to screw shaft surface or move ball nut by hand while filling them with grease so that grease permeates all areas. See page D16 for details.

Actual screw shaft length may become slightly longer than nominal length L₀ due to manufacturing tolerance.
 Only ball nut part numbers ending "S" are equipped with seals. External dimensions of those with seals are the same



	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Daoio io	ad rating N)	Axial	Ball nut dimensions
Ball nut No.				dia.		Turns	Dynamic			Outside dia.
	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	C _a	C_{0a}	Max.	D
RNFCL 1212A3	12	10	2 201	12.65	10.1	1.7 × 2	3 740	6 640	0.10	26
RNFCL 1212A6	12	12	2.381	12.00	10.1	1.7 × 4	6 780	13 300	0.10	20
RNFCL 1520A3	15	20	3.175	15.5	12.2	1.7 × 2	6 730	12 300	0.10	33
RNFCL 1520A3S	13	20	3.173	10.0	12.2	1.7 ^ 2	0 730	12 300	0.10	55
RNFCL 1616A3						1.7 × 2	5 430	10 400		
RNFCL 1616A3S	16	16	2.778	16.65	13.5		0 .00	10 100	0.10	32
RNFCL 1616A6						1.7 × 4	9 860	20 800		
RNFCL 1616A6S										
RNFCL 2020A3 RNFCL 2020A3S						1.7 × 2	7 810	16 500		
RNFCL 2020A35	20	20	3.175	20.75	17.3				0.10	39
RNFCL 2020A6						1.7 × 4	14 200	33 000		
RNFCL 2525A3										
RNFCL 2525A3S						1.7 × 2	11 700	25 800		
RNFCL 2525A6	- 25	25	3.969	26	22.0				0.12	47
RNFCL 2525A6S						1.7 × 4	21 200	51 500		
RNFCL 3232A3						1.7 × 2	17 100	40 500		
RNFCL 3232A3S	32	32	4.762	33.25	28.0	1.7 X Z	17 100	40 500	0.15	58
RNFCL 3232A6	32	52	4.702	33.23	20.0	1.7 × 4	31 000	81 000	0.13	56
RNFCL 3232A6S						1.7 🗡	31 000	01 000		
RNFCL 4040A3						1.7 × 2	27 200	67 900		
RNFCL 4040A3S	40	40	6.35	41.75	35.0				0.20	73
RNFCL 4040A6						1.7 × 4	49 300	136 000		
RNFCL 4040A6S RNFCL 5050A3										
RNFCL 5050A3						1.7 × 2	40 600	106 000		
RNFCL 5050A35	50	50	7.938	52.25	44.0				0.25	90
RNFCL 5050A6						1.7 × 4	73 700	212 000		

Notes: 1. Actual screw shaft length may become slightly longer than nominal length L₀ due to manufacturing tolerance.

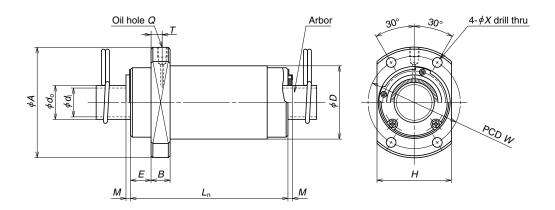
- 2. Nut assembly with arbor and screw shaft are separate at time of delivery.
- 3. Value obtained by diving the standard screw shaft length by 100 mm will be entered at end of the part number where
- 4. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.
- 5. Length of nut becomes longer (2 x M) for those with "brush" seals.

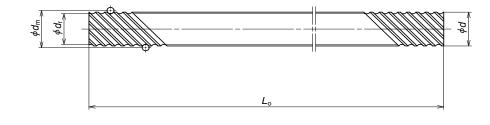
Unit: mm

											ı								
			Bal	l nut	dime	nsior	ıs			Nut	Arl	oor		Sc	rew sl	naft	Shaft	Internal spatial	Standard volume
F	Flange	Э	L	.engt	h	Bolt	hole	Oil ho	le		Outside dia.	Bore	Stand	dard le	ength	Screw shaft	mass/m	volume	of greas
Α	Н	В	Ε	Ln	М	W	Χ	Q	Τ	(kg)	$d_{\scriptscriptstyle 0}$	d _i		L。		No.	(kg)	(cm ³)	replenishing (cm³)
44	28	6	9	30	-	35	4.5	M3 × 0.5	3.0	0.12	10.1	8.1	400	800	-	RS1212A··	0.74	-	-
51	35	10	11	45	_ 3	42	4.5	M6 × 1	5.0	0.28	12.2	10.2	500	1 000	1 500	RS1520A··	1.15	3.3	1.7
53	34	10	10	38	3	42	4.5	M6 × 1	5.0	0.23	13.5	11.5	500	1 000	1 500	RS1616A··	1.37	2.6	1.3
					3													2.6	1.3
62	41	10	11.5	46	3	50	5.5	M6 × 1	5.0	0.37	17.3	1/1 0	500	1 000	2 000	RS2020A··	2.19	4.4	2.2
	7-	10	11.5	40	3	30	3.5	1010 × 1	3.0	0.57	17.5	14.5	300	1 000	2 000	1132020A	2.10	4.9	2.5
74	49	12	13	55	3	60	6.6	M6 × 1	6.0	0.62	22.0	10.6	1 000	2 000	2 500	RS2525A··	3.43	8.2	4.1
74	49	12	13	55	- 3	60	0.0	IVIOXI	0.0	0.02	22.0	19.0	1 000	2 000	2 500	U252524	3.43	8.9	4.5
-00	00	10	4.0	70	_ 3	7.4		1.40		4.40	00.0	05.0	4 000		0.000	DCCCCCA	F 74	16	8.0
92	60	12	16	70	- 3	74	9	M6 × 1	5.5	1.10	28.0	25.6	1 000	2 000	3 000	RS3232A··	5.71	17	8.5
					- 3.5													32	16
114	75	15	19.5	85	3.5	93	11	M6 × 1	6.5	2.09	35.0	31.8	2 000	3 000	4 000	RS4040A··	8.82	33	17
					3.5													64	32
135	92	20	21.5	107	- 3.5	112	14	M6 × 1	7.0	3.90	44.0	40.8	2 000	3 000	4 000	RS5050A··	13.81	68	34
			l		0.0			ļ.	1		l	l					ļ		

6. Internal spatial volume of nut and volume of grease to be replenished are values for ball screws with seals. Recommended amount for replenishing is approximately 50% of nut's internal space. For ball screws without seals, apply grease to screw shaft surface or move ball nut by hand while filling them with grease so that grease permeates all areas. See page D16 for details.

Ball nut dimensions


Μ W Χ


Bolt hole

Length

Flange

Unit: mm Internal Standard

spatial volume mass/m volume of greas of nut replenishing (cm³) (cm³)

Shaft

Screw

shaft No.

Screw shaft

Ball nut No.	Shaft dia.	Lead <i>l</i>	Ball dia.	Ball circle dia. d _m	Root dia.	Effective turns of balls Turns × Circuits	Basic loa (N Dynamic <i>C</i> _a	1)	Axial play Max.	Ball nut dimensions Outside dia. D
RNFCL 1632A2 RNFCL 1632A2S						0.7 × 4	4 600	8 460		
RNFCL 1632A3 RNFCL 1632A3S	16	32	2.778	16.65	13.5	1.7 × 2	5 430	10 400	0.10	32
RNFCL 1632A6 RNFCL 1632A6S						1.7 × 4	9 860	20 800		
RNFCL 2040A2 RNFCL 2040A2S						0.7 × 4	6 610	13 600		
RNFCL 2040A3 RNFCL 2040A3S	20	40	3.175	20.75	17.3	1.7 × 2	7 810	16 500	0.10	38
RNFCL 2040A6 RNFCL 2040A6S						1.7 × 4	14 200	33 000		
RNFCL 2550A2 RNFCL 2550A2S						0.7 × 4	9 870	21 200		
RNFCL 2550A3 RNFCL 2550A3S	25	50	3.969	26	22.0	1.7 × 2	11 700	25 800	0.12	46
RNFCL 2550A6 RNFCL 2550A6S						1.7 × 4	21 200	51 500		
RNFCL 3264A3 RNFCL 3264A3S	32	64	4.762	33.25	28.0	1.7 × 2	17 100	40 500	0.15	58
RNFCL 3264A6 RNFCL 3264A6S		- '	02	22720		1.7 × 4	31 000	81 000	20	
RNFCL 4080A3 RNFCL 4080A3S	40	80	6.350	41.75	35.0	1.7 × 2	27 200	67 900	0.20	73
RNFCL 4080A6 RNFCL 4080A6S	.0		3.300		33.0	1.7 × 4	49 300	136 000	5.20	. 3

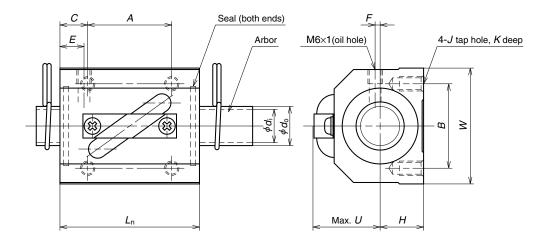
				34	3					0.21									2.4	1.2	
50	34	10	10	66	3	41	4.5	M6 × 1	5.5	0.33	13.5	11.5	500	1 000	1 500	-	RS1632A··	1.34	3.9	2.0	ı
				66	3					0.33									4.1	2.1	1
				41	3					0.31									4.1	2.1	-
58	40	10	11	81	3	48	5.5	M6 × 1	5.5	0.53	17.3	14.9	500	1 000	1 500	2 000	RS2040A··	2.15	6.3	3.2	
				81	3					0.53									7.0	3.5	
				50	3					0.53									8.4	4.2	
70	48	12	13	100	3	58	6.6	M6 × 1	7.0	0.91	22.0	19.6	1 000	2 000	2 500	-	RS2550A··	3.37	14	7.0	
				100	3					0.91									15	7.5	
92	60	10	16.6	100	3	74	9	Me v 1	7.5	1 76	000	25.6	1 000	2 000	2 000	4 000	DC2264A	E 60	24	12	
92	60	12	15.5	126	3	/4	9	M6 × 1	7.5	1.76	28.0	25.6	1 000	2 000	3 000	4 000	RS3264A··	5.63	26	13	-
114	75	15	10	150	3.5	00	11	MC 1	10.0	0.44	25.0	01.0	2 000	2 000	4 000	F 000	DC 4000 A	0.00	52	26	
114	75	15	19	158	3.5	93	11	M6 × 1	10.0	3.44	35.0	31.8	2 000	3 000	4 000	ວ 000	RS4080A··	8.69	55	28	

Arbor

Mass. Outside dia. Bore Standard length

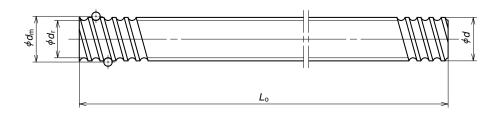
Nut

(kg)


Oil hole

Q

- Notes: 1. Actual screw shaft length may become slightly longer than nominal length L₀ due to manufacturing tolerance.
 - 2. Nut assembly with arbor and screw shaft are separate at time of delivery.
 - 3. Value obtained by diving the standard screw shaft length by 100 mm will be entered at end of the part number where
 - 4. Items in stock do not have surface treatment. For details of standard stock products, contact NSK. 5. Length of nut becomes longer $(2 \times M)$ for those with "brush" seals.


B385 B386

^{6.} Internal spatial volume of nut and volume of grease to be replenished are values for ball screws with seals. Recommended amount for replenishing is approximately 50% of nut's internal space. For ball screws without seals, apply grease to screw shaft surface or move ball nut by hand while filling them with grease so that grease permeates all areas. See page D16 for details.

						Effective	Basic Id	ad rating		Dall aut dissassions
D. II M	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls Turns	Dasic ic	(N)	Axial	Ball nut dimensions Length
Ball nut No.	d	l	$D_{\rm w}$	dia. d _m	d _r	×	Dynamic C _a	Static Coa	play Max.	L
RNSTL 1404A3.5S	14	4	2.778	14.5	11.5	3.5×1	5 370	10 800	0.10	38
RNSTL 1405A2.5S	14	5	3.175	14.5	11.0	2.5×1	5 260	9 720	0.10	38
RNSTL 1808A3.5S	18	8	4.762	18.5	13.6	3.5×1	13 200	25 800	0.15	56
RNSTL 2005A2.5S	20	5	3.175	20.5	17.0	2.5 × 1	6 360	14 200	0.10	38
RNSTL 2010A2.5S	20	10	4.762	21.25	16.2	2.5 × 1	10 900	21 800	0.15	58
RNSTL 2505A2.5S	25	5	3.175	25.5	22.0	2.5 × 1	7 070	18 200	0.10	35
RNSTL 2510A5S	25	10	6.35	26	19.0	2.5×2	31 800	70 300	0.20	94
RNSTL 2806A2.5S	28	6	3.175	28.5	25.0	2.5 × 1	7 430	20 300	0.10	42
RNSTL 2806A5S	28	О	3.175	28.5	25.0	2.5 × 2	13 500	40 600	0.10	67
RNSTL 3210A2.5S	32	10	6.35	33.75	27.0	2.5 × 1	19 700	46 100	0.20	64
RNSTL 3210A5S	32	10	0.35	33.75	27.0	2.5 × 2	35 700	92 200	0.20	94
RNSTL 3610A2.5S	36	10	6.35	37	30.0	2.5 × 1	21 000	51 000	0.20	64
RNSTL 3610A5S	36	10	0.35	37	30.0	2.5 × 2	38 100	102 000	0.20	96
RNSTL 4512A5S	45	12	7.144	46.5	39.0	2.5 × 2	49 600	147 000	0.23	115

- Notes: 1. Actual screw shaft length may become slightly longer than nominal length L₀ due to manufacturing tolerance.
 2. Nut assembly with arbor and screw shaft are separate at time of delivery.
 3. Value obtained by diving the standard screw shaft length by 100 mm will be entered at end of the part number where marked with · ·

Unit: mm

			Ball	nut di	imens	ions				Nut	Ark	Arbor Screw shaft						Internal	Standard
Width	Center height		В	olt ho	le		Oil h	ole		Mass.	Outside dia.	Bore	Stan	Standard length		Screw shaft	Shaft mass/m	spatial volume	volume of greas
W	Н	Α	В	С	J	K	Ε	F	U	(kg)	$d_{\scriptscriptstyle 0}$	d _i		L。		No.	(kg)	of nut	replenishing (cm³)
34	13	22	26	8	M4	7	7	3	20	0.20	11.5	9.5	500	1 000	-	RS1404A··	1.02	1.6	0.8
34	13	22	26	8	M4	7	7	3	21	0.20	11.0	9.0	500	1 000	-	RS1405A··	1.00	1.8	0.9
48	17	35	35	10.5	M6	10	8	3	26	0.31	13.6	11.6	500	1 000	1 500	RS1808A··	1.60	3.4	1.7
48	17	22	35	8	M6	9	6	2	27	0.24	17.0	14.6	500	1 000	2 000	RS2005A··	2.17	2.5	1.3
48	18	35	35	11.5	M6	10	10	2	28	0.35	16.2	13.8	500	1 000	2 000	RS2010A··	2.18	6.3	3.2
60	20	22	40	6.5	M8	10	6	0	27	0.31	22.0	19.6	1 000	2 000	2 500	RS2505A··	3.47	2.6	1.3
60	23	60	40	17	M8	12	10	0	32	1.32	19.0	16.6	1 000	2 000	2 500	RS2510A··	3.13	18	9.0
60	22	18	40	12	M8	12	8	0	32	0.65	25.0	22.6	1 000	2 000	3 E00	RS2806A··	4 47	3.5	1.8
60	22	40	40	13.5	IVIO	12	8	0	32	1.04	25.0	22.0	000	2 000	2 500	N32800A	4.47	7.0	3.5
70	26	45	50	9.5	M8	12	10	0	38	1.12	27.0	24.6	1 000	2 000	2 000	RS3210A··	5.53	18	9.0
70	26	60	50	17	IVIO	12	10	U	38	1.75	27.0	24.0	1 000	2 000	3 000	N53210A	5.53	27	14
86	29	45	60	9.5	M10	16	11	0	41	1.76	30.0	27.6	1 000	2 000	2 000	RS3610A··	6.91	18	9.0
86	29	60	60	18	IVITU	10	11	U	41	2.64	30.0	27.0	1 000	2 000	3 000	n33010A	0.91	27	14
100	36	75	75	20	M12	20	13	0	46	1.22	39.0	35.8	2 000	3 000	4 000	RS4512A··	11.16	47	24

- 4. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.
- 5. Seal for those with shaft diameter of 14 mm or less is made of synthetic resin. Seal for those of 16 mm or more is a
- 6. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

B387 B388

NS

B-3-1.7 Accessories

Accessories to use with NSK ball screws are available.

Table 1 Support unit categories

Application		Shape	Support side	Bearing in use	Bearing bore, Bearing seat diameter	Page
		WBK**-01*	Fixed support side	Angular contact ball bearing	φ4 – φ25	B395 -
Small equipment, light load	Square	WBK**S-01*	Simple support	Deep groove ball bearing	φ6 – φ25	B399 -
		WBK**SF-01		Deep groove ball bearing	φ12, φ15 (exclusive for VFA type)	B402

1. Classification

Ball screw support units are classified into categories by their shape (**Table 1**). Select the type that best suits your particular needs.

2. Features

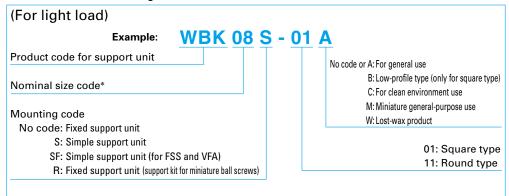
Bearings and seals

On the fixed support side, the angular contact ball bearing is used. It has great rigidity and low friction torque, which match the rigidity of the ball screw. The thrust angular contact ball bearing with high precision and great rigidity is another choice for the fixed support side.

An oil seal is installed to the fixed support side used with an angular contact ball bearing. Fine clearance may occur with this seal.

A deep-groove ball bearing with a shield on both sides is used on the simple support side.

Lock nut is provided.


A lock nut with fine grade finish is provided to fix the bearing with high precision.

The lock nuts are designed to be difficult to loosen, but they can still loosen if subjected to strong mechanical vibration. If necessary, this should be prevented by applying threadlocking adhesive or taking similar precautions.

А	pplication		Shape	Support side	Bearing in use	Bearing bore, Bearing seat diameter	Page	
	Small	Round	WBK**R-11 (Support kit)	Fixed support	Deep groove ball bearing (arranged to have angular contact)	φ4, φ6 (exclusive for RMA and RMS types)	B401	
	ght load	uipment, Round	side	Angular contact ball bearing	φ4 – φ25	B397 -		
to	Machine ools, high peed, eavy load	Round	WBK**DF*-31H	Fixed support side	Thrust angular contact ball bearing	φ17 – φ40	B407 –	Support unit

B389 B390

3. Reference number coding

*) In case of simple support unit, please note that the nominal size code of 12 or less does not strictly represent internal bore of bearing in millimeters. Please refer to the dimensional table for internal bore of bearing.

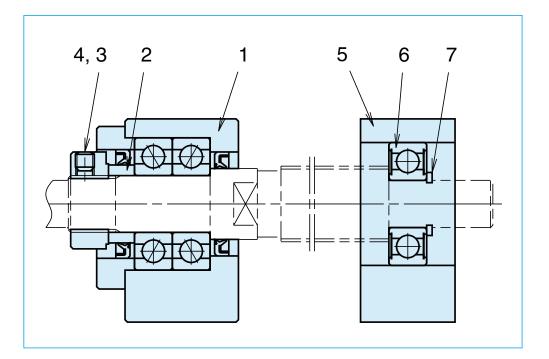
(1) Support Units for Light Load and Small Equipment

Support units for light load and small equipment provide both fixed and support side bearing assemblies to support screw shafts. They provide all required parts such as bearing locknuts so that you can mount them directly to NSK standard ball screws, of which shaft ends are machined.

Please refer to the dimensions listed on the dimension table for the configuration of standard screw shaft ends for NSK standard ball screws with blank shaft ends. For ball screws for transfer equipment, you require optional spacers when mounting fixed support side support units.

(a) Features

- Prompt deliverySupport units are standard products.
- Best selection of bearings for your application


General use support units for fixed support side are equipped with highly rigid angular contact ball bearings that have been assembled with proper preload, and packed with the appropriate volume of grease. On the other hand, clean support units for fixed support side uses low dust emission grease, and low torque special bearings. Sealed deep groove ball bearings are used for simple support side units for both general and clean environment use.

B391 B392

Accessories

Support units provide everything necessary for mounting ball screws to machines. (Please refer to the table below.)

* Do not disassemble fixed support side units as they are equipped with bearings and oil seals.

Antirust treatment

The table on the right shows the surface treatment for the bearing housing, and material of small parts.

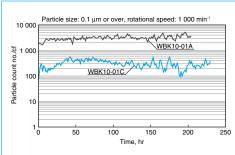
Fi	xed support side	Simple support side				
Part No.	Name of parts	Part No.	Name of parts			
1	Bearing housing	5	Bearing housing			
2	Spacer	6	Bearing			
3	Locknut	7	Snap ring			
4	Set screw					
4	with brass pad					

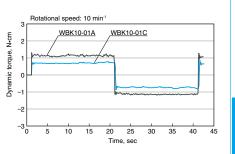
	General support unit
Bearings and grease	Angular contact ball bearings, PS2
Surface treatment	Black oxide
Screws and snap rings	Standard material

(b) Features of Clean Support Unit

Outstanding low dust emission
Clean support unit uses "NSK clean grease
LG2" which has a proven feature of low
dust emission. It reduces dust emission to
1/10 of general support units.

●Low torque


It features low torque characteristics because of special bearings. (50% lower than general support unit.)


High antirust specification

Low temperature chrome plating is applied to bearing housings, retaining plates, locknuts and spacers to improve antirust properties. Moreover, bolts and snap rings are made of stainless steel.

The table below shows the surface treatment of the bearing housing and material of small parts.

	Clean support unit
Bearing • grease	Special bearings, LG2
Surface treatment	Low temperature chrome plating
Set screw and snap ring material	Stainless steel

upport un

NSK

Tightening torque (reference) [N-cm]

Set screw

69 (M3)

69 (M3)

69 (M3)

147 (M4)

147 (M4)

147 (M4)

147 (M4)

147 (M4)

490 (M6)

Locknut

100

190

230

280

630

790

910

1670

2060

Reference No.

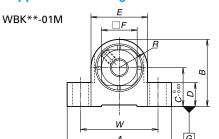
WBK04-**

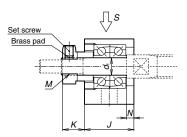
WBK06-**

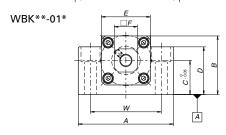
WBK08-**

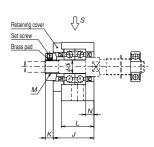
WBK10-**

WBK12-**

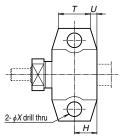

WBK15-**

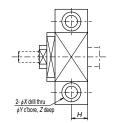

WBK17-**

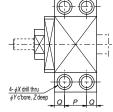

WBK20-**


WBK25-**

Support Units for Light Load and Small Equipment

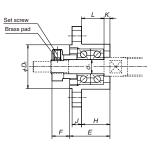



Fixed support side support unit (square type)

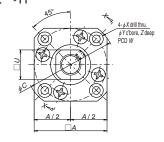

Reference No.	Use	d_1	А	В	С	D	Ε	F	L	J	К	R
WBK04-01M	General	4	27	17	10	6	14	10	_	14	5.5	7
WBK06-01M	General	6	35	22.5	13	8	19	12	_	17	7.5	9.5
WBK06-01A*1	General	6	42	25	13	20	18	12	20	20	5.5	_
WBK08-01A*1	General		52	32	17	26	25		23	23	7	
WBK08-01B	Low type	8	62	31	15.5	31	_	14	21.5	25.5	4.5	_
WBK08-01C*1	Clean environment		52	32	17	26	25		23	23	7	
WBK10-01A	General			43	25	35	36					
WBK10-01B	Low type	10	70	38	20	38	_	17	24	30	5.5	_
WBK10-01C	Clean environment			43	25	35	36					
WBK12-01A	General			43	25	35	36					
WBK12-01B	Low type	12	70	38	20	38	_	19	24	30	5.5	_
WBK12-01C	Clean environment			43	25	35	36					
WBK15-01A	General			50	30	40	41					
WBK15-01B	Low type	15	80	42	22	42	_	22	25	31	12	_
WBK15-01C	Clean environment			50	30	40	41					
WBK17-01A	General	17	86	64	39	55	50	24	35	44	7	_
WBK20-01	General	20	95	58	30	45	56	30	42	52	10	_
WBK25-01W	General	25	105	68	35	25	66	36	48	61	13	_

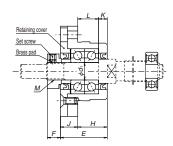
Notes: 1. Use datum surface A for mounting to machine base.

- 2. Tighten set screw after locknut has been adjusted and tightened.
- 3. Insert brass pad provided with unit into locknut set screw hole, then insert and tighten the set screw.
- 4. Deep groove ball bearing and snap ring are also provided for simple support side. (except WBK04-01M and WBK06-01M)


View S (WBK06 - 15)

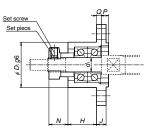
View S (WBK17 - 25)

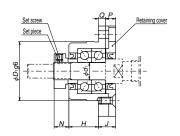

Т	U	N		Со	unterb	ore di	mensi	ons		Mass	Locknut screw	Attached bearing for support side
			Н	Р	Q	W	X	Y	Ζ	(kg)	М	support side
9	2.5	2	7	_	_	21	3.5	_	_	0.03	M4×0.5	_
12	2.5	2.5	8.5	_	_	26	5.5	_	_	0.05	M6×0.75	_
_	_	3.5	10	_	_	30	5.5	9.5	11	0.15	M6×0.75	_
		4	11.5			38	6.6	11	12	0.25		606ZZ
_	_	3.5	11	_	_	46	9	14	18	0.3	M8×1	606ZZ
		4	11.5			38	6.6	11	12	0.25		606VV
									11	0.5		608ZZ
_	_	6	12	_	_	52	9	14	19	0.45	M10×1	608ZZ
									11	0.5		608VV
									11	0.5		6000ZZ
_	_	6	12	_	_	52	9	14	19	0.4	M12×1	6000ZZ
									11	0.5		6000VV
									15	0.7		6002ZZ
_	_	5	12.5	_	_	60	11	17	23	0.6	M15×1	6002ZZ
									15	0.7		6002VV
_	_	7	_	19	8	68	9	14	11	1.3	M17×1	6203ZZ
_	_	10	_	22	10	75	11	17	15	1.4	M20×1	6204ZZ
_	_	14	_	30	9	85	11	_	_	1.9	M25×1.5	6205ZZ
		_				_						


- 5. Bearings for WBK04-01M and WBK06-01M are equipped with non-contact metal shield.
- *1) For retaining cover side of WBK06-01A, WBK08-01A, and WBK08-01C, there are no seals.
- 6. Contact NSK if the rotational speed is 50 min⁻¹ and below.

B395 B396

View X-X (example 1)


Fixed support side support unit (round type)


Reference No.	Use	d_1	А	С	D_1	D_2	Ε	Н	L	К	F	N
WBK04-11M	General	4	14	26	14	14	13.5	8.5	7	1.5	5.5	6.6
WBK06-11M	General	6	19	34	19	18.5	17	12	9.5	2.5	7.5	8
WBK06-11*	General	6	28	35	22	_	20	13	9.5	3.5	5.5	6.5
WBK08-11B	High-load type		42	52	34		25.5	15.5	12	3.5	4.5	7
WBK08-11*	General	8	35	43	28	_	23	14	10	4	7	8
WBK08-11C*	Clean environment		30	43	20		23	14	10			
WBK10-11	General	10	42	52	34		27	17	12	5	7.5	8.5
WBK10-11C	Clean environment	10	42	52	34		21	17	12) 5		0.5
WBK12-11	General	12	44	54	36		- 27	17	12	5	7.5	8.5
WBK12-11C	Clean environment	12	44	54	30	_					7.5	0.5
WBK15-11	General	15	52	63	40		32	17	11	_	12	14
WBK15-11C	Clean environment	15	52	03	40	_	32	17	' '	6	12	14
WBK20-11	General	20	68	85	57	_	52	30	20	10	10	14
WBK25-11	General	25	79	98	63	_	57	30	20	10	13	20

Notes: 1. Tighten set screw after locknut has been adjusted and tightened.

2. Insert brass pad provided with unit into locknut set screw hole, then insert and tighten the set screw.

3. Deep groove ball bearing and snap ring are also provided for simple support side. (except WBK04-11M and WBK06-11M)

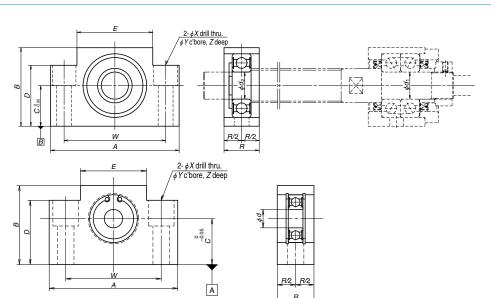
(example 2)

Reference No.	Tightening torque	(reference) [N·cm]
neierence no.	Locknut	Set screw
WBK04-**	100	69 (M3)
WBK06-**	190	69 (M3)
WBK08-**	230	69 (M3)
WBK10-**	280	147 (M4)
WBK12-**	630	147 (M4)
WBK15-**	790	147 (M4)
WBK17-**	910	147 (M4)
WBK20-**	1670	147 (M4)
WBK25-**	2060	490 (M6)

										Units: mm	Support unit
U	Р	Q	С	ounterk	oore dir	nensior	าร	Mass	Locknut screw	Attached bearing for support side	tunit
			J	W	Χ	Y	Ζ	(kg)	М	Support side	
10	2.6	2.4	3	20	3.5	_	_	0.02	M4×0.5	_	
12	3	2	4	26 4.5 — — 0.04 M6×0.75		_					
12	4.5	2.5	7	28	2.9	5.5	3.5	0.1	M6×0.75	_	
	6		10	42	4.5	8		0.2		606ZZ	
14	5	4	9	35	3.4	6.5	4	0.15	M8×1	606ZZ	
	5		9	35	3.4	0.5		0.15		606VV	
17	6	4	10	42	4.5	8	4	0.2	M10×1	608ZZ	
17	0	4	10	42	4.5		4	0.2	WITOXT	608VV	
19	6	4	10	44	4.5	8	4	0.25	M12×1	6000ZZ	
19	0	4	10	44	4.5	0	4	0.25	IVITZXT	6000VV	
22	8	7	15	50	5.5	9.5	6	0.4	M15×1	6002ZZ	
22	0	,	15	50	5.5	9.5	0	0.4	WITSXT	6002VV	
30	14	8	22	70	6.6	11	10	1.1	M20×1	6204ZZ	
36	17	10	27	80	9	15	13	1.5	M25×1.5	6205ZZ	

4. Bearings for WBK04-01M and WBK06-01M are equipped with non-contact metal shield.

*For retaining cover side of WBK06-01A, WBK08-01A, and WBK08-01C, there are no seals.


5. Contact NSK if the rotational speed is 50 min⁻¹ and below.

B397 B398

Specifications of support unit

	Fixed s	support side si	upport unit			Simple supp	ort side su	pport unit
		Axia	al direction		Maximum starting		Bearing	Radial direction Basic dynamic loa
Reference No.	Use	Basic dynamic load rating <i>Ca</i> [N]	Load limit [N]	Rigidity [N/µm]	torque [N·cm]	Reference No.	reference No.	rating C [N]
WBK04-01M	General	1 470	464	39	0.2	_	_	_
WBK04-11M	General	1 470	464	39	0.2	_	_	_
WBK06-01A	General	2 670	1 040	28	0.49	_	_	_
WBK06-01M	General	2 760	854	60	0.35	_	_	_
WBK06-11	General	2 670	1 040	28	0.49	_	_	_
WBK06-11M	General	2 760	854	60	0.35	_	_	_
WBK08-01A	General	4 400	1 450 2 730	49	0.88	WBK08S-01	606ZZ	2 260
WBK08-01B	Low type	6 600	2 730	94	1.9	WBK08S-01B	606ZZ	2 260
						WBK12SF-01B*1	6801ZZ	1 920
WBK08-01C	Clean environment	3 100	1 100	36	0.52	WBK08S-01C	606VV	2 260
WBK08-11	General	4 400	1 450	49	0.88	WBK08S-01	606ZZ	2 260
WBK08-11B	High load	6 600	2 730	94	1.9	_	606ZZ	2 260
WBK08-11C	Clean environment	3 100	1 100	36	0.52	WBK08S-01C	606VV	2 260
WBK10-01A	General	6 600	2 730	94	1.9	WBK10S-01	608ZZ	3 300
						WBK12SF-01*2	6001ZZ	5 100
WBK10-01B	Low type	6 600	2 730	94	1.9	_	608ZZ	3 300
WBK10-01C	Clean environment	4 250	1 364	50	1.1	WBK10S-01C	608VV	3 300
WBK10-11	General	6 600	2 730	94	1.9	WBK10S-01	608ZZ	3 300
WBK10-11C	Clean environment	4 250	1 364	50	1.1	WBK10S-01C	608VV	3 300
WBK10-11C WBK12-01A	General	7 100	3 040	104	2.1	WBK12S-01	6000ZZ	4 550
						WBK15SF-01*2	6902ZZ	4 350
WBK12-01B	Low type	7 100	3 040	104	2.1	WBK12S-01B	6000ZZ	4 550
						WBK15SF-01B*1	6902ZZ	4 350
WBK12-01C	Clean environment	4 700	2 443	57	1.2	WBK12S-01C	6000VV	4 550
WBK12-11	General	7 100	3 040	104	2.1	WBK12S-01	6000ZZ	4 550
WBK12-11C	Clean environment	4 700	2 443	57	1.2	WBK12S-01C	6000VV	4 550
WBK15-01A	General	7 600	3 380	113	2.4	WBK15S-01	6002ZZ	5 600
WBK15-01B	Low type	7 600	3 380	113	2.4	WBK15S-01B	6002ZZ	5 600
						WBK20SF-01B*1	6804ZZ	4 000
WBK15-01C	Clean environment	5 100	2 757	63	1.3	WBK15S-01C	6002VV	5 600
WBK15-11	General	7 600	3 380	113	2.4	WBK15S-01	6002ZZ	5 600
WBK15-11C	Clean environment	5 100	2 757	63	1.3	WBK15S-01C	6002VV	5 600
WBK17-01A	General	13 400	5 800	120	3.5	WBK17S-01	6203ZZ	9 550
WBK20-01	General	17 900	8 240	155	6.2	WBK20S-01	6204ZZ	12 800
						WBK25SF-01*1	6005ZZ	10 100
WBK20-11	General	17 900	8 240	155	6.2	WBK20S-01	6204ZZ	12 800
WBK25-01W	General	20 200	10 000	192	7.2	WBK25S-01W	6205ZZ	14 000
WBK25-11	General	20 200	10 000	192	7.2	WBK25S-01W	6205ZZ	14 000
WBK04R-11	General	615	490	6.5	0.59		_	_
WBK06R-11	General	1 280	930	9	0.59	_	_	_

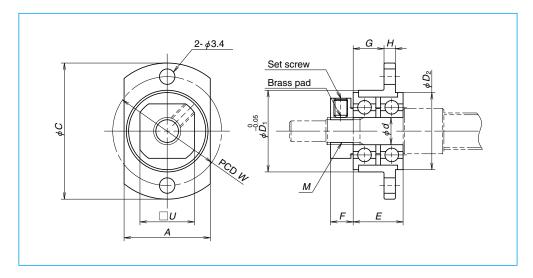
Notes: 1. *1 is exclusive for FSS type.
2. *2 is exclusive for VFA type.
3. Permissible axial load is 0.7 times of limiting axial load.

Simple support side support unit (square type)

Units: mm

			(,,,	•												
Reference No.	Use	d ₂	A	В	С	D	E	R	Cour	terbore	dimen	sions	Mass				
		_							W	X	Y	Z	(kg)				
WBK08S-01	General		52	32	17	26	25	15	38	6.6	11	12	0.15				
WBK08S-01B	Low type	6	62	31	15.5	31	_	16	46	9	14	18	0.2				
WBK08S-01C	Clean environment		52	32	17	26	25	15	38	6.6	11	12	0.15				
WBK10S-01	General	8	70	43	25	35	36	20	52	9	14	11	0.4				
WBK10S-01C	Clean environment	Ö	/0	43	25	35	30	20	52	9	14	''	0.4				
WBK12S-01	General			43	25	35	36					11	0.35				
WBK12S-01B	Low type	10	70	70 38	20	38	_	20 52	EO			19	0.4				
WBK12S-01C	Clean environment		/0	43	25	35	36	20	52	9	14	11	0.35				
WBK12SF-01*2	General	12	43	25	35	30					''	0.3					
WBK12SF-01B*1	Low type	12	62	31	15.5	31	_	18	46			18	0.2				
WBK15S-01	General	/ '	General			50	30	40	41					11	0.45		
WBK15S-01B	Low type		80	42	22	42	_	20	60		23	0.4					
WBK15S-01C		Clean environment 15	Clean environment 15		15		50	30	40	41	20		9	14	11	0.45	
WBK15SF-01*2	General		70	43	25	35	36		52			''	0.0				
WBK15SF-01B*1	Low type		/0	38	20	38	_	18	52			19	0.3				
WBK17S-01	General	17	86	64	39	55	50	23	68	9	14	11	0.8				
WBK20S-01	General Low type	20	95	58	30	45	56	26	75	11	17	15	0.8				
WBK20SF-01B		1 20	80	42	22	42	_	22	60] ' '	17	23	0.4				
WBK25S-01W		,,,	7.	7.	,,	25	105	68	35	25	66	30	85	11	_	_	0.9
WBK25SF-01*1	General	25	95	58	30	45	56	22	75	11	17	15	0.55				

Notes:


1. Use datum surface B for mounting to machine base.
2. For reference No. 12 or lower numbers, note that the reference numbers and inner dimensions of the bearing are different.
3. WBK ** SF is a type supporting screw shaft OD.
4. See page B400 for bearing reference number and the basic dynamic load rating in the radial direction.
5. *1 is exclusive for FSS type.
6. *2 is exclusive for VFA type.

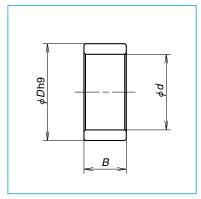
Support Unit (Support Units for Light Load and Small Equipment)

Support kits for ball screws for transfer equipment

Support kits are for RMA type ball screw.

In case of RMA1002 or larger rolled ball screws, please use support units for general use.

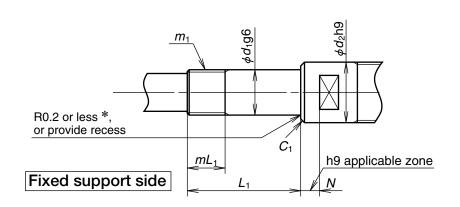
lnits:	mm


Reference No.	А	С	d	D_1	D_2	Ε	F	G	Н	W	U	М	Mass (kg)
WBK04R-11	14	25	4	13	12.5	9	5	5	2.5	19	10	M4×0.5	0.13
WBK06R-11	19	30	6	18	17	11	5	6.8	2.5	24	12	M6×0.75	0.23

Reference No.	Applicable ball screw	Locknut tightening torque (reference) [N·cm]	Set screw tightening torque (reference) [N·cm]		
WBK04R-11	RMA0601	100	38 (M2.5)		
WBK06R-11	RMA0801 RMA0801.5 RMA0802	190	69 (M3)		

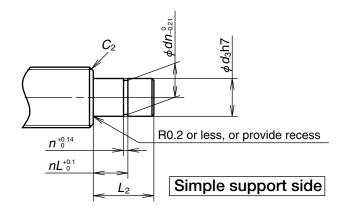
- 1. Oscillate bearings slowly so that they fall into place in which run-out of mounting surface is minimal, and then tighten locknut.
- 2. Support kit is on provisional shaft (bolt) during shipping.
- 3. When securing support unit on shaft, insert brass pad that is provided with support unit into lock nut hole, and then tighten set screw.

Spacer


When using a fixed support unit, it may require an optional spacer to have an effective shoulder surface at where the ball thread is threaded to the end of the shoulder. This is common for the R series for transporting ball screws.

					Units: mm
Reference No.	Internal	Outside	Width	Mass	Applicable
	diameter, d	diameter, D	В	(g)	support unit
WBK06K	6	9.5	5.0	2	WBK06-**
WBK08K	8	11.5	5.5	2	WBK08-**
WBK10K	10	14.5	5.5	4	WBK10-**
WBK12K	12	15.0	5.6	3	WBK12-**
WBK15K	15	19.5	10.0	10	WBK15-**
WBK17K	17	24.4	7.0	13	WBK17-**
WBK20K	20	25.5	11.0	17	WBK20-**
WBK25K	25	32.0	14.0	34	WBK25-**

Screw shaft end configuration

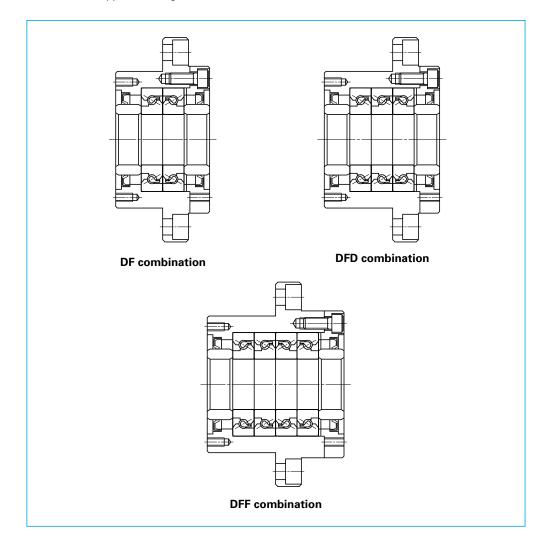

Dimensions of the shaft end configurations for light load and small equipment support units are shown in the table below. When using a spacer with a ball screw for transporting equipment, add the width of the spacer (B from the table of spacer dimensions on page B402) to L₁ dimension below.

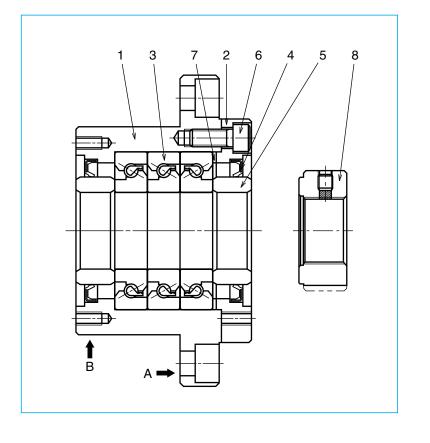
Radius marked with * above is 0.15 or less for WBK04R-11 and WBK06R-11.

L	Inits:	mm

	Fixed support side														
Reference No.	Bearing	journal	Locknut	t thread	Sealin	Chamfer									
neterence No.	d ₁	L ₁	m₁	mL₁	d ₂	N	C ₁								
WBK06- * *	6	22.5	M6×0.75	7	9.5	3.5	0.2								
WBK08- * *	8	27	M8×1	9	11.5	4	0.2								
WBK10- * *	10	30	M10×1	10	14	6	0.2								
WBK12- * *	12	30	M12×1	10	15	6	0.2								
WBK15- * *	15	40	M15×1	15	19.5	5	0.3								
WBK17- * *	17	46	M17×1	17	24	7	0.3								
WBK20-**	20	53	M20×1	16	25	10	0.3								
WBK25- * *	25	62	M25×1.5	20	32	14	0.5								
WBK04R-11	4	15	M4×0.5	7.5	_	_	0.3								
WBK06R-11	6	17	M6×0.75	7.5	_	_	0.3								

Units: mm


		Simp	le support sid	e						
Reference No.	Bearing	journal	S	Snap ring groove						
neterefice No.	d ₃	L ₂	n	dn	nL	C ₂				
	_	_	_	_	_	_				
WBK08S- * *	6	9	0.8	5.7	6.8	0.2				
WBK10S- * *	8	10	0.9	7.6	7.9	0.2				
WBK12S- * *	10	22	1.15	9.6	9.15	0.5				
WBK15S- * *	15	25	1.15	14.3	10.15	0.5				
WBK17S- * *	17	16	1.15	16.2	13.15	0.5				
WBK20S- * *	20	19	1.35	19	15.35	0.5				
WBK25S- * *	25	20	1.35	23.9	16.35	0.5				


oupport un

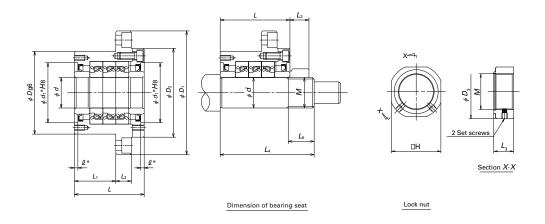
(2) Support unit for ball screws for high-speed and heavy-load machine tools

Support units for high-speed and heavy-load machine tools use the ball screw support bearings NSKHPS™ BSBD series. This series has very suitable functions and structure as a ball screw support bearing. There are three

bearing combinations as shown below.

Parts list

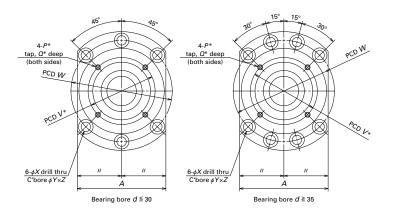
Part No.	Part name	Quantity
1	Housing	1
2	Retaining cover	1
3	High accuracy thrust angular contact ball bearing	One set
4	Dust seal	2
5	Collar	2
6	Preload bolt	6 or 8
7	Shim	One set
8	Lock nut	1


Notes:

- Surface A and B are the datum surfaces to mount a support unit to machine housing.
- 2. NSK support units are precisely preloaded and adjusted. Do not disassemble the components 1, 2, 3, 4, 5, 6 and 7.
- 3. Grease is packed into the bearings.
- 4. Lock nut 8 is exclusively prepared for ball screws. End surface of nut is in strict control being precisely perpendicular to the V thread. Secure lock nut using set screw.

Lock nut is also available as accessory. (See page B409.) See page B415 as well for ball screw support bearings NSKTAC C series.

Support Unit (For high speed, heavy load machine tools)



Support unit No.													Basic dynamic load rating	Limiting axial load					
	d	D	D ₁	D ₂	L	L ₁	L ₂	Α	W	X	Y	Ζ	d, *	Q*	V*	P*	Q*	C, [N]	[N]
WBK17DF-31H	17	70	106	72	60	32	15	80	88	9	14	8.5	45	3	58	M5	10	23 000	26 600
WBK20DF-31H	20	70	106	72	60	32	15	80	88	9	14	8.5	45	3	58	M5	10	23 000	26 600
WBK25DF-31H					66	33												29 900	40 500
WBK25DFD-31H	25	85	130	90	81	48	18 1	100	110	11	17.5	11	57	4	70	M6	12	48 500 (29 900)	81 500 (40 500)
WBK30DF-31H					66	33											30 500	43 000	
WBK30DFD-31H	30	85	130	90	81	48	18	100	100 110	11	17.5	11	57	4	70	M6	12	50 000 (30 500)	86 000 (43 000)
WBK35DF-31H					66	33												32 500	50 000
WBK35DFD-31H	35	95	142	102	81	48	18	106	121	11	17.5	11	69	4	80	M6	12	53 000 (32 500)	100 000 (50 000)
WBK35DFF-31H					96	48												53 000	100 000
WBK40DF-31H					66	33												33 500	52 000
WBK40DFD-31H	40	95	142	102	81	48	18	106	121	11	17.5	11	69	4	80	M6	12	54 000 (33 500)	104 000 (52 000)
WBK40DFF-31H					96	48												54 000	104 000

Notes: 1. Rigidity

Values in the table are theoretical values obtained from the elastic deformation between ball groove and balls.

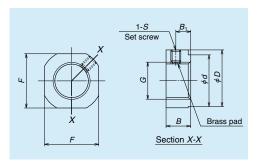
- 2. Starting torque
- Starting torque indicates torque due to the preload of the bearing. It does not include seal torque.
- 3. The tolerance of the shaft bearing seat
 - We recommend h5 class of the fits tolerance.
- 4. Values in parentheses of basic dynamic load rating and permissible axial load are the values when axial load is applied in a line.

Unit: mm

											٥.	IIC. 111111
		Maximum			Lock nu	t					Permissible	
Preload	Axial rigidity	Starting	Dimension torque				Screwing torque (reference)	Bearing seat for unit			rotational	Mass
C _a [N]	[N/µm]	[N · cm]	М	Н	D_3	L ₃	[N · cm]	d	L ₄	L ₅	[min ⁻¹]	[kg]
1 450	630	14	M17×1.0	32	37	18	4 100	17	81	23	6 900	1.9
1 450	630	14	M20×1.0	36	40	18	4 500	20	81	23	6 900	1.9
2 280	850	21							89			3.1
3 100	1 250	28	M25×1.5	41	45	20	8 500	25	104	26	5 200	3.4
2 400	890	23							89			3.0
3 260	1 310	30	M30×1.5	.5 46 5	50	20	10 100	30	104	26	4 900	3.3
2 750	1 030	27							92			3.4
3 740	1 500	34	M35×1.5	50	55	22	13 800	35	107	30	4 100	4.3
5 490	2 060	43							122			5.0
2 860	1 080	28							92			3.6
3 900	1 590	36	M40×1.5	55	60	22	15 500	40	107	30	4 100	4.2
5 730	2 150	46							122			4.7

- 5. Dimensions with * (asterisk) mark
- *Pilot diameter and tapped screws marked with asterisk are used for seal unit installation for NSK standard hollow shaft ball screws. They also can be used for dust cover and damper installation.
- 6. Grease is packed into bearing. It is not necessary to apply grease before use.
- 7. Permissible axial load is 0.7 times of limiting axial load.
- 8. Contact NSK if the rotational speed is 50 min⁻¹ and below.

Lock nut


NS

In addition to the support units, NSK has other components for ball screws as shown below.

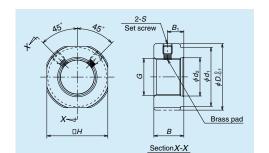
(3) Lock nuts

Ball screw support bearings must be installed

with minimum inclination against ball screw center. NSK lock nuts exclusive for ball screw support bearings help to reduce this inclination.

Light load Shapes and dimensions

Light load lock nuts


Light load lock nuts

Lock nut reference No.	G	D	F	В	d
WBK06L-01	M6×0.75	14.5	12	5	10
WBK08L-01	M8×1	17	14	6.5	13
WBK10L-01	M10×1	20	17	8	16
WBK12L-01	M12×1	22	19	8	17
WBK15L-01	M15×1	25	22	10	21
WBK17L-01	M17×1	29	24	13	24
WBK20L-01	M20×1	35	30	13	26
WBK25L-01	M25×1.5	42	36	16	34

Note: Insert brass pad and then tighten securing set screw.

High speed and heavy load lock nuts

Lock nut reference No.	G	D-0.1	В	d₁	$d_{\scriptscriptstyle 2}$
WBK17L-31H	M17×1	37	18	30	18
WBK20L-31H	M20×1	40	18	30	21
WBK25L-31H	M25×1.5	45	20	40	26
WBK30L-31H	M30×1.5	50	20	40	31
WBK35L-31H	M35×1.5	55	22	49	36
WBK40L-31H	M40×1.5	60	22	49	41

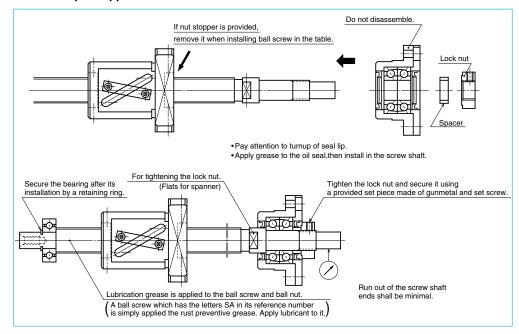
High speed and heavy load Shapes and dimensions

High speed and heavy load lock nuts

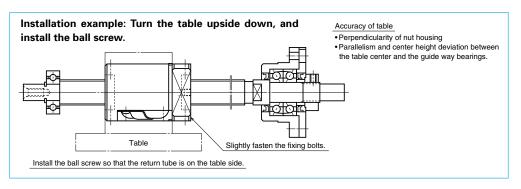
B ₁	S	Tightening torque (reference) [N · cm]	Set screw tightening torque (reference) [N · cm]	Mass (g)
2.75	M3, with a brass pad	190	69 (M3)	3.8
4	M3, with a brass pad	230	69 (M3)	6.4
5	M4, with a brass pad	280	147 (M4)	11.2
5	M4, with a brass pad	630	147 (M4)	12.8
6	M4, with a brass pad	790	147 (M4)	20.0
8	M4, with a brass pad	910	147 (M4)	33.1
8	M4, with a brass pad	1 670	147 (M4)	50.0
10	M6, with a brass pad	2 060	490 (M6)	87.0

Unit: mm

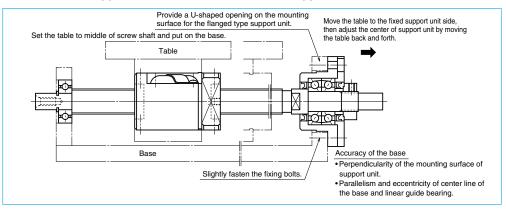
Unit: mm

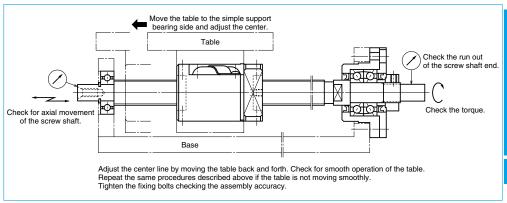

B_1	Н	S	Tightening torque (reference) [N · cm]	Set screw tightening torque (reference) [N · cm]	Mass (g)
10	32	M6	4 100	490 (M6)	100.9
10	36	M6	4 500	490 (M6)	117.3
11	41	M6	8 500	490 (M6)	163.8
11	46	M6	10 100	490 (M6)	186.7
12	50	M6	13 800	490 (M6)	233.4
12	55	M6	15 500	490 (M6)	258.8

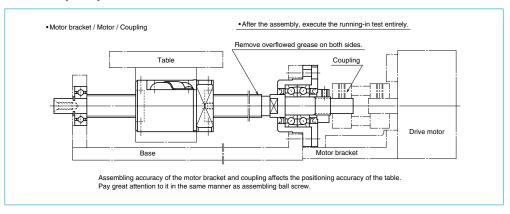
B409 B410


Installation of Ball Screw and Support Unit

The illustrations below show typical installation procedures for a standard ball screw and a support unit.


1) Assembly of support unit


2) Installation of ball nut to the table


3) Base and the support unit installation on the fixed support side

4) Base and bearing installation on simple support side, and confirming assembling accuracy.

5) Assembly completed.

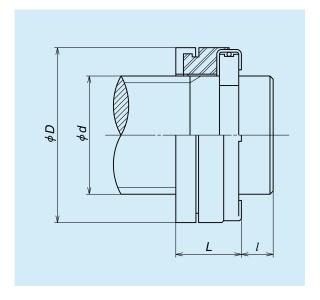
B411 B412

(4) Grease unit

NSK has numerous grease types that are exclusive for ball screw lubrication. They come in bellows-shaped tubes, which can be attached

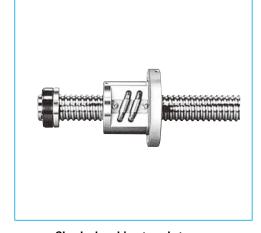
to a hand grease pump quickly. For details of grease types, see page D13 and for a hand grease pump and nozzles, see page D19.

NSK greases


Lubricant greases

Name	Use	Base oil viscosity mm²/s (40°C)
NSK Grease AS2	For heavy load	130
NSK Grease PS2	High-speed, light load	15
NSK Grease LR3	High-speed, medium load	30
NSK Grease LG2	Clean environment	30
NSK Grease LGU	Clean environment	100

(5) Travel stopper (made-to-order)


A travel stopper is installed in some cases to prevent the ball nut from overrunning to the end of ball thread due to a malfunction of the safety system of the equipment or by a human error. NSK has several series of shock-absorbing travel stoppers. The travel stopper is not sold as a single item since it is not for general use.

Also, a travel stopper cannot be used for ball screw with the end cap type ball recirculation system, because the stopper would come directly into contact with the component for ball recirculation. Please request NSK for the installation of the travel stoppers when ordering a ball screw.

	Unit: mm											
Stopper No.	Applicable shaft dia.	Outer dia.	Length	Shaft end width (Min.)								
	d	D	L	l								
BSR 20	20	32	16	5								
BSR 25	25	38	16	5								
BSR 32	32	46	20	6								
BSR 40	40	60	22	6								
BSR 50	50	72	24	7								
BSR 63	63	85	25	7								

Note: This stopper is patented by NSK Ltd.

Shock-absorbing travel stopper

NSK

(6) Ball screw support bearings NSKHPS™ NSKTAC C series

1) Features

This is highly rigid and accurate ball screw support bearing often used for the machine tools driving mechanism.

(a) High axial rigidity

High-rigidity achieved by higher contact angle at 60 degrees and an increased number of smaller-diameter balls.

(b) Small friction torque

Friction torque is far less than that of tapered or cylindrical roller bearing. This contributes to accurate rotation by a smaller driving power.

(c) Pre-adjusted axial play

Combination bearings are already adjusted to a suitable preload. Universal combination bearing (SU) furnishes certain preload for all combinations (DB, DF, and other).

(d) Simple mounting structure

A duplex combination of bearings can receive axial and radial loads. Therefore, the installation structure is simpler than when both a thrust bearing and a radial bearing are used.

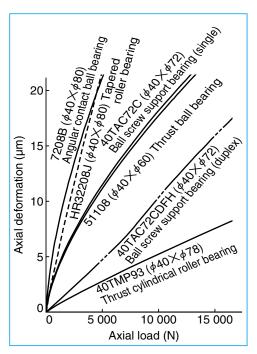
(e) Easy handling

Inner and outer rings are inseparable, and are easy to handle.

(f) Superb polyamide resin retainer

Uses polyamide resin retainer which is superb to friction and furnishes high precision rotations.

High load capacity ball screw support thrust angular contact ball bearing suitable for ball screw support for high-load drive and large machine tools is also available. See CAT. No. 3238 "NSK Ball Screws for High-Load Drive".



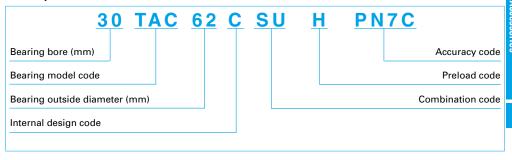

Fig. 1 Axial rigidity of various bearings

Table 2 Comparison with other types of bearings

Bearing type	Bearing rigidity (See Fig. 1)	Starting torque	Preload adjustment	Installation structure
Ball screw support bearings	High	Low	Not required	Simple
Combined angular contact ball bearing	Low	Low	Not required	Simple
Tapered roller bearing	Low	High	Complicated	Simple
Thrust ball bearing and radial bearing	High	Low	Complicated	Complicated
Thrust cylindrical roller bearing and radial bearing	Extremely high	Extremely high	Complicated	Complicated

Note: Consult NSK when you use these bearings other than the purpose of ball screw support.

2) Composition of reference number

Note: As "30 TAC 62 C," any part of the first half of the reference number is referred to as "nominal size" in this catalog.

3) Combinations of bearings

Generally, a set uses more than two pieces (referred to as 'two rows') of bearings and, thus the preload is applied.

There are two types of combination:

Combined bearings

Bearings are adjusted as a single combined set. Since the bearing alignment is pre-set, there is no interchangeability between the bearing set.

Universal combination bearing (SU)

Single bearings are manufactured under strict control of component accuracy so that they can be universally assembled as a combination of ball screw support bearing set.

(a) Combined bearings

- Fig. 2 shows examples of combinations. There is "V" mark on the outside surface of the bearing to avoid misarrangement. A complete letter "V" should be formed when all bearings align correctly to form a set.
- · DF combination which easily absorbs misalignment with the ball screw nut is used in general.

DF DFD

Fig. 2 Examples of combination and "V" mark

(b) Universal combination bearing (SU)

· Unlike the above case, the marks on the outside surface of bearings do not form a letter "V." The tip of the "V" on each bearing simply indicates the direction to which axial load can be applied.

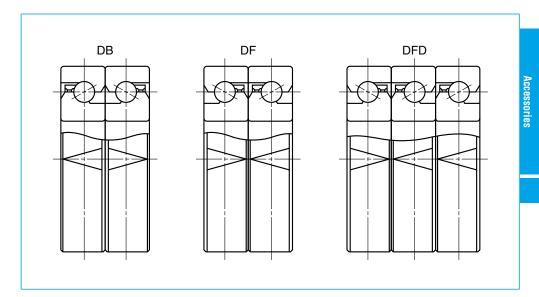


Fig. 3 Example of universal combination (SU) and "V" mark

Ball screw support bearings NSKTAC C series

NSK

4) Preload, rigidity, starting torque

Table 3 shows preload, rigidity (spring constant), and starting torque with grease lubrication. (Oil lubrication: Value of starting torque in the table \times 1.4)

Please contact NSK for combinations other than those in the table.

5) Accuracy

(a) Accuracy grades

NSK standard PN7C, equivalent to JIS class 4 for radial ball bearings.

(b) Fitting

Recommended values for dimensional tolerances for shaft and housing bore are shown in **Table 5**.

6) Rolling contact fatigue life

The relationship between basic load rating, bearing load, and basic rating life for the rolling bearing is presented in the following formula.

$$L_{\rm h} = \frac{10^6}{60n} \left(\frac{C_{\rm a}}{P} \right)$$

Where, L_h : Basic rating life (h)

C_a: Basic dynamic load rating (N)

P: Dynamic equivalent load (N)

n: Rotational speed (min⁻¹)

Dyr	Dynamic equivalent load $P_a = \lambda F_r + \gamma F_a$											
Bearing configuration $\frac{\partial u}{\partial x} = \frac{\partial u}$		Duplex			Triplex			Quadruplet				
		DF	DT	DFD		DTD	DFT	DFF	DFT			
		One row	Two rows	One row	Two rows	Three rows	One row	Two rows	Three rows			
5 /5 <i>/</i>	Χ	1.9	-	1.43	2.33	-	1.17	1.9	2.53			
$F_a/F_r \leq e$	Y	0.55	-	0.77	0.35	-	0.89	0.55	0.26			
$F_a/F_r > e$	Χ	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92			
I _a /I _r ∕e	Y	1	1	1	1	1	1	1	1			

Table 3 Preload, rigidity, and starting torque

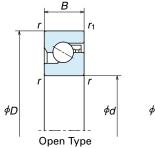
			Duplex combination DF		
Reference No.	Preload code	Preload (N)	Axial rigidity (N/µm)	Starting torque (N · m)	
15TAC47C	Н	1 450	630	0.09	
17TAC47C	Н	1 450	630	0.09	
20TAC47C	Н	1 450	630	0.09	
25TAC62C	Н	2 280	850	0.15	
30TAC62C	Н	2 400	890	0.16	
35TAC72C	Н	2 750	1 030	0.18	
40TAC72C	Н	2 860	1 080	0.19	
40TAC90C	Н	3 450	1 150	0.29	
45TAC75C	Н	3 100	1 170	0.20	
45TAC100C	Н	4 440	1 340	0.40	
50TAC100C	Н	4 650	1 410	0.42	
55TAC100C	Н	4 650	1 410	0.42	
55TAC120C	Н	5 450	1 660	0.49	
60TAC120C	Н	5 450	1 660	0.49	

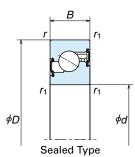
Table 4	Tolerance: Rall	screw support	hearings	NISKTAC C	series

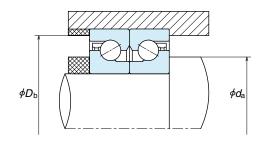
Unit: µm

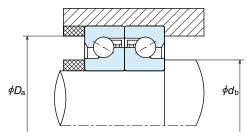
outside	al bore or diameter nm)	bore dia.	ane mean deviation mp	Tolerance Δα	e of bore ds	outside dia	ane mean a. deviation mp	outside	nce of diameter Os	ring v		Axial run out of inner or outer ring Sia or Sea
over	or less	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	Maximum
10	18	0	-4	0	-4	-	-	-	-	0	-120	2.5
18	30	0	-5	0	-5	-	-	-	-	0	-120	2.5
30	50	0	-6	0	-6	0	-6	0	-6	0	-120	2.5
50	80	0	-7	0	-7	0	-7	0	-7	0	-150	2.5
80	120	0	-8	0	-8	0	-8	0	-8	0	-200	2.5

Note: The tolerance of the outer ring width is the same as that of the inner ring width of the same bearing.


	Triplex combination DFD		Q	uadruplet combination D	FF	
Preload (N)	Axial rigidity (N/µm)	Starting torque (N · m)	Preload (N)	Axial rigidity (N/µm)	Starting torque (N · m)	
1 970	930	0.12	2 900	1 250	0.17	
1 970	930	0.12	2 900	1 250	0.17	-
1 970	930	0.12	2 900	1 250	0.17	å
3 100	1 250	0.20	4 560	1 690	0.30	ess
3 260	1 320	0.21	4 790	1 780	0.31	Accessories
3 740	1 510	0.24	5 490	2 050	0.36	S
3 900	1 590	0.25	5 730	2 140	0.37	
4 700	1 700	0.40	6 900	2 300	0.59	-
4 210	1 730	0.27	6 190	2 330	0.40	
6 050	1 990	0.54	8 890	2 670	0.80	
6 320	2 080	0.56	9 290	2 800	0.83	
6 320	2 080	0.56	9 290	2 800	0.83	_
7 420	2 450	0.66	10 900	3 300	0.97	
7 420	2 450	0.66	10 900	3 300	0.97	_


Table 5 Tolerance of shaft bearing seat and housing bore


				,	Jine. pini
Size of shaft bor (mn	e	bearin	e of shaft g seat 5	Tolera housir H	
over	or less	upper	lower	upper	lower
10	18	0	-8	-	-
18	30	0	-9	-	-
30	50	0	-11	16	0
50	80	0	-13	19	0
80	120	0	-15	22	0


B419 B420

Bore 15 to 60 mm

Contact	Non-	Boundary dimensions (mm)							nsions ım)		Permissible rotational spe (min ⁻¹)		
seal	seal	d	D	В	<i>r</i> Min.	r₁ Min.	<i>D</i> ₅ Max.	<i>d</i> ₃ Min.	D₃ Max.	<i>d</i> ₅ Min.	Grease lubrication	Oil lubrication	Bearing No.
*	*	15	47	15	1	0.6	42	19.5	41	19.5	6 900	9 200	15TAC47C
*	*	17	47	15	1	0.6	42	23	41	23	6 900	9 200	17TAC47C
*	*	20	47	15	1	0.6	42	25	41	25	6 900	9 200	20TAC47C
*	*	25	62	15	1	0.6	57	31	56	31	5 200	6 900	25TAC62C
*		30	62	15	1	0.6	57	36	56	36	4 900	6 400	30TAC62C
*		35	72	15	1	0.6	67	42	66	42	4 100	5 800	35TAC72C
*		40	72	15	1	0.6	67	47	66	47	4 100	5 500	40TAC72C
*		40	90	20	1	0.6	85	48	84	48	3 500	4 600	40TAC90C
		45	75	15	1	0.6	68	54	67	54	3 700	4 900	45TAC75C
*		45	100	20	1	0.6	93	55	92	55	3 000	4 100	45TAC100C
*		50	100	20	1	0.6	92	60	91	60	3 000	3 900	50TAC100C
*		55	100	20	1	0.6	92	63	91	63	3 000	3 900	55TAC100C
		55	120	20	1	0.6	112	63	111	63	2 500	3 500	55TAC120C
		60	120	20	1	0.6	112	70	111	70	2 500	3 500	60TAC120C

Note: 1	*	Actorick	indicator	hooring wit	h contact	coal or n	on-contact seal.
INOTE:	- ^	ASTERISK	indicates	pearing wii	n contact	seal or n	on-contact seal.

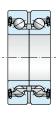
- 2. Permissible rotation speed is the value with H preload applied. The value is not influenced by bearing
- Numerical value indicates starting torque with grease lubrication. In the case of oil lubrication, the value in the above table should be multiplied by 1.4.
 Permissible axial load is 0.7 times of limiting axial load.
 The installation dimensions above are the recommended values for general machine tools.
 Contact NSK if the unit is used under heavy load conditions.

Basic	c dynamic load ratir	ng <i>C</i> a		Limiting axial load		Mass
One row	Two rows	Three row	One row	Two rows	Three row	(kg)
sustaining load	sustaining load	sustaining load	sustaining load	sustaining load	sustaining load	
DF	DT, DFD, DFF	DTD, DFT	DF	DT, DFD, DFF	DTD, DFT	
(N)	(N)	(N)	(N)	(N)	(N)	(Reference)
23 000	37 500	49 500	26 600	53 000	79 500	0.146
23 000	37 500	49 500	26 600	53 000	79 500	0.140
23 000	37 500	49 500	26 600	53 000	79 500	0.135
29 900	48 500	64 500	40 500	81 500	122 000	0.252
30 500	50 000	66 000	43 000	86 000	129 000	0.224
32 500	53 000	70 500	50 000	100 000	150 000	0.310
33 500	54 000	72 000	52 000	10 400	157 000	0.275
62 000	101 000	134 000	89 500	179 000	269 000	0.674
34 500	56 000	74 500	57 000	114 000	170 000	0.270
64 500	105 000	140 000	99 000	198 000	298 000	0.842
66 000	107 000	142 000	104 000	208 000	310 000	0.778
66 000	107 000	142 000	104 000	208 000	310 000	0.714
70 500	115 000	153 000	123 000	246 000	370 000	1.23
70 500	115 000	153 000	123 000	246 000	370 000	1.16

(7) Ball Screw Support Bearings

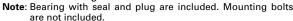
NSKHPS[™] BSBD series

The BSBD series are ball screw support bearings unit that can accurately and quickly position a work piece or a main spindle unit.



Features

The bearings are double row, angular contact ball bearings, with a 60° contact angle and a single outer ring. These have the same specs as TAC bearings, the best specs for ball screw support bearing for machine tools. High-performance grease and contact rubber seal are included as standard.


BSN series

A double row, angular contact thrust ball bearing in a back-to-back (DB) arrangement with a single outer ring. Already filled with high-performance grease, operation is easy. Lubrication holes allow for relubrication as required. The contact type seal has excellent seal performance, while minimizing effects on friction loss and heat generation.

BSF series

The BSF series bearings have outer ring bolt holes in addition to the BSN series bearings. Direct mounting on housing side is easy. A lubrication hole on each OD surface and on the side of the bearings, allows relubrication as required. When the holes are not used, plugs prevent foreign matter from entering. In addition, an extraction groove on OD surface of outer ring enhances bearing removal.

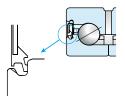
BSN series Single product

Bearing Numbers	d B	ounda D	ry Dim (mm) <i>B</i>	r (min)	r ₁ (min)		msions m) ϕD_b (max)	Contact Angle (°)	(k	ad Rating N) C _{oa} (Static)	Limiting'' Axial Load (kN)	Preload (N)	Axial Rigidity (N/µm)	Mass (kg)	Allowable rotating speed (min ¹) Greased	Starting torque (N·m) H ⁽²⁾	Recommended nut tightening force (N)
BSN1242	12	42	25	0.6	0.3	15	33	60	18.5	24.0	17.6	720	375	0.20	8 000	0.038	4 026
			_			-				-	-	-					
BSN1545	15	45	25	0.6	0.3	19	35	60	19.4	26.9	19.4	675	400	0.22	7 100	0.034	4 056
BSN1747	17	47	25	0.6	0.6	21	37	60	20.3	29.7	21.2	880	450	0.23	6 700	0.05	4 432
BSN2052	20	52	28	0.6	0.6	24	43	60	26.4	41.0	29.3	1 885	650	0.31	5 800	0.13	7 611
BSN2557	25	57	28	0.6	0.6	29	48	60	28.3	48.0	34.0	2 245	750	0.36	5 100	0.16	8 115
BSN3062	30	62	28	0.6	0.6	34	53	60	30.0	55.5	38.5	2 625	850	0.40	4 500	0.19	8 650
BSN3072	30	72	38	0.6	0.6	35	64	60	60.5	94.0	66.5	4 855	950	0.74	3 900	0.59	11 070
BSN3572	35	72	34	0.6	0.6	40	62	60	42.0	77.5	52.0	2 630	900	0.66	3 800	0.21	13 514
BSN4075	40	75	34	0.6	0.6	46	67	60	44.5	88.0	58.5	3 065	1 000	0.65	3 500	0.24	14 105
BSN4090	40	90	46	0.6	0.6	46	80	60	78.5	135	91.0	7 220	1 200	1.38	3 100	1.02	18 704
BSN5090	50	90	34	0.6	0.6	56	82	60	48.0	110	71.5	4 020	1 250	0.93	2 800	0.33	15 392
BSN50110	50	110	54	0.6	0.6	57	98	60	116	219	149	7 435	1 400	2.46	2 500	1.06	19 121
BSN60110	60	110	45	0.6	0.6	68	100	60	86.5	187	126	4 780	1 300	1.82	2 400	0.50	20 848

Notes: 1. Permissible axial load is 0.7 times of limiting axial load.

2. Starting torque indicates torque due to the preload of the bearing. It does not include seal torque.

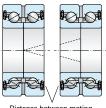
BSBD Series: Nomenclature

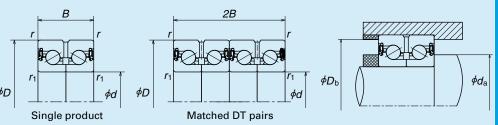

Example: BS F 30 80 DDU H P2B DT

Series (Ball Screw Support) F: Flange type N: No Flange type Bore Outer diameter

Paired bearing Note: Accuracy P2B: Special class for this series. It indicates Accuracy the following. Rotation accuracy: Preload ISO class 2 Seal type Other: Special

Seal

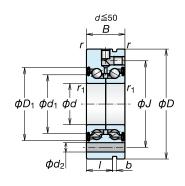

Contact rubber seals are on both sides. Triple lip structure achieves high grease sealing and dust-proof performance.

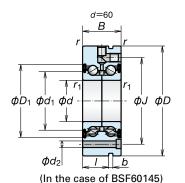

Matched DT pairs

A paired product for large external load or when

high rigidity and long life are required. Can be used in four rows with no effects on preload individual bearings as distance between mating surfaces has been adjusted.

surfaces has been adjusted


BSN series matched DT pairs


Bearing Numbers	d	Bounda D	ry Dim (mm) 2B	ension r (min)	r ₁ (min)	l .	nsions (m) φD _b (max)	Contact Angle (°)	C _a	ad Rating N) C _{oa} (Static)	Limiting ⁽¹⁾ Axial Load (kN)	Axial Rigidity (N/µm)	Mass (kg)	Allowable rotating speed (min ⁻¹) Greased	Starting torque (N·m) H ⁽²⁾	Recommended nut tightening force (N)
BSN1747-DT	17	47	50	0.6	0.6	21	37	60	33.0	59.5	42.5	790	0.46	6 700	0.10	4 432
BSN2052-DT	20	52	56	0.6	0.6	24	43	60	43.0	82.0	58.5	1 180	0.62	5 800	0.26	7 611
BSN2557-DT	25	57	56	0.6	0.6	29	48	60	46.0	96.0	68.0	1 370	0.71	5 100	0.32	8 115
BSN3062-DT	30	62	56	0.6	0.6	34	53	60	49.0	111	77.0	1 580	0.80	4 500	0.37	8 650
BSN3072-DT	30	72	76	0.6	0.6	35	64	60	98.0	188	133	1 800	1.47	3 900	1.17	11 070
BSN3572-DT	35	72	68	0.6	0.6	40	62	60	68.0	155	104	1 630	1.32	3 800	0.41	13 514
BSN4075-DT	40	75	68	0.6	0.6	46	67	60	72.0	176	117	1 850	1.30	3 500	0.49	14 105
BSN4090-DT	40	90	92	0.6	0.6	46	80	60	128	269	182	2 300	2.76	3 100	2.03	18 704
BSN5090-DT	50	90	68	0.6	0.6	56	82	60	78.0	220	143	2 330	1.86	2 800	0.66	15 392
BSN50110-DT	50	110	108	0.6	0.6	57	98	60	188	440	299	2 690	4.92	2 500	2.11	19 121

- 3. Inner rings are likely to separate because of their structure. To remove bearing from shaft, grasp an inner ring to pull it out.
- 4. The installation dimensions above are the recommended values for general machine tools. Contact NSK if the unit is used under heavy load conditions.

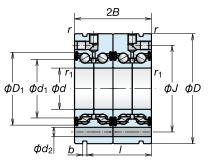
NSK

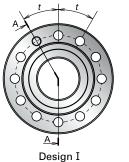
BSBD Series

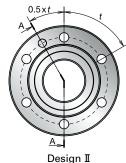
BSF series Single product

Bearing	Во	undary	Dimen	sions (n	nm)	Basic Load	Rating (kN)	Limiting ⁽¹⁾ Axial Load	Axial	Mass	Allowable rotating speed (min ⁻¹)	
Numbers	d	D	В	(min)	<i>r</i> ₁ (min)	C _a (Dynamic)	<i>C</i> ₀₃ (Static)	(kN)	Rigidity (N/µm)	(kg)	Grease Lubrication	
BSF1255	12	55	25	0.6	0.3	18.5	24.0	17.6	375	0.37	8 000	
BSF1560	15	60	25	0.6	0.3	19.4	26.9	19.4	400	0.44	7 100	
BSF1762	17	62	25	0.6	0.6	20.3	29.7	21.2	450	0.46	6 700	
BSF2068	20	68	28	0.6	0.6	26.4	41.0	29.3	650	0.61	5 800	
BSF2575	25	75	28	0.6	0.6	28.3	48.0	34.0	750	0.73	5 100	
BSF3080	30	80	28	0.6	0.6	30.0	55.5	38.5	850	0.79	4 500	
BSF30100	30	100	38	0.6	0.6	60.5	94	66.5	950	1.71	3 900	
BSF3590	35	90	34	0.6	0.6	42.0	77.5	52.0	900	1.20	3 800	
BSF40100	40	100	34	0.6	0.6	44.5	88.0	58.5	1 000	1.49	3 500	
BSF40115	40	115	46	0.6	0.6	78.5	135	91.0	1 200	2.56	3 100	
BSF50115	50	115	34	0.6	0.6	48.0	110	71.5	1 250	1.89	2 800	
BSF50140	50	140	54	0.6	0.6	116	219	149	1 400	4.46	2 500	
BSF60145	60	145	45	0.6	0.6	86.5	187	126	1 300	4.06	2 400	

BSF series matched pairs


Bearing	Воц	undary	Dimens	sions (r	nm)	Basic Load	Rating (kN)	Limiting ⁽¹⁾	Axial	Mass	Allowable rotating speed (min ⁻¹)
Numbers	d	D	2 <i>B</i>	r (min)	<i>r</i> ₁ (min)	C _a (Dynamic)	<i>C</i> ₀₃ (Static)	Axial Load (kN)	Rigidity (N/µm)	(kg)	Grease Lubrication
BSF1762-DT	17	62	50	0.6	0.6	33.0	59.5	42.5	790	0.890	6 700
BSF2068-DT	20	68	56	0.6	0.6	43.0	82.0	58.5	1 180	1.17	5 800
BSF2575-DT	25	75	56	0.6	0.6	46.0	96.0	68.0	1 370	1.46	5 100
BSF3080-DT	30	80	56	0.6	0.6	49.0	111	77.0	1 580	1.58	4 500
BSF30100-DT	30	100	76	0.6	0.6	98.0	188	133	1 800	3.41	3 900
BSF3590-DT	35	90	68	0.6	0.6	68.0	155	104	1 630	2.30	3 800
BSF40100-DT	40	100	68	0.6	0.6	72.0	176	117	1 850	2.88	3 500
BSF40115-DT	40	115	92	0.6	0.6	128	269	182	2 300	5.12	3 100
BSF50115-DT	50	115	68	0.6	0.6	78.0	220	143	2 330	3.78	2 800
BSF50140-DT	50	140	108	0.6	0.6	188	440	299	2 690	8.92	2 500


- Notes: 1. Permissible axial load is 0.7 times of limiting axial load.


 This is the limiting load of the bearing. It dose not include strength of the mounting bolt.

 2. Starting torque indicates torque due to the preload of the bearing. It does not include seal torque.

 3. Inner rings are likely to separate because of their structure. To remove bearing from shaft, grasp an inner ring to pull it out.

Design
2 cc.g

	R	eferenc	e Dime	nsions	(mm)		Danian	Fixing S	crews	Preload	Starting torque ⁽²⁾ (N·m)	Recommended nut tightening
d	D_1	J	d_2	l	b	t	Design	Size	Quantity	(N)	Н	force (N)
23.7	32.7	42	6.8	17	3	3 x 120°	П	M6	3	720	0.038	4 026
26.7	35.7	46	6.8	17	3	3 x 120°	Π	M6	3	675	0.034	4 056
28.1	37.7	48	6.8	17	3	3 x 120°	П	M6	3	890	0.05	4 432
32.6	43	53	6.8	19	3	4 x 90°	П	M6	4	1 885	0.13	7 611
37.6	48	58	6.8	19	3	4 x 90°	П	M6	4	2 245	0.16	8 115
42.6	53	63	6.8	19	3	6 x 60°	П	M6	6	2 625	0.19	8 650
49.1	64.4	80	8.8	30	3	8 x 45°	П	M8	8	4 855	0.59	11 070
53.1	62.2	75	8.8	25	3	4 x 90°	П	M8	4	2 630	0.21	13 514
55.1	67.2	80	8.8	25	3	4 x 90°	П	M8	4	3 065	0.24	14 105
63.1	80.1	94	8.8	36	3	12 x 30°	П	M8	12	7 220	1.02	18 704
70.1	82.2	94	8.8	25	3	6 x 60°	Π	M8	6	4 020	0.33	15 392
78.1	97.5	113	11	45	3	12 x 30°	П	M10	12	7 435	1.06	19 121
83.1	99.3	120	8.8	35	3	8 x 45°	П	M8	8	4 780	0.50	20 848

	R	eferenc	e Dime	nsions	(mm)		Dasian	Fixing S	crews	Starting torque ⁽²⁾ (N·m)	Recommended nut tightening
d	<i>D</i> ₁	J	$d_{\scriptscriptstyle 2}$	l	b	t	Design	Size	Quantity	Н	force (N)
28.1	37.7	48	6.8	42	3	6 x 60°	I	M6	5	0.10	4 432
32.6	43	53	6.8	47	3	8 x 45°	I	M6	7	0.26	7 611
37.6	48	58	6.8	47	3	8 x 45°	I	M6	7	0.32	8 115
42.6	53	63	6.8	47	3	12 x 30°	I	M6	11	0.37	8 650
49.1	64.4	80	8.8	68	3	8 x 45°	П	M8	8	1.17	11 070
53.1	62.2	75	8.8	59	3	8 x 45°	I	M8	7	0.41	13 514
55.1	67.2	80	8.8	59	3	8 x 45°	I	M8	7	0.49	14 105
63.1	80.1	94	8.8	82	3	12 x 30°	П	M8	12	2.03	18 704
70.1	82.2	94	8.8	59	3	12 x 30°	I	M8	11	0.66	15 392
78.1	97.5	113	11	99	3	12 x 30°	П	M10	12	2.11	19 121

Accessori

(8) Permissible axial loads

NSK has defined the static limit axial load as the lower of the values based on the following two situations:

1. Ride-over limit axial load (Fig. 4)
Limit load which would cause contact ellipse
between ball and raceway groove to go over
shoulder of raceway groove.

2. Contact pressure limit axial load (Fig. 5)
Load which contact stress at the center of
contact area between ball and raceway groove
is high and would cause impression specified at
basic static load rating.

NSK determines static permissible axial load taking safety factor of limit axial load into consideration based on its many years of experience so that good bearing performance can be kept.

In the calculation of basic static axial load rating $C_{\rm oa}$, shoulder height of raceway groove is not taken into account. So, the value may exceed the ride-over load.

Since applicable load is actually under the value of $C_{\rm oa}$, $C_{\rm oa}$ makes no sense in this case (Fig. 6). Therefore, especially for thrust angular contact ball bearing where axial load is assumed to be used under severe conditions, limit axial loads not $C_{\rm oa}$ are listed in each dimension table as needed.

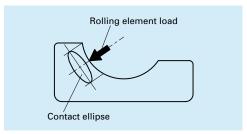


Fig. 4 Ride-over limit axial load

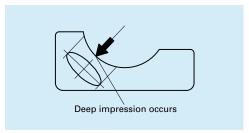


Fig. 5 Contact pressure limit axial load

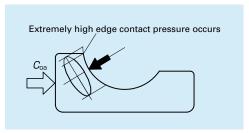


Fig. 6 $C_{\text{\tiny oa}}$ and limit axial load

B427 B428

1. End Deflector Type B431

2. Tube Type B437

3. Deflector(bridge) Type B471

4. End Cap Type B485

B-3-2 Dimension Table and Reference Number of Standard Nut Ball Screws

B-3-2.1 End Deflector Type Ball Screws

This product is being applied for a patent.

1. Features

■Low and less offensive noise

The average noise level is reduced by more than 6 dB compared with our existing products. At low-speed rotation, the ball screws are nearly silent, while their noise is unprecedentedly low at high-speed rotation.

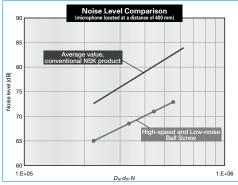


Fig. 1 Comparison of noise level

High-speed operation

Realizes the d-n of 180 000, outstanding for ball screws and far surpassing the 100 000 d-n performance of existing return tube type products. For high-lead ball screws, high-speed operation at over 200 m/min is also possible.

■Compact

The external diameter of the ball nut is 30% smaller than our existing models. Compact configurations are possible for low-profile XY tables as well as for other devices and equipment.

Grease fitting provided as standard equipment

The ball screws with shaft diameters equal to or less than $\varnothing 25$ are equipped with a grease fitting (M5 \times 0.8) as a standard. Lubrication ports are provided in 2 places for ease of maintenance. The ball screws can be easily connected to an integrated lubrication system.

2. Specifications

(1) Ball recirculation system

Fig. 2 shows the structure of the end-deflector recirculation system.

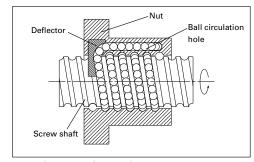


Fig. 2 Structure of end-deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	C0, C1, C2, C3, C5, Ct7		
Axial play	Z, 0 mm (preloaded); T, 0.005 mm or less;		
	S, 0.020 mm or less; N, 0.050 mm or less		

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d·n value : 180 000 or less Standard of rotational speed: 5 000 min⁻¹

Note: Please also review the critical speed.

See "Technical Description: Permissible
Rotational Speed" (page B47) for details.

(4) Seal

A compact and thin plastic seal is used. Nut outside diameter is compact compare with the return tube recirculation system.

(5) Option

Optional NSK K1 lubrication unit, molded from resin and impregnated with lubrication oil, supplies fresh oil onto ball rolling surfaces, ensuring long-term, maintenance-free operation. Please contact NSK when using NSK K1.

3. Design precautions

When designing the shaft end of a ball screw which diameter is 25 mm or less, or 32 mm or over, and the lead is the same as its shaft diameter, one end of the screw must meet either one of the following conditions. If not, we

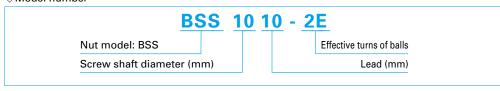
cannot install the ball nut on the screw shaft.

- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

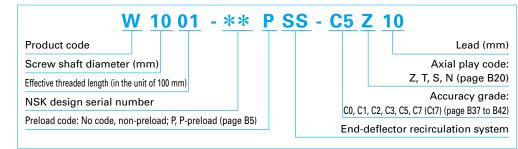
For general precautions regarding ball screws, refer to "Design Precautions"(page B83) and "Handling Precautions"(page B103).

4. Product categories

End deflector type ball screws have the model as follows.


Table 2 End-deflector type ball screw product categories

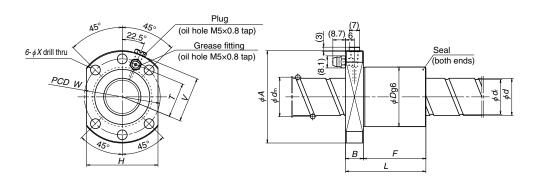
Nut model	Shape	Flang shape	Nut shape	Preload system
BSS		Circular Ⅱ, Ⅲ	Circular	Non-preload, Slight axial play
				P-preload (light preload)


5. Structure of model number and reference number

The following describe the structure of "Model number" and "Reference number for ball screw".

♦ Reference number for ball screw

B431 B432



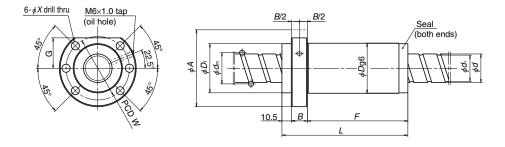
Screw shaft diameter $d \le 20 \text{ mm}$

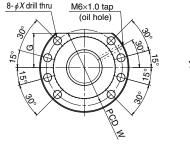
	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective	Basic load	rating (N)	Axial rigidity
Model No.	Silait dia.	Leau	Dali Gia.	dia.	1100t dia.	turns of	Dynamic	Static	K
	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle m}$	d _r	balls	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(N/µm)
BSS0608-2E		8				2	550	715	24
BSS0608-4E	6	8	1.2	6.2	4.9	4	1 180	1 760	55
BSS0612-2E	0	12	1.2	0.2	4.9	2	550	715	22
BSS0612-4E		12				4	1 180	1 760	51
BSS0810-2E		10				2	910	1 260	31
BSS0810-4E	8	10	1.588	8.3	6.6	4	1 950	3 080	72
BSS0815-2E	0	15	1.500	0.3	0.0	2	910	1 260	29
BSS0815-4E		15				4	1 950	3 080	68
BSS1005-3E	10	5	2.000	10.3	8.2	3	2 930	4 790	126
BSS1010-2E	10	10	2.000	10.3	0.2	2	1 970	3 010	77
BSS1205-3E		5	2.000			3	3 200	5 860	146
BSS1210-3E	12	10		12.3	10.2	3	3 200	5 860	142
BSS1220-2E	12	20	2.000	12.3		2	2 150	3 610	83
BSS1230-2E		30				2	2 150	3 610	75
BSS1505-3E		5	2.778		12.6	3	5 460	10 200	183
BSS1510-3E	15	10	2.778	15.5	12.6	3	5 460	10 200	181
BSS1520-2E	15	20	3.175	10.5	12.2	2	5 070	8 730	127
BSS1530-2E		30	3.175		12.2	2	5 070	8 730	116
BSS2005-3E		5				3	8 790	18 500	268
BSS2010-3E		10				3	8 790	18 500	268
BSS2020-2E	20	20	3.175	20.5	17.2	2	5 900	11 700	167
BSS2030-2E	20	30	3.175	20.5	17.2	2	5 900	11 700	159
BSS2040-2E		40				2	5 900	11 700	147
BSS2060-2E		60				2	5 900	11 700	128
BSS2505-3E		5				3	9 760	23 600	325
BSS2510-4E		10				4	12 800	32 300	437
BSS2520-2E	25	20	3.175	25.5	22.2	2	6 560	14 600	203
BSS2525-2E	20	25	3.173	20.0	22.2	2	6 560	14 600	197
BSS2530-2E		30				2	6 560	14 600	194
BSS2550-2E		50				2	6 560	14 600	177

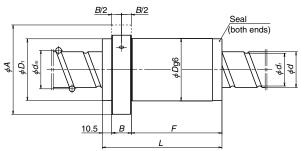
Note: 1) The axial rigidity K in the table above is a theoretical value derived from elastic displacement between screw grooves and balls when axial load is applied to a ball nut for which preload is set at 3% of the basic dynamic load rating (C_a). For ball screws with shaft diameters less than 0.25, the standard Compact FA PSS type can be available.

Screw shaft diameter d = 25 mm

	Dil hole listance	End
length diameter diameter width length PCD di		
		르
L D A B F H V W X Y Z	Τ	deflector type
16 8		翼
24 14 27 4 16 15 (10) — 21 3.4 — —	_	12
20		₹
32 24		· · ·
18 10 20		
28 22 18 31 4 20 19 (13) — 25 3.4 — —	_	
37 29 29		
20 10		-
32 23 43 11 26 21 33 4.5 8 4.5	14	
30 19		•
43 24 44 11 32 27 21.5 34 4.5 8 4.5	14.5	
50 39 1 1 1 1	14.5	
70 59	10	
	18	
	18 20	
	20	
31 18	20	
45		
54 20 60 41 20 205 40 60 41 65	00.5	
74 36 62 13 61 38 30.5 49 6.6 11 6.5	23.5	
92 79		
129 116		_
32 20		
56 44		
54 63 40 62 12 42 51 48 30.5 51 6.6 — — —	23.5	
74 62		
114		


2) Dimensions in parentheses are for flat nut configurations.


B433 B434


BSS50100-2E

100

Screw shaft diameter d = 32 mm

	Shaft dia.	Lood	Ball dia.	Ball circle	Root dia.	Effective	Basic load	rating (N)	Axial rigidity
Model No.	Snart dia.	Lead	Ball dia.	dia.	Root dia.	turns of	Dynamic	Static	K
	d	l	$D_{\rm w}$	d _m	d _r	balls	C _a	$C_{\scriptscriptstyle 0a}$	(N/µm)
BSS3205-4E		5	3.175	32.5	29.2	4	14 200	41 400	534
BSS3210-6E		10	5.556	33	27.2	6	43 300	111 000	865
BSS3212-5E		12	5.556	33	27.2	5	36 700	90 800	716
BSS3216-5E	32	16	5.556	33	27.2	5	36 700	90 800	716
BSS3220-5E		20	5.556	33	27.2	5	36 700	90 800	708
BSS3232-2E		32	5.556	33	27.2	2	15 300	32 400	261
BSS3264-2E		64	5.556	33	27.2	2	15 300	32 400	232
BSS3605-3E		5	3.175	36.5	33.2	3	11 400	34 100	433
BSS3610-6E		10	6.35	37	30.4	6	55 200	142 000	970
BSS3612-6E	36	12	6.35	37	30.4	6	55 200	142 000	967
BSS3616-6E		16	6.35	37	30.4	6	55 200	142 000	961
BSS3620-6E		20	6.35	37	30.4	6	55 200	142 000	959
BSS4010-5E		10				5	49 300	130 000	875
BSS4012-5E		12				5	49 300	130 000	873
BSS4016-5E		16				5	49 300	130 000	875
BSS4020-5E	40	20	6.35	41	34.4	5	49 300	130 000	868
BSS4025-4E	10	25	0.00		34.4	4	40 100	103 000	686
BSS4030-3E		30				3	30 600	74 000	505
BSS4040-2E		40				2	20 600	46 600	319
BSS4080-2E		80				2	20 600	46 600	286
BSS4510-5E		10				5	51 400	146 000	961
BSS4512-5E		12				5	51 400	146 000	959
BSS4516-5E	45	16	6.35	46	39.4	5	51 400	146 000	955
BSS4520-5E	10	20	0.00	10	00.1	5	51 400	146 000	950
BSS4525-5E		25				5	51 400	146 000	954
BSS4530-4E		30				4	41 800	116 000	752
BSS5010-4E		10				4	44 600	129 000	836
BSS5012-4E		12				4	44 600	129 000	944
BSS5016-4E		16				4	44 600	129 000	832
BSS5020-4E	50	20	6.35	51	44.4	4	44 600	129 000	837
BSS5025-4E		25	0.55		77.7	4	44 600	129 000	828
BSS5030-4E		30				4	44 600	129 000	821
BSS5050-2E		50				2	22 800	58 300	383

Note: The axial rigidity K in the table above is a theoretical value derived from elastic displacement between screw grooves and balls when axial load is applied to a ball nut for which preload is set at 3% of the basic dynamic load rating (C_s).

22 800

58 300

Screw shaft diameter $d \ge 36$ mm

Unit: mm

Nut entire length	Nut diameter	Seal section diameter	Flange diameter	Flange width	Nut length	Notched flange	Bolt hole PCD	Bolt hole dimension
L	D	D_1	Α	В	F	G	W	Χ
55				12	32.5			
104				18	75.5			
103				18	74.5			
122	56	55	86	18	93.5	34	71	9
141				18	112.5			
94				18	65.5			
153				18	124.5			
50				12	27.5			
109				22	76.5			
120	65	64	95	22	87.5	36	80	9
143				22	110.5			
166				22	133.5			
99					66.5			
108				22	75.5			
127					94.5			•
146	70	69	100		113.5	38.5	85	9
145					112.5	30.5	05	
134					101.5			
110					77.5			
184					151.5			
99					66.5			
108 127					75.5 94.5			
146	75	74	110	22	113.5	43	93	11
170					137.5			
164					137.5			
89					56.5			
96					63.5			
111					78.5			
126					93.5			
145	82	81	118	22	112.5	46	100	11
164					131.5			
130					97.5			
224					191.5			
1		I			101.0			

B435 B436

B-3-2.2 Return Tube Type Ball Screws

1. Features

Return tube type is a standard way of ball recirculation system for ball screws. It has various combinations of shaft diameter and lead.

2. Specifications

(1) Ball recirculation system

The structure of return tube recirculation system is shown below.

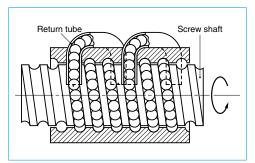


Fig.1 Structure of return tube recirculation system

Table 1 Accuracy grade and axial play

Axial play	Z, 0 mm (preloaded); T, 0.005 mm or less; S, 0.020 mm or less; N, 0.050 mm or less
Accuracy grade	SFT, PFT, ZFT, DFT:

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are shown in **Table 1**. Please consult NSK for other grades.

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below. Basic measures must be taken for the high-speed ball screws respectively.

Allowable d·n value:

Standard specification ; 70 000 or less High-speed specification; 100 000 or less

Standard of rotational speed: 3 000 min⁻¹
Note: Please also review the critical speed. Refer
to "Technical Description: Permissible
Rotational Speed" (page B47) for details.

(4) Option

A type equipped with NSK K1 lubrication unit is also available.

(5) Other specifications

Please consult NSK for other specifications not listed in the dimension tables.

3. Product categories

There are four different preloaded systems with several models. Since the leads are in the range from 1/2 to the same length of the shaft

Table 2 Return tube type ball screws product categories

Nut model	Shape	Flange shape	Nut shape	Preload system	
SFT		Flanged d=16mm or under	0. 1 1.	Non-preload, Slight axial play	
PFT		Rectangle d=20mm or over Circular I, II	Circle dia.	P-preload (light preload) Spacer ball 1:1	
ZFT	0000	Flanged Circular I, II	Circle dia.	Z-preload (medium preload)	

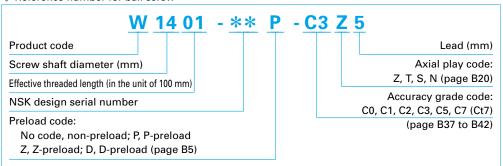
Nut model	Shape	Flange shape	Nut shape	Preload system
DFT	un OO OO wan	Flanged Circular I, II	Circular	D-preload (medium preload) (heavy preload)
LSFT		Flanged d=20mm or under	d=20mm or under Circular	Non-preload, Slight axial play
LPFT		Rectangle d=25mm or over Circular II	d=25mm or over Tube- projecting type	P-preload (light preload) Spacer ball 1:1
LDFT		Flanged Circular II	Circular	D-preload (medium preload) (heavy preload)

diameter (medium-high helix lead), LSFT, LPFT, LDFT Type ball screws are suitable for high-speed operation.

4. Structure of model number and reference number

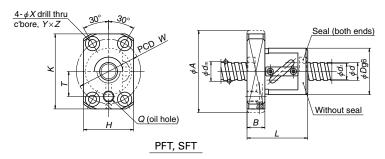
The followings describe the structure of "Model number" and "Reference number for ball screw".

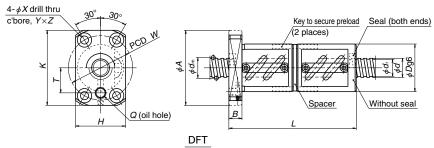
♦ Model number


Nut model:
SFT, PFT, ZFT, DFT
LSFT, LPFT, LDFT
Screw shaft diameter (mm)

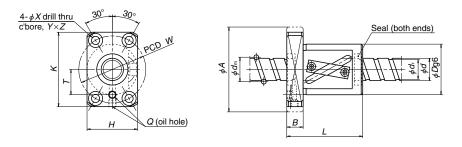
SFT 14 05 - 2.5

Effective turns of balls (Note)
Lead (mm)


Note: In case of Z-preload, the number here is twice as large as the effective turns of balls.


♦ Reference number for ball screw

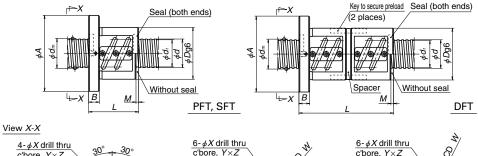
B437 B438

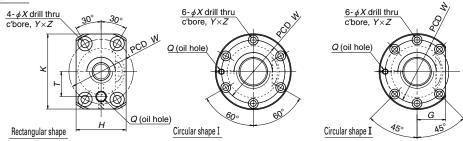


	Mo	odel No.	Preload	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	Basic load Dynamic	rating (N) Static	Axial rigidity <i>K</i>
			system	d	l	D_{w}	d _m	d_{r}	× Circuits	C_{a}	$C_{\scriptscriptstyle 0a}$	(N/µm)
*	PFT	1004-2.5	Р	10	4	2 000	10.0	0.0	0.51	1 730	2 230	76
	SFT	1004-2.5	Clearance	10	4	2.000	10.3	8.2	2.5×1	2 740	4 450	90
	PFT	1204-2.5	Р						2.5×1	2 370	3 160	89
	PFT	1204-3	Р		4	2.381	12.3	9.8	1.5×2	2 770	3 790	106
	SFT	1204-2.5	Clearance		4	2.301	12.3	9.0	2.5×1	3 760	6 310	106
	SFT	1204-3	Clearance						1.5×2	4 390	7 580	126
*	PFT	1205-2.5	Р	12					2.5×1	2 370	3 160	89
	PFT	1205-3	Р	'4	5	2.381	12.3	9.8	1.5×2	2 770	3 790	106
		1205-2.5 Clearance		5	2.301	12.3	9.0	2.5×1	3 760	6 310	106	
	SFT	1205-3	Clearance						1.5×2	4 390	7 580	126
*	LPFT	1210-2.5	Р		10	2.381	12.5	10.0	2.5×1	2 360	3 240	90
	LSFT	T 1210-2.5	Clearance		10	2.301	12.5	10.0	2.5×1	3 750	6 480	110
*		1405-2.5	Р						2.5×1	4 280	5 840	116
		1405-2.5	Clearance		5	3.175	14.5	11.2	2.5×1	6 790	11 700	140
	PFT	1405-5	Р	14	5	3.175	14.5	11.2	2.5×2	7 770	11 700	225
		1405-5	Clearance	14					2.5×2	12 300	23 400	274
*	LPFT	1408-2.5	Р		8	3.175	14.5	11.2	2.5×1	4 280	5 840	120
		Г 1408-2.5	Clearance		0	3.173	14.5	11.2	2.5/1	6 790	11 700	140
*		1510-2.5	Р	15	10	3.175	15.5	12.2	2.5×1	4 450	6 380	127
		Г 1510-2.5	Clearance	13	10	3.173	10.0	12.2		7 070	12 800	150
		1604-3	Р						1.5×2	3 170	5 150	135
		1604-2.5	Clearance						2.5×1	4 300	8 530	134
		1604-2.5	D	16	4	2.381	16.3	13.8	2.5×1	4 300	8 530	263
		1604-5	Р	'0	-	2.501	10.0	10.0	2.5×2	4 920	8 530	215
		1604-3	Clearance						1.5×2	5 040	10 300	160
DFT 1604-3	D						1.5×2	5 040	10 300	315		

Notes: 1. Nut flange for shaft diameter 16 mm or smaller comes in rectangular shape.

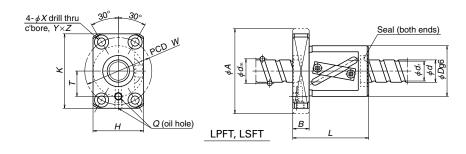
LPFT, LSFT


				Ra	ll nut dimens	ions					
Nut entire length	Nut diameter D	Flanged diameter A	Flanged width B		nged diameter		ole dime	ension Z	Bolt hole PCD W	Oil hole length	Oil hole
34	26	46	10	28	42	4.5	8	4.5	36	14	M6×1
38 44 38 44	30	50	10	32	45	4.5	8	4.5	40	15	M6×1
40 48 40 48	30	50	10	32	45	4.5	8	4.5	40	15	M6×1
50	30	50	10	32	45	4.5	8	4.5	40	15	M6×1
40 40 55 55	34	57	11	34	50	5.5	9.5	5.5	45	17	M6×1
46	34	57	11	34	50	5.5	9.5	5.5	45	17	M6×1
51	34	57	11	34	50	5.5	9.5	5.5	45	17	M6×1
45 38 70 50 45 85	34 34 36 34 34 36	57	11	34 34 36 34 34 36	50	5.5	9.5	5.5	45	17	M6×1


- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 6. The models marked with * (asterisk) are available in the FA type standard ball screws with finished shaft end.
- 7. Preload system: P, Oversize ball preload; D, Double nut preload (See page B5.)

^{2.} Seals are equipped as a standard for LSFT and LPFT of shaft diameter 20 mm or smaller. The outside dimensions are the same as those of without seals.

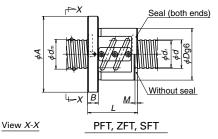
^{3.} The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

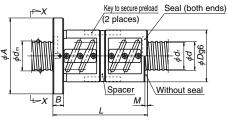


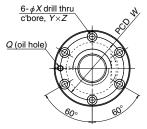
			Preload	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls			Axial rigidity
	Mc	del No.	rieloau				dia.		Turns	Dynamic	Static	K
			system	d	l	D_{w}	d _m	d_{r}	~ ×	C _a	C_{0a}	(N/µm)
			_	u	ι	$\nu_{\rm w}$	$u_{\rm m}$	$u_{\rm r}$	Circuits	_		
		1605-3	Р						1.5×2	5 400	8 100	158
		1605-2.5	Clearance						2.5×1	7 330	13 500	158
		1605-2.5	D						2.5×1	7 330	13 500	311
		1605-5	Р		5	3.175	16.5	13.2	2.5×2	8 380	13 500	258
		1605-3	Clearance		0	0.170	10.5		1.5×2	8 570	16 200	188
		1605-3	D						1.5×2	8 570	16 200	370
		1605-5	Clearance						2.5×2	13 300	27 000	307
		1605-5	D	16					2.5×2	13 300	27 000	603
		1606-2.5	Р						2.5×1	4 620	6 750	133
	SFT 1606-2.5 DFT 1606-2.5		Clearance						2.5×1	7 330	13 500	158
		D		6	3.175	16.5	13.2	2.5×1	7 330	13 500	311	
		SFT 1606-3	Clearance		U	3.173	10.5	10.2	1.5×2	8 570	16 200	188
		1606-3	D						1.5×2	8 570	16 200	370
*		Г 1616-1.5	Р		16	3.175	16.75	13.4	1.5×1	3 600	5 410	110
	LSF	Г 1616-1.5	Clearance		10	3.175	10.75	15.4	1.581	4 710	8 110	100
		2004-2.5	Clearance						2.5×1	4 740	10 700	160
		2004-2.5	D						2.5×1	4 740	10 700	315
*		2004-5	Р		4	2.381	20.3	17.8	2.5×2	5 420	10 700	260
	SFT	2004-5	Clearance						2.5×2	8 600	21 500	309
		2004-5	D						2.5×2	8 600	21 500	608
		2005-3	Р						1.5×2	6 060	10 300	191
		2005-2.5	Clearance	20					2.5×1	8 230	17 100	190
		2005-2.5	D						2.5×1	8 230	17 100	376
*		2005-5	Р		5	3.175	20.5	17.2	2.5×2	9 410	17 100	311
		2005-3	Clearance		5	3.173	20.5	17.2	1.5×2	9 620	20 600	227
	DFT	2005-3	D						1.5×2	9 620	20 600	446
		2005-5						2.5×2	14 900	34 300	370	
	DFT 2005-5 D					2.5×2	14 900	34 300	726			

Notes: 1. Nut flange for shaft diameter 16 mm or smaller comes in rectangular shape. It comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

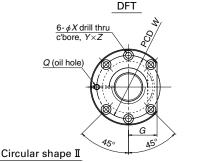
- 2. If there is no seal for PFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- Seals are equipped as a standard for LSFT and LPFT of shaft diameter 20 mm or smaller. The outside dimensions are the same as those of without seals.
- 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

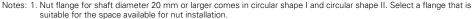



Unit: mm

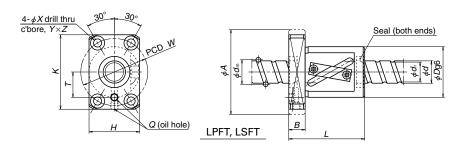

Return tube type

	Ball nut dimensions												
Nut entire length	Nut	Flanged diameter	Flanged	Notched flange	Rectangle flar	nged diameter	Seal dimension	Bolt ho	ole dim	ension	Bolt hole PCD	Oil hole length	Oil hole
L	D D	A	B	G	Н	Κ	M	X	Y	Z	W	T	Q
52													
42 77													
57	40	60	11		40				٦		F-1	20	N 4 C 1
52	40	63	11	_	40	55	_	5.5	9.5	5.5	51	20	M6×1
97													
57 107													
44													
44					4.0							0.0	
86 56	40	63	11	_	40	55	_	5.5	9.5	5.5	51	20	M6×1
110													
56	40	63	12	_	40	55	_	5.5	9.5	5.5	51	17	M6×1
37													
69	40	60	11	24			3	5.5	9.5	5.5	51		N40: .1
49 49	40	63	11	24	_	_	3	5.5	9.5	5.5	51	_	M6×1
93													
52													
41 76													
56													
52	44	67	11	26	-	_	3	5.5	9.5	5.5	55	_	M6×1
97													
56													
106													


- 5. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 6. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. The models marked with * (asterisk) are available in the FA or SA type standard ball screws with finished shaft end.
- 8. Preload system: P, Oversize ball preload; D, Double nut preload (See page B5.)



Circular shape I


Effective turns of bal Axial Basic load rating (N) Ball circle Ball dia. Shaft dia Lead Root dia. Turns Preload rigidity dia. Model No. Dynamic Static K system × d D_{w} d_{r} Circuits (N/µm) PFT 2006-2.5 2.5×1 6 900 10 500 164 PFT 2006-3 1.5×2 8 080 12 700 195 21 100 SFT 2006-2.5 Clearance 2.5×1 11 000 195 6 3.969 20.5 16.4 DFT 2006-2.5 21 100 D 2.5×1 11 000 384 SFT 2006-3 25 300 232 Clearance 1.5×2 12 800 DFT 2006-3 D 1.5×2 12 800 25 300 456 PFT 2008-2.5 2.5×1 6 900 10 500 164 2.5×1 SFT 2008-2.5 11 000 21 100 195 Clearance 21 100 DFT 2008-2.5 D 20 8 3.969 20.5 16.4 2.5×1 11 000 384 25 300 25 300 232 SFT 2008-3 Clearance 1.5×2 12 800 DFT 2008-3 D 1.5×2 12 800 456 * LPFT 2010-2.5 6 800 10 800 169 10 21.0 2.5×1 3.969 16.9 LSFT 2010-2.5 10 900 21 700 <u>Clearance</u> LPFT 2016-2.5 6 880 10 800 169 16 3.969 21.0 16.9 2.5×1 202 LSFT 2016-2.5 10 900 21 700 Clearance * LPFT 2020-1.5 5 370 7 040 8 450 137 20 3.969 21.0 16.9 1.5×1 12 700 LSFT 2020-1.5 127 Clearance SFT 2504-2.5 2.5×1 193 5 270 13 600 Clearance ZFT 2504-5 2.5×1 5 270 13 600 379 * PFT 2504-5 Ρ 4 2.381 25.3 22.8 2.5×2 6 020 13 600 312 2.5×2 SFT 2504-5 9 560 27 200 374 Clearance 27 200 ZFT 2504-10 2.5×2 9 560 735 PFT 2505-3 1.5×2 6 730 12 800 223 SFT 2505-2.5 Clearance 2.5×1 9 130 21 900 231 ZFT 2505-5 9 130 21 900 454 25 2.5×1 * PFT 2505-5 Ρ 2.5×2 10 400 21 900 372 SFT 2505-3 1.5×2 10 700 25 700 271 Clearance 5 3.175 25.5 22.2 10 700 25 700 DFT 2505-3 D 1.5×2 532 PFT 2505-7.5 Ρ 2.5×3 14 800 32 800 544 SFT 2505-5 Clearance 2.5×2 16 600 43 700 447 ZFT 2505-10 Ζ 2.5×2 16 600 43 700 876 Clearance 2.5×3 23 500 SFT 2505-7.5 65 600 654

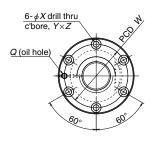
2. If there is no seal for PFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".

Seals are equipped as a standard for LSFT and LPFT of shaft diameter 20 mm or smaller. The outside dimensions are the same as those of without seals.

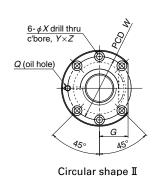
4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

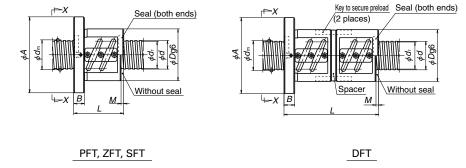
Unit: mm

							ensions						
Nut entire	Nut	Flanged	Flanged	Notched	Rectangle flar	nged diameter	Seal	Bolt h	ole dim	ension	Bolt hole	Oil hole	Oil hole
	diameter			flange			dimension		.,	_	PCD	length	
L	D	Α	В	G	Н	K	М	X	Y	Z	W	T	Q
44 56													
44													
86	48	71	11	27	_	_	3	5.5	9.5	5.5	59	_	M6×1
56													
110													
54													
54	40	7.	10	20			5		11	٦	C1		N 4 C: . 1
102 64	48	75	13	28	_	_	5	6.6	11	6.5	61	_	M6×1
120													
54	46	74	13		46	66		6.6	11	6.5	59	24	M6×1
	40	74	13		40	00		0.0	11	0.5	59	24	IVIOXI
72	46	74	13	_	46	66	_	6.6	11	6.5	59	24	M6×1
63	46	74	13	_	46	66	_	6.6	11	6.5	59	24	M6×1
36													
48													
48 48	46	69	11	26	_	_	3	5.5	9.5	5.5	57	_	M6×1
72													
52													
40													
55													
55													
52	50	73	11	28	_	_	3	5.5	9.5	5.5	61	l _	M6×1
102 70													
55													
85													
70													


^{5.} The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_x) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.

6. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.


7. The models marked with * (asterisk) are available in the FA or SA type standard ball screws with finished shaft end.

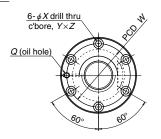

8. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

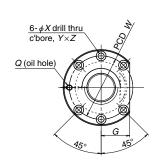
View X-X

						la		Effective turns of balls	Danie Iara		Axial
		Preload	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Turns		rating (N)	rigidity
	Model No.	system				dia.		X	Dynamic	Static	K
		System	d	l	D_{w}	d _m	d _r	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
	PFT 2506-3	Р						1.5×2	9 070	16 100	235
	SFT 2506-2.5	Clearance						2.5×1	12 300	26 800	235
	ZFT 2506-5	Z						2.5×1	12 300	26 800	462
*	PFT 2506-5	Р		6	3.969	25.5	21.4	2.5×2	14 100	26 800	383
	SFT 2506-3	Clearance		О	3.969	25.5	21.4	1.5×2	14 400	32 100	280
	DFT 2506-3	D						1.5×2	14 400	32 100	551
	SFT 2506-5	Clearance						2.5×2	22 300	53 500	456
	ZFT 2506-10	Z						2.5×2	22 300	53 500	896
	PFT 2508-2.5	P						2.5×1	9 940	16 000	203
	PFT 2508-3	Р						1.5×2	11 600	19 000	234
	SFT 2508-2.5	Clearance		8	4.762	25.5	20.5	2.5×1	15 800	32 000	242
	ZFT 2508-5	Z	25	U	4.702	20.0	20.0	2.5×1	15 800	32 000	476
	SFT 2508-3	Clearance						1.5×2	18 500	38 100	286
	DFT 2508-3	D						1.5×2	18 500	38 100	562
	PFT 2510-2.5	Р						2.5×1	9 940	16 000	203
	ZFT 2510-3	Z						1.5×1	10 200	19 000	291
	PFT 2510-3	P						1.5×2	11 600	19 000	234
	SFT 2510-2.5	Clearance						2.5×1	15 800	32 000	242
	DFT 2510-2.5	D		10	4.762	25.5	20.5	2.5×1	15 800	32 000	475
	SFT 2510-3	Clearance						1.5×2	18 500	38 100	286
	DFT 2510-3	D						1.5×2	18 500	38 100	562
	SFT 2510-3.5	Clearance						3.5×1	21 100	44 200	330
	DFT 2510-3.5	D						3.5×1	21 100	44 200	649

Notes: 1. Nut flange for shaft diameter 20 mm or larger comes in circular shape I and circular shape II. Select a flange that is suitable for the space available for nut installation.

- 2. If there is no seal for PFT, ZFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

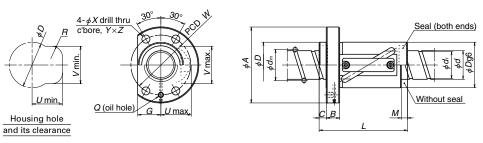

				Ball	nut dimens	ions				
Nut entire	Nut diameter	Flanged	Flanged width	Notched	Seal	Bolt	hole dimer	nsion	Bolt hole PCD	Oil hole
length <i>L</i>	D D	diameter <i>A</i>	Width B	flange <i>G</i>	dimension <i>M</i>	X	Y	Z	W	Q
56										
44										
62										
62	53	76	11	29	3	5.5	9.5	5.5	64	M6×1
56	00	, 0			Ŭ	0.0	0.0	0.0		WIOXI
110										
62										
98 56										
69										
56										
80	58	85	13	32	5	6.6	11	6.5	71	M6×1
69										
133										
67										
81										
81										
67	F0	0.5	4.5			0.0		0.5	7.	140 4
127	58	85	15	32	8	6.6	11	6.5	71	M6×1
81 151										
77										
147										
1.17									1	


- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. For PFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 6. The models marked with * (asterisk) are available in the SA type standard ball screws with finished shaft end.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

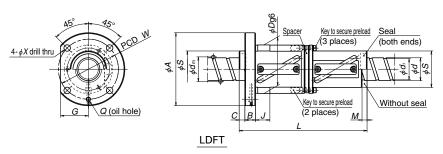
Unit: mm

B445 B446

View X-X

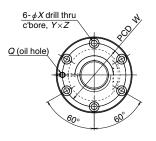

Circular shape I

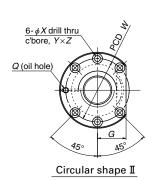
Circular shape II

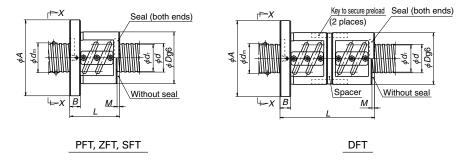

		Drolood	Shaft	Lead	Ball dia.	Ball	Root dia.	Effective turns of balls Turns	Basic load		Axial	
	Model No.	Preload	dia.			circie		Turris	Dynamic	Static		Nut entire
		system	-1	,	_	dia.	-,	× .	· _		K	length
			d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(N/µm)	L
	LPFT 2516-2.5	Р						2.5×1	9 900	16 400	210	84
	LPFT 2516-3	Р						1.5×2	11 600	19 100	247	100
	LSFT 2516-2.5	Clearance		4.0	4 700	00.05	04.0	2.5×1	15 700	32 800	250	84
	LDFT 2516-2.5	D		16	4.762	26.25	21.3	2.5×1	15 700	32 800	490	152
	LSFT 2516-3	Clearance						1.5×2	18 400	38 200	295	100
	LDFT 2516-3	D						1.5×2	18 400	38 200	577	181
*	LPFT 2520-2.5	Р						2.5×1	9 900	16 400	210	96
	LPFT 2520-3 LSFT 2520-2.5	Р	25					1.5×2	11 600	19 100	247	116
		Clearance		20	4.762	26.25	21.3	2.5×1	15 700	32 800	250	96
	LDFT 2520-2.5	D		20	4.702	20.25	21.3	2.5×1	15 700	32 800	490	177
	LSFT 2520-3	Clearance						1.5×2	18 400	38 200	295	116
	LDFT 2520-3	D						1.5×2	18 400	38 200	577	217
*	LPFT 2525-1.5	Р							6 380	9 540	127	90
	LDFT 2525-1.5	D		25	4.762	26.25	21.3	1.5×1	10 100	19 100	308	166
	LSFT 2525-1.5	Clearance							10 100	19 100	157	90
		Clearance						2.5×1	9 600	24 400	252	41
		Z						2.5×1	9 600	24 400	495	56
		Р	28	5	3.175	28.5	25.2	2.5×2	11 000	24 400	410	56
	SFT 2805-5	Clearance						2.5×2	17 400	48 800	487	56
*	ZFT 2805-10	Z						2.5×2	17 400	48 800	959	86

Notes: 1. Nut flange for shaft diameter 20 mm or larger comes in circular shape I and circular shape II. Select a flange that is suitable for the space available for nut installation.

- 2. If there is no seal for PFT, ZFT, and SFT, the nut length "L" is shortened by dimension "M".
- 3. If there is no seal for LSFT and LDFT of shaft diameter 25 mm or larger, the nut length "L" is shortened by dimension
- 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.


LPFT, LSFT


			<u>G</u> \	. Q (OII NOIE	<u> </u>		LDF	ļ	<u>B</u> J	(;	2 place	s) <u>M</u>	-			Return tube
															Unit: mm	
						Ball	nut dir	mensic	ns							type
Nut dia	ameter	Flanged	Flanged	Notched	Tube p	rojectir	ig type	Seal dir	nension		Bolt he	ole dim	ension	Bolt hole	Oil hole	
		diameter		flange						g6				PCD		
D	S	Α	В	G	U	V	R	М	С	J	X	Y	Z	W	Q	
44	_	71		23	31	35	12			_				57		
44	_	71		23	31	35	12			_				57		
44	_	71	12	23	31	35	12	6	8	_	6.6			57	M6×1	
62	44	89	12	34	_	_	—	0	0	18	0.0	-	_	75	IVIOXI	
44	_	71		23	31	35	12			_				57		
62	44	89		34	_	_	_			18				75		
44	_	71		23	31	35	12			_				57		
44	_	71		23	31	35	12			_				57		
44	_	71	12	23	31	35	12	7	8	_	6.6			57	M6×1	
62	44	89	12	34	_	_	_	,	0	18	0.0	-	_	75	IVIOXI	
44	_	71		23	31	35	12			_				57		
62	44	89		34	_	_	_			18				75		
44	_	71		23	32	34	12			_				57		
62	44	89	12	34	_	_	_	10	10	18	6.6	l —	l —	75	M6×1	
44	_	71		23	32	34	12			_				57		
55	_	85	12	31	_	_	_	3		_	6.6	11	6.5	69	M6×1	

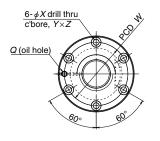

- 5. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 6. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. The models marked with * (asterisk) are available in the FA or SA type standard ball screws with finished shaft end.
- 8. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

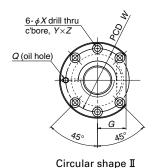
View X-X

Unit: mm

	Model No.		Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial
N	Model No.	Preload	Silait ula.	Leau	Dall Ula.	dia.	1100t dia.	Turns	Dynamic	Static	rigidity <i>K</i>
		system	d	l	D_{w}	d _m	d,	× Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	N/µm)
PFT	2806-3	Р						1.5×2	7 080	14 600	252
SF1	Г 2806-2.5	Clearance						2.5×1	9 600	24 400	252
ZFT	2806-5	Z						2.5×1	9 600	24 400	495
* PFT	2806-5	P		6	3.175	28.5	25.2	2.5×2	11 000	24 400	410
SF1	Г 2806-3	Clearance		O	3.175	20.5	25.2	1.5×2	11 200	29 300	300
DF1	Г 2806-3	D						1.5×2	11 200	29 300	590
SF1	Г 2806-5	Clearance						2.5×2	17 400	48 800	487
* ZFT	2806-10	Z	28					2.5×2	17 400	48 800	959
	2810-2.5	Р						2.5×1	10 500	18 000	220
ZFT	2810-3	Z						1.5×1	10 800	21 500	320
PFT	2810-3	Р						1.5×2	12 300	21 500	265
		Clearance		10	4.762	28.5	23.5	2.5×1	16 700	36 100	265
	Γ 2810-2.5	D						2.5×1	16 700	36 100	522
SF1	Г 2810-3	Clearance						1.5×2	19 500	43 000	314
	DFT 2810-3	D						1.5×2	19 500	43 000	618
	Г 3204-2.5	Clearance						2.5×1	5 800	17 500	234
	3204-5	Z						2.5×1	5 800	17 500	461
	3204-5	P		4	2.381	32.3	29.8	2.5×2	6 630	17 500	382
SF1	Г 3204-5	Clearance						2.5×2	10 500	35 100	454
	3204-10	Z						2.5×2	10 500	35 100	892
	3205-3							1.5×2	7 490	16 800	281
	Г 3205-2.5	Clearance						2.5×1	10 200	28 000	281
	3205-5	Z	32					2.5×1	10 200	28 000	552
	3205-5	Р	52					2.5×2	11 600	28 000	455
	Г 3205-3	Clearance						1.5×2	11 900	33 600	333
	DFT 3205-3 D PFT 3205-7.5 P			5	3.175	32.5	29.2	1.5×2	11 900	33 600	655
								2.5×3	16 500	42 100	672
	Г 3205-5	Clearance						2.5×2	18 500	56 100	543
	3205-10	Z						2.5×2	18 500	56 100	1 070
SFT	Г 3205-7.5	Clearance						2.5×3	26 200	84 100	799
DF1	Г 3205-7.5	D						2.5×3	26 200	84 100	1 572

Notes: 1. Nut flange for shaft diameter 20 mm or larger comes in circular shape I and circular shape II. Select a flange that is suitable for the space available for nut installation.

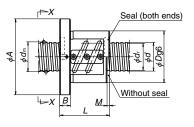

- 2. If there is no seal for PFT, ZFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

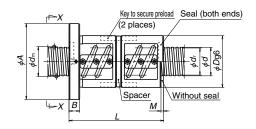

				Ball	nut dimens	ions				
Nut entire length	Nut diameter	Flanged diameter	Flanged width B	Notched flange G	Seal dimension M	Bolt	hole dimer Y		Bolt hole PCD W	Oil hole
L	D	Α	В	G	IVI	Χ	Υ	Z	VV	U
57 45 63 63 57 111 63 99	55	85	12	31	3	6.6	11	6.5	69	M6×1
68 82 82 68 128 82 152	60	94	15	36	7	9	14	8.5	76	M6×1
37 49 49 49 73	54	81	12	31	3	6.6	11	6.5	67	M6×1
53 41 56 56 53 103 71 56 86 71	58	85	12	32	3	6.6	11	6.5	71	M6×1
4.7		ditu. Kin tha								

- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. For PFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 6. The models marked with * (asterisk) are available in the SA type standard ball screws with finished shaft end.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

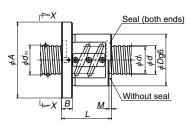

B449

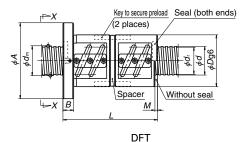

View X-X





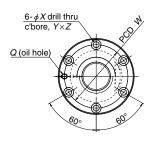
- 2. If there is no seal for PFT, ZFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

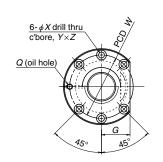



PFT, ZFT, SFT

DFT

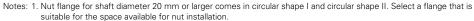
				Ball	nut dimens	ions				
Nut entire length L	Nut diameter D	Flanged diameter A	Flanged width B	Notched flange	Seal dimension M		hole dimer	ision Z	Bolt hole PCD W	Oil hole
57 45 63 63 57 111 63 99	62	89	12	34	3	6.6	11	6.5	75	M6×1
71 58 82 82 71 111 82 154 130	66	100	15	38	5	9	14	8.5	82	M6×1
70 87 87 70 100 100 87 167 80 150 100 190	74	108	15	41	7	9	14	8.5	90	M6×1
97 97 81 153 97 181	74	108	18	41	9	9	14	8.5	90	M6×1

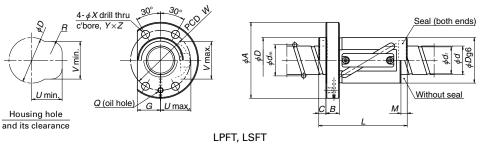

- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. For PFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 6. The models marked with * (asterisk) are available in the SA type standard ball screws with finished shaft end.
- 7. Preload system: P. Oversize ball preload; Z. Offset preload; D. Double nut preload (See page B5.)

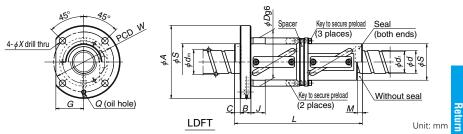


PFT, ZFT, SFT

View X-X

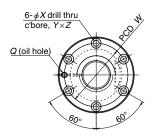


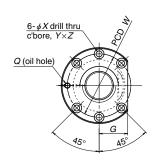

Circular shape I


Circular shape I

			Shaft	Lead	Ball dia.	Ball	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial	
	Model No.	Preload	dia.	Leau	Dali ula.	Circle	i toot uia.	Tuillis	Dynamic	Static	rigidity	Nut entire
	LPFT 3225-2.5 LSFT 3225-2.5 LDFT 3225-2.5 LDFT 3225-3 LDFT 3225-3 LPFT 3232-1.5 LSFT 3232-1.5 LDFT 3232-1.5 PFT 3605-5 PFT 3605-5 SFT 3605-5	system	d	l	$D_{\rm w}$	dia. <i>d</i> _m	d,	Circuita	C _a	C_{0a}	(N1/1100)	length
	LPFT 3220-2.5 LPFT 3220-3 LSFT 3220-2.5 LDFT 3220-2.5 LSFT 3220-3 LDFT 3220-3 LPFT 3225-3 LSFT 3225-2.5 LDFT 3225-2.5 LSFT 3225-2.5 LSFT 3225-3 LDFT 3225-3 LDFT 3232-1.5 LSFT 3232-1.5 LSFT 3232-1.5	_	u	·	D _w	u _m	G _r	Circuits			(N/µm)	L
		Р						2.5×1	11 300	20 900	251	99
	LPFT 3220-3	Р						1.5×2	13 200	24 800	297	119
	LSFT 3220-2.5	Clearance		20	4.762	33.25	28.3	2.5×1	17 900	41 800	300	99
	LDFT 3220-2.5	D						2.5×1	17 900	41 800	604	179
	LSFT 3220-3	Clearance						1.5×2	21 000	49 600	360	119
	LDFT 3220-3	D						1.5×2	21 000	49 600	708	219
*	LPFT 3225-2.5	Р						2.5×1	11 300	20 900	251	117
	LPFT 3225-3 LSFT 3225-2.5 LDFT 3225-2.5	Р	32					1.5×2	13 200	24 800	297	142
		Clearance		25	4.762	33.25	28.3	2.5×1	17 900	41 800	300	117
		D						2.5×1	17 900	41 800	604	218
	LSFT 3225-3	Clearance						1.5×2	21 000	49 600	360	142
		D						1.5×2	21 000	49 600	708	268
*	LPFT 3232-1.5	Р							7 280	12 400	161	109
	LSFT 3232-1.5	Clearance		32	4.762	33.25	28.3	1.5×1	11 500	24 800	190	109
	LDFT 3232-1.5	D							11 500	24 800	376	205
	ZFT 3605-5	Z						2.5×1	10 700	31 700	607	59
	PFT 3605-5 PFT 3605-7.5 SFT 3605-5 ZFT 3605-10	Р						2.5×2	12 200	31 700	504	59
		Р						2.5×3	17 300	47 500	740	74
		Clearance	36	5	3.175	36.5	33.2	2.5×2	19 400	63 300	597	59
		Z						2.5×2	19 400	63 300	1 170	89
		Clearance						2.5×3	27 500	95 000	878	74
		D						2.5×3	27 500	95 000	1 730	139

- 2. If there is no seal for PFT, ZFT, SFT, and DFT the nut length "L" is shortened by dimension "M".
- 3. If there is no seal for LSFT and LDFT of shaft diameter 25 mm or larger, the nut length "L" is shortened by dimension "M" and "C"
- 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

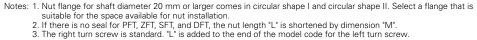


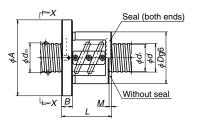


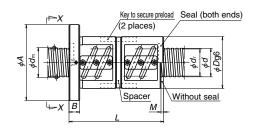
						Ball	nut dir	nensic	ns						
Nut dia	meter	Flanged	Flanged	Notched	Tube p	rojectir	g type	Seal din	nension	Diameter	Bolt ho	ole dim	ension	Bolt hole	Oil hole
		piarrieter	width	l lialige						go				1 00	
D	S	A	В	G	U	V	R	М	С	J	X	Y	Z	W	Q
51	_	85		26	34	42	12			_				67	
51	_	85		26	34	42	12			_				67	
51	_	85	15	26	34	42	12	7	8	_	9			67	M6×1
68	51	102	15	39	_	l —	l —	/	0	20	9	_	_	84	IVIOXI
51	_	85		26	34	42	12			_				67	
68	51	102		39	_	_	_			20				84	
51	_	85		26	34	42	12			_				67	
51	_	85		26	34	42	12			_				67	
51	_	85	15	26	34	42	12	10	10	_	9			67	M6×1
68	51	102	15	39	_	l —	l —	10	10	20	9	_	_	84	IVIOXI
51	_	85		26	34	42	12			_				67	
68	51	102		39	_	_	_			20				84	
51	_	85		26	34	42	12							67	
51	_	85	15	26	34	42	12	13	12	_	9	—	l —	67	M6×1
68	51	102		39	_	_	_			20				84	
65	_	100	15	38	_	_	_	3	_	_	9	14	8.5	82	M6×1

- 5. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 6. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. The models marked with * (asterisk) are available in the FA type standard ball screws with finished shaft end.
- 8. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

View X-X





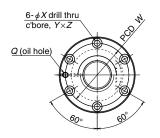

Circular shape I

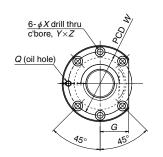
Circular shape I

										-	
						Ball circle		Effective turns of balls	Basic load	rating (N)	Axial
	Andal Na	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
l,	√odel No.	system				""		×	,		K
		<i>'</i>	d	l	D_{w}	$d_{\scriptscriptstyle m}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
ZFT	3606-5	Z						2.5×1	14 600	39 300	625
PFT	3606-5	Р						2.5×2	16 700	39 300	518
PFT	3606-7.5	P						2.5×3	23 700	58 900	763
SF1	3606-5	Clearance		6	3.969	36.5	32.4	2.5×2	26 500	78 500	615
ZFT	3606-10	Z						2.5×2	26 500	78 500	1 210
SFT	3606-7.5	Clearance						2.5×3	37 600	118 000	905
DF1	Г 3606-7.5	D						2.5×3	37 600	118 000	1 780
	3610-2.5	Р						2.5×1	17 100	30 600	278
ZFT	3610-3	Z						1.5×1	17 500	36 800	404
PFT	3610-3	P	36					1.5×2	20 000	36 800	327
	3610-2.5	Clearance	30					2.5×1	27 200	61 300	334
	3610-5	Z						2.5×1	27 200	61 300	657
	3610-5	Р		10	6.35	37.0	30.4	2.5×2	31 100	61 300	537
	3610-3	Clearance		10	0.55	37.0	30.4	1.5×2	31 800	73 500	397
	OFT 3610-3 PFT 3610-7.5	D						1.5×2	31 800	73 500	781
		P						2.5×3	43 700	96 000	782
	T 3610-5	Clearance						2.5×2	49 300	123 000	647
	Г 3610-5	D						2.5×2	49 300	123 000	1 259
	3610-10	Z						2.5×2	49 300	123 000	1 259
	3610-7.5	Clearance						2.5×3	69 900	184 000	945
	4005-3	Р						1.5×2	8 210	21 200	337
	4005-2.5	Clearance						2.5×1	11 100	35 300	336
	4005-5	Z						2.5×1	11 100	35 300	661
	4005-5	Р						2.5×2	12 700	35 300	548
	4005-3	Clearance						1.5×2	13 000	42 400	399
	4005-3	D		5	3.175	40.5	37.2	1.5×2	13 000	42 400	785
	4005-7.5	Р						2.5×3	18 100	53 000	806
	4005-5	Clearance						2.5×2	20 200	70 600	649
	4005-10	Z	40					2.5×2	20 200	70 600	1 280
	4005-7.5	Clearance	40					2.5×3	28 700	106 000	956
	4005-7.5	D						2.5×3	28 700	106 000	1 870
	4006-5	6-5 Z						2.5×1	15 200	43 800	679
	4006-5	Р						2.5×2	17 400	43 800	564
	FT 4006-3 Clearar FT 4006-3 D	Clearance						1.5×2	17 800	52 600	411
				6	2.060	40 E	26.4	1.5×2	17 800	52 600	807
		P		6	3.969	40.5	36.4	2.5×3	24 600	65 700	827
	4006-5	Clearance						2.5×2	27 600	87 600	668
	4006-10	Classones						2.5×2	27 600	87 600	1 320
	4006-7.5	Clearance						2.5×3	39 100	131 000	984
DF	Г 4006-7.5	D						2.5×3	39 100	131 000	1 940

PFT, ZFT, SFT

DFT


Unit: mm

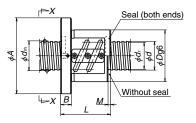

Return tube type

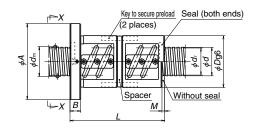
				Ball	nut dimens	ions				
Nut entire	Nut diameter	Flanged diameter	Flanged width	Notched	Seal dimension	Bolt	hole dimer	nsion	Bolt hole PCD	Oil hole
length L	D	alameter A	Width B	flange <i>G</i>	M	Χ	Y	Z	W PCD	Q
66 66 84 66 102 84 162	65	100	15	38	3	9	14	8.5	82	M6×1
73 90 90 73 103 103 90 170 133 103 193 163 133	75	120	18	45	7	11	17.5	11	98	M6×1
56 44 59 59 56 106 74 59 89 74	67	101	15	39	3	9	14	8.5	83	Rc1/8
66 66 60 114 84 66 102 84 162	70	104	15	40	3	9	14	8.5	86	Rc1/8

- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_J) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. For PFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 6. The models marked with * (asterisk) are available in the SA type standard ball screws with finished shaft end.
 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

View X-X

Circular shape I


Circular shape I


		5	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial
	Model N	o. Preload system	Silait dia.	Leau	Dali Gia.	dia.	1100t dia.	Turns ×	Dynamic	Static	rigidity <i>K</i>
		System	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle m}$	d,	Circuits	$C_{\rm a}$	$C_{\scriptscriptstyle 0a}$	/N/μm)
	PFT 4008-3	P						1.5×2	14 200	31 300	352
	SFT 4008-2.	5 Clearance						2.5×1	19 200	51 600	349
	ZFT 4008-5	Z						2.5×1	19 200	51 600	687
	PFT 4008-5	P		8	4.762	40.5	35.5	2.5×2	22 000	51 600	570
	SFT 4008-3	Clearance		0	4.702	40.5	35.5	1.5×2	22 500	62 600	418
	DFT 4008-3	D						1.5×2	22 500	62 600	822
	SFT 4008-5	Clearance						2.5×2	34 900	103 000	675
	ZFT 4008-10							2.5×2	34 900	103 000	1 330
	PFT 4010-2.							2.5×1	18 000	34 300	307
	PFT 4010-3	Р						1.5×2	21 100	41 100	366
	SFT 4010-2.							2.5×1	28 600	68 600	365
	ZFT 4010-5	Z						2.5×1	28 600	68 600	717
	PFT 4010-5	P						2.5×2	32 800	68 600	595
	SFT 4010-3	Clearance						1.5×2	33 500	82 300	434
	ZFT 4010-6 ZFT 4010-7 SFT 4010-3.5	Z		10	6.35	41	34.4	1.5×2	33 500	82 300	854
		Z						3.5×1	38 300	96 000	988
								3.5×1	38 300	96 000	503
	PFT 4010-7	Р	40					3.5×2	43 700	96 000	813
	SFT 4010-5	Clearance						2.5×2	52 000	137 000	706
*	DFT 4010-5 ZFT 4010-10	D Z						2.5×2 2.5×2	52 000 52 000	137 000 137 000	1 376 1 376
	SFT 4010-10	Clearance						2.5×2 3.5×2	69 400	192 000	976
	PFT 4010-7							2.5×1	21 200	38 800	310
	SFT 4012-2.	• •						2.5×1	33 600	77 500	373
	ZFT 4012-5	Z						2.5×1	33 600	77 500	733
	PFT 4012-5	P						2.5×2	38 400	77 500	600
	PFT 4012-7.			12	7.144	41.5	34.1	2.5×3	54 400	116 000	872
	SFT 4012-5	Clearance		'-	' †	''	0	2.5×2	61 000	155 000	722
*	DFT 4012-5	D						2.5×2	61 000	155 000	1 404
	ZFT 4012-10							2.5×2	61 000	155 000	1 404
	SFT 4012-7.							2.5×3	86 400	233 000	1 054
	ZFT 4016-3	Z						1.5×1	21 700	46 500	451
	SFT 4016-2.	5 Clearance						2.5×1	33 600	77 500	373
	DFT 4016-2.	5 D		16	7.144	41.5	34.1	2.5×1	33 600	77 500	733
		Clearance						1.5×2	39 300	93 100	440
	DFT 4016-3	D						1.5×2	39 300	93 100	872

Notes: 1. Nut flange for shaft diameter 20 mm or larger comes in circular shape I and circular shape II. Select a flange that is suitable for the space available for nut installation.

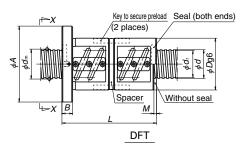
2. If there is no seal for PFT, ZFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".

3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

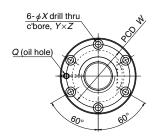
PFT, ZFT, SFT

DFT

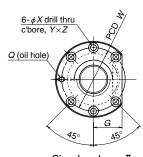
Unit: mm


				Rall	nut dimens	ione				
Nut entire	Nut	Flanged	Flanged	Notched	Seal		hole dimer	sion	Bolt hole	0:11 1
length	diameter	diameter	width	flange	dimension	20.0			PCD	Oil hole
L	D	Α	В	G	М	Χ	Y	Ζ	W	Q
71										
58										
82										
82 71	74	108	15	41	5	9	14	8.5	90	Rc1/8
135										
82										
130										
73										
90										
73										
103										
103										
90 140										
123	82	124	18	47	7	11	17.5	11	102	Rc1/8
83										
123										
103										ļ
193										
163										
123										
81 81										
117										
117										
153	86	128	18	48	9	11	17.5	11	106	Rc1/8
117										·
225										
189										
153										
118 102										
182	86	128	22	48	14	11	17.5	11	106	Rc1/8
118		120		40	'4	1 1	17.5	''	100	1101/0
214										
4 T	ha avial riais	ditu V in the	table above	ia a thaarati	ool value obt	ain ad frans	tha alaatia d	oformation b		

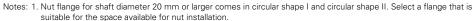
4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.


5. For PFT, the basic load ratings differ from the other models as the spacer balls are installed.

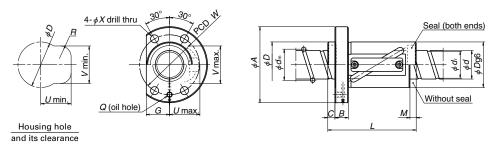
6. The models marked with * (asterisk) are available in the SA type standard ball screws with finished shaft end.


7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

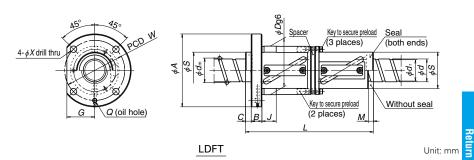
View X-X



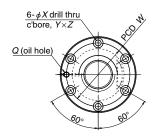
Circular shape I

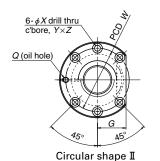


Circular shape I


		Shaft			Ball		Effective turns of balls	Basic load	rating (N)	Axial	
Model No.	Preload	dia.	Lead	Ball dia.	Circle	Root dia.	Turns	Dynamic	Static	rigidity	Nut entire
WIOGCI IVO.	system	,	,		dia.	,	×	'		Κ	length
		d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	C _a	C_{0a}	(N/µm)	L
LPFT 4025-2.5	P						2.5×1	18 000	35 000	315	123
LPFT 4025-3	Р						1.5×2	21 000	41 200	347	148
LSFT 4025-2.5	Clearance		25	6.35	41.75	35.1	2.5×1	28 500	70 000	375	123
LDFT 4025-2.5	D		25	0.55	41.75	35.1	2.5×1	28 500	70 000	737	223
LSFT 4025-3	Clearance						1.5×2	33 400	82 400	444	148
LDFT 4025-3	D	40					1.5×2	33 400	82 400	873	273
LPFT 4032-2.5	Р	40						18 000	35 000	315	146
LSFT 4032-2.5	Clearance		32	6.35	41.75	35.1	2.5×1	28 500	70 000	375	146
LDFT 4032-2.5	D							28 500	70 000	737	274
LPFT 4040-1.5	Р							11 600	20 600	199	133
LSFT 4040-1.5	Clearance		40	6.35	41.75	35.1	1.5×1	18 400	41 200	237	133
LDFT 4040-1.5	D							18 400	41 200	465	253
ZFT 4510-5	Z						2.5×1	29 900	77 300	784	103
PFT 4510-7	Р						3.5×2	45 600	109 000	887	123
PFT 4510-7.5	P						2.5×3	48 400	116 000	950	133
SFT 4510-5	Clearance		10	6.35	46.0	39.4	2.5×2	54 200	155 000	772	103
DFT 4510-5	D		10	0.55	40.0	33.4	2.5×2	54 200	155 000	1 520	193
SFT 4510-7	Clearance	45					3.5×2	72 400	218 000	1 064	123
SFT 4510-7.5	Clearance	45					2.5×3	76 800	232 000	1 140	133
DFT 4510-7.5	D						2.5×3		232 000	2 230	253
SFT 4512-2.5	Clearance						2.5×1	35 400	88 500	412	83
ZFT 4512-5	Z		12	7.144	46.5	39.1	2.5×1	35 400	88 500	811	119
SFT 4512-5	Clearance		12	/.144	40.0	39.1	2.5×2	64 200	177 000	798	119
DFT 4512-5	D						2.5×2	64 200	177 000	1 570	227

- 2. If there is no seal for ZFT, SFT, and DFT the nut length "L" is shortened by dimension "M".
- 3. If there is no seal for LSFT and LDFT of shaft diameter 25 mm or larger, the nut length "L" is shortened by dimension "M" and "C".
- 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

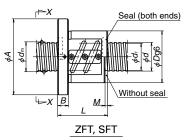

LPFT, LSFT

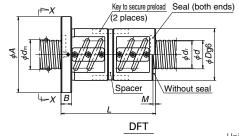


						Ball	nut dir	nensic	ns						
Nut dia	meter	Flanged	Flanged	Notched	Tube p	rojectir	g type	Seal din	nension	Diameter	Bolt h	ole dim	ension	Bolt hole	Oil hole
D	S	diameter <i>A</i>	width <i>B</i>	flange G	U	l v	R	М	С	g6 <i>J</i>	X	l _Y	Z	PCD W	Q
64	_	106		33	42	52	15		Ü	_	- / (84	
64	_	106		33	42	52	15			_				84	
64	_	106	40	33	42	52	15	4.0	4.0	_				84	D 4/0
84	64	126	18	48	_	_	_	10	10	22	11	-	_	104	Rc1/8
64	_	106		33	42	52	15			_				84	
84	64	126		48	_	_	_			22				104	
64	_	106		33	42	52	15			_				84	
64	_	106	18	33	42	52	15	13	12	_	11	l —	l —	84	Rc1/8
84	64	126		48	_	_	_			22				104	
64	_	106		33	42	52	15			_				84	
64	_	106	18	33	42	52	15	16	14	_	11	—	l —	84	Rc1/8
84	64	126		48	_		_			22				104	
88	_	132	18	50	_	_	_	7	_	_	11	17.5	11	110	Rc1/8
90	_	132	18	50	_	_	_	8	_	_	11	17.5	11	110	Rc1/8

- 5. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_i) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 6. For LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

View X-X

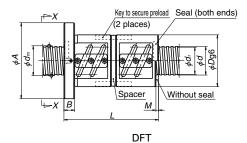



Circular shape I

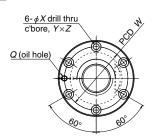
					Ball circle		Effective turns of balls	Basic load	rating (N)	Axial
Model No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
Model No.	system	-d	1		ا ما	_ م	×	,		K
		d	l	$D_{\rm w}$	$d_{\scriptscriptstyle m}$	d _r	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
SFT 5005-3	Clearance						1.5×2	14 200	52 500	472
ZFT 5005-6	Z		5	3.175	50.5	47.2	1.5×2	14 200	52 500	930
SFT 5005-4.5	Clearance		Ü	0.170	00.0	17.2	1.5×3	20 200	78 800	696
ZFT 5005-9	Z						1.5×3	20 200	78 800	1 360
SFT 5006-3	Clearance						1.5×2	19 500	65 100	486
DFT 5006-3	D P						1.5×2	19 500	65 100 81 900	956 988
PFT 5006-7.5 SFT 5006-5			6	3.969	50.5	46.4	2.5×3	27 000		988 794
ZFT 5006-10	Clearance Z		О	3.909	50.5	40.4	2.5×2	30 300	109 000	
SFT 5006-7.5	Clearance						2.5×2	30 300 42 900	109 000 164 000	1 562 1 170
DFT 5006-7.5	D						2.5×3 2.5×3	42 900	164 000	2 300
SFT 5008-7.5	Clearance	-					1.5×2	25 000	77 400	496
DFT 5008-3	D						1.5×2	25 000	77 400	975
SFT 5008-5	Clearance						2.5×2	38 700	131 000	815
ZFT 5008-10	Z		8	4.762	50.5	45.5	2.5×2	38 700	131 000	1 600
SFT 5008-7.5	Clearance						2.5×3	54 900	197 000	1 200
DFT 5008-7.5	D						2.5×3	54 900	197 000	2 350
SFT 5010-2.5	Clearance						2.5×1	31 800	87 400	440
ZFT 5010-5	Z						2.5×1	31 800	87 400	866
SFT 5010-3	Clearance						1.5×2	37 200	103 000	517
DFT 5010-3	D						1.5×2	37 200	103 000	1 010
ZFT 5010-7	Z	50	10	6.35	51.0	44.4	3.5×1	42 500	122 000	1 190
PFT 5010-7.5	P		10	0.00	01.0	77.7	2.5×3	51 500	131 000	1 039
SFT 5010-5	Clearance						2.5×2	57 700	175 000	853
ZFT 5010-10	Z						2.5×2	57 700	175 000	1 677
SFT 5010-7.5	Clearance						2.5×3	81 800	262 000	1 250
DFT 5010-7.5 SFT 5012-2.5	Clearance	-					2.5×3 2.5×1	81 800 42 800	262 000 107 000	2 460 449
ZFT 5012-2.5	Z						2.5×1	42 800	107 000	883
SFT 5012-5	Clearance		12	7.938	51.5	43.2	2.5×2	77 600	214 000	869
DFT 5012-5	D		12	7.000	51.5	70.2	2.5×2	77 600	214 000	1 718
ZFT 5012-10	Z						2.5×2	77 600	214 000	1 718
SFT 5016-2.5	Clearance	1 1					2.5×1	42 800	107 000	449
ZFT 5016-5	Z						2.5×1	42 800	107 000	883
PFT 5016-7.5	P		1.0	7 020	E1 E	42.0	2.5×3	69 300	161 000	1 066
SFT 5016-5	Clearance		16	7.938	51.5	43.2	2.5×2	77 600	214 000	869
DFT 5016-5	D						2.5×2	77 600	214 000	1 710
SFT 5016-7.5	Clearance]]					2.5×3	110 000	321 000	1 286
ZFT 5020-3	Z						1.5×1	27 600	64 300	542
SFT 5020-2.5	Clearance						2.5×1	42 800	107 000	449
DFT 5020-2.5	D		20	7.938	51.5	43.2	2.5×1	42 800	107 000	883
SFT 5020-3	Clearance						1.5×2	50 000	129 000	534
DFT 5020-3	D						1.5×2	50 000	129 000	1 050

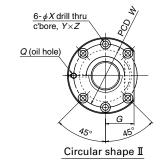
Notes: 1. Nut flange for shaft diameter 20 mm or larger comes in circular shape I and circular shape II. Select a flange that is suitable for the space available for nut installation.

- 2. If there is no seal for ZFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.



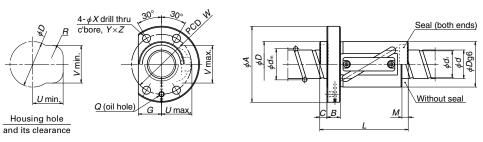
					nut dimens					
Nut entire length	Nut diameter	Flanged diameter	Flanged width	Notched flange	Seal dimension	Bolt	hole dimer	nsion	Bolt hole PCD	Oil hole
L	D	alameter A	Widtii B	G	M	X	Y	Z	W W	Q
58		, ,		Ü		7.	,			
83	80	114	15	43	3	9	14	8.5	96	Rc1/8
68	00	114	15	43	3	9	14	0.0	90	NC1/6
103										
62 116										
86										
68	84	118	15	45	3	9	14	8.5	100	Rc1/8
104										·
86										
164										
74 138										
85					_					
133	87	129	18	49	5	11	17.5	11	107	Rc1/8
109										
205										
73 103										
90										
170										
123	93	135	18	51	7	11	17.5	11	113	Rc1/8
133	93	135	18	51	/	11	17.5	11	113	NC1/8
103										
163 133										
253										
87										
123										
123	100	146	22	55	8	14	20	13	122	Rc1/8
231										
195 104										
152										
200	100	1.40	00		14	1.4	20	10	100	D - 1 /O
152	100	146	22	55	14	14	20	13	122	Rc1/8
280										
200										
147 127										
227	100	146	28	55	17	14	20	13	122	Rc1/8
147	100	170	20		' '	1-7	20	'	'	110170
267										
4.7										


- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above,
- or when the deformation of the ball nut body must be considered.

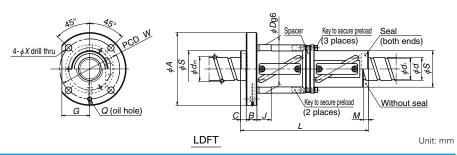

 5. The models marked with * (asterisk) are available in the SA type standard ball screws with finished shaft end.
- 6. Preload system: Z, Offset preload; D, Double nut preload (See page B5.)

ZFT, SFT

View X-X

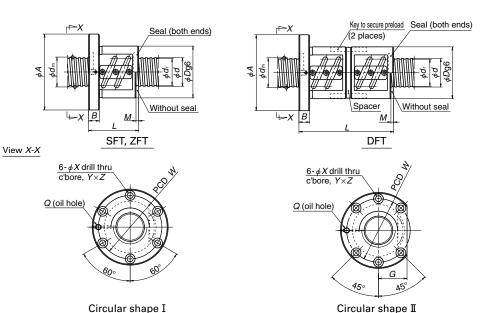


Circular shape I


	Preload	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls Turns			Axial rigidity	Nut entire
Model No.	system	ula.			dia.		X	Dynamic	Static	K	length
	System	d	l	$D_{\rm w}$	$d_{\rm m}$	d _r	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)	L
LPFT 5025-2.5	Р						2.5×1	26 900	54 700	388	129
LPFT 5025-3	Р						1.5×2	31 400	66 500	450	154
LSFT 5025-2.5	Clearance		25	7.938	52.25	44	2.5×1	42 700	109 000	462	129
LDFT 5025-2.5	D		25	7.938	52.25	44	2.5×1		109 000	905	229
LSFT 5025-3	Clearance						1.5×2	49 900	133 000	547	154
LDFT 5025-3	D						1.5×2	49 900	133 000	1 070	279
LPFT 5032-2.5	Р						2.5×1	26 900	54 700	388	151
LPFT 5032-3	Р						1.5×2	31 400	66 500	450	183
LSFT 5032-2.5	Clearance	50	32	7.938	52.25	44	2.5×1	42 700	109 000	462	151
LDFT 5032-2.5	D	30	52	7.550	32.23	44	2.5×1	42 700		905	279
LSFT 5032-3	Clearance						1.5×2		133 000	547	183
LDFT 5032-3	D						1.5×2	49 900		1 070	343
LPFT 5040-2.5	Р							26 900	54 700	388	178
LSFT 5040-2.5	Clearance		40	7.938	52.25	44	2.5×1		109 000	462	178
LDFT 5040-2.5	D							42 700	109 000	922	338
LPFT 5050-1.5	Р					l		17 300	33 200	245	161
LSFT 5050-1.5	Clearance		50	7.938	52.25	44	1.5×1	27 500	66 500	290	161
LDFT 5050-1.5	D							27 500	66 500	572	312
ZFT 5510-5	Z						2.5×1	32 800	96 100	929	103
SFT 5510-5	Clearance						2.5×2	59 500	192 000	916	103
ZFT 5510-10	Z	55	10	6.35	56.0	49.4	2.5×2		192 000	1 800	163
DFT 5510-5	D	55	.0	6.35	56.0	49.4	2.5×2		192 000	1 800	193
SFT 5510-7.5	Clearance						2.5×3		288 000	1 350	133
DFT 5510-7.5	D						2.5×3	84 300	288 000	2 650	253

Notes: 1. Nut flange for shaft diameter 20 mm or larger comes in circular shape I and circular shape II. Select a flange that is suitable for the space available for nut installation.

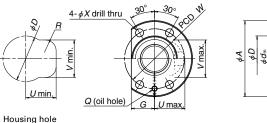
- 2. If there is no seal for ZFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. If there is no seal for LSFT and LDFT of shaft diameter 25 mm or larger, the nut length "L" is shortened by dimension
- 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

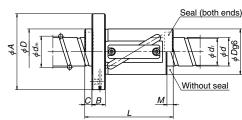


LPFT, LSFT

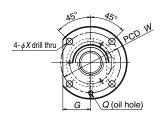
						Ball	nut dir	mensic	ns						
Nut dia	ameter	Flanged	Flanged	Notched	Tube p	rojectir	ig type	Seal din	nension		Bolt h	ole dim	ension	Bolt hole	Oil hole
		diameter		flange						g6				PCD	
D	S	A	В	G	U	V	R	M	С	J	X	Y	Z	l W	Q
80	_	126		41	52	64	19			_				102	
80	_	126		41	52	64	19			_				102	
80	_	126	22	41	52	64	19	11	11	_	14			102	Rc1/8
106	80	152	22	56	_	—	_	' '	11	25	14	_	_	128	NC1/6
80	_	126		41	52	64	19			_				102	
106	80	152		56	_	_	_			25				128	
80	_	126		41	52	64	19			_				102	
80	_	126		41	52	64	19			_				102	
80	_	126	22	41	52	64	19	14	12	_	14			102	Rc1/8
106	80	152		56	_	_	_	14	12	25	14	-	-	128	1101/0
80	_	126		41	52	64	19			_				102	
106	80	152		56			_			25				128	
80	_	126		41	52	64	19			_				102	
80	_	126	22	41	52	64	19	17	14	_	14	—	—	102	Rc1/8
106	80	152		56		_	_			25				128	
80	_	126		41	52	64	19			_				102	
80	_	126	22	41	52	64	19	21	16	_	14	—	—	102	Rc1/8
106	80	152		56	_					25				128	
102	_	144	18	54	_	_	_	7	_	_	11	17.5	11	122	Rc1/8

- 5. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (Ca) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 6. For LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

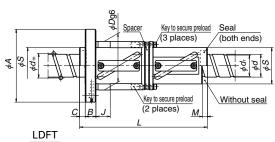



	Preload	Shaft	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls Turns			Axial rigidity	Nut antiro
Model No.	system	dia.			dia.		X	Dynamic	Static	K	Nut entire length
	System	d	l	$D_{\rm w}$	dia.	d _r	Circuits	C _a	C_{0a}	(N/µm)	L
SFT 6310-2.5	Clearance						2.5×1	34 800	111 000	528	77
ZFT 6310-5	Z						2.5×1	34 800	111 000	1 038	107
PFT 6310-7.5	P						2.5×3	56 400	166 000	1 250	137
SFT 6310-5	Clearance		10	6.35	64.0	57.4	2.5×2	63 200	221 000	1 020	107
ZFT 6310-10							2.5×2	63 200	221 000	2 000	167
SFT 6310-7.5	Clearance						2.5×3	89 500	332 000	1 500	137
DFT 6310-7.5							2.5×3	89 500	332 000	2 950	257
ZFT 6312-5	Z						2.5×1		137 000	1 060	123
SFT 6312-2.5	Clearance		10	7 000	C4 E	EG 2	2.5×1		137 000	542	87
SFT 6312-5	Clearance		12	7.938	64.5	56.2	2.5×2		273 000	1 050	123
DFT 6312-5	D						2.5×2		273 000	2 060	231
SFT 6316-2.5	Clearance						2.5×1		228 000	713	110
DFT 6316-2.5	D						2.5×1		228 000	1 400	206
PFT 6316-5	P		16	9.525	65.0	55.2	2.5×2		228 000	1 136	158
SFT 6316-5	Clearance						2.5×2	144 000		1 380	158
DFT 6316-5	D						2.5×2		455 000	2 710	302
SFT 6320-2.5	Clearance	63					2.5×1		228 000	713	127
DFT 6320-2.5	D						2.5×1	79 500	228 000	1 400	227
PFT 6320-5	Р		20	9.525	65.0	55.2	2.5×2		228 000	1 132	187
SFT 6320-5	Clearance						2.5×2		455 000	1 380	187
DFT 6320-5	D						2.5×2	144 000		2 710	347
LPFT 6340-2.5	Р						2.5×1	30 600	69 500	466	178
LPFT 6340-3	Р						1.5×2	35 800	82 500	551	218
LSFT 6340-2.5	Clearance		40	7.938	65.25	57	2.5×1		139 000	560	178
LDFT 6340-2.5	D		40	7.550	03.23	37	2.5×1		139 000	1 100	339
LSFT 6340-3	Clearance						1.5×2		165 000	667	218
LDFT 6340-3	D						1.5×2		165 000	1 310	419
LPFT 6350-1.5	Р						1.5×1	19 700	41 200	285	161
LPFT 6350-2.5	P						2.5×1	30 600	69 500	478	211
LSFT 6350-1.5	Clearance		50	7.938	65.25	57	1.5×1	31 300	82 500	346	161
LDFT 6350-1.5	D		30	/.550	00.20	37	1.5×1	31 300	82 500	678	311
LSFT 6350-2.5	Clearance						2.5×1		139 000	560	211
LDFT 6350-2.5	D						2.5×1	48 500	139 000	1 120	411

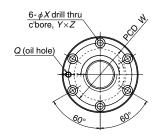
Notes: 1. Nut flange for shaft diameter 20 mm or larger comes in circular shape I and circular shape II. Select a flange that is suitable for the space available for nut installation.

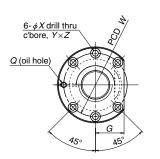

- 2. If there is no seal for ZFT, SFT, and DFT the nut length "L" is shortened by dimension "M".
- 3. If there is no seal for LSFT and LDFT of shaft diameter 25 mm or larger, the nut length "L" is shortened by dimension "M" and "C".

4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.



LPFT, LSFT

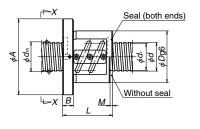

and its clearance

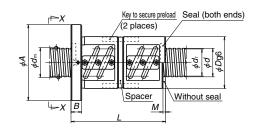


Nut diameter Flanged G D S A B G U V R M C J X Y Z W C C C C C C C C C	Oil hole
	U
108 — 154 22 58 — — 7 — 14 20 13 130	Rc1/8
115 — 161 22 61 — — 8 — — 14 20 13 137	Rc1/8
122 — 180 28 69 — — — — — 18 26 17.5 150	Rc1/8
122 — 180 28 69 — — — 17 — — 18 26 17.5 150	Rc1/8
97 — 144 49 58 77 19 — 120	
97 144 49 58 77 19 120	
97 — 144 22 49 58 77 19 15 14 — 144 — — 120 144 — — 144 — 14	Rc1/8
122 97 168 22 62 — — — 10 11 29 11 144 97 — 144 49 58 77 19 — 120	
122 97 168 62 — — — 29 144	
97 — 144 49 58 77 19 — 120	
97 — 144 49 58 77 19 — 120	
97 — 144 22 49 58 77 19 19 16 — 14 — — 120 122 97 168 22 62 — — — 19 16 — 14 — — 144	Rc1/8
97 — 144 49 58 77 19 29 120	
122 97 168 62 — — 29 144	

- 5. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_j) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 6. For LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

View X-X


Circular shape I

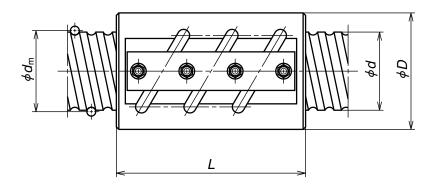

Circular shape I

		0. (Ball circle	D	Effective turns of balls	Basic load	rating (N)	Axial
Model No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
Model No.	system						×	· ·		K
		d	l	D_{w}	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(N/µm)
SFT 8010-5	Clearance						2.5×2	70 500	282 000	1 240
DFT 8010-5	D		10	6.35	81.0	74.4	2.5×2	70 500	282 000	2 430
SFT 8010-7.5	Clearance		10	0.35	81.0	/4.4	2.5×3	99 800	424 000	1 830
DFT 8010-7.5	D] [2.5×3	99 800	424 000	3 590
SFT 8012-5	Clearance						2.5×2	96 000	350 000	1 280
DFT 8012-5	D		12	7.938	81.5	73.2	2.5×2	96 000	350 000	2 500
SFT 8012-7.5	Clearance		12	7.930	01.5	/3.2	2.5×3	136 000	526 000	1 880
DFT 8012-7.5	D	80					2.5×3	136 000	526 000	3 690
SFT 8016-5	Clearance	80					2.5×2	162 000	582 000	1 680
DFT 8016-5	D		16	9.525	82.0	72.2	2.5×2	162 000	582 000	3 300
SFT 8016-7.5	Clearance		10	0.020	02.0	12.2	2.5×3	230 000	874 000	2 470
DFT 8016-7.5	D						2.5×3	230 000	874 000	4 850
SFT 8020-5	Clearance						2.5×2	162 000	582 000	1 680
DFT 8020-5	D		20	9.525	82.0	72.2	2.5×2	162 000	582 000	3 300
SFT 8020-7.5	Clearance		20	0.020	02.0	, , , , ,	2.5×3	230 000	874 000	2 470
DFT 8020-7.5	D						2.5×3	230 000	874 000	4 850
SFT 10012-5	Clearance						2.5×2	105 000	441 000	1 530
DFT 10012-5	D		12	7.938	101.5	93.2	2.5×2	105 000	441 000	2 990
SFT 10012-7.5	Clearance		12	7.000	101.5	00.2	2.5×3	149 000	662 000	2 250
DFT 10012-7.5	D						2.5×3	149 000	662 000	4 400
SFT 10016-5	Clearance						2.5×2	176 000	737 000	2 010
DFT 10016-5	D	100	16	9.525	102	92.2	2.5×2	176 000	737 000	3 930
SFT 10016-7.5	Clearance	100	10	0.020	102	02.2	2.5×3	250 000	1 100 000	2 950
DFT 10016-7.5	D						2.5×3	250 000	1 100 000	5 790
SFT 10020-5	Clearance						2.5×2	176 000	737 000	2 010
DFT 10020-5	D		20	9.525	102	92.2	2.5×2	176 000	737 000	3 930
SFT 10020-7.5	Clearance	[0	1.320			2.5×3	250 000	1 100 000	2 950
DFT 10020-7.5	D						2.5×3		1 100 000	5 780
SFT 12516-5	Clearance	[2.5×2	195 000	918 000	2 390
DFT 12516-5	D		16	9.525	127	117.2	2.5×2	195 000	918 000	4 690
SFT 12516-7.5	Clearance						2.5×3	277 000	1 380 000	3 520
DFT 12516-7.5	D	125					2.5×3	277 000	1 380 000	6 890
SFT 12520-5	Clearance						2.5×2	195 000	918 000	2 390
DFT 12520-5	D		20	9.525	127	117.2	2.5×2	195 000	918 000	4 690
SFT 12520-7.5	Clearance					_	2.5×3		1 380 000	3 520
DFT 12520-7.5	D						2.5×3	277 000	1 380 000	6 890

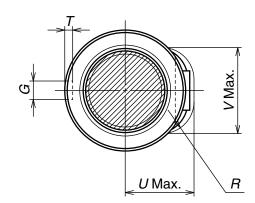
Notes: 1. Nut flange for shaft diameter 20 mm or larger comes in circular shape I and circular shape II. Select a flange that is suitable for the space available for nut installation.

- 2. If there is no seal for SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

SFT


DFT

Unit: mm


										Offic. Ithiri	
				Ball	nut dimens	ions					•
Nut entire length L	Nut diameter D	Flanged diameter A	Flanged width B	Notched flange G	Seal dimension M	Bolt X	hole dimer	nsion Z	Bolt hole PCD W	Oil hole	•
107	D	A	Б	G	IVI	^	1		VV	U	•
197 197 137 257	130	176	22	66	7	14	20	13	152	Rc1/8	
123 231 159 303	136	182	22	68	8	14	20	13	158	Rc1/8	Return
158 302 206 398	143	204	28	77	10	18	26	17.5	172	Rc1/8	Return tube type
187 347 247 467	143	204	28	77	17	18	26	17.5	172	Rc1/8	
129 237 165 309	160	220	28	82	8	18	26	17.5	188	Rc1/8	
162 306 210 402	170	243	32	91	10	22	32	21.5	205	Rc1/8	-
191 351 251 471	170	243	32	91	17	22	32	21.5	205	Rc1/8	_
170 314 218 410	200	290	36	109	10	26	39	25.5	243	Rc1/8	_
199 379 259 499	200	290	36	109	12	26	39	25.5	243	Rc1/8	_

- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_J) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. Preload system: D; Double nut preload (See page B5.)

B467 B468

	Axial	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)
Model No.	play	Silait ula.	Leau	Dali ula.	dia.	1100t dia.	Turns	Dynamic	Static
	(Max.)	d	l	$D_{\rm w}$	d _m	d _r	× Circuits	C _a	C_{0a}
GSCT14025-5 GSCT14025-7.5	0.25		25	15.875	143	126.0	2.5×2 2.5×3	272 000 362 000	1 400 000 2 090 000
GSCT14032-5 GSCT14032-7.5	0.35		32	22.225	144	121.0	2.5×2 2.5×3	428 000 568 000	1 920 000 2 880 000
GSCT14040-5 GSCT14040-7.5	0.35	140	40	22.225	144	121.0	2.5×2 2.5×3	428 000 568 000	1 920 000 2 880 000
GSCT14050-5 GSCT14050-7.5	0.40		50	25.4	145	119.0	2.5×2 2.5×3	518 000 688 000	2 190 000 3 290 000
GSCT16032-5 GSCT16032-7.5	0.35		32	22.225	164	141.0	2.5×2 2.5×3	458 000 608 000	2 210 000 3 310 000
GSCT16040-5 GSCT16040-7.5	0.35	160	40	22.225	164	141.0	2.5×2 2.5×3	458 000 608 000	2 210 000 3 310 000
GSCT16050-5 GSCT16050-7.5	0.40		50	25.4	165	139.0	2.5×2 2.5×3	544 000 722 000	2 560 000 3 840 000
GSCT20032-5 GSCT20032-7.5	0.35		32	22.225	204	181.0	2.5×2 2.5×3	509 000 676 000	2 820 000 4 230 000
GSCT20040-5 GSCT20040-7.5	0.35	200	40	22.225	204	181.0	2.5×2 2.5×3	509 000 676 000	2 820 000 4 230 000
GSCT20050-5 GSCT20050-7.5	0.40		50	25.4	205	179.0	2.5×2 2.5×3	604 000 802 000	3 200 000 4 800 000
GSCT25040-5 GSCT25040-7.5	0.40	250	40	25.4	255	229.0	2.5×2 2.5×3	662 000 879 000	4 000 000 6 000 000
GSCT25050-5 GSCT25050-7.5	0.51	250	50	31.75	256	223.0	2.5×2 2.5×3	825 000 1 100 000	5 000 000 7 500 000

Unit: mm

							Offit. Hilli							
	Nut dimensions													
Nut entire length	Nut diameter	Key din	nension	Tube	projecting dime	ension	Seal dimension							
L	D	G	T	U	V	R	(MS)							
200 275	210			115	154	50	40							
252 348	220	00		135	163	60	48							
306 426	220	32	11	135	163	60	58							
377 527	225			141	167	70	70							
252 348	245	36		141	180	60	48							
306 426	245		12	141	180	60	58							
377 527	250			147	185	70	70							
252 348	295			162	216		48							
306 426	295	45	15	162	216	70	58							
377 527	300			168	221		70							
312 432	355	50	17	194	266	70	58							
385 535	370	50	17	206	274	90	70							

B469 B470

Notes: 1. Precision grade is equivalent to Ct10 grade of JIS B1192 (see page B37).

2. The entire nut length (L) is the size without seal. The size with a seal is longer by the size of "MS."

B-3-2.3 Deflector(bridge) Type Ball Screws

1. Features

The deflector(bridge) type has the smallest ball nut compared to the other recirculation systems, and suitable for fine lead operation.

2. Specifications

(1) Ball recirculation system

It has a small ball nut outside diameter, and suits for small lead ball screws. Fig.1 shows the structure of the deflector(bridge) recirculation system.

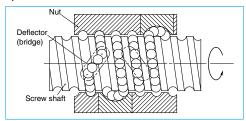


Fig. 1 Structure of deflector(bridge) recirculation system

Table 1 Accuracy grade and axial play

Accuracy grade	C0, C1, C2, C3, C5, Ct7
Accuracy grade	C0, C1, C2, C3, C5, Ct7 (Ct7 is not included in DFD)
Axial play	Z, 0 mm (preloaded); T, 0.005 mm or less
Axiai piay	Z, 0 mm (preloaded); T, 0.005 mm or less S, 0.020 mm or less; N, 0.050 mm or less

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are shown in Table 1. Please consult NSK for other grades.

(3) Allowable din value and the criterion of maximum rotational speed

The allowable d·n value and criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below. Basic measure must be taken for the high speed ball screws respectively.

Allowable d.n value:

Standard specification ; 84 000 or less High-speed specification; 100 000 or less Standard of rotational speed: 3 000 min⁻¹ Note: Please also review the critical speed. Refer to "Technical Description: Permissible

Rotational Speed" (page B47) for details.

(4) Other specifications

Please consult NSK for other specifications not listed in the dimension tables.

Table 2 Deflector(bridge) type ball screw product categories

Nut model	Shape	Flange shape	Preload system
MSFD	11111	Flanged	Non-preload, Slight axial play
MPFD		Circular III	P-preload (light preload) no spacer ball
SFD	(Management of the Control of the Co	Screw shaft diameter of 16 mm or smaller: Flanged Screw shaft diameter of 20 mm or smaller: Rectangle CircularI, II	Non-preload, Slight axial play
ZFD		Flanged Circular I, II	Z-preload (medium preload)
DFD		Flanged Circular I, II	D-preload (medium preload) (heavy preload)

3. Product categories

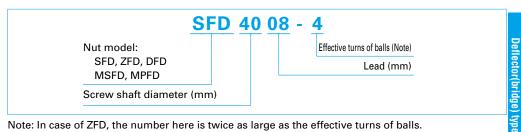
There are four different preload systems (Table 2). Synthetic resin that shows superb characteristics against wear is used in the recirculation deflector (bridge) for MSFD, MPFD, and has enhanced the smooth recirculation of balls.

This product is being applied for a patent.

4. Design Precautions

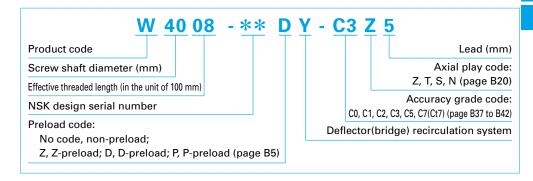
When designing the screw shaft end, one end of the screw must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

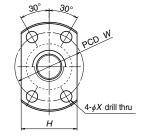
• Cut the ball groove through to the shaft end.


· The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

5. Structure of model number and reference number

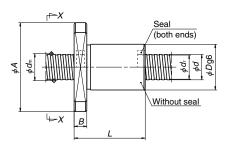

The followings describe the structure of "Model number" and "Reference number for ball screw".



Note: In case of ZFD, the number here is twice as large as the effective turns of balls.

○Reference number for ball screw

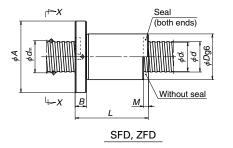
B471 B472

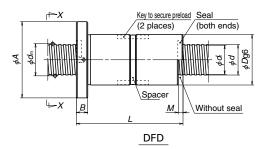

Lead l = 0.5 mm

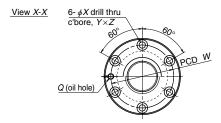
Lead l > 1 mm

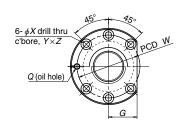
		Preload	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns		rating (N)
	Model No.	system				uia.		×	Dynamic	Static
		′	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle m}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$
	MSFD 0400.5-3	Clearance		0.5	0.400	4.1	3.6	1×3	170	280
	MPFD 0400.5-3	Р	4		000		0.0	.,,,,	., 0	
*	MSFD 0401-2 MPFD 0401-2	Clearance		1	0.800	4.2	3.2	1×2	315	370
	MSFD 0600.5-3	Clearance		٥٢	0.400	0.1	F 0	10	205	400
	MPFD 0600.5-3	Р		0.5	0.400	6.1	5.6	1×3	205	430
	MSFD 0601-3	Clearance	6	1	0.800	6.2	5.2	1×3	575	925
*	MPFD 0601-3	Р		'	0.000	0.2	0.2	17.0	070	
	MSFD 0602-3 MPFD 0602-3	Clearance P		2	0.800	6.2	5.2	1×3	575	925
	MSFD 0800.5-3	Clearance								
	MPFD 0800.5-3	P		0.5	0.400	8.1	7.6	1×3	230	595
	MSFD 0801-3	Clearance	1	1	0.800	8.2	7.2	1×3	670	1 290
*	MPFD 0801-3	Р	8	ı.	0.600	0.2	1.2	123	670	1 290
	MSFD 0801.5-3	Clearance	°	1.5	1.000	8.3	7.0	1×3	1 080	1 980
*	MPFD 0801.5-3 MSFD 0802-3	Р								
*	MPFD 0802-3	Clearance P		2	1.200	8.3	6.9	1×3	1 320	2 210
	MSFD 1001-3	Clearance		1	0.000	10.0	0.0	10	745	1 000
	MPFD 1001-3	Р		1	0.800	10.2	9.2	1×3	745	1 660
	MSFD 1002-3	Clearance	10	2	1.200	10.3	8.9	1×3	1 490	2 850
*	MPFD 1002-3	Р			1.200	10.0	0.0			
*	MSFD 1002.5-3 MPFD 1002.5-3	Clearance		2.5	1.588	10.4	8.6	1×3	2 130	3 640
•	MSFD 1201-3	Clearance			0.000	100	44.0		705	1 000
	MPFD 1201-3	Р		1	0.800	12.2	11.2	1×3	795	1 980
	MSFD 1202-3	Clearance		2	1.200	12.3	10.9	1×3	1 660	3 620
*	MPFD 1202-3	Р	12		1.200	12.5	10.5	1/0	1 000	3 020
4	MSFD 1202.5-3 MPFD 1202.5-3	Clearance P		2.5	1.588	12.4	10.6	1×3	2 360	4 540
-1.	MSFD 1202.5-3	Clearance			0.000	10.5	400	1.0	0.400	F 400
	MPFD 1203-3			3	2.000	12.5	10.2	1×3	3 120	5 420
	MSFD 1402-3	Clearance		2	1.200	14.3	12.9	1×3	1 780	4 270
	MPFD 1402-3	Р	14		1.200	17.0	12.0	1//0	1 700	72/0
	MSFD 1403-3	Clearance		3	2.000	14.5	12.2	1×3	3 400	6 490
	MPFD 1403-3	P				1				

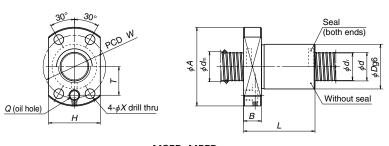
Notes: 1. If the shaft OD is less than 6 mm or the lead is less than 1 mm, a seal is not installed in the nut. (See page B68 for dust protection.)


- 2. Ball nuts with shaft diameters under 14 mm do not have oil holes.
- 3. Right turn screw is standard. Please consult NSK for left turn screw.




							Unit: mm	
Axial rigidity			Ва	all nut dimensio				
<i>Κ</i> (N/μm)	Nut entire length <i>L</i>	Nut diameter <i>D</i>	Flanged diameter <i>A</i>	Flanged width <i>B</i>	Flanged dimension <i>H</i>	Bolt hole dimension X	Bolt hole PCD W	_
30 47	13	10	22	3	11	3.4	16	
22 34	12	10	20	3	14	2.9	15	-
42 66	13	12	24	3	13	3.4	18	Defle
49 76	15	12	24	3.5	16	3.4	18	Deflector(bridge) type
49 76	17	13	25	4	17	3.4	19	bride
54 85	13	14	27	3	15	3.4	21	je) ty
64 99	16	14	27	4	18	3.4	21	pe
76 117	22	15	28	4	19	3.4	22	
73 113	26	16	29	4	20	3.4	23	
77 120	16	16	29	4	20	3.4	23	-
91 138	28	18	35	5	22	4.5	27	-
90 140	32	19	36	5	23	4.5	28	-
88 137	16	18	31	4	22	3.4	25	-
108 168	28	20	37	5	24	4.5	29	-
107 167	32	21	38	5	25	4.5	30	-
107 166	36	22	39	5	26	4.5	31	-
122 191	29	22	41	6	26	5.5	32	-
127 196	37	24	43	6	28	5.5	34	-


- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_J) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. The models marked with * (asterisk) are available in the MA type standard ball screw with finished shaft end.
- 6. Preload system: P; Oversize ball preload (See page B5.)

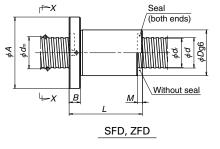


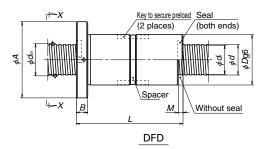
Circular shape I

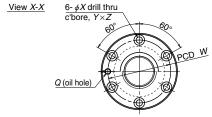
Circular shape II

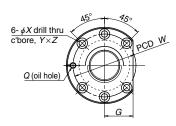
			Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial
	Model No.	Preload system	oriart dia.	Loud	Dan dia.	dia.	rioot ala.	Turns ×	Dynamic	Static	rigidity <i>K</i>
		o y o to i i i	d	l	D_{w}	d _m	d,	Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(N/µm)
	MSFD 1602-4	Clearance		2	1.588	16.4	14.6	1×4	3 510	8 450	185
*	MPFD 1602-4	Р	16								288
	MSFD 1602.5-4	Clearance		2.5	1.588	16.4	14.6	1×4	3 510	8 450	185
*	MPFD 1602.5-4										288
	MSFD 2002-4 MPFD 2002-4	Clearance		2	1.588	20.4	18.6	1×4	3 910	10 900	225 351
	SFD 2005-3	Clearance	†					1×3	8 620	17 500	196
	ZFD 2005-6	7						1×3	8 620	17 500	382
	SFD 2005-4	Clearance		5	3.175	20.75	17.4	1×4	11 000	23 300	255
	DFD 2005-4	D	20					1×4	11 000	23 300	509
	SFD 2006-3	Clearance						1×3	11 100	20 600	196
	ZFD 2006-6	Z		6	3.969	21	16.9	1×3	11 100	20 600	382
	SFD 2006-4	Clearance		6				1×4	14 300	27 500	255
	DFD 2006-4	D						1×4	14 300	27 500	498
	MSFD 2502-4	Clearance		2	1.588	25.4	23.6	1×4	4 310	13 900	273
	MPFD 2502-4	Р		2	1.500	25.4	23.0	1.84	4 3 1 0	13 900	425
	SFD 2505-3	Clearance						1×3	9 790	22 900	245
*	ZFD 2505-6	Z		5	3.175	25.75	22.4	1×3	9 790	22 900	480
	SFD 2505-4	Clearance		5	3.173	25.75	22.4	1×4	12 500	30 500	323
	DFD 2505-4	D						1×4	12 500	30 500	630
	SFD 2506-3	Clearance	25					1×3	12 900	27 300	245
	ZFD 2506-6	Z		6	3.969	26	21.9	1×3	12 900	27 300	470
	SFD 2506-4	Clearance		0	3.000	20	21.0	1×4	16 500	36 500	323
	DFD 2506-4	D						1×4	16 500	36 500	626
	ZFD 2510-4	Z						1×2	11 400	21 400	323
	SFD 2510-3	Clearance		10	4.762	26.25	21.3	1×3	16 100	32 000	245
	DFD 2510-3	D						1×3	16 100	32 000	479

- 2. If there is no seal for SFD, ZFD, and DFD, the nut length "L" is shortened by dimension "M". For MSFD and MPFD, the nut length is the same as those with seal.
- The right turn screw is standard. "L" is added to the end of the model code for the left turn screw. Please consult NSK for MSFD and MPFD.

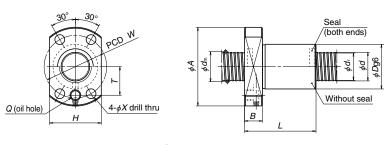

MSFD, MPFD


Unit: mm


					Ball nut dir	nensions							ᇢ
Nut entire length	Nut diameter	Flanged diameter	Flanged width	Notch	ned flange	Seal dimension	Bolt h	ole dim	ension	Bolt hole PCD	Oil hole dimension	Oil hole	Deflector(bridge) type
Ľ	D	Α	В	G	Н	М	X	Y	Z	W	Τ	Q	. 呈
40	25	44	10	_	29	_	5.5	_	_	35	16	M6×1	brid
44	25	44	10	_	29	_	5.5	_	_	35	16	M6×1	ge) t
40	30	49	10	_	34	_	5.5	_	_	40	18.5	M6×1	ype
46 66 51 91	35 35 35 41	58 58 58 64	11	22.5 22.5 22.5 25	_	5	5.5	9.5	5.5	46 46 46 52	_	M6×1	
52 76 60 108	35 35 35 42	58 58 58 65	11	22.5 22.5 22.5 25	_	6	5.5	9.5	5.5	46 46 46 53	_	M6×1	-
40	36	55	10	_	40	_	5.5	_	_	46	21.5	M6×1	
46 66 51 91	40 40 40 46	63 63 63 69	11	24 24 24 26	_	5	5.5	9.5	5.5	51 51 51 57	_	M6×1	-
52 76 60 108	40 40 40 47	63 63 63 70	11	24 24 24 27	_	6	5.5	9.5	5.5	51 51 51 58	_	M6×1	-
88 80 140	42 42 47	69 69 74	15	26 26 28	_	10	6.6	11	6.5	55 55 60	_	M6×1	-


- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_i) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. It is recommended to use with seals when the shaft diameter is 16 mm or over and an oil hole is provided on the ball nut.
- 6. The models marked with * (asterisk) are available in the MA type standard ball screw with finished shaft end.
- 7. Preload system: Z, Offset preload; P, Oversize ball preload; D, Double nut preload (See page B5.)

B475

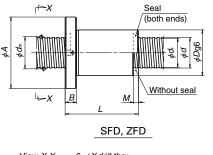


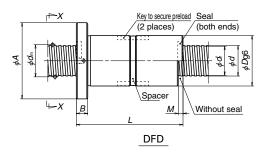
Circular shape I

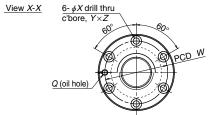
Circular shape II

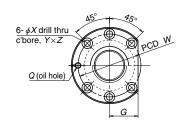
			01 (. 1)		D	Ball circle	D	Effective turns of balls	Basic load	rating (N)	Axial
	Model No.	rreibau	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
		system	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle m}$	d,	× Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	<i>Κ</i> (N/μm)
	MSFD 3202-6	Clearance		2	1.588	32.4	30.6	1×6	6 790	27 200	494
	MPFD 3202-6	Р			1.588	32.4	30.6	120	6 /90	27 200	769
	SFD 3205-3	Clearance						1×3	11 100	30 500	304
	ZFD 3205-6	Z						1×3	11 100	30 500	598
	SFD 3205-4	Clearance		5	3.175	32.75	29.4	1×4	14 200	40 700	409
*	ZFD 3205-8	Z		5	3.175	32.73	23.4	1×4	14 200	40 700	784
	SFD 3205-6	Clearance						1×6	20 200	61 000	588
	DFD 3205-6	D						1×6	20 200	61 000	1 160
	SFD 3206-3	Clearance Z						1×3	15 000	37 500	314
	ZFD 3206-6						1×3	15 000	37 500	608	
	SFD 3206-4	Clearance	32	6	3.969	33	28.9	1×4	19 200	49 900	412
	ZFD 3206-8	Z	32	O				1×4	19 200	49 900	804
	SFD 3206-6	Clearance						1×6	27 200	74 900	598
	DFD 3206-6	D						1×6	27 200	74 900	1 190
	SFD 3208-3	Clearance						1×3	18 300	41 800	304
	ZFD 3208-6	Z		8	4.762	33.25	28.3	1×3	18 300	41 800	588
	SFD 3208-4	Clearance		0	4.702	33.20	20.3	1×4	23 500	55 800	392
	ZFD 3208-8	Z						1×4	23 500	55 800	774
		Clearance						1×3	25 900	52 800	300
*		Z		10	6.35	22.75	27.1	1×3	25 900	52 800	588
	SFD 3210-4	Clearance		10	0.55	33.75	27.1	1×4	33 200	70 300	392
	DFD 3210-4	D						1×4	33 200	70 300	773

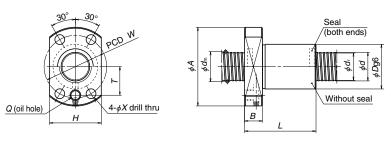
- 2. If there is no seal for SFD, ZFD, and DFD, the nut length "L" is shortened by dimension "M". For MSFD and MPFD, the nut length is the same as those with seal.
- The right turn screw is standard. "L" is added to the end of the model code for the left turn screw. Please consult NSK for MSFD and MPFD.




MSFD, MPFD


												Unit: mm	De										
					Ball nut dir	nensions							ŧ										
Nut entire length	Nut diameter	Flanged	Flanged width	Notch	ned flange	Seal dimension	Bolt he	ole dim	ension	Bolt hole PCD	Oil hole dimension	Oil hole	etor										
L	D D	alameter A	B	G	Н	M	X	Y	Z	W	T	Q											
50	42	65	10	_	46	_	6.6	_	_	54	26.5	M6×1	Deflector(bridge) type										
47	48	75		29						61			¥										
67	48	75		29						61													
52	48	75	12	29		5	6.6	11	6.5	61		M6×1											
77	48	75	12	29	_	5	0.0	''	0.5	61	_	I XOIVI											
62	48	75		29						61													
112	53	80		30						66													
53	48	75		29						61													
77	48	75		29						61													
61	48	75	10	29			6	6.6	11	6.5	61		M6×1										
90	48	75	29	12	12	12	12	12	12	12	29	_	_	_	_	0	0.0	''	0.5	61	_	I XOIVI	
73	48	75		29						61													
133	54	81		31						67													
67																							
99	50	84	15	32		8	9	14	8.5	66		M6×1											
76	50	84	15	32	_	8	9	14	8.5	00	_	I XOIVI											
116													_										
80																							
120	54	88	15	24		10	۵	14	0 5	70		M6×1											
90	04	00	10	34	_	10	9 14	14 8.5	0.5	'0	_	IVIOXI											
160																							


- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. It is recommended to use with seals when the shaft diameter is 16 mm or over and an oil hole is provided on the ball nut.
- 6. The models marked with * (asterisk) are available in the SS type standard ball screw with finished shaft end.
- 7. Preload system: Z, Offset preload; P, Oversize ball preload; D, Double nut preload (See page B5.)



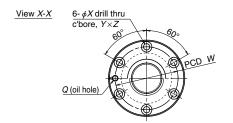
Circular shape I

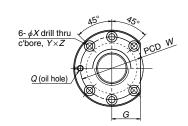
Circular shape II

		01 6 1		D	Ball circle		Effective turns of balls	Basic load	rating (N)	Axial
Model No.	Preload system	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns ×	Dynamic	Static	rigidity <i>K</i>
	System	d	l	$D_{\rm w}$	d _m	d,	Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(N/µm)
MSFD 4002-6	Clearance		2	1.588	40.4	38.6	1×6	7 380	33 900	588
MPFD 4002-6 SFD 4005-4	 						14	15.000		916
	Clearance Z						1×4	15 800	52 300	490
ZFD 4005-8 SFD 4005-6	_		5	3.175	40.75	37.4	1×4	15 800 22 400	52 300	960
	Clearance						1×6		78 400	725
ZFD 4005-12							1×6	22 400	78 400	1 410
SFD 4006-4	Clearance						1×4	21 300	63 500	490
ZFD 4006-8	Z		6	3.969	41.0	36.9	1×4	21 300	63 500	970
SFD 4006-6	Clearance	40					1×6	30 100	95 300	725
ZFD 4006-12	Z		8				1×6	30 100	95 300	1 431
SFD 4008-4	Clearance			4.762			1×4	27 200	75 200	500
ZFD 4008-8	Z				41.25	36.3	1×4	27 200	75 200	990
SFD 4008-6	Clearance						1×6	38 500	113 000	735
DFD 4008-6	D						1×6	38 500	113 000	1 460
SFD 4010-3	Clearance						1×3	30 000	70 000	372
ZFD 4010-6	Z		10	6.35	41.75	35.1	1×3	30 000	70 000	735
SFD 4010-4	Clearance		10	0.00	11.70	00.1	1×4	38 400	93 300	490
ZFD 4010-8	Z						1×4	38 400	93 300	970
SFD 5005-4	Clearance						1×4	17 500	66 800	593
ZFD 5005-8	Z		5	3.175	50.75	47.4	1×4	17 500	66 800	1 170
SFD 5005-6	Clearance		5	3.175	30.75	47.4	1×6	24 800	100 000	872
ZFD 5005-12	Z	50					1×6	24 800	100 000	1 720
SFD 5006-4	Clearance	50					1×4	23 600	81 700	598
ZFD 5006-8	Z		6	2 060	51.0	46.9	1×4	23 600	81 700	1 190
SFD 5006-6	Clearance		6	3.969			1×6	33 500	122 000	892
ZFD 5006-12	7						1×6	33 500	122 000	1 750

- 2. If there is no seal for SFD, ZFD, and DFD, the nut length "L" is shortened by dimension "M". For MSFD and MPFD, the nut length is the same as those with seal.
- The right turn screw is standard. "L" is added to the end of the model code for the left turn screw. Please consult NSK for MSFD and MPFD.

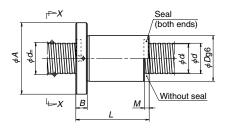
MSFD, MPFD

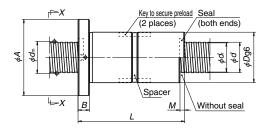

		m


					Ball nut dir	nensions							Def
Nut entire length		Flanged diameter	Flanged width	Notch	ned flange	Seal dimension		ole dim	ension	Bolt hole PCD	Oil hole dimension	Oil hole	Deflector(bridge)
Ľ	D	Α	В	G	Н	М	X	Y	Z	W	Τ	Q	. 출
50	51	74	10	_	55	_	6.6	_	_	63	31	M6×1	idge.
55 80 65 101	56	90	15	34	_	5	9	14	8.5	72	_	Rc1/8) type
64 93 76 118	56	90	15	34	_	6	9	14	8.5	72	_	Rc1/8	
76 116 93 168	60 60 60 62	94 94 94 96	15	36 36 36 37	_	8	9	14	8.5	76 76 76 78	_	Rc1/8	
83 123 93 143	62	104	18	40	_	10	11	17.5	11	82	_	Rc1/8	
55 80 65 101	66	100	15	38	_	5	9	14	8.5	82	_	Rc1/8	-
64 93 76 118	66	100	15	38	_	6	9	14	8.5	82	_	Rc1/8	•

- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C₂) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. It is recommended to use with seals when the shaft diameter is 16 mm or over and an oil hole is provided on the ball nut.
- 6. Preload system: Z, Offset preload; P, Oversize ball preload; D, Double nut preload (See page B5.)

B479 B480




Circular shape I

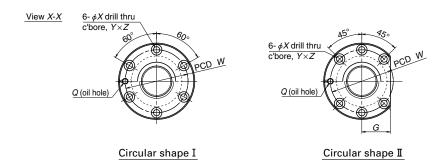
Circular shape II

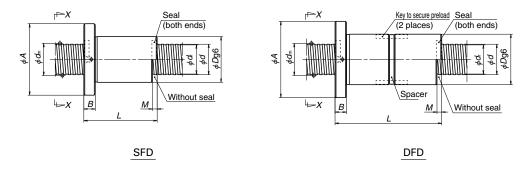
	1				Ball circle		Effective turns of balls	Rasic load	I rating (N)	Axial
	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns			rigidity
Model No.	system				uia.		×	Dynamic	Static	K
	,	d	l	D_{w}	$d_{\scriptscriptstyle \mathrm{m}}$	d _r	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
SFD 5008-4	Clearance						1×4	29 900	94 800	598
ZFD 5008-8	Z		8	4.762	51.25	46.3	1×4	29 900	94 800	1 180
SFD 5008-6	Clearance		0	4.702	51.25	40.3	1×6	42 400	142 000	887
DFD 5008-6	D						1×6	42 400	142 000	1 740
SFD 5010-3	Clearance						1×3	34 100	91 600	461
ZFD 5010-6	Z						1×3	34 100	91 600	914
SFD 5010-4	Clearance		10	6.35	51.75	45.1	1×4	43 600	122 000	608
ZFD 5010-8	Z	50	10	0.00	31.73	75.1	1×4	43 600	122 000	1 200
SFD 5010-6	Clearance	30					1×6	61 800	183 000	902
DFD 5010-6	D						1×6	61 800	183 000	1 770
SFD 5012-3	Clearance						1×3	44 800	109 000	461
ZFD 5012-6	Z		12	7.938	52.25	44	1×3	44 800	109 000	906
SFD 5012-4	Clearance		12	7.550	02.20		1×4	57 300	146 000	608
DFD 5012-4	D						1×4	57 300	146 000	1 200
SFD 5020-3	Clearance		20	7.938	52.25	44	1×3	44 800	109 000	461
DFD 5020-3	D		20	7.000	02.20	77		44 800	109 000	908
SFD 6306-4	Clearance						1×4	26 100	104 000	735
ZFD 6306-8	Z		6	3.969	64.0	59.9	1×4	26 100	104 000	1 430
SFD 6306-6	Clearance		O	0.000	01.0	00.0	1×6	36 900	157 000	1 180
ZFD 6306-12	Z						1×6	36 900	157 000	2 110
SFD 6308-4	Clearance						1×4	33 600	124 000	745
ZFD 6308-8	Z		8	4.762	64.25	59.3	1×4	33 600	124 000	1 460
SFD 6308-6	Clearance		U	1.702	01.20	00.0	1×6	47 600	186 000	1 100
DFD 6308-6	D	.					1×6	47 600	186 000	2 150
SFD 6310-4	Clearance						1×4	49 700	163 000	764
ZFD 6310-8	Z	63	10	6.35	64.75	58.1	1×4	49 700	163 000	1 510
SFD 6310-6	Clearance			0.00	51.75	55.1	1×6	70 500	244 000	1 130
DFD 6310-6	D						1×6	70 500	244 000	2 210
ZFD 6312-6	Z						1×3	50 800	143 000	1 120
SFD 6312-4	Clearance						1×4	65 100	191 000	755
DFD 6312-4	D		12	7.938	65.25	57	1×4	65 100	191 000	1 480
SFD 6312-6	Clearance						1×6	92 200	286 000	1 110
DFD 6312-6	D						1×6	92 200	286 000	2 180
SFD 6320-3	Clearance		20	9.525	65.75	56	1×3	83 700	232 000	735
DFD 6320-3	D		20	0.020	05.75	50	1/3	03 700	232 000	1 440

- 2. If there is no seal the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

SFD, ZFD

DFD


Unit: mm


Deflector(bridge) type

				Ball	nut dimens	ions				
Nut entire		Flanged	Flanged	Notched	Seal		hole dimer	nsion	Bolt hole	Oil hole
length	diameter	diameter	width	flange	dimension				PCD	
L	D	Α	В	G	М	Χ	Y	Z	W	Q
79	70	112		43					90	
119	70	112	18	43	8	11	17.5	11	90	Rc1/8
96	70	112	10	43	0	11	17.5	''	90	1101/0
171	72	114		44					92	
83										
123										
93	72	114	18	44	10	11	17.5	11	92	Rc1/8
143	, -		10						02	
114										
205										
99										
147	75	121	22	47	12	14	20	13	97	Rc1/8
111										
195										
146	75	121	28	47	20	14	20	13	97	Rc1/8
253										
67										
96 79	80	122	18	47	6	11	17.5	11	100	Rc1/8
121										
79	82	124		47					102	
119	82	124		47					102	
96	82	124	18	47	8	11	17.5	11	102	Rc1/8
175	85	127		48					105	
97	0.0	127		40					100	
147										
118	85	131	22	50	10	14	20	13	107	Rc1/8
214										
147										
111										
195	90	136	22	52	12	14	20	13	112	Rc1/8
136									''-	, -
248										
146	0.5	450				4.0		47.5	100	D 4/0
253	95	153	28	59	20	18	26	17.5	123	Rc1/8
/l T	he avial rigi	dity K in the	tahla ahovo	is a theorotic	cal value obt	ained from	the election	oformation l	natwaan sor	aw aroovo

- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. It is recommended to use with seals when the shaft diameter is 16 mm or over and an oil hole is provided on the ball nut.
- 6. Preload system: Z, Offset preload; D, Double nut preload (See page B5.)

		Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial
Model No.	Preload	Silait ula.	Leau	Dall Ula.	dia.	noot dia.	Tullis	Dynamic	Static	rigidity
	system	d	l	D _w	d _m	d _r	× Circuits	C _a	C_{0a}	<i>Κ</i> (N/μm)
SFD 8010-4	Clearance						1×4	55 100	209 000	931
DFD 8010-4	D		10	6.35	81.75	75.1	1×4	55 100	209 000	1 840
SFD 8010-6	Clearance		10	0.35	81.75	/5.1	1×6	78 000	314 000	1 370
DFD 8010-6	D						1×6	78 000	314 000	2 710
SFD 8012-4	Clearance						1×4	74 000	254 000	941
DFD 8012-4	D	80 12	7.938	82.25	74	1×4	74 000	254 000	1 860	
SFD 8012-6	Clearance	80	12	7.938	82.25	/4	1×6	105 000	381 000	1 392
DFD 8012-6	D						1×6	105 000	381 000	2 730
SFD 8020-3	Clearance						1×3	96 600	313 000	931
DFD 8020-3	D		20	9.525	82.75	73	1×3	96 600	313 000	1 830
SFD 8020-4	Clearance		20	9.525	02.75	/3	1×4	124 000	417 000	1 230
DFD 8020-4	D						1×4	124 000	417 000	2 410
SFD 10010-6	Clearance		10	6.35	101.75	95.1	1×6	86 200	401 000	1 670
DFD 10010-6	D		10	0.35	101.75	90.1	1.70	00 200	401 000	3 270
SFD 10012-6	Clearance	100	12	7.938	102.25	94	1×6	117 000	490 000	1 680
DFD 10012-6	D		12	7.938	102.25	34	1 × 0	117 000	490 000	3 320
SFD 10020-4	Clearance		20	9.525	102.75	5 93	1×4	136 000	526 000	1 470
DFD 10020-4	D		20	9.020	102.75	93	1.74	130 000	520 000	2 890

- 2. If there is no seal the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

Nut entire		Flanged	Flanged	Notched	Seal	Bolt	hole dimer	sion	Bolt hole	Oil hole	Ë
length <i>L</i>	diameter <i>D</i>	diameter <i>A</i>	width <i>B</i>	flange <i>G</i>	dimension <i>M</i>	X	Y	Z	PCD W	Q	Š
97											E
172	105	151	22	57	10	14	20	13	127	Rc1/8	Ē
118	105	101	22	57	10	14	20	13	127	NC1/6	ā
214											5
111											ā
195	110	156	22	59	12	14	20	13	132	Rc1/8	
136	110	156	22	59	12	14	20	13	132	NC1/8	
248											ī
146											
253	115	173	28	66	20	18	26	17.5	143	Rc1/8	
168	110	173	20	00	20	10	20	17.5	143	NC 1/6	
297											
118	125	171	22	64	10	14	20	13	147	Rc1/8	
21/	120	171	22	04	10	14	20	10	14/	1101/0	

Ball nut dimensions

Flanged | Flanged | Notched | Seal

4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.

12

20

18

22

- 5. It is recommended to use with seals when the shaft diameter is 16 mm or over and an oil hole is provided on the ball nut.
- 6. Preload system: D; Double nut preload (See page B5.)

188

205

28

32

71

79

Nut entire Nut

214 142

254 172

301

130

135

B483 B484

Bolt hole

158

169

Rc1/8

Rc1/8

Bolt hole dimension

26

32

17.5

21.5

End cap type

B-3-2.4 End Cap Type Ball Screws

1. Features

The end cap recirculation system is suitable for high-helix lead and multiple start threads.

Since the leads are 1 to 3 times larger than their screw shaft diameter, it makes them more suitable for high-speed operation.

2. Specifications

(1) Ball recirculation system

The structure of end cap recirculation system is shown in Fig. 1.

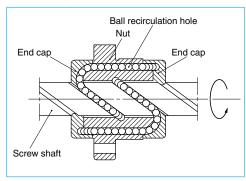


Fig. 1 Structure of end cap recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are shown in **Table 1**. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	LSFC, LPFC: C1, C2, C3, C5, Ct7 USFC, UPFC: C3, C5, Ct7 (Three times lead or over are C5, Ct7)
Axial play	Z, 0 mm (preloaded); T, 0.005 mm or less; S, 0.020 mm or less; N, 0.050 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed.

The allowable d-n value and criterion of maximum rotational speed are shown below. Please consult NSK for high-speed specification. Basic measure must be taken for the high speed ball screws respectively.

Allowable d·n value:

Standard specification ; 80 000 or less High-speed specification; 100 000 or less Standard of rotational speed : 3 000 min⁻¹ **Please also review the critical speed. Refer to "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Other specifications

Please consult NSK for other specifications not listed in the dimension tables.

3. Product categories

There are two different preload systems with several models (Table 2).

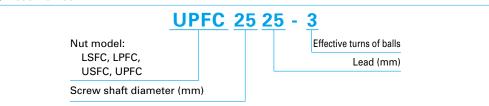
Table 2 End cap type ball screws product categories

Nut model	Shape	Flange shape	Nut shape	Preload system
LSFC	accessor.	Flanged	Circular	Non-preload, Slight axial play
LPFC	900007, Sandanan	Circular II	Circular	P-preload (light preload) no spacer ball
USFC		Flanged	Circular	Non-preload, Slight axial play
UPFC		Rectangular	Circular	P-preload (light preload) no spacer ball

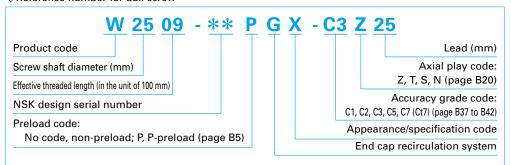
4. Design Precautions

When designing the screw shaft end, one end of the screw must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

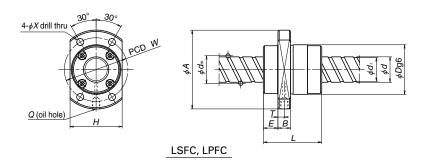
- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.


Special bearings which have higher-load carrying capacity are available.

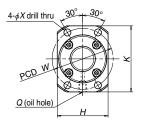
For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

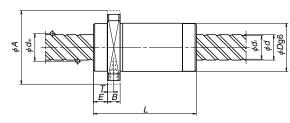

5. Example of model number in dimension tables

The followings describe the structure of "Model number" and "Reference number for ball screw".



○Reference number for ball screw

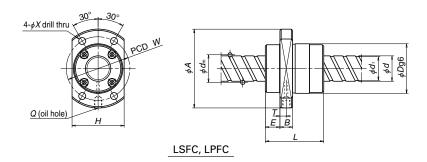

B485



				Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial rigidity
	Model	l No.	Preload	Silait ula.	Leau	Dali ula.	dia.	noot dia.	Turns ×	Dynamic	Static	K
			system	d	l	D_{w}	d _m	d_{r}	Circuits	C _a	$C_{\scriptscriptstyle 0a}$	(N/µm)
	USFC 12		Clearance	12	20	2.381	12.5	9.9	1.7×1	2 690	4 420	66
	UPFC 12		Р	12		2.001	12.0	0.0	1.77.1	2 000	7 720	103
	USFC 15		Clearance		20	3.175	15.5	12.2	1.7×1	5 070	8 730	97
*	UPFC 15		Р									151
	USFC 15		Clearance	15					0.7×2	3 860	6 050	62
	UPFC 15		P		40	3.175	15.75	12.2	0.7×2	3 860	6 050	97
	USFC 15 UPFC 15		Clearance						0.7×4	7 000 7 000	12 100 12 100	121
	LSFC 16		Clearance						0.7×4 1.7×2	6 380	12 500	188 172
	LPFC 16		P						1.7×2	6 380	12 500	268
	LSFC 16		Clearance		16	2.778	16.65	13.7	1.7×4	11 600	25 000	334
	LPFC 16		P						1.7×4	11 600	25 000	520
	USFC 16		Clearance						0.7×2	4 000	6 690	74
*	UPFC 16		Р						0.7×2	4 000	6 690	116
	USFC 16	32-3	Clearance	16	32	0 175	16.75	13.4	1.7×2	8 580	17 000	176
	UPFC 16	632-3	Р	10		3.175		13.4	1.7×2	8 580	17 000	273
	USFC 16	32-6	Clearance						1.7×4	15 600	34 100	340
	UPFC 16		Р						1.7×4	15 600	34 100	530
	USFC 16		Clearance						0.7×2	4 000	6 690	65
	UPFC 16		Р		50	3.175	16.75	13.4	0.7×2	4 000	6 690	102
	USFC 16		Clearance		50	0.170	10.75	10.4	0.7×4	7 260	13 400	126
	UPFC 16		Р						0.7×4	7 260	13 400	197
	LSFC 20		Clearance						1.7×2	9 620	21 000	238
	LPFC 20		Р		20	3.175	20.75	17.4	1.7×2	9 620	21 000	370
	LSFC 20		Clearance						1.7×4	17 500	42 000	462
	USFC 20		P Clearance						1.7×4 0.7×2	17 500 4 490	42 000 8 640	718 89
*	UPFC 20		P						0.7x2 0.7x2	4 490	8 640	138
	USFC 20	-	Clearance	20					1.7×2	9 620	21 000	211
	UPFC 20		P		40	3.175	20.75	17.4	1.7×2	9 620	21 000	328
	USFC 20		Clearance						1.7×4	17 500	42 000	409
	UPFC 20		P						1.7×4	17 500	42 000	636
ĺ	USFC 20		Clearance						0.7×2	4 490	8 640	78
	UPFC 20		Р		00	0.475	5 20.75	5 17.4	0.7×2	4 490	8 640	121
	USFC 20		Clearance		60	3.175			0.7×4	8 140	17 300	151
	USFC 2060 UPFC 2060		Р						0.7×4	8 140	17 300	235

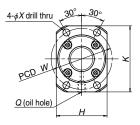
Notes: 1. For the LSFC and USFC type ball screws, the axial rigidity *K* in the table above is the theoretical values obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (*C_s*). For the LPFC and UPFC type, the rigidity is the theoretical value when the preload is 10% of the basic dynamic load rating (*C_s*) and an axial load is applied to it. Refer to the "Technical Description" (page B37) if the rigidity and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.

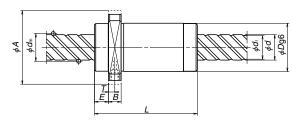
USFC, UPFC


Unit: mm

				Ball	nut dimens	sions				
Nut entire length L	Nut diameter D	Flanged diameter A	Flanged width B		limension K	End cap	Bolt hole dimension X	Bolt hole PCD W	Oil hole	Oil hole position
44	26	44	10	28	40	9	4.5	35	M6×1	5
45	34	55	10	36	50	11	5.5	45	M6×1	5
40	32	53	10	33	48	12	5.5	43	M6×1	5
38	32	53	10	34	_	10	4.5	42	M6×1	5
34 34 66 66 66 66	34	55	10	36	50	10.5	5.5	45	M6×1	5
50	34	55	10	36	50	12	5.5	45	M6×1	5
46	39	62	10	41	_	11.5	5.5	50	M6×1	5
41 41 81 81 81 81	38	58	10	40	52	11	5.5	48	M6×1	5.5
58	38	58	10	40	52	12.3	5.5	48	M6×1	5
					L. NOIC C					

- 2. The right turn screw is the standard. Please consult NSK for the left turn screw.
- 3. The models marked with * (asterisk) are available in the FA type standard ball screws with finished shaft end.
- 4. Preload system: P; Oversize ball preload (See page B5.)


B487



			Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia	Effective turns of balls	Basic load	rating (N)	Axial rigidity
	Model No.	Preload system	Shart dia.	Leau	Dali Gia.	dia.	rioot dia.	Turns ×	Dynamic	Static	K
		System	d	l	D_{w}	d _m	d_{r}	Circuits	$C_{\scriptscriptstyle \rm a}$	$C_{\scriptscriptstyle 0a}$	(N/µm)
	LSFC 2525-3	Clearance						1.7×2	14 400	32 800	293
	LPFC 2525-3	Р						1.7×2	14 400	32 800	456
	LSFC 2525-6	Clearance		25	3.969	26.0	21.9	1.7×4	26 100	65 600	568
	LPFC 2525-6	Р						1.7×4	26 100	65 600	883
	USFC 2550-1	Clearance						0.7×2	6 700	13 500	109
*	UPFC 2550-1	Р				2.000		0.7×2	6 700	13 500	170
	USFC 2550-3	Clearance	25	50	2.060		21.0	1.7×2	14 400	32 800	264
	UPFC 2550-3	Р	25	50	3.969	26.0	21.9	1.7×2	14 400	32 800	412
	USFC 2550-6	Clearance						1.7×4	26 100	65 600	512
	UPFC 2550-6	Р						1.7×4	26 100	65 600	796
	USFC 2580-1	Clearance						0.7×2	6 700	13 500	94
	UPFC 2580-1	Р		80	3.969	26.0	21.9	0.7×2	6 700	13 500	147
	USFC 2580-2	Clearance		00	0.000	20.0	21.0	0.7×4	12 200	27 000	184
	UPFC 2580-2	Р						0.7×4	12 200	27 000	285
	LSFC 3232-3	Clearance						1.7×2	21 000	51 600	366
	LPFC 3232-3	Р		32	4.762	33.25	28.3	1.7×2	21 000	51 600	570
	LSFC 3232-6	Clearance		32 4.76	1.702	00.20	20.0	1.7×4	38 100	103 000	709
	LPFC 3232-6	Р						1.7×4	38 100	103 000	1 104
	USFC 3264-1	Clearance	32					0.7×2	9 800	20 900	143
	UPFC 3264-1	Р	02					0.7×2	9 800	20 900	222
	USFC 3264-3	Clearance		64	4.762	33.25	28.3	1.7×2	21 000	51 600	329
	UPFC 3264-3	Р						1.7×2	21 000	51 600	512
	USFC 3264-6	Clearance						1.7×4	38 100	103 000	636
	UPFC 3264-6	Р						1.7×4	38 100	103 000	991
	LSFC 4040-3	Clearance						1.7×2	33 500	86 500	455
	LPFC 4040-3	Р	40	40	6.350	41.75	35.2	1.7×2	33 500	86 500	708
		SFC 4040-6 Clearance					1.7×4	60 800	173 000	880	
	LPFC 4040-6	<u> </u>						1.7×4	60 800	173 000	1 370
	LSFC 5050-3	Clearance						1.7×2	50 000	135 000	560
	LPFC 5050-3 LSFC 5050-6		50	50	7.938	52.25	44.1	1.7×2	50 000	135 000	871 1 084
		Clearance						1.7×4	90 800	270 000	
	LPFC 5050-6	l P						1.7×4	90 800	270 000	1 688

Notes: 1. For the LSFC and USFC type ball screws, the axial rigidity *K* in the table above is the theoretical values obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (*C_s*). For the LPFC and UPFC type, the rigidity is the theoretical value when the preload is 10% of the basic dynamic load rating (*C_s*) and an axial load is applied to it. Refer to the "Technical Description" (page B37) if the rigidity and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.

USFC, UPFC

Unit: mm

					nut dimens						
Nut entire length	diameter	Flanged diameter	Flanged width		limension		Bolt hole dimension		Oil hole	Oil hole position	
L	D	Α	В	Н	К	Ε	X	W	Q	T	
55	47	74	12	49	_	13	6.6	60	M6×1	6	
50											
50											
100	46	70	12	48	63	13	6.6	58	M6×1	7	9
100	40	/0	12	40	03	13	0.0	56	IVIOAI	/	G
100											흥
100											End cap type
75	46	70	12	48	63	14.5	6.6	58	M6×1	6	е
70	58	92	12	60	_	16	9	74	M6×1	5.5	
62 62											
126											
126	58	92	12	60	82	15.5	9	74	M6×1	7.5	
126											
126											
85	73	114	15	75	_	19.5	11	93	M6×1	6.5	
107	90	135	20	92	_	21.5	14	112	M6×1	7	

- 2. The right turn screw is the standard. Please consult NSK for the left turn screw.
- 3. The models marked with * (asterisk) are available in the FA type standard ball screws with finished shaft end.
- 4. Preload system: P; Oversize ball preload (See page B5.)

B489 B490

1.	HMD Type for High-Speed Machine Tools	B495
2.	HMS Type for High-Speed Machine Tools	B499
3.	HMC Type for High-Speed Machine Tools	B 503
	BSL™ Type for Miniature Lathes	B 509
5.	For High-Load Drives	
	5.1 HTF-SRC Type	B513
	5.2 HTF-SRD Type	B517
	5.3 HTF Type	B521
6.	For Contaminated Environments	
	6.1 VSS Type	B533
	6.2 Ball Screw with X1 Seals for Contaminated	B537
	Environments and Grease Retention	
7.	TW Series for Twin-Drive Systems	B541
8.	For High Precision Machine Tools	
	8.1 Hollow Shaft Ball Screws	B542
	8.2 Nut Cooling Ball Screws	B547
9.	ND Series for Nut-Rotatable Drives	B551
10.	Σ Series for Robots	B 559
11.	Ball Screw with L1 Seal designed for	B571
	Minimal Grease Splatter	
12.	Equipped with "NSK K1™" Lubrication Unit	B575
13.	Special Ball Screws	B581

B-3-3 Dimension Table and Reference Number of Application-Oriented Ball Screws

B491 B492

♦ Features and application examples of application-oriented ball screws

Appli	ications	Shape	Features	Applications	Page
	HMD Type		High-speed operation: 64 to 120 m/min Rigidity: 5% greater than the HMC series. High-load carrying capacity: 7% greater than the HMC type New recirculation system reduces the noise level by 5 dB or more compared with the HMC type	High-speed machining centers High-speed combined machine tools Die mold processing machine	B495
High-Speed Machine Tools	HMS Type	No. of Lot	Fine lead: 5 to 12 mm High-speed operation: 25 to 50 m/min Easy replacement: Dimensional interchangeability with tube type ball screws New recirculation system reduces the noise level by 5 dB or more compared with the Tube type.	Machining centers Die mold processing machine NC lathes Combined machine tools	B499
	НМС Туре	anna ann ann ann ann ann ann ann ann an	High-speed: 40 to 120 m/min Rigidity: 30% greater than existing tube type ball screws High-Load carrying capacity: 14% greater than existing tube type ball screws Noise reduced by small-diameter balls	High-speed machining centers High-speed combined machine tools Die mold processing machines	B503
Small Lathes	BSL Type		Compact nut: 50% less ball nut volume than NSK existing products. High-dust protection by thin plastic seal Special high-load capacity ball screw support bearings are available.	Small lathes Multi-axis lathes Small machining centers	B509
	HTF-SRC Type		High-load capacity High-speed operation by high-speed rotation: 930 mm/sec Even load distribution to balls in the ball nut for high-load drive Improved durability by NSK S1	Injection axis of injection molding machines Servo press machines Press brake Bending machines	B513
High-Load Drives	HTF-SRD Type		High-load capacity High-speed operation by large screw lead: 1 600 mm/sec Improved durability by NSK S1	Clamping axis of injection molding machines Die cast machines Punch presses Lifting and lowering devices	B517
	НТГ Туре	Hadadadada da	High-load capacity Even load distribution to the balls in a ball nut for high-load drive Improved durability by NSK S1 Provide a wide range of screw diameter and lead combinations.	Injection molding machines Press machines Press fitting machines Lifting and lowering machines	B521
Contaminated Environments	VSS Type		High dust-resistant performance: Reduces particle penetration rate to less than 1/15 (compared with standard seal). More than four times longer service life than standard seal under contaminated environments.	Woodworking machines Laser cutting machines Graphite milling machines Tire molding machines Transfer equipment	B533

Appli	ications	Shape	Features	Applications	Page
Contaminated Environments and Grease Retention	Ball Screw with X1 Seals		Highly dustproof: Particle penetration ratio reduced to less than 1/30 of existing standard seals. Superior grease retention: Can reduce lubricant consumption, also effective at suppressing grease splattering.	Machining centers Combined machine tools NC lathes Woodworking machines Laser cutting machines Graphite milling machines Tire molding machines	B537
Twin-Drive Systems	TW Series		Controlled screw lead accuracy and variation of preload torque for twin drive. Improved axial rigidity, expected life and controllability by the paired up two ball-screw driving systems	Machining centers Combined machine tools Large-size machine tools	B541
High- Precision	Hollow Shaft Ball Screws		Suppress thermal deformation by cooling the shaft center Prevent the machine base from deforming due to thermal expansion. NSK special support units and seal units are available.	High-precision die processing machines High-precision combined machine tools High-precision machining centers High-precision lathes	B542
Machine Tools	Nut Cooling Ball Screws	100.00	Due to the simple nut cooling setup, cooling is achieved simply by attaching piping to the thermal displacement control nut. Cooling just as effective as core cooling Insulation to prevent heat from affecting the table.		B547
Nut- Rotatable Ball Screws	NDT and NDD Type		Angular contact support bearings are integrated into the ball nut. Two or more ball nuts can be installed in a single ball screw shaft. The NDD type ball screws can surpass the critical speed. A special vibration damper enables longstroke-high-speed operation.	Woodworking machines Laser cutting machines Electronic component mounting devices Liquid crystal display transfer equipment Transfer equipment	B551
Robots	Σ Series		A ball screw and a ball spline are made in one shaft, combining a drive and guide system. A ball screw nut, a ball spline nut and support bearings are combined to the unit. Hollow shaft has an effect for weight saving. The hollow can be used for wiring and piping.	SCALA type robots Electronic- component mounting systems	B559
Ball Screw v designed for Grease Spla	r Minimal	A STATE OF THE PARTY OF THE PAR	Amount of splattered grease: 1/10 or less (compared with standard seal) Reduced grease-splattering helps maintaining machines and working environment clean. It can be fitted to Compact FA Series and High Speed SS Series later.	Electronic component mounting devices Semiconductor/Liquid crystal display manufacturing equipment Food processing/Medical equipment Transfer equipment	B571
Equipped with "NSK K1" Lubrication Unit		NSK K1	Long-term, maintenance-free operation Maintains lubrication efficiency for a prolonged time in contaminated environments Does not pollute the environment Made of compatible material with the FDA regulations is also available.	Automotive menufacturing machines Woodworking machines Laser cutting machines Semiconductor/Liquid crystal display manufacturing equipment Food processing/Medical equipment	B575

B493 B494

B-3-3.1 HMD Type for High-Speed Machine Tools

This product is being applied for a patent. The newly developed ball recirculation components. the end-deflector and middle-deflector. have greatly contributed for the substantial improvements in the maximum rotational speed and noise level compared to the HMC type.

1. Features

High speed

The permissible rotational speed (d·n value) has greatly increased to 160 000 compared with 135 000 of the HMC type.

Low noise

Noise reduced by 5 dB or more compared with the HMC type ball screws for high-speed machine tools.

Nut mounting dimensions

The ball nut diameters are the same as those of the HMC type.

2. Specifications

(1) Recirculation system

Fig.1 shows the structure of the middle-deflector recirculation system of the HMD type.

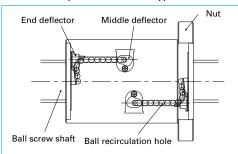


Fig. 1 Structure of middle-deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	C3, C5
Axial play	0 mm (preloaded)

(3) Allowable d.n value and the criterion of maximum rotational speed

Allowable d.n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d·n value: 160 000 or less Criterion of maximum rotational speed : 4 000 min

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Options

For twin-drive systems (See page B541.)

Upon request, the variations in lead accuracy and preload torque between two ball screws of a pair of the TW series are controlled for the further improvement of the reliability.

- Hollow shaft ball screw (See page B542.)
- Nut cooling ball screw (See page B547.)

The temperature rise and measures against thermal expansion of ball screw driving mechanism are the most challenging for highspeed machine tools. We recommend using core forced cooling or nut cooling for the HMD type.

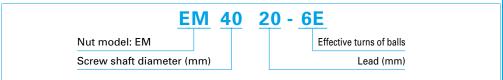
(5) Seal

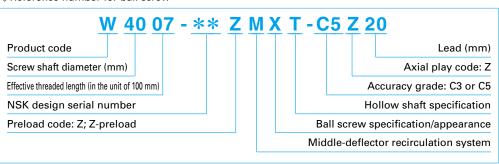
Compact, thin plastic seal is available. Nut outside diameter is compact compare with the return tube recirculation system.

3. Design precautions

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

4. Product categories

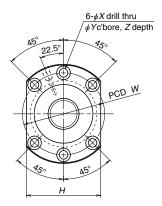

The HMD type has a model as follows.

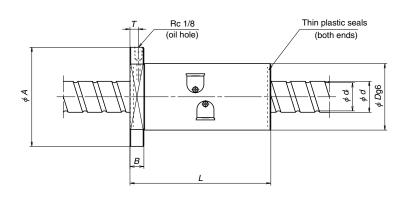

Table 2 HMD type product categories

Nut model	Shape	Flange shape	Nut shape	Preload system
EM		Flanged Circular II	Circular	Z-Preload (medium preload)

5. Structure of model number and reference number

The followings describe the structure of "Model number" and "Reference number for ball screw".




6. Handling Precautions

Maximum operating temperature: 80°C If using NSK K1, operating temperature should not exceed 50°C. Refer to "Designing Precautions" (page B83).

B495 B496

				Basic load	Axial rigidity	
Model No.	Shaft dia.	Lead	Root dia.	Dynamic	Static	K
	d	l	d _r	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
EM4016-4E		16	34.1	57 100	130 000	1 020
EM4020-6E	40	20	34.4	66 900	165 000	1 340
EM4025-6E	40	25	34.1	79 100	191 000	1 370
EM4030-6E		30	34.1	79 100	191 000	1 350
EM4516-4E		16	39.1	59 600	145 000	1 060
EM4520-6E	45	20	39.4	69 100	186 000	1 470
EM4525-6E		25	39.1	82 500	213 000	1 510
EM5016-4E		16	44.1	61 800	160 000	1 150
EM5020-6E	50	20	44.4	73 200	206 000	1 600
EM5025-6E] 50	25	44.1	85 600	235 000	1 620
EM5030-6E		30	44.1	85 600	235 000	1 630
EM6316-4E	63	16	55.2	111 000	339 000	1 600

Notes: 1. The right turn screw is the standard. Please consult NSK for left turn screws.

2. Rigidity listed under the column K is the value when a 5% of basic dynamic load rating is applied as the preload.

										Unit: mm	
Ball nut dimensions								Bolt hole	Oil hole	Max. feeding	•
Nut length	Nut dia.	Flange dia.	Flange width	Flange size	Во	olt hole si	ize	PCD	position	speed	
L	D	Α	В	Н	X	Y	Z	W	T	(m/min)	
160										64	I
150	86	128	18	96	11	17.5	11	106	11	80	E
182	80	128	18	96	11	17.5	''	106	11	100	
213										120	
160										56	
150	92	134	18	102	11	17.5	11	112	11	70	
182										88	
160										51	
150	98	140	18	107	11	17.5	11	118	11	64	
182	90	140	10	107	11	17.5	''	110	11	80	
213										96	
170	122	180	28	138	18	26	17.5	150	14	40	

B497 B498

B-3-3.2 HMS Type for High-Speed Machine Tools

1. Features

High speed

The permissible rotational speed (d·n value) has greatly increased to 160 000 compared with 100 000 for tube type screws.

Low noise

By adopting SRC recirculation system, noise reduced by 5 dB or more compared with tube type screws.

Nut mounting dimensions

The ball nut diameters are the same as those of tube type screws.

2. Specifications

(1) Recirculation system

Fig.1 shows the structure of the SRC recirculation system of the HMS type.

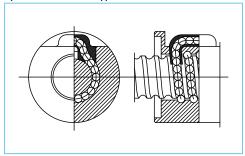


Fig. 1 Structure of SRC recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	C3, C5
Axial play	0 mm (preloaded)

(3) Allowable d.n value and the criterion of maximum rotational speed

Allowable d.n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d·n value: 160 000 or less Criterion of maximum rotational speed : 5 000 min⁻¹

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Options

For twin-drive systems (See page B541.)

Upon request, the variations in lead accuracy and preload torque between two ball screws of a pair of the TW series are controlled for the further improvement of the reliability.

- Hollow shaft ball screw (See page B542.)
- Nut cooling ball screw (See page B547.)

The temperature rise and measures against thermal expansion of ball screw driving mechanism are the most challenging for highspeed machine tools. We recommend using core forced cooling or nut cooling for the HMS type.

3. Design precautions

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

4. Product categories

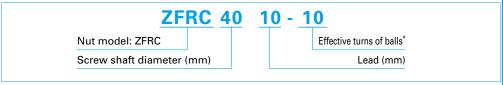
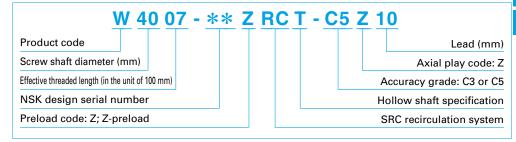

The HMS type has a model as follows.

Table 2 HMS type product categories

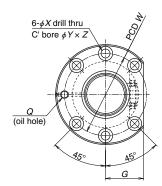
Nut model	Shape	Flange shape	Nut shape	Preload system
ZFRC	No. of Parties	Flanged Circular II	Circular	Z-Preload (medium preload)

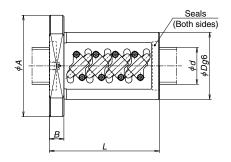

5. Structure of model number and reference number

The followings describe the structure of "Model number" and "Reference number for ball screw".

* In the case of Z-preload, the amount shown is twice the effective turn of balls.

○Reference number for ball screw




6. Handling Precautions

Maximum operating temperature: 60°C If using NSK K1, operating temperature should not exceed 50°C. Refer to "Designing Precautions" (page B83).

B499 B500

	Shaft dia.	Lead	Root dia.	Effective turns	Basic load Dynamic	rating (N) Static	Axial rigidity
Model No.	d	1	d.	×	C _s		(N/um)
	u	ι	u_{r}	rows	U _a	C_{0a}	(N/µm)
ZFRC3205-10	32	5	29.2	2.5×2	18 500	56 100	840
ZFRC3210-10	32	10	26.4	2.5×2	46 300	108 000	920
ZFRC4010-10	40	10	34.4	2.5×2	52 000	137 000	1 090
ZFRC4012-10	40	12	34.1	2.5×2	61 000	155 000	1 110
ZFRC4508-10	45	8	40.5	2.5×2	37 300	118 000	1 160
ZFRC4510-10	45	10	39.4	2.5×2	54 200	155 000	1 210
ZFRC4512-10	45	12	39.1	2.5×2	64 200	177 000	1 230
ZFRC5010-10	50	10	44.4	2.5×2	57 700	175 000	1 320
ZFRC5012-10	50	12	43.2	2.5×2	77 600	214 000	1 360
ZFRC6312-14	63	12	56.2	3.5×2	115 000	386 000	2 250

Notes: 1. The right turn screw is the standard. Please consult NSK for left turn screws.

2. Rigidity listed under the column K is the value when a 5% of basic dynamic load rating is applied as the preload.

Ball nut dimensions							Bolt hole	Oil hole	Max. feeding		
Nut length	Nut dia.	Flange dia.	Flange width	Groove size	Во	olt hole si	ize	PCD	position	speed	
L	D	Α	В	G	X	Y	<i>Z</i>	W	Q	(m/min)	
89	58	85	12	32	6.6	11	6.5	71	M6×1	25	3
163	74	108	15	41	9	14	8.5	90	M6×1	50	C/
166	82	124	18	47	11	17.5	11	102	Rc1/8	40	
192	86	128	18	48	11	17.5	11	106	Rc1/8	48	
136	82	124	18	47	11	17.5	11	102	Rc1/8	28	
166	88	132	18	50	11	17.5	11	110	Rc1/8	35	
192	90	132	18	50	11	17.5	11	110	Rc1/8	42	
166	93	135	18	51	11	17.5	11	113	Rc1/8	32	
198	100	146	22	55	14	20	13	122	Rc1/8	38	
2//	115	161	22	61	1/1	20	13	137	Rc1/8	30	

B501 B502

B-3-3.3 HMC Type for High-Speed Machine Tools

This product is being applied for a patent.

1. Features

High-speed traveling

High helix leads of 16 mm to 36 mm are used. Furthermore, the ball recirculation return tube is reinforced to make a high-speed traveling of 40 to 120 m/min. possible.

 High rigidity, high load carrying capacity Double start thread increases the number of effective turns of balls, and a smaller ball size increases the number of the balls. Together they contribute to have high rigidity and high load carrying capacity, despite the high helix lead.

Compact nut

The size of nut diameter and length were reduced.

2. Specifications

(1) Ball recirculation system

The ball recirculation circuits and grooves are suited for high-speed operation. Structure of recirculation system is shown in Fig. 1.

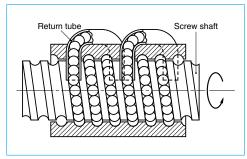


Fig. 1 Structure of return tube recirculation system

(2) Accuracy grades and axial play

Standard accuracy grades and axial play are shown in Table 1. Please consult NSK for other grade.

Table 1 Accuracy grades and axial play

Accuracy grade	C3, C5
Axial play	0 mm (preloaded)

(3) Options

 Equipped with NSK K1 lubrication unit Optional NSK K1 lubrication unit, molded from resin and impregnated with lubrication oil, is available. Please consult NSK when using NSK K1.

For twin-drive systems (See page B541.)

Upon request, the variations in lead accuracy and preload torque between two ball screws of a pair of the TW series are controlled for the further improvement of the reliability.

 Hollow shaft ball screw specifications (See page B542.)

The temperature rise and measures against thermal expansion of ball screw driving mechanism are the most challenging for high-speed machine tools. For the HMD type ball screws, we recommend to utilize the hollow for forced cooling system.

For a vertical axis ball screw

For a vertical axis ball screw, which constantly supports the load of vertical axis system, a high load capacity ball screw is required. A high load capacity type with compact design is available for the nut models I and II in the dimension tables. For details, please consult NSK.

(4) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable den value: HZC, HDC: 100 000 or less HZF, HDF: 135 000 or less

Criterion of maximum rotational speed: 3 750 min⁻¹ Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

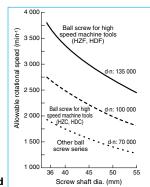


Fig. 2 Comparison of permissible rotational speed

(5) Other specifications

For other specifications not listed in the dimension tables such as high-speed, high-load capacity, and NSK K1 installed type, please consult NSK.

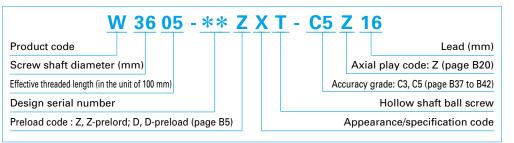
3. Design precautions

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

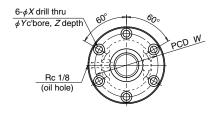
4. Product categories

HMC type has two different preload systems with several models (Table 2).

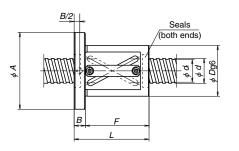
Table 2 HMC type product categories

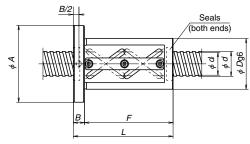

Nut model	Shape	Flange shape	Preload system
HZC		Flanged	Z-preload
HZF		Circular I	(medium preload)
HDC		Flanged	D-preload
HDF		Circular I	(medium preload)

5. Structure of model number and reference number


The followings describe the structure of "Model number" and "Reference number for ball screw".

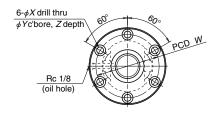
○Reference number for ball screw.

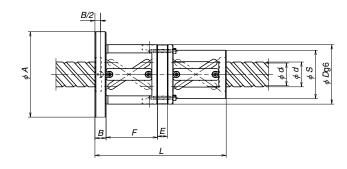




	Shaft dia.	Lead	Root dia.	Effective	Nut		rating (N)		igidity
Model No.	Shart dia.	Leau	noot dia.	turns of	model	Dynamic	Static		/µm)
	d	l	d,	balls		$C_{\scriptscriptstyle a}$	C_{oa}	5% <i>C</i> 。	10% <i>C</i> _a
	HZF3616-5 16 31.5		5	I	40 200	102 000	1 130	1 420	
HZC3616-5 HZF3620-3.5	36								
HZF3620-3.5 HZC3620-3.5		20	30.4	3.5	I	44 000	98 500	830	1 050
HZF4016-5									
HZC4016-5		16	35.5	5	I	41 200	112 000	1 230	1 550
HZF4020-3.5	40			2.5	-	46 100	107.000	000	1 120
HZC4020-3.5	40	20	34.4	3.5	I	46 100	107 000	900	1 130
HZF4020-5		20	34.4	5	п	62 600	153 000	1 260	1 590
HZC4020-5				1	_				
HZF4516-5 HZF4516-7.5		16	40.5	5 7.5	I	43 800 62 100	127 000 191 000	1 340 1 960	1 690 2 470
HZF4516-7.5	-			7.5		62 100	191 000	1 960	2 4 / 0
HZC4520-3.5			00.4	3.5	I	47 600	120 000	990	1 240
HZF4520-5	45	20	39.4	_		C4 700	170.000	1 000	1 740
HZC4520-5				5	I	64 700	170 000	1 380	1 740
HZF4525-3.5		25	39.1	3.5	I	56 800	137 000	1 010	1 280
HZC4525-3.5		20	00.1	0.0	-	00 000	107 000	1010	1 200
HZF5020-3.5 HZC5020-3.5				3.5	I	50 400	133 000	1 080	1 360
HZC5020-3.5 HZF5020-5		20	44.4						
HZC5020-5				5	I	68 500	191 000	1 520	1 910
HZF5025-3.5	T			2.5	т	E0.000	152.000	1 100	1 200
HZC5025-3.5	50	25	44.1	3.5	1	58 900	152 000	1 100	1 390
HZF5025-5		20	44.1	5	π	80 100	216 000	1 540	1 940
HZC5025-5					00 100	210 000	1 0 40	1 040	
HZF5030-3.5 HZC5030-3.5	3.5 30 44.1		44.1	3.5	I	58 900	152 000	1 100	1 390
HZC5030-3.5 HZF5520-3.5				3.5	I	51 600	145 000	1 150	1 450
HZF5520-5.5		20	49.4	5.5	I	70 200	208 000	1 630	2 050
HZF5525-3.5	55			3.5	I	62 600	165 000	1 190	1 560
HZF5525-5		25	49.1	5	Ī	85 000	238 000	1 680	2 120
HZF5530-3.5		30	49.1	3.5	I	62 600	165 000	1 190	1 560

^{2.} Rigidity listed under the column 5%Ca is the value when a 5% of basic dynamic load rating is applied as the preload. Similarly, those listed under the column 10%Ca means a 10% of basic dynamic load rating is applied.


Nut model I (offset preload)


Nut model I (offset preload)

Nut entire length Nut dia. Flange dia. Flange width Bolt hole demensions Nut length D										Unit: mm
Nut dia. Flange langth Nut dia. Flange width F Nut length Early width F Nut length Nut l				Ball	nut dimens	ions				May feeding
The black of the part of the		Nut dia.	Flange dia.		Nut length	Bolt	hole demen	sions		
134 78 120 18 116 11 17.5 11 98 60 121 94 136 18 103 11 17.5 11 98 56 134 79 121 18 116 11 17.5 11 98 56 121 96 138 103 11 17.5 11 99 54 121 96 138 103 11 17.5 11 96 40 121 96 138 103 11 17.5 11 96 40 121 96 138 103 11 17.5 11 166 67 121 96 138 18 143 11 17.5 11 102 50 134 82 124 18 116 11 17.5 11 102 48 122 98 140 18 10		D	Δ		F	Y	l v	l 7		(m/min)
71 113 94 136 18 103 11 17.5 11 91 44 78 120 18 103 11 17.5 11 98 56 134 79 121 18 116 11 17.5 11 99 54 121 96 138 103 11 17.5 11 96 40 161 96 138 143 11 17.5 11 102 50 161 96 138 143 11 17.5 11 102 50 134 82 124 18 116 11 17.5 11 102 50 134 82 124 18 116 11 17.5 11 102 48 122 98 140 18 104 11 17.5 11 118 60 122 101 143										60
121 78 120 18 103 11 17.5 11 98 56 134 79 121 18 116 11 17.5 11 99 54 76 118 18 116 11 17.5 11 99 54 96 138 103 11 17.5 11 102 50 161 96 138 143 11 17.5 11 102 50 134 82 124 18 116 11 17.5 11 102 50 134 82 124 18 116 11 17.5 11 102 50 134 82 124 18 116 11 17.5 11 102 48 122 98 140 18 104 11 17.5 11 118 60 122 101 143 18	134	71	113	18	116	11	17.5	11	91	44
78 120 98 56 134 79 121 18 116 11 17.5 11 99 54 121 96 138 103 11 17.5 11 96 40 121 96 138 18 103 11 17.5 11 102 50 161 96 138 18 143 11 17.5 11 102 50 134 82 124 18 116 11 17.5 11 102 50 134 82 124 18 116 11 17.5 11 102 50 134 82 124 18 116 11 17.5 11 102 48 122 98 140 18 104 11 17.5 11 118 60 122 101 143 18 123 11 17.5 <td< td=""><td>121</td><td>94</td><td>136</td><td>10</td><td>102</td><td>11</td><td>17.5</td><td>11</td><td>114</td><td>75</td></td<>	121	94	136	10	102	11	17.5	11	114	75
134 76 118 18 116 11 17.5 11 96 40 121 96 138 103 11 17.5 11 116 67 161 96 138 143 11 17.5 11 116 67 134 82 124 18 116 11 17.5 11 102 50 134 82 124 18 116 11 17.5 11 102 50 137 128 22 165 14 20 13 104 48 122 98 140 18 104 11 17.5 11 118 60 162 98 140 18 123 11 17.5 11 112 75 122 101 143 18 123 11 17.5 11 112 56 122 101 143 <	121			10	103	- 11	17.5	11		
121	134			18	116	11	17.5	11		
121 82 124 18 103 11 17.5 11 102 50 161 96 138 124 18 143 11 17.5 11 102 50 134 82 124 18 116 11 17.5 11 102 50 134 82 124 18 116 11 17.5 11 102 48 187 98 140 18 104 11 17.5 11 118 60 122 98 140 18 144 11 17.5 11 118 60 141 101 143 18 123 11 17.5 11 118 60 122 101 143 18 123 11 17.5 11 115 40 141 103 145 18 123 11 17.5 11 115 40 <				10	110		17.0			
161 96 138 18 143 11 17.5 11 102 50 134 82 124 18 116 11 17.5 11 102 50 134 82 124 18 116 11 17.5 11 102 50 187 128 22 165 14 20 13 104 48 122 98 140 18 104 11 17.5 11 118 60 162 98 140 18 144 11 17.5 11 118 60 141 101 143 18 123 11 17.5 11 121 75 122 101 143 18 104 11 17.5 11 115 40 141 103 145 18 144 11 17.5 11 115 40 191	121				103				_	1
161 82 124 143 102 50 134 82 124 18 116 11 17.5 11 102 48 187 82 128 22 165 14 20 13 104 48 122 98 140 18 104 11 17.5 11 118 60 162 98 140 18 144 11 17.5 11 118 60 141 101 143 18 123 11 17.5 11 121 75 122 101 143 18 104 11 17.5 11 112 54 162 95 137 18 144 11 17.5 11 115 40 141 103 145 18 123 11 17.5 11 118 50 159 98 140 18 <				18		11	17.5	11		
134 82 124 18 116 11 17.5 11 102 48 122 98 140 104 11 17.5 11 118 60 162 98 140 18 144 11 17.5 11 118 60 162 98 130 18 123 11 17.5 11 118 60 141 101 143 18 123 11 17.5 11 121 75 122 101 143 18 104 11 17.5 11 112 54 162 95 137 18 144 11 17.5 11 115 40 141 103 145 14 14 17.5 11 115 40 191 103 145 18 173 11 17.5 11 118 50 159 98	161				143					
187 82 128 22 165 14 20 13 104 48 122 98 140 18 104 11 17.5 11 118 60 162 98 140 18 144 11 17.5 11 118 60 141 101 143 18 123 11 17.5 11 121 75 122 101 143 18 104 11 17.5 11 112 54 162 95 137 18 144 11 17.5 11 115 40 141 103 145 140 18 123 11 17.5 11 115 40 191 103 145 18 173 11 17.5 11 118 50 159 98 140 18 141 11 17.5 11 123 67 </td <td>104</td> <td>82</td> <td></td> <td>10</td> <td>110</td> <td>11</td> <td>17.5</td> <td>11</td> <td></td> <td>50</td>	104	82		10	110	11	17.5	11		50
122 98 140 18 104 11 17.5 11 118 60 162 98 140 18 144 11 17.5 11 118 60 141 101 143 18 123 11 17.5 11 121 75 122 101 143 18 104 11 17.5 11 112 56 122 101 143 18 104 11 17.5 11 115 40 162 95 137 18 144 11 17.5 11 115 40 141 103 145 18 123 11 17.5 11 115 40 191 103 145 18 173 11 17.5 11 118 50 159 98 140 18 141 11 17.5 11 123 67		82					-		-	48
122 88 130 18 104 11 17.5 11 108 44 162 98 140 144 11 17.5 11 118 60 141 101 143 18 123 11 17.5 11 121 75 122 101 143 18 104 11 17.5 11 112 54 162 95 137 18 144 11 17.5 11 115 40 141 103 145 18 123 11 17.5 11 115 40 191 103 145 18 173 11 17.5 11 118 50 159 98 140 18 141 11 17.5 11 123 81 122 103 145 18 141 11 17.5 11 123 67 18		98		22		14	20	13		60
162 98 140 18 144 11 17.5 11 118 60 141 101 143 18 123 11 17.5 11 121 75 122 101 143 18 104 11 17.5 11 121 54 162 95 137 18 144 11 17.5 11 115 40 141 103 145 18 123 11 17.5 11 121 54 191 103 145 18 173 11 17.5 11 118 50 159 98 140 18 141 11 17.5 11 123 81 122 103 145 18 141 11 17.5 11 123 80 122 103 145 18 141 11 17.5 11 123 67	122				104					
162 88 130 144 108 44 141 101 143 18 123 11 17.5 11 121 75 122 101 143 18 104 11 17.5 11 115 54 162 95 137 18 144 11 17.5 11 115 40 141 103 145 140 18 123 11 17.5 11 123 67 191 103 145 18 141 11 17.5 11 123 67 159 98 140 18 141 11 17.5 11 123 81 122 103 145 18 141 11 17.5 11 123 80				18		11	17.5	11		
141 92 134 18 123 11 17.5 11 112 56 122 101 143 18 104 11 17.5 11 115 40 162 95 137 18 144 11 17.5 11 115 40 141 103 145 18 123 11 17.5 11 123 67 191 103 145 18 173 11 17.5 11 123 67 159 98 140 18 141 11 17.5 11 123 81 122 103 145 18 104 11 17.5 11 123 60	162	88	130		144				108	44
122 101 143 104 11 17.5 11 121 54 162 95 137 18 144 11 17.5 11 115 40 141 103 145 140 18 123 11 17.5 11 115 40 191 103 145 18 173 11 17.5 11 118 50 159 103 145 18 141 11 17.5 11 123 81 159 98 140 18 141 11 17.5 11 123 81 122 103 145 18 104 11 17.5 11 123 49	1.11	101	143	10	100	11	17.5	11	121	75
122 95 137 18 104 11 17.5 11 115 40 162 101 143 144 11 17.5 11 115 40 141 103 145 140 18 123 11 17.5 11 123 67 191 103 145 18 173 11 17.5 11 123 67 159 103 145 18 141 11 17.5 11 123 81 122 103 145 18 104 11 17.5 11 123 49	141	92	134	18	123	- 11	17.5	''	112	56
95 137 18 11 17.5 11 115 40 162 95 137 144 11 17.5 11 121 54 141 103 145 123 123 123 123 123 123 118 50 191 103 145 18 173 17.5 11 123 67 159 98 140 18 141 11 17.5 11 123 81 122 103 145 18 104 11 17.5 11 123 49	122		-		104				121	54
162 101	122			18	104	11	175	11		
141 103 145 98 140 191 103 145 98 140 173 11 175 11 118 50 159 103 145 18 141 11 17.5 11 123 123 67 118 50 159 103 145 18 141 11 17.5 11 123 81 11 123 122 103 145 18 104 11 17.5 11 123 49	162			10	144		17.5			
141 98 140 18 123 11 17.5 11 118 50 191 103 145 140 173 11 17.5 11 118 50 159 103 145 18 141 11 17.5 11 123 81 122 103 145 18 104 11 17.5 11 123 49										
191 103 145 18 173 11 17.5 11 123 67 159 103 145 18 141 11 17.5 11 123 81 159 98 140 18 141 11 17.5 11 123 81 122 103 145 18 104 11 17.5 11 123 49	141				123					
191 98 140 173 118 50 159 103 145 18 141 11 17.5 11 123 81 122 103 145 18 104 11 17.5 11 123 49				18		11	17.5	11		
159 103 145 18 141 11 17.5 11 123 81 122 103 145 18 104 11 17.5 11 123 49	191		-		173					
159 98 140 18 141 11 17.5 11 118 60 122 103 145 18 104 11 17.5 11 123 49										
122 103 145 18 104 11 17.5 11 123 49	159		-	18	141	11	17.5	11		
103 1/6 18 11 176 11 193 /0	122				104					
102	162	103	145	18	144	11	17.5	11	123	49
141		105	4.47	4.0		4.4	47.5	4.4	405	
191 105 147 18 125 11 17.5 11 125 61	191	105	14/	18	173	11	17.5	11	125	61
159 105 147 18 141 11 17.5 11 125 73	159	105	147	18	141	11	17.5	11	125	73

B505 B506

Nut model II (double nut spacer, preload)
(the figure indicates use of double start threads)

Unit: mm

Model No.	Shaft dia.	Lead	Root dia.	Effective turns of	Nut	Basic load	rating (N)		rigidity I/µm)	
woder No.	d	l	d _r	balls	model	C _a	C _{0a}	5% <i>C</i> 。	10% <i>C</i> 。	
HDF3620-5	36	20	30.4	5	Ш	59 800	138 000	1 160	1 460	
HDC3620-5										
HDF4025-5		25	34.1	5	Ш	74 000	175 000	1 320	1 660	
HDC4025-5		20	04.1	0		7 + 000	175 000	1 020	1 000	
HDF4030-5		30	34.1	5	π	74 000	175 000	1 320	1 660	
HDC4030-5	40	30	34.1	5	ш	74 000	175 000	1 320	1 000	
HDF4032-7.5		32	34.4	7.5	π	88 700	230 000	1 920	2 420	
HDC4032-7.5		32	34.4	7.5	ш	00 700	230 000	1 920	2 420	
HDF4036-4.5		36	34.4	4.5	Ш	57 200	138 000	1 170	1 480	
HDF4525-5		25	39.1	5	Ш	77 200	197 000	1 430	1 800	
HDC4525-5		25	39.1	5	ш	// 200	197 000	1 430	1 600	
HDF4530-5		30	39.1	5	π	77 200	197 000	1 430	1 800	
HDC4530-5	45	30	39.1	5	ш	// 200	197 000	1 430	1 800	
HDF4532-7.5		32	39.4	7.5	Ш	91 700	256 000	2 090	2 630	
HDC4532-7.5		32	39.4	7.5	ш	91700	256 000	2 090	2 630	
HDF4536-4.5		36	39.4	4.5	II	59 100	155 000	1 280	1 620	
HDF5030-5		20	44.1	_	П	80 100	216 000	1 540	1 940	
HDC5030-5	5030-5 50 30 44.1 5	5	Щ	80 100	210 000	1 540	1 940			
HDF5032-7.5	1 50	20	44.4	7.5	π	07.100	200.000	0.070	0.000	
HDC5032-7.5		32	44.4		Ш	97 100	286 000	2 270	2 860	
HDF5530-5	- 55	30	49.1		Ш	85 000	238 000	1 680	2 120	
HDF5532-7.5	55	32	49.4	7.5	Ш	99 500	313 000	2 420	3 050	

Notes: 1. Ball screws of 32 or 36 mm lead have triple start threads. Others have double start threads.

Rigidity listed under the column 5%Ca is the value when a 5% of basic dynamic load rating is applied as the preload. Similarly, those listed under the column 10%Ca means a 10% of basic dynamic load rating is applied.

								OTHE. THIT			
											Max.
Nut entire	NI. +	dia.	Flange dia.		Nut length				70	Bolt hele PCD	feeding
length <i>L</i>	D Nut	l S	ala. A	width <i>B</i>	F	dimensions E	X	οπ ποιε si. Υ	Ze Z	W PCD	speed (m/min)
	94	76	136							114	75
191	78	60	120	18	77	5	11	17.5	11	98	56
200 5	98	80	140	10	0.4	10.5		47.5		118	84
228.5	86	68	128	18	91	13.5	11	17.5	11	106	63
	98	80	140	- 10	404	_		47.5		118	101
248	86	68	128	18	104	8	11	17.5	11	106	75
005	96	78	142	20	100	11	1.4	20	10	118	108
265	82	64	128	22	109	11	14	20	13	106	80
200	96	78	138	18	83	4	11	17.5	11	116	120
228.5	101	83	143	18	91	13.5	11	17.5	11	121	75
220.0	92	74	134	10	91	13.5	11	17.5	11	112	56
248	101	83	143	18	104	8	11	17.5	11	121	90
240	92	74	134	10	104	0	11	17.5	11	112	67
266	98	80	144	22	109	11	14	20	13	120	96
200	88	70	134	22	109	''	14	20	13	110	71
200	98	80	140	18	83	4	11	17.5	11	118	108
249	103	85	145	18	104	8	11	17.5	11	123	81
249	98	80	140	18	104	8	11	17.5	11	118	60
266	101	83	147	22	109	11	1.4	20	13	123	86
200	95	77	141		109	11	14	20	13	117	64
249	105	87	147	18	104	8	11	17.5	11	125	73
266	103	85	149	22	109	11	14	20	13	125	78

B507 B508

B-3-3.4 BSL[™] Type for Miniature Lathes

1. Features

Prompt delivery

Screw shaft configuration and ball nut shape are standardized for prompt delivery.

High speed and low noise

Adoption of end-deflector recirculation system realized high-speed operation with low noise.

Excellent dust resistance

Thin plastic seal and specially designed ball grooves prevent the entry of foreign matters.

2. Specifications

(1) Ball recirculation system

End-deflector recirculation system has features of high-speed, low-noise operation and compact ball nut. The structure of recirculation system is shown in **Fig.1**.

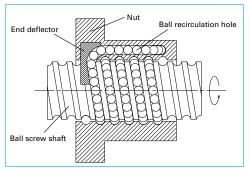


Fig. 1 Structure of end-deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	C5
Axial play	0 mm (preloaded)

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d·n value: 180 000 or less Criterion of maximum rotational speed

: 4 000 min⁻¹

Note: Please also review the critical speed.

See "Technical Description: Permissible
Rotational Speed" (page B47) for details.

(4) Options

Optional NSK K1 lubrication unit, molded from resin and impregnated with lubrication oil, supplies fresh oil onto ball rolling surface, ensuring long-term, maintenance-free operation. Please consult NSK when using NSK K1.

3. Design Precautions

When designing the screw shaft end, one end of the shaft must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

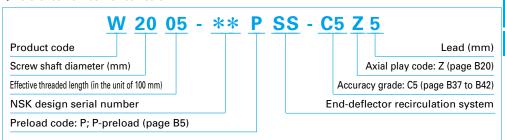
- · Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

Special bearings which have higher-load carrying capacity are available.

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

4. Product categories

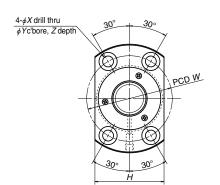
The BSL type has a model as follows.

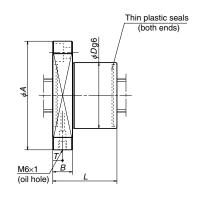

Table 2 BSL type product categories

Nut model	Shape	Flange shape	Preload system
BSL		Circular II	P-Preload (Slight preload)

5. Structure of model number and reference number

The followings describe the structure of "Model number" and "Reference number for ball screw".




6. Handling Precautions

Maximum operating temperature: 80°C If using NSK K1, operating temperature should not exceed 50°C. Refer to "Designing Precautions" (page B83).

B509 B510

	1															
				Basic load	rating (N)					Ball r	nut di	mensi	ons			
	Shaft	Lead	Lead Root	Dynamic	Static	Ex	terna	l dim	ensic	ns	Bolt	hole o	limer	sions	Oil hole	
Model No.	dia.		dia.													
	d	l	d,	C _a	C_{0a}	D	Α	Н	В	L	W	X	Y	Z	T	d ₁
BSL2005	20	5	17.2	8 920	16 300	36	63	38	12	37	49	6.6	11	6.5	6.5	15
BSL2006	_ 20	6	16.4	11 900	20 000	40	65	42	1 12	45	51	0.0	11	0.5	6.7	15
BSL2505		5	22.2	9 900	20 500	40	65	42		38	51				7.1	
BSL2506	25	6	21.4	13 300	25 200	43	69	45	12	44	55	6.6	11	6.5	6.3	20
BSL2508	25	8	20.5	17 100	30 100	46	72	48	'	55	58	0.0	' '	0.5	6.5	20
BSL2510		10	20.5	17 100	30 100	46	72	48		65	58				6	
BSL3210	32	10	26.4	27 700	51 300	61	93	63	18	68	76	9	14	8.5	10	25
BSL3212	32	12	20.4	27 700	31300	01	93	03	10	77	/6	9	14	0.5	10	25

Notes: 1. The right turn screw is the standard. Please consult NSK for left turn screw. 2. Shaft dimensions are for reference.

N N N N N N N N N N N N N N N N N N N	K D D D D D D D D D D D D D D D D D D D	ρφ	94 60 6 Li 0 0 0
(L ₂)	Min. L ₅	Max. L ₁	(L ₈)
·	Max. L		

Unit: mm

						SI	naft (confi	gui	ratio	n and	d dime	nsions	(ref	erence)				
	3										Permissible								
$d_{\scriptscriptstyle 2}$	d ₃	$d_{\scriptscriptstyle 4}$	L (max.)	L₁ (max.)	L ₂	L ₃	<i>L</i> ₄ (min.)	L₅ (min.)	L ₆	L,	L _s	L ₉	L ₁₀	К	М	Bearing reference number	F	dynamic load rating <i>C</i> _a	axial load (N)
12	15	14.3 0.11	500	500	66	20	3	20 21	8	9	14	10.15	1.15	17	M15×1.0	15TAC47C	47	21 900	26 600
							3	27											
15	20	19 0.21	700	700	71	27	4	28	10	14	19	15.35	1.35	22	M20×1.0	20TAC62C	62	20 EUU	40 500
15	20	19	700	700	/	21	5	29		14	13	15.55	1.55	22	10120 ~ 1.0	201AC02C	02	20 300	40 500
							5	29											
20	25	23.9 0.21	1 000	800	71	33	6	33	12	15	20	16.35	1.35	27	M25×1.5	25TAC62C	62	28 500	40 500
20	25	20.9	1 000	500	7 1	55	7	34	12	15	20	10.55	1.33	21	10125/1.5	23140020	02	20 300	40 300

3. Shaft length L_1 and shaft entire length L are the maximum length. When L becomes the same length as the L_1 , the thread is all screw specification.

B511 B512

B-3-3.5.1 HTF-SRC Type for High-Load Drives

1. Features

High-speed operation and low noise

The SRC recirculation system contributes to more than twice the feed speed (d·n value: 140 000 and 160 000) and the noise level of less than 8 to 10 dB (half to 1/3 of noise) compared with the HTF type.

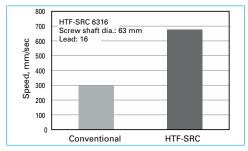


Fig. 1 Feed speed comparison

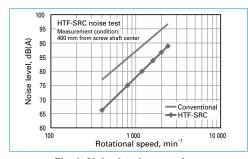


Fig. 2 Noise level comparison

2. Specifications

(1) Ball recirculation system

The SRC recirculation system picks up balls in the direction they are moving, and thus contributed to high-speed, low-noise operation. Structure of the recirculation system is as follows.

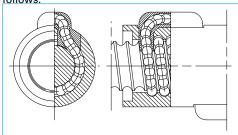


Fig. 3 Structure of SRC recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	Ct7
Axial play	S,0.020 mm or less; N,0.050 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Table 2 Allowable d·n value and the criterion of maximum rotational speed

Lead	14, 16 mm	20, 25 mm [☆]					
	160 000 or less	140 000 or less					
Criterion of maximum rotational speed	3 225 min ⁻¹						

d-n value: shaft dia. d [mm] × rotational speed n [min⁻¹]

☆ Allowable d · n value for HTF-SRC5020: 160 000

Note: Please also review the critical speed.

See "Technical Description: Permissible
Rotational Speed" (page B47) for details.

(4) Ball retaining piece NSK S1[™]

The NSK S1, resin retainers between the balls, significantly extend ball screw durability to the moment load.

(5) Other

Please consult NSK for special requests, such as the addition of a recirculation circuit to increase the load capacity, or the arrangement of all recirculation circuits on the same phase of ball nut circumference.

3. Design Precautions

The HTF-SRC type is designed to distribute the load uniformly to the load balls for high-load drive mechanism. We recommend installing the ball screws in the way shown below for the full use of this characteristic.

In addition, we will make full analysis when you use the HTF-SRC type under extreme conditions such as application of extremely high load or operating in short stroke. Contact NSK about operating conditions (See page B531).

When designing the screw shaft end, one end

of the screw shaft must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

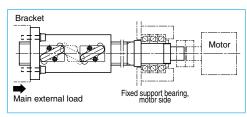
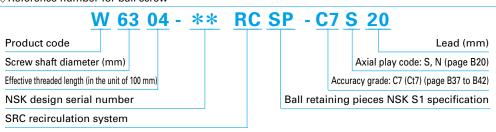


Fig. 4 Recommended installing direction of high-load drive ball screw

4. Product categories

The HTF-SRC type has a model as follows.

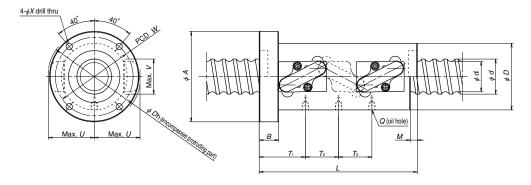
Table 3 HTF-SRC type product categories


Nut model	Shape	Flange shape	Preload system
HTF-SRC		Flanged Circular I	Non-preload Slight axial play

5. Structure of model number and reference number

The followings describe the structure of "Model number" and "Reference number for ball screw".

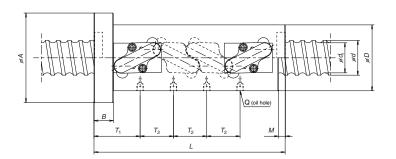
Reference number for ball screw


6. Handling Precautions

Maximum operating temperature: 70°C (at outside diameter of ball nut)
The lubricant deteriorates, operating temperature

is recommended 60°C and under.

Please consult NSK in the case of a short stroke operation less than or equal to four times the length of the ball screw lead.



Nut model I

	Shaft dia.	Lead	Root	Effective turns		Rasic load	rating (kN)	Allowable
	Stiatt dia.	Lead	dia.	of balls		Dynamic	Static	axial load
Model No.			aia.	Turns	Nut model	Dynamic	Static	axiai ioaa
	d	l	d_{r}	× Circuits		$C_{\scriptscriptstyle a}$	C_{0a}	(kN)
HTF-SRC5014-7.5		14	41.6	2.5×3		264	623	73.1
HTF-SRC5016-7.5	50	16	39	2.5×3	I	383	818	91.1
HTF-SRC5020-7.5		20	39	2.5×3		383	818	91.0
HTF-SRC6316-7.5				2.5×3	I	429	1 050	119
HTF-SRC6316-10		16	52	2.5×4	I	549	1 410	159
HTF-SRC6316-10.5		10		3.5×3	I	562	1 450	167
HTF-SRC6316-14	63			3.5×4	I	720	1 930	215
HTF-SRC6320-7.5		20	49	2.5×3	I	572	1 280	147
HTF-SRC6320-10		20	49	2.5×4	I	732	1 710	196
HTF-SRC6325-10.5		25	49	3.5×3	I	750	1 770	170
HTF-SRC8016-10.5		16	69	3.5×3	I	627	1 870	221
HTF-SRC8016-14	80	16	69	3.5×4	I	802	2 490	295
HTF-SRC8020-10.5] 00	20	66	3.5×3	I	838	2 300	267
HTF-SRC8025-7.5		25	63	2.5×3	I	790	1 960	221
HTF-SRC10020-10.5		20	86	3.5×3	I	936	2 910	346
HTF-SRC10020-14	100	20	00	3.5×4	I	1 200	3 890	461
HTF-SRC10025-10.5	100	25	83	3.5×3	I	1 200	3 430	408
HTF-SRC10025-14		20	03	3.5×4	I	1 540	4 580	544
HTF-SRC12020-7.5		20	106	2.5×3	I	776	2 550	304
HTF-SRC12020-10	120		106	2.5×4	I	994	3 400	406
HTF-SRC12025-10.5	120	25	103	3.5×3	I	1 300	4 200	498
HTF-SRC12025-14		∠5	103	3.5×4	I	1 660	5 600	664

^{2.} The ball nut length with no seals is shorter by M than that length of a ball nut with seals.

Nut model I

Unit: mm

											Offic. Hilli			
					Ball	nut dim	ensions						Max.	
Nut length	Nut dia.	Flange dia.	Flange width	Seal width	Bolt hole PCD	Bolt hole size	Protrudir	ıg tube dir	nensions	Oil hole	Oil hole	position	feeding speed	
L	D	A	В	М	W	X	U	V	Dh	Q	T_{i}	T_2	(mm/sec))
202	80	114			97		54.5	46	111	M6×1	69	42	750	
228	95	129	28	10	112	9	66	50	134	Rc1/8	74.5	48	860	lΞ
268	95	129			112		66	50	134	Rc1/8	83.5	60	1 070	HIT-SHU
228 276 276 340	105	139	28	10	122	9	72.5	50	148	Rc1/8	74.5	48 48 64 64	680	SHC
279 339	117	157	32	12	137	11	80	62	163		90	60	740	
405	117	157	32	12	137	11	81.5	61	167		101.75	100	930	
278 342	120	154	32	10	137	9	80	60	165	Rc1/8	78.5	64	540	
339	130	170	32	12	150	11	88	64	180	NC 1/6	90	80	590	
347	145	185	40	17	165	11	99.5	73	202		111.75	75	730	
339 419	145	185	32	12	165	11	97	78	199	Rc1/8	90	80	470	
422 522	159	199	40	17	179	11	108	79	220	1101/0	111.75	100	590	
287 347	173	213	40	12	193	11	109.5	88	229	Rc1/8	98	60	390	
421 521	1/3	213	40	17	193	11	116	92	238	AC1/8	111.25	100	490	

B515 B516

^{3.} Please consult NSK if load exceeds the allowable axial load.

^{4.} The allowable axial load is determined in accordance with the mounting conditions of ball screws recommended by NSK (See page B514). If your mounting conditions differ from those provided, please consult NSK.

B-3-3.5.2 HTF-SRD Type for High-Load Drives

This product is being applied for a patent.

1. Features

• High-speed operation and low noise Used with end deflectors, HTF-SRD type ball screws achieve the maximum feed speed of 1 600 mm/s. The ball nut body surface is completely round, thus enabling well balanced ball nut rotation.

Double start thread structure which has more recirculation circuits, and large diameter balls contribute to have high load carrying capacity.

Low noise and compact design

End deflector system using a ball scooping mechanism in the direction of screw spiral offers smoother ball recirculation system, thus contributing to less than half the noise level compared with existing ball screws equipped with a return tube.

Compact, high-performance seal is available. Nut outside diameter is compact compare with the return tube recirculation system.

Also, compact, thin plastic seal is available. Nut outside diameter is compact compare with the return tube recirculation system.

2. Specifications

(1) Ball recirculation system

End-deflector recirculation system has features of high-speed, low-noise operation, and compact ball nut. The structure of recirculation parts are as follows.

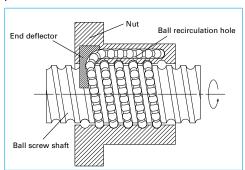


Fig. 1 Structure of End-deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	Ct7
Axial play	S, 0.020 mm or less; N, 0.050 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Table 2 Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value	120 000 or less
Criterion of maximum rotational speed	2 400 min ⁻¹

d-n value: shaft dia. d [mm] x rotational speed n [min-1]

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Ball retaining piece NSK S1[™]

The NSK S1, resin retainers between the balls, significantly extend ball screw durability to the moment load.

3. Design Precautions

The HTF-SRD type is designed to distribute the load uniformly to the load balls for high-load drive mechanism. We recommend installing the ball screws in the way shown below for the full use of this characteristic.

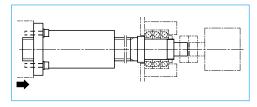


Fig. 2 Recommended installing direction of high-load drives ball screw

In addition, we will make full analysis when you use the HTF-SRD type under extreme conditions such as application of extremely high load or operating in short stroke. Contact NSK about operating conditions (see page B531).

When designing the screw shaft end, one end

of the screw shaft must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

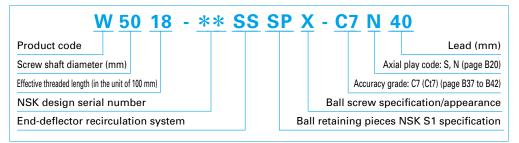
For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and

"Handling Precautions" (page B103).

4. Product categories

The HTF-SRD type has a model as follows.

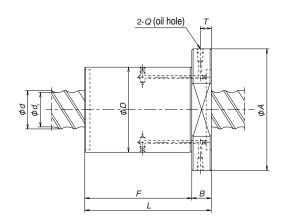
Table 3 HTF-SRD type product categories


Nut model	Shape	Flange shape	Preload system
HTF-SRD		Circular II	Non-preload Slight axial play

5. Structure of model number and reference number

The followings describe the structure of "Model number" and "Reference number for ball screw".

♦ Reference number for ball screw



6. Handling Precautions

Maximum operating temperature: 70°C (at outside diameter of ball nut)
The lubricant deteriorates, operating temperature

is recommended 60°C and under.

Please consult NSK in the case of a short stroke operation less than or equal to four times the length of the ball screw lead.

Model No.	Shaft dia.	Lead	Root dia.	Effective turns	Basic load Dynamic	rating (kN) Static	Allowable axial load
	d	l	d _r	of balls	C _a	$C_{\scriptscriptstyle{\mathrm{Oa}}}$	(kN)
HTF-SRD5040-6E	EO	40	39	6	243	491	67.6
HTF-SRD5040-8E	50	40	39	8	319	679	92
HTF-SRD6332-4E		32		4	292	590	72.6
HTF-SRD6340-6E	63	40	49	6	363	768	106
HTF-SRD6340-8E				8	476	1 060	144
HTF-SRD8050-6E	80	50	63	6	502	1 180	163
HTF-SRD8050-8E	00	50	03	8	658	1 630	224
HTF-SRD10060-6E	100	60	83	6	583	1 490	211
HTF-SRD10060-8E	100	00	63	8	765	2 060	288
HTF-SRD12070-6E	120	70	103	6	630	1 810	259
HTF-SRD12070-8E	120	70	103	8	826	2 520	352

Notes: 1. The right hand screw is the standard. For specifications on left hand screws, contact NSK.

2. Please consult NSK if load exceeds the allowable axial load.

3. The allowable axial load is determined in accordance with the mounting conditions of ball screws recommended by NSK (See page B517). If your mounting conditions differ from those provided, please consult NSK.

									Unit: mm	표
			Ball	nut dimens	sions				Max.	HTF-SRD
Nut entire	Nut dia.	Flange	Notch	Flange	Nut	Bolt hole	Bolt hole	Oil hole	feeding	공
length		dia.	size	width	length	PCD	size	position	speed	
L	D	Α	Н	В	F	W	X	Τ	(mm/sec)	
159	115	165	72.5	28	131	140	14	16	1 600	
199	115	100	/2.5	20	171	140	14	10	1 000	
176		190	85		144	165	14		1 000	
163	140	200	90	32	131	170	18	18	1 250	
203		200	90		171	170	10		1 250	
194	175	250	110	40	154	210	22	18	1 250	
244	1/5	250	110	40	204	210	22	18	1 250	
225	195	270	122	40	185	225	22	20	1 200	
285	195	2/0	122	40	245	235	22	20	1 200	
260	010	005	100	F0	210	250	20	٥٢	1 100	

280

250

22

25

1 160

B519 B520

210

330

285

130

50

B-3-3.5.3 HTF Type for High-Load Drives

This product is being applied for a patent.

1. Features

High load carrying capacity

Has an ideal design to bear heavy load. It significantly enhances load rating as well as maximum permissible load.

Respond to various shaft end configuration
 Additional ball screw shaft machining is not required. HTF type responds to various shaft ends that convey high torque.

HTF type can be used with: involute spline (JIS B 1603), straight sided spline (JIS B 1601), key seat, etc.

2. Specifications

(1) Ball recirculation system

Structure of recirculation system is shown in Fig. 1.

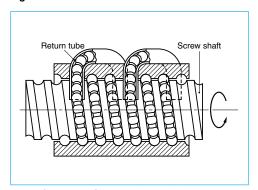


Fig. 1 Structure of return tube recirculation system

(2) Accuracy grade and axial play

The allowable standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	Ct7
Axial play	S, 0.020 mm or under; N, 0.050 mm or under

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below. For higher-speed operation, HTF-SRC type is recommend (See page B513).

Table 2 Allowable d•n value and the criterion of maximum rotational speed

Lead			25 mm			
Allowable Standard specification		70 000 or less	70 000 or less	50 000 or less		
d·n value	High-speed specification	10 0000 or less — — —				
Criterion of maximum	rotational speed					

d•n value: shaft dia. d [mm] × rotational speed n [min-1]

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Ball retaining piece NSK S1[™]

The NSK S1, resin retainers between the balls, significantly extend ball screw durability to the moment load.

(5) Other

Please consult NSK for special requests, such as the addition of a recirculation circuit to increase the load capacity, or the arrangement of all recirculation circuits on the same phase of ball nut circumference.

3. Design precautions

For designing shaft end configuration, you should take into account that the HTF type ball screws are dedicated to high-load drives.

The HTF type is designed to distribute the load uniformly to the load balls for high load drive mechanism.

We recommend installing the ball screws in the way shown in **Fig. 2** for the full use of this characteristic. In addition, we will make full analysis when you use the HTF type under extreme conditions such as application of extremely high load or operating in short stroke. Contact NSK about operating conditions (See page B531).

When designing the screw shaft end, the one end shall be cut-through and shaft end dimension must be less than the root diameter

of ball groove. If not, the nut cannot be assembled.

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

4. Product categories

The HTF type has a model as follows.

Table 3 HTF type product categories

Nut model	Shape	Flange shape	Preload system
HTF		Flanged Circular I	Non-preloaded Slight axial play

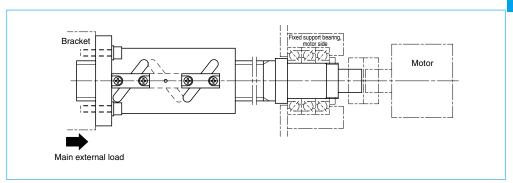
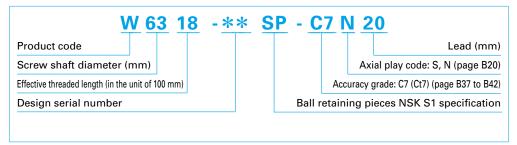


Fig. 2 Recommended installing direction of ball screws for high-load drives

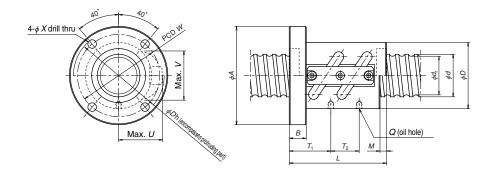
B521 B522


5. Structure of model number and reference number

A structure of "Model number" and "Reference number for ball screw" are as follows.

♦ Model number

○Reference number for ball screw



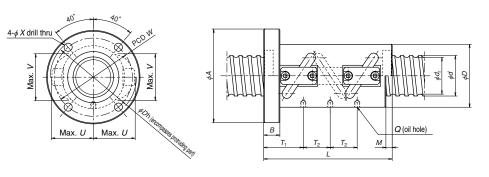
6. Handling precautions

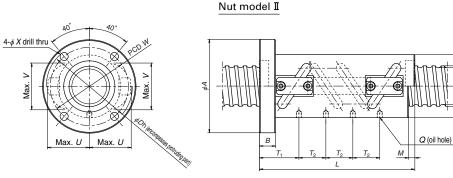
Maximum operating temperature: 70°C (at outside diameter of all nut)
The lubricant deteriorates, operating temperature is recommended 60°C and under.
Please consult NSK in the case of a short stroke

operation less than or equal to four times the length of the ball screw lead.

B523 B524

Nut model I


Model No.	Shaft dia.	Lead	Root dia.	Effective turns of balls Turns	Nut model	Basic load Dynamic	rating (kN) Static	Allowable axial load
	d	l	d_{r}	Circuits		$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(kN)
HTF3210-5	32	10	25.6	2.5×2	I	88.7	169	20.3
HTF3610-5	- 36	10	29.6	2.5×2	I	96.1	191	23.4
HTF3612-5		12	29	2.5x2		112	228	28.3
HTF4010-7.5	40	10	33.6	2.5×3	п	149	344	39.6
HTF4012-7.5	40	12	33	2.5×3	"	184	422	48.0
HTF4510-7.5		10	38.6	2.5×3	I	158	386	45.3
HTF4510-10	45	10	30.0	2.5×4	Ш	203	514	60.4
HTF4512-7.5		12	38	2.5×3	I	195	473	55.0


See HTF-SRC type (page B513) regarding shaft diameter 50 - 120 mm. Consult NSK for shaft diameter and lead except HTF-SRC type.

HTF14020-7.5		20	20 126 2.5×3 II 2.5×4 III	2.5×3	I	829	3 000	361
HTF14020-10		20		1 060	4 000	481		
HTF14025-7.5	140		124	2.5×3	I	1 050	3 610	423
HTF14025-10		٥٦		2.5×4	ш	1 350	4 810	564
HTF14025-10.5		25		3.5×3	I	1 380	4 910	595
HTF14025-14				3.5×4	II	1 770	6 540	793

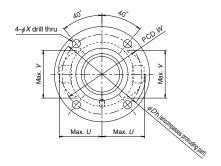
Notes: 1. The right hand screw is the standard. "L" is added to the end of the model code for the left turn screw.

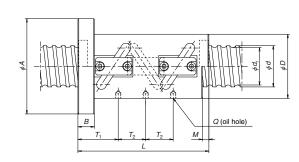
2. If there is no seal, the nut length is shorter by the lengths of "M" than those with a seal.

Nut model II

Unit: mm

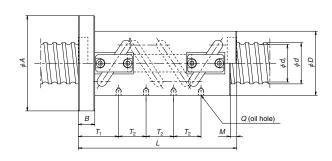
B526


	Ball nut dimensions												
Nut length	Nut dia.	Flange dia.	Flange width	Seal width	Bolt hole PCD	Bolt hole size	Protrudin	g tube din	nensions	Oil hole	Oil hole	positions	speed
L	D	A	B	M	W	X	U	V	Dh	Q	T_{i}	T_2	(mm/sec)
103	58	92	18	7	75	9	40.5	42	82	M6×1	36.5	30	520
103	62	96	18	7	79	9	43	45	87	M6×1	36.5	30	460
123	66	100	22	8	83	9	46.5	46	94	IVIOXI	44	36	550
143	66	100	18	7	83	9	45	48	91	M6×1	46.5	30	410
171	70	104	22	8	87	9	47.5	50	96	M6×1	56	36	500
143	70	104	18	7	87		47	52	95		46.5	30	370
173	70	104	10	_ ′	07	9	4/	32	90	M6×1	40.0	30	370
171	72	106	22	8	89		49.5	54	100		56	36	440


281 341	204	250	40	12	226	14	122.5	148	248		96	60	230
338 413 413 513	204	250	40	17	226	14	127.5	153	258	Rc1/8	109.25	75 75 100 100	200

- 3. Please consult NSK if load exceeds the allowable axial load.
- 4. The allowable axial load is determined in accordance with the mounting conditions of ball screws recommended by NSK (see page B522). If your mounting conditions differ from those provided, please consult NSK.

B525



	Cl f+ -1:-	11	Darat dia	Effective turns		Basic load	rating (KNI)		
Model No.	Shaft dia.	Lead	Root dia.	of balls Turns	Nut	Dynamic	Static	Allowable axial load	
	d	l	d_{r}	Circuits	model	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle{0a}}$	(kN)	
HTF14030-7.5				2.5×3	I	1 310	4 110	487	
HTF14030-10		30	121	2.5×4	Ш	1 670	5 490	649	
HTF14030-10.5	140			3.5×3	I	1 710	5 710	678	
HTF14032-7.5	140			2.5×3	I	1 590	4 740	549	
HTF14032-10		32	118	2.5×4	Ш	2 040	6 320	732	
HTF14032-10.5				3.5×3	I	2 080	6 420	757	
HTF16025-7.5		25	144	2.5×3	I	1 140	4 140	495	
HTF16025-10		25	144	2.5×4	${\rm I\hspace{1em}I}$	1 450	5 520	660	
HTF16030-7.5				2.5×3	I	1 400	4 760	564	
HTF16030-10	160	30	141	2.5×4	${\rm I\hspace{1em}I}$	1 790	6 340	752	
HTF16030-10.5	160	160			3.5×3	I	1 830	6 520	788
HTF16032-7.5				2.5×3	I	1 660	5 370	636	
HTF16032-10		32	138	2.5×4	Ш	2 130	7 160	848	
HTF16032-10.5				3.5×3	I	2 180	7 460	885	
HTF20030-7.5		30	181	2.5×3	I	1 550	5 960	718	
HTF20030-10	200	30	101	2.5×4	Ш	1 980	7 950	958	
HTF20032-7.5	200	32	178	2.5×3	I	1 840	6 840	809	
HTF20032-10		32	1/8	2.5×4	Ш	2 360	9 120	1 080	

Notes: 1. The right hand screw is the standard. "L" is added to the end of the model code for the left turn screw.

Nut model II

Unit: mm

						nut dim							Max. feeding
Nut length	Nut dia.	Flange dia.	Flange width	Seal width	Bolt hole PCD	Bolt hole size	Protrudin	ng tube din	nensions	Oil hole	Oil hole	oositions	speed
L	D D	A	B	M	W	X	U	V	Dh	Q	T_{i}	T_2	(mm/sec)
411												90	
501	222	282	50	22	252	18	139	160	281		134.5	90	170
501										Rc1/8		120	
465										1101/0		96	
561	222	296	70	22	259	22	148	163	299		166.5	96	190
561												128	
338		280	40	17	256	14	138	173	279		109.25	75	180
413		200	40	17	250	14	30	173	2/5		109.25	2	100
411												90	
501	234	294	50	22	264	18	148	177	299	Rc1/8	134.5	90	150
501	234									1101/0		120	
465												96	
561		308	70	22	271	22	152	181	307		166.5	96	160
561												128	
411		350	50		320	18	178	212	359		134.5	90	120
501	290	300	30	22	320	10	1/0	212	308	Rc1/8	134.0	90	120
465	290	364	70	22	327	22	182	215	367	nc 1/8	166.5	96	130
561		304	/0		327	22	102	210	307		100.5	90	130

3. Please consult NSK if load exceeds the allowable axial load.

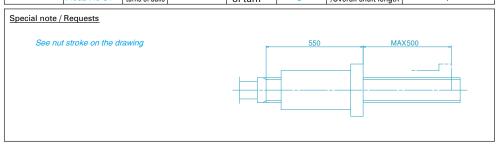
B527 B528

^{2.} If there is no seal, the nut length is shorter by the lengths of "M" than those with a seal.

^{4.} The allowable axial load is determined in accordance with the mounting conditions of ball screws recommended by NSK (see page B522). If your mounting conditions differ from those provided, please consult NSK.

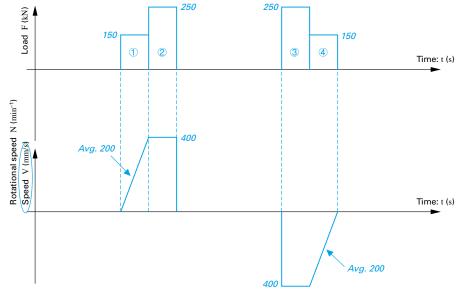
NSK Technical Data Sheet for NSK High-Load Drive Ball Screws

Made-to-order ball screw


Company name:	Date:		NSK sales office
Section:	Person in charge:	-\	
Address:		Į V	
Name of machine*1:	Electric injection molding machine; 30-ton capacity	Application*2:	Clamping axis
Drawing/rough sketch	attached?: ☐ Yes ☑ No		
	acity of the machine in case of injection molding machine	or press.	

1. Use conditions

Operating conditions	Shaft rotation — Mov ☐ Shaft rotation — Mov ☐ Nut rotation — Movin ☐ Nut rotation — Movin	ring shaft Back drive operation	Degree of	☐ Smooth operation without impact ☑ Normal operation ☐ Operation associated with impact or vibration
Direction of load*3	☐ C-C ☑T-T ☐ (Refer to figures below	T-C C-T Other w.)	Mounting orientation	✓ Horizontal ☐ Vertical (Indicate the direction of gravity.)
Lubricant	☐ Oil Brand na Maker:	ame: High-load grease with an extreme pressure additive	How to replenish	✓ Grease gun ☐ Automatic
Request for oil hole	☑ NSK recommended	d 🗌 Your request	lubricant	(cm³/ cycles)
Necessity of seals	⊻ Yes	□No	NSK S1 necessary?	✓ NSK recommended☐ Not necessary
Environment	Temperature (40 deg)	Particles / ☐ Yes (Size of p		1.3, c) over 0.3- , d) Ingredient:)
Surface treatment	✓ Not required □ Lo	ow-temperature chrome pla	ting 🗌 Fluoride low-t	emperature chrome plating
Quantity in mass-production	/Month	/Year /Lo	Quantity used per machine	1 pcs./machine
*3 Please spe	cify loading direction code	on the figures below. (Shaft f	xed: , Main load:	_)


2. Specifications

Shaft diameter	φ140 mm	Lead	<i>32</i> mm	Accuracy grade	Ct7	Axial play	0.050 or less mm max.
Nut model No.	HTF 14032-7.5-S1	Effective	2.5 × 3	Direction	right	Thread length	1000 1500

NSK Technical Data Sheet for NSK High-Load Drive Ball Screws

3. Load chart

	Axial load*	Rotational speed	or Average speed	Time	Stroke	Remarks
	F (kN)	N (min ⁻¹)	V (mm/s)	t (s)	St (mm)	
1	150		200	0. 5	100	
2	<i>250</i>		400	0. 5	200	
3	250		400	0. 5	200	
4	150		200	0. 5	100	
5				Total: 2.0	Total: 600	
6						
7						
8						
9						
10						
Dynamic	axial load (Max	(.)*: <i>250</i>	(kN) S	tatic axial load	(Max.)*(at 0 mm	/s): (kN)

Dynamic axial load (Max.)*: Stroke in normal use: Cycle time:

(kN) 300 (mm) (s)

Static axial load (Max.)*(at 0 mm/s): Maximum stroke: (mm) Required life:

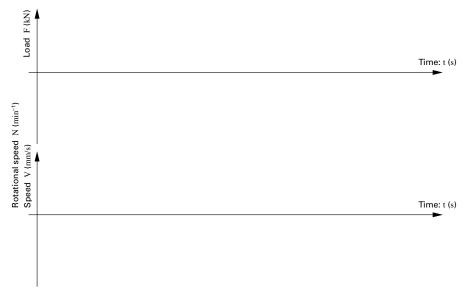
*If you use multiple ball screws in an axis, fill out the axial load per ball screw.

4. Plan to conduct the endurance test of the ball screw?

Endurance of the ball screw

- (1) Mounting accuracy, load conditions, and lubricating conditions are the main factors affecting the ball screw fatigue life. Therefore, we recommend evaluating the influence of those factors on actual use of your machines.
- (2) A temperature rise caused by operational and environmental conditions may reduce the effectiveness of lubricant.

B529 B530


NSK Technical Data Sheet for NSK High-Load Drive Ball Screws

Made-to-order ball screw

Company nam	ne:	Da	ate:			L	NSK sal	es office
Section:		Pe	erson in charg	ge:			\rangle	
Address:							'	
Name of mac	hine*1 :				Applic	ation*2		
Drawing/roug	h sketch attac	hed?:	Yes 🗌 No					
*1 Please	specify capacity of	the machin	ne in case of injec	ction molding	machine or press.			
1. Use co	indicate the axis. (njection axis and	i clamping axi	S)			
1. 036 60	☐ Shaft rotation		na nut	rmal operation		I	Smooth o	peration without impact
Operating	☐ Shaft rotation	n — Movir	ng shaft	k drive operation	Degree of	I	_ Sillootii o ⊒ Normal ∈	
conditions	☐ Nut rotation☐ Nut rotation☐		nut _	cillation	vibration/im	pact		sociated with impact or vibration
Direction			onare	Other			Horizont	· ·
of load*3	(Refer to figur			_ Other	Mounting orien	itation "		icate the direction of gravity.)
Lubricant	☐ Grease /	Brand nar	ne:	1				
	□ Oil \	Maker:			How to reple	enish [Grease g	gun 🗌 Automatic
Request for oil hole	☐ NSK recom	nmended	☐ Your req	uest	lubricant	(cm³/ cycles)
Necessity	□ Yes		□No		NSK S1		□ NSK re	ecommended
of seals					necessary?		☐ Not ne	ecessary
Environment	Temperat	ure eg)			rticle: a) -0.1, b) ov	er 0.1-0.3,	c) over 0.3- ,	d) Ingredient:)
Surface		-		No particle.				
treatment	☐ Not require	d Lov	v-temperature	chrome plati	ng 🗌 Fluorid	e low-tem	perature chr	ome plating
Quantity in mass-production	/Mont	:h	/Year	/Lot	Quantity use per machine			pcs./machine
*3 Please spe	ecify loading direc	tion code o	n the figures belo	ow. (Shaft fixe	ed: , Main load	d: 🔷)		
		- 10						
C	:-C		T-T		→ T-C			C-T
(NSK reco	mmended)							- '
2 <u>. Specif</u> i	ications		.					
Shaft diameter	∮ mm	Lead	mr	Accurac n grade	У	Axial p	olay	mm max.
Nut model No.		Effective turns of ball	s	Directio of turn	n	Thread I	ength shaft length	/
Special note /	Requests					'		
<u>opedial floto</u>	110quests							
1								

NSK Technical Data Sheet for NSK High-Load Drive Ball Screws

3. Load chart

	Axial load*	Rotational speed	or Average speed	Time	Stroke	Remarks
	F (kN)	N (min ⁻¹)	V (mm/s)	t (s)	St (mm)	
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
Dynamic	axial load (Max	.)*:	(kN) S	Static axial load	(Max.)*(at 0 mm/	's): (kN)

Stroke in normal use: (mm) Maximum stroke: (mm)

Cycle time: (s) Required life:

*If you use multiple ball screws in an axis, fill out the axial load per ball screw.

4. Plan to conduct the endurance test of the ball screw?

Endurance of the ball screw

- (1) Mounting accuracy, load conditions, and lubricating conditions are the main factors affecting the ball screw fatigue life. Therefore, we recommend evaluating the influence of those factors on actual use of your machines.
- (2) A temperature rise caused by operational and environmental conditions may reduce the effectiveness of lubricant.

B531 B532

B-3-3.6.1 VSS Type for Contaminated Environments

1. Features

High dust-resistance

Specially profiled screw shaft grooves and high performance seals prevent the entry of fine contaminants. Reduces particle penetration rate to less than 1/15 of existing standard products.

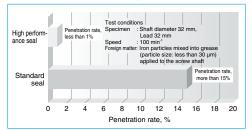


Fig. 1 Particle penetration rate

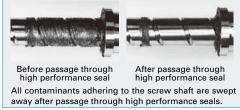


Fig. 2 Contamination before and after particle penetration test

High performance seals extend ball screw durability under severely contaminated environments with iron powder.

Extreme durability tests under contaminated environments show the durability of the VSS type extends more than four times longer than our existing type with a standard seal.

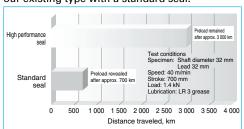


Fig. 3 Extreme durability test results using iron particles

High speed

For ultimate smoothness of ball recirculation. the internal ball recirculation system enables high-speed operation at a maximum of d.n. 150 000. Large lead specifications allow highspeeds of 150 m/min.

Low-noise

Reduces noise level by more than 6 dB compared with our conventional tube-type ball screws, thereby providing low-noise and good noise tone features.

Compact size

Ball nut external diameter is up to 25% smaller than our conventional models.

2. Specifications

(1) Ball recirculation system

End-deflector recirculation system has features of high-speed operation with low-noise, and compact ball nut. The structure of recirculation system is shown in Fig. 4.

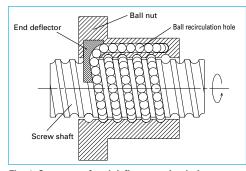


Fig. 4 Structure of end deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	C5
A. dal Jalan	Z, 0 mm (preloaded)
Axial play	T, 0.005 mm or less; S, 0.020 mm or less

(3) Allowable don value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d·n value: 150 000 or less

Criterion of maximum rotational speed: 3 000 min⁻¹ Note: Please also review critical speed. See

"Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) High performance seal

High performance seal (Japanese patents: 3646452, 3692203) with special lip that contacts screw shaft cross-section and prevents entry of fine contaminants.

(5) Lubrication unit

3. Design precaution

Incorporates NSK K1 Jubrication unit to sufficiently lubricate the high performance seal lip, reduce friction, and improve durability.

(6) optional

Non-contact metal protector that traces the ball screw grooves and safeguards the seal against high-temperature foreign matter.

When designing the screw shaft end, one end of

the screw must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

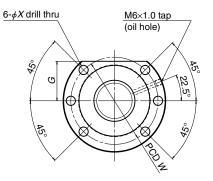
- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

High performance seals may increase torque. which may in turn increase temperature. Please consult with NSK prior to usage under severe service conditions.

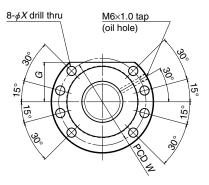
For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

4. Structure of model number and reference number

The followings describe the structure of "Model number" and "Reference number for ball screw".

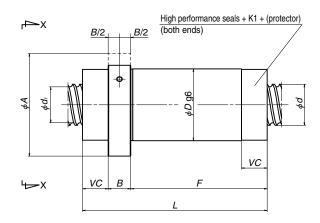

5. Handling Precautions

Maximum operating temperature: 50°C Maximum momentary operating temperature:


Chemical precautions: Never expose the ball screw to grease-removing organic solvents such as hexane or thinner. Never immerse the ball screw in kerosene or rust preventive oils which contain kerosene.

The data shown in the catalog are the results of our tests, and no warranty is given to sealing performance on actual usage on machinery. Sealing performance is affected by usage environment and lubrication conditions. Dust covers and other measures to keep machinery free of dust are recommended.

View X-X



Screw shaft diameter $d \ge 40 \text{ mm}$

Model No.	Shaft dia.	Lead	Root dia.	Effective turns of balls	Basic load Dynamic	rating (N) Static	Axial rigidity
	d	l	d,		C_{a}	$C_{\scriptscriptstyle 0a}$	(N/µm)
VSS3210-6E		10		6	43 300	111 000	682
VSS3216-5E	22	16	27.0	5	36 700	90 800	563
VSS3220-5E	32	20	27.2	5	36 700	90 800	561
VSS3232-4E		32		4	25 000	58 300	387
VSS4040-4E	40	40	34.4	4	33 600	83 900	472
VSS5050-4E	50	50	44.4	4	37 300	105 000	559

Notes: 1. The right hand screw is the standard. For specifications on left hand screws, contact NSK.

- 2. Rigidity in the table is theoretical value obtained from the elastic deformation between screw groove and ball when the preload is 1.5% of the basic dynamic load rating, and axial load is applied to it. Refer to "Technical Description" (page B37) if axial load and preload differs from the conditions above, or when considering change in the deformation of the ball nut itself.
- Products with axial play may have a partially negative play (preloaded condition) depending on screw length. Refer to "Manufacturing range of effective screw length in combination of accuracy grade and axial play" (page B20).

Unit: mm

			Ball	nut dimens	ions				
Nut entire	Nut outside	Flange outside	Flange	Nut	Notch size	Seal installation	Bolt hole	Bolt hole	Maximum
length	diameter	diameter	width	length		dimensions	PCD	dimensions	shaft length
L	D	Α	В	F	G	VC	W	X	
132				89.5					
150	F0	00	10	107.5	0.4	045	71	0	0.000
169	56	86	18	126.5	34	24.5	71	9	2 800
122				79.5					
144	70	100	22	94	38.5	27.5	85	9	3 800
164	82	118	22	114.5	46	27.5	100	11	5 000

B535 B536

B-3-3.6.2 Ball Screw with X1 Seals for Contaminated Environments and Grease Retention

1. Features

Highly dustproof

Particle penetration ratio reduced to less than 1/30 of existing standard seals, thus contributing to longer service life for machine tools.

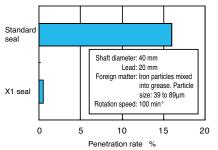


Fig. 1 Results of particle penetration rate test

Superior grease retention

Automatically adding grease makes it possible to reduce the amount used and keep it from spattering.

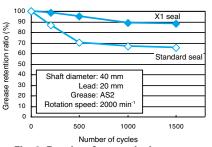


Fig. 2 Results of grease leakage test

Contact seal with low torque

Optimizing the seal shape reduces torque and enhances seal performance.

2. Specifications

(1) Structure

The ball screw with X1 seals has a double seal structure combining a dustproof seal and a grease-retaining seal.

(2) Scope of application in NSK Ball Screw series

This series is standard for the following two types.

Ball screws for high-	HMS type	Nut model: ZFRC
speed machine tools	HMD type	Nut model: EM

For specifications other than the above, please consult NSK. Table 1 shows the minimum nut outer diameter on which X1 seals can be mounted.

Table 1 The minimum nut outer diameter on which X1 seals can be mounted

Shaft diameter: 40 mm	70 mm
Shaft diameter: 45 mm	75 mm
Shaft diameter: 50 mm	82 mm

(3) Accuracy grade / axial play

Table 2 shows standard tolerance classes and axial clearances. Please consult NSK for tolerance classes other than those in the table.

Table 2 Accuracy grade and axial play

Accuracy grade	C3, C5
Axial play	0 mm (preloaded)

(4) Design-related precautions

When designing the screw shaft end, assume that the end of the screw shaft is cut.

The temperature will increase somewhat when torque is applied if an X1 seal is attached. Please consult NSK if it is to be used under strict operating conditions.

Maximum overall shaft length is 2900 mm.

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

Fig. 4 External appearance

3. Example of reference number

A structure of "Reference number for ball screw" is as follows.

Note: "X1" is added at the end of "nut model code" and "Specifications number".

○Reference number for ball screw

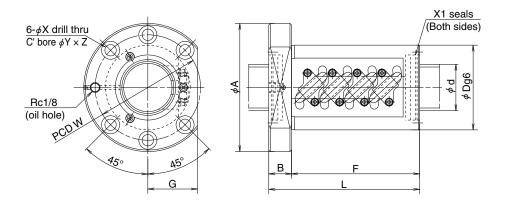
W4010-**ZMX1-C5Z16

X1 seal equipped type ball screw code

4. Precautions for use

Temperature range for use: Maximum temperature: 60°C
(at outside diameter of ball nut)

Chemicals that should not come to contact:


Do not leave ball screw in organic solvent, white kerosene such as hexane, thinner which removes oil, and rust preventive oil which contains white kerosene.

The data shown in the catalog are the results of our tests, and no warranty is given to sealing performance on actual usage on machinery. Sealing performance is affected by usage environment and lubrication conditions. Dust covers and other measures to keep machinery free of dust are recommended.

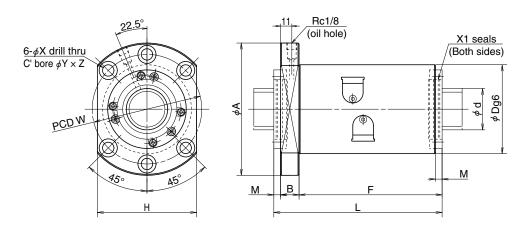


Fig. 3 Seal structure

B537 B538

HMS type (Nut model: ZFRC)

HMD type (Nut model: EM)

Applicable dimensions for HMS type

Applicable dim	ensions	TOT HIV	S type										Un	it: mm
	Shaft dia.	Lead	Basic load	I rating (N)				Nut	dimens	sions				
Model No.			Dynamic	Static	,	E	В	D	Α	G		Bolt l	noles	
	d	l	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$		1	Б	D	A	U	X	Y	Ζ	W
ZFRC4010-10	40	10	52 000	137 000	173	151	22	82	124	47	11	17.5	11	102
ZFRC4012-10	40	12	61 000	155 000	197	175	22	86	128	48	' '	17.5		106
ZFRC4508-10	45	8	37 300	118 000	146	124	22	82	124	47	11	17.5	11	102
ZFRC5010-10	50	10	57 700	175 000	174	151	23	93	135	51	11	17.5	11	113
ZFRC5012-10	50	12	77 600	214 000	200	177	23	100	146	55	14	20	13	122

Note: 1.The right hand screw is the standard. For specifications on left hand screws, contact NSK.

Applicable din	nension	s for HN	/ID type											Uni	t: mm	
	Shaft dia.	Lead	Basic load	I rating (N)	Nut dimensions											
Model No.			Dynamic	Static	,	F	М	В	D				Bolt l	Bolt holes		
	d	l	C _a	$C_{\scriptscriptstyle 0a}$	L	Γ	IVI	D	D	Α	Н	X	Y	Ζ	W	
EM4016-4E	40	16	57 100	130 000	172	148	6	18	86	128	96	11	17.5	11	106	
EM4020-6E	1 40	20	66 900	165 000	164	139	7	10	00	120	90	11	17.5	11	100	
EM4516-4E	45	16	59 600	145 000	173	148.5	6.5	18	92	134	102	11	17.5	11	112	
EM4520-6E	45	20	69 100	186 000	164	139	7	10	92	134	102	11	17.5	'''	112	
EM5016-4E	50	16	61 800	160 000	173	148.5	6.5	18	98	140	107	11	17.5	11	118	
EM5020-6E] 50	20	73 200	206 000	164	139	7	10	90	140	107	- 1 1	17.5	11	110	

Note: 1.The right hand screw is the standard. For specifications on left hand screws, contact NSK.

B539 B540

B-3-3.7 TW Series for Twin-Drive Systems

(1) Features

Variations in the lead accuracy and preload torque between two ball screws, which consist of a unit of TW Series, are controlled, resulting improved travel accuracy and ball screw operating lifetime.

Fig. 1 shows measured variation in lead accuracy while Fig. 2 displays an example of variation in thermal expansion between the two ball screws. Fig. 3 is a schematic diagram comparing the travel accuracy between the TW Series and conventional model.

High rigidity and long lifetime

Twin-drive systems are superior to single-drive systems in system rigidity, supporting the design of long-life feeding mechanism even if they make the shaft diameter one size smaller.

- High responsiveness to positioning commands Twin-drive systems permit the use of screw shaft diameters that are one size smaller, thereby reducing screw shaft inertia by up to 50%, offering high responsiveness to positioning commands.
- Improved high-speed capability and noise level Twin-drive systems allow the use of smaller screw diameters, resulting in no increase in the level of noise. The end-deflector recirculation system significantly improves high-speed capability and noise level compared with the existing return tube recirculation system, offering high-speed feeding of up to 1 200 mm/min (shaft dia. 40 mm, lead 30 mm, rotational speed 4 000 min⁻¹).

(2) Specifications

Table 1 Specifications of twin-drive systems

Recirculation	End-deflector recirculation system,
systems	Return tube system, Deflector(bridge type) system
Shaft dia.	32 – 63 mm
Lead	10 – 30 mm
Accuracy grade	C5
Screw shaft length	3 m or less

(3) Optional specifications

- · Hollow shaft ball screw and nut cooling ball screw
- Provides high accuracy through the use of forced cooling. Please refer to ball screws for high precision machine tools (page B542 to B550) for more details.

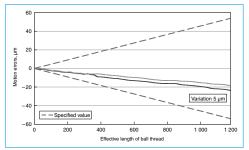


Fig. 1 Example of measured variation in lead accuracy

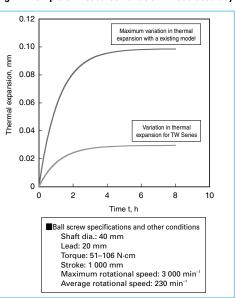


Fig. 2 Calculation example of the variation of thermal expansion

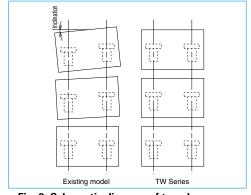


Fig. 3 Schematic diagram of travel accuracy

B-3-3.8.1 Hollow Shaft Ball Screw for High Precision Machine Tools

The increase in speed of the feeding mechanism for highly accurate positioning may require some measures against thermal expansion of the ball screw (forced cooling using hollow ball screw). NSK standardized hollowed screw shafts and shaft ends configuration (sealing section and support bearing seat). NSK recommends this as the most effective measure against thermal expansion.

1. Features

Stable positioning accuracy

Suppresses expansion of the ball screw shaft by rising temperature, and provides stable, precise positioning.

Prevents displacement of various sections Minimizes deformation of the ball screw support bearings as well as of the machine base which is caused by thermal expansion of ball screw. Forced cooling keeps the heat from spreading to other sections, and prevents the processing table from deforming due to heat.

Reduces warm-up time

Temperature does not rise high, therefore cuts machine warm-up period.

Maintains lubricant's effect

Removes heat from the ball screw, deterring lubricant deterioration.

Easy designing for installation

Use support bearing unit exclusive for NSK ball screws (high speed and high load capacity for machine tools, see page B405) and seal unit (page B545) to standardized shaft end. This makes designing of mounting ball screw easy. NSK also provides nut cooling ball screws. The

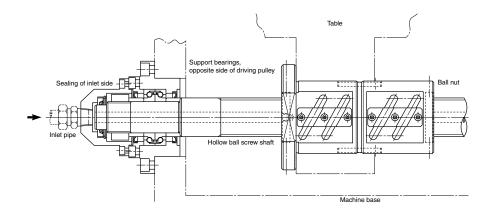
level of temperature rise for nut cooling ball

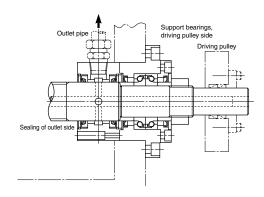
screw is equal to the hollow shaft ball screw thanks to the optimized nut internal design for cooling. Please refer to nut cooling ball screws (page B547) for more details.

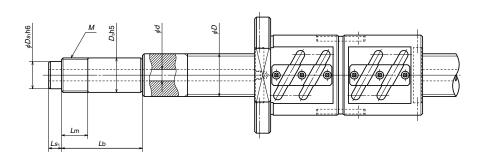
2. Design precautions

Refer to HMC type, end-deflector recirculation system, return tube recirculation system, and deflector(bridge type) recirculation system for ball screw specifications. If the overall ball screw length exceeds 3 000 mm, contact NSK. For general precautions regarding ball screw, refer to "Design Precautions" (page B83) and "Handling precautions" (page B103).

Fig. 1 Effect of forced cooling by hollow shaft ball screw

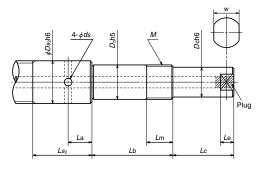

3. Model example of dimension table


A model number that indicates specification factors is structured as shown below.



B541 B542

4. Installation example and standard dimensions



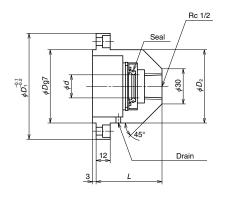
	Screw	/ shaft		Bearing	seat				Sea	ıling		
Model No.	Diameter	Hollow	Diameter	Lo	In	let		Ou	tlet			
	D d Db M					<i>L</i> b	Ds₁	Ls₁	Ds ₂	Ls ₂	La	ds
H32-10	32	10	25	M25×1.5	26	89 104 119	20	15	32	60	25	6
H40-12	40	12	30	M30×1.5	26	89 104 119	25	15	40	60	25	7
H50-15	50	15	40	M40×1.5	30	92 107	32	15	50	65	27	8

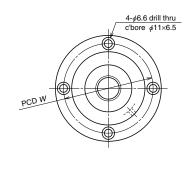
122

Notes: 1. Please consult NSK for other models.

Unit: mm

Drive	oido	Cnonn	or flata	Applicable		Equipped seal unit		
DIIVE	Drive side Spanner flats		support	Used bearing	Shaft end	Shaft outer		
Dc	Lc	W	Le	unit		Shart end	surface	
				WBK25DF-31H	25TAC62CSUHPN7C DF combination			
20	40	17	8	WBK25DFD-31H	WSK20A-01	WSK32B-01		
					(25TAC62CSUHPN7C DFF combination)			
				WBK30DF-31H	30TAC62CSUHPN7C DF combination			
25	50	22	10	WBK30DFD-31H	30TAC62CSUHPN7C DFD combination	WSK25A-01	WSK40B-01	
					(30TAC62CSUHPN7C DFF combination)			
				WBK40DF-31H	40TAC72CSUHPN7C DF combination			
35	70	0 30 13 WBK40DFD-31H 4		WBK40DFD-31H	40TAC72CSUHPN7C DFD combination	WSK32A-01	WSK50B-01	
				WBK40DFF-31H	40TAC72CSUHPN7C DFF combination			

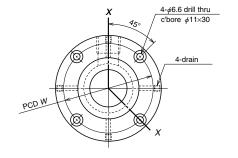

B544 B543

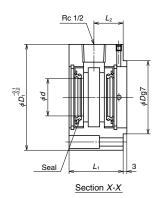

^{2.} See B420 for bearing combination symbols.

5. Seal units for hollow ball screw shaft (available by order)

This is an exclusive joint for coolant of the hollow ball screw shaft.

A Type (for shaft end)





Unit: mm

Reference No.	d	D	D_1	D_2	L	W	Fixing bolt
WSK20A-01	20	57	85	57	56	70	M6
WSK25A-01	25	57	85	57	56	70	M6
WSK32A-01	32	69	95	67	61	80	M6

B Type (for shaft outer surface)

		Seal / L1 3 3 Section X-X									
Reference No.	d	D	<i>D</i> ₁	L ₁	L ₂	W	Unit: mm Fixing bolt	3all Screw			
WSK32B-01	32	57	85	46	25	70	M6	W9,			
WSK40B-01	40	57	85	46	25	70	M6				
WSK50B-01	50	69	95	49	27	80	M6				

♦ Handling precautions

- Use NSK support unit (high speed and high load capacity for machine tools on page B405) for installation in order to maintain the eccentricity between screw shaft and seal unit.
- Apply grease to the lip section for protection at the time of installation to the ball screw.
- · Make certain that the drain holes (one for A Type, four for B Type) of the seal unit directly face downward when the unit is installed.

B-3-3.8.2 Nut Cooling Ball Screws for High Precision Machine Tools

Nut cooling ball screws are easily cooled with a ball nut cooling system and are ideal for use in high-speed and high-precision machine tools that have nut cooling systems.

Using nut cooling ball screws makes it possible to cool long ball screws that are difficult to cool with hollow-core cooling, and they accommodate the broad high-precision needs of machine tools both small and large.

1. Features

Cooling effects

By optimizing the cooling structure inside the nut, cooling capacity equivalent to hollow shaft cooling has been achieved. The nut in contact with the table is cooled, so that heat conduction from the table to the ball screw is blocked. Moreover, by cooling hollow shaft in parallel, the screw shaft and ball nut can be cooled at the same time for even more precise temperature control.

Internal design in consideration of preload torque change

The nut cooling ball screw has double contactpoint preload in the tensile direction. This prevents an increase in preload torque when the nut is cooled, enabling effective cooling of the ball screw.

Cooling structure

The cooling fluid goes in a balanced way through the nut. Double nuts have separate coolant routes for each nut for efficient cooling. Cooling fluid does not go through the inside of spacers, so coolant fluid does not leak even when preload drops and airtightness is maintained.

Improved handling

Ball screws can be cooled by simply attaching piping to the exterior flange part.* Sliding seals and rotary joints that are required for hollow shaft cooling are not needed. Dimensions for mounting area (without nut cooling) are the same as conventional products, so the nut cooling can be implemented without changing machine designs. *When cooling double nuts, piping is required on the nut end face on the other side of the flange.

● Long ball screws can be cooled at a low cost Since these products are suitable for long ball screws for which hollow hole processing is difficult, improved precision of large machine tools can be achieved at a low cost.

2. Cautions regarding design

If heat impact from the bearing is too great, separate cooling for bearing and surrounding areas is recommended. For details, please contact NSK.

♦ Reference number for nut cooling ball screw

W4012-**ZMNC-C5Z20

Nut cooling ball screw code

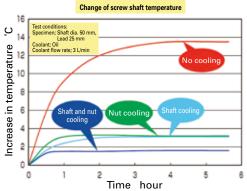
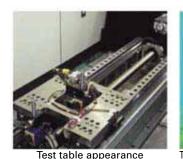
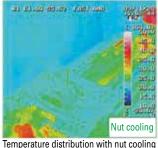




Fig. 1 Effect of forced cooling by nut cooling ball screw

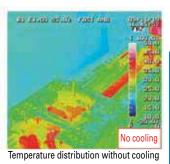


Fig. 2 Effect of forced cooling by nut cooling ball screw

Cooling structure

Single nut

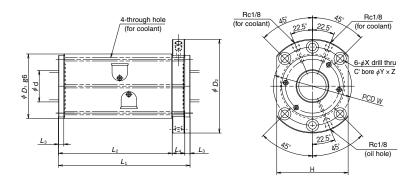

Double nut

Fig. 3 Cooling structure of a nut cooling ball screw

B547 B548

Nut cooling ball screws: dimension chart

Single nut cooling ball screws (for HMD type, nut type: EM)

Applicable dimensions for HMD type

Applicable dir	mensio	ns for l	HMD ty	/pe								L	Jnit: mm
Model No.	Shaft dia.	Lead					Nut dim	ensions					
iviodei ivo.	d	l	D_1	D_2	Н	L,	L ₂	L ₃	L ₄	W	X	Y	Z
EM4016-4E		16				166	140.5						
EM4020-6E	40	20	86	128	96	156	130.5	7.5	40	106	11	17.5	11
EM4025-6E	40	25	00	120	90	188	162.5	7.5	18	100	11	17.5	
EM4030-6E		30				219	193.5						
EM4516-4E		16				166	140.5						
EM4520-6E	45	20	92	134	102	156	130.5	7.5	18	112	11	17.5	11
EM4525-6E		25				188	162.5						
EM5016-4E		16				166	140.5						
EM5020-6E	50	20	00	140	107	156	130.5	7.5	18	118	11	17.5	11
EM5025-6E	30	25	90	98 140	107	188	162.5	7.5	10	110	11	17.5	
EM5030-6E		30				219	193.5						
EM6316-4E	63	16	122	180	138	176	139	9	28	150	18	26	17.5

Double nut cooling ball screws (tube-type, nut type: DFT)

Dimensions t	บา เนม	e type											U	nit: mm
Model No.	Shaft dia.	Lead				ı	Nut dim	ensions	3					
iviodei ivo.	d	l	D,	D_2	L,	L ₂	L ₃	L ₄	G	W ₁	X	Y	Ζ	W ₂
DFT5010-7.5		10	93	135	303	275	10	18	51	113	11	17.5	11	73
DFT5012-5	50	12	100	146	279	245	12	22						
DFT5016-5] 50	16	100	146	344	306	16	22	55	122	14	20	13	78
DFT5020-3		20	100	146	327	279	20	28						
DFT5510-5	55	10	102	144	243	215	10	18	54	122	11	17.5	11	80
DFT6310-7.5		10	108	154	307	275	10	22	58	130	14	20	13	88
DFT6312-5	63	12	115	161	279	245	12	22	61	137	14	20	13	91
DFT6316-5	03	16	122	180	350	306	16	28	69	150	18	26	17.5	93
DFT6320-5		20	122	180	407	359	20	28		150	18	26	17.5	93
DFT8010-5		10	130	176	247	215	10	22	66	152	14	20	13	108
DFT8012-5	80	12	136	182	279	245	12	22	68	158	14	20	13	110
DFT8016-5	00	16	143	204	350	306	16	28	77	172	18	26	17.5	112
DFT8020-5		20	143	204	407	359	20	28	//	172	10	20	17.5	112
DFT10012-5		12	160	220	285	245	12	28	82	188	18	26	17.5	134
DFT10016-5	100	16	170	243	354	306	16	32	91	205	22	32	21.5	136
DFT10020-5		20	170	243	411	359	20	32	91	205	22	32	21.5	130

B549 B550

B-3-3.9 ND Series for Nut-Rotatable Drives

This product is patented by NSK.

A nut rotatable ball screw is developed as a unit into which angular contact support ball bearings are integrated. It is best suited for an application that requires rotation of the ball nut while the screw shaft is fixed.

NDT model

1. Structure

Balls are installed between the assembly housing and the ball nut. The outer bearing rings are integrated into the assembly housing and thus, compact design are attained.

A timing pulley (prepared by the user) is directly secured to the end face of the nut.

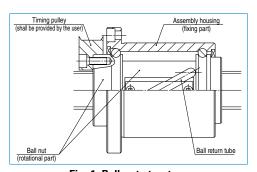


Fig. 1 Ball nut structure

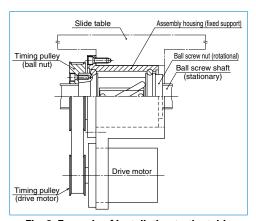


Fig. 2 Example of installation to the table

2. Features

Multi-nut drive

Two or more nut units can be installed in a single ball screw shaft. They can be operated by respective motors.

High operation speed

High feeding speed operation, but yet low rotational speed, is feasible by means of medium to high-helix lead ball screws.

Easy installation

Merely install a mount housing to the table of the machine to take advantage of this multi-nut rotation system.

Simple shaft end configuration

Shaft end configuration is simple because this unit does not need support bearings.

Shaft diameter/lead combination

There are 10 types of "shaft diameter/lead" combinations.

Selections are: Shaft diameters -- 32, 40, 50 mm; Leads -- 20, 25, 32, 40, 50 mm.

Low inertia

Compared to the NSK current product (end cap ball recirculation system), rotational inertia was reduced by 16% at most.

3. Specifications

(1) Ball recirculation system

The structure of return tube recirculation system is shown below.

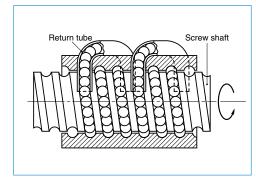


Fig. 3 Structure of ball return tube recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Axial play

Axial play code	Z	Т	S
Axial play	0	0.005 mm or less	0.020 mm or less

Table 2 Combination of accuracy grades and axial play

Accuracy grade	C3	C5	Ct7
Axial play code	Z, T, S	Z, T, S	S

Allowable d•n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Note: The basic concept is the same as that of general ball screws. Refer to "Technical Description: Permissible Rotational Speed" (page B47).

Table 3 Allowable d•n value and the criterion of maximum rotational speed

Allowable d·n value	Standard specification	70 000 or less
Allowable din value	High-speed specification	100 000 or less
Criterion of maximum rotational speed	3 00	00 min ⁻¹

d·n value: shaft dia. d [mm] x rotational speed n [min-1]

Critical speed n_c

As shown **Fig. 4**, calculate unsupported length (mm) of L_1 , L_2 , and L_3 (assumed that the nut section is a fixed support.) **Table 4** shows the coefficients "f" of each shaft end mounting condition.

$$n_c = f \cdot \frac{d_r}{L^2} \times 10^7 \text{ (min}^{-1})$$
 (III-1)

d_r: Screw shaft root diameter (See the dimension table.)

L: Unsupported length (mm) (See Fig. 4)

f: Factor determined by the ball screw shaft end mounting condition

Table 4

Shaft end mounting condition	f
Fixed - Fixed support	21.9
Fixed Simple support	15.1
Fixed – Free support	3.4

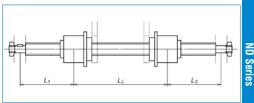


Fig. 4 Installation example

5. Design precautions

One end of the screw thread should be cutthrough to the end. Also, if the nut must be removed from the screw shaft, the user should have an arbor to prevent the balls from falling out during this process. (NSK manufactures arbors on request.)

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

B551

NDD Type: (Incorporating vibration damper)

An increase in stroke length may restrict required rotational speed of a ball screw due to the issue of critical speed even if there is no problem on $d \cdot n$ limitation.

In such a case, we recommend using NDD Type nut rotatable ball screws equipped with vibration damper.

It will make it possible to operate a ball screw exceeding the critical speed, which is conventionally considered being impossible.

- Notes: 1) However, NDD Type cannot be used exceeding the d·n limitation. Please consult with NSK in such a case.
 - 2) You cannot rotate the screw shaft of NDD Series.

1. Structure

Hollow ball screw shaft has a mechanism to absorb vibration energy (vibration damper). This increases dynamic rigidity of the screw shaft and lowers vibration when exceeding the critical speed.

Construction of the ball nuts are the same as those of NDT Type.

2. Features

- No need for measures against critical speed. Conventionally, an increase in screw shaft diameter or use of intermediate support is the measure against the issue of critical speed. NDD Type ball screw will make these measures needless.
- Dimensional interchageability with NDT Type ball screws

The vibration damper is set inside a ball screw shaft, and therefore, there is no difference with existing series in regards to external dimensions. The ball nuts of NDD Type are interchangeable with those of NDT Type.

Others

Benefits in multiple ball nut on a screw shaft, high feeding speed for long stroke, easy in installation, and low inertia of the ball nuts are the same as NDT Type.

3. Specification

Recirculation system, accuracy grade, axial play and preload system are the same as NDT Type.

4. Design precautions

They are the same as NDT Type.

5. Permissible rotational speed

The d•n value is the same as NDT Type. You don't need to consider the critical speed.

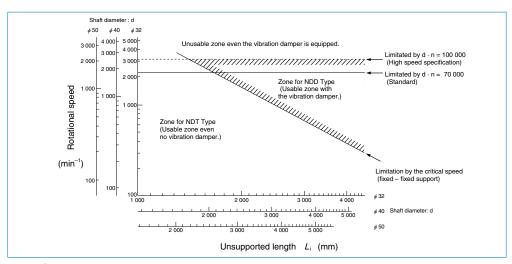
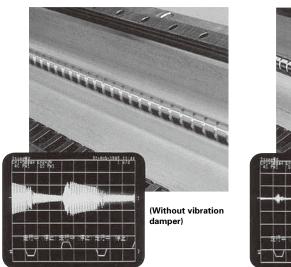



Fig. 5 Compartmentalization between NDT and NDD types to rotational speed and unsupported length

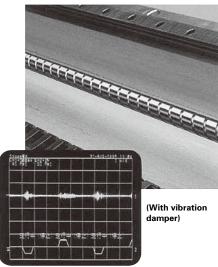


Fig. 6 Vibration of screw shaft when nut is rotating

(Without vibration damper)

(With vibration damper)

Fig. 7 Effect of vibration damper (results of endurance test)

B553

Calculation example of permissible rotational speed

[Calculation example]

Assume a system which moves two nuts on a shaft as shown below.

Does this system operate appropriately if: both ends of the ball screw (shaft diameter 40 mm/ lead 40 mm) are fixed, and the travel speed is at 60 m/min?

[Answer]

The rotational speed n (min⁻¹) when the lead of the ball screw is 40 mm, and the travel speed is at 60 m/min is:

$$n = \frac{60 \times 10^3}{40} = 1500 \text{ (min}^{-1}\text{)}$$

Calculate d • n value

As the d • n value of standard specification is 7 000, therefore, the permissible rotational speed is;

$$n \le \frac{70\ 000}{40} = 1\ 750\ (min^{-1})$$

Calculate critical speed

The maximum unsupported length comes between Nut A and B.

 $L_2 = 3 300 \text{ (mm)}$

f = 21.9 (Fixed-Fixed)

Root diameter: $d_r = 35.1 \text{ (mm)}$

Therefore, the permissible rotational speed is;

$$n \le \frac{21.9 \times 35.1}{3300^2} \times 10^7 = 706 \text{ (min}^{-1}\text{)}$$

The calculation indicates that the d • n value is at the safe level. But the critical speed exceeds the limitation. However, with a vibration damper, the system can be operated at 1 500 min⁻¹.

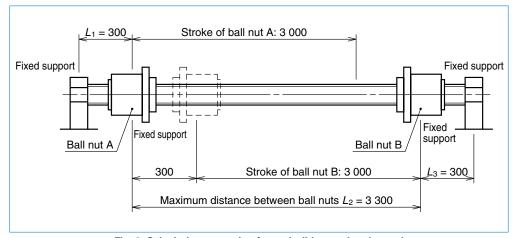
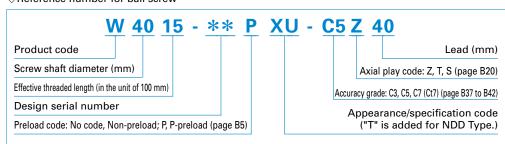
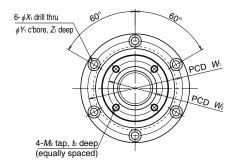



Fig. 8 Calculation example of permissible rotational speed


Structure of reference number

The followings describe the structure of "Reference number for ball screw".

♦ Reference number for ball screw

	Shaft Rall									
Model No.	Shaft dia.	Lead <i>l</i>	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns ×	Basic load Dynamic Ca	Static	Moment of inertia, ball nut J (kg·cm²)	Ball nut mass W
	а	ι	D _w	d _m	<i>U</i> _r	Circuits	C _a	C ₀₈	(kg·cm)	(kg)
NDT NDD 3220-2.5		20	4.762	33.25	28.3	2.5×1	17 900 41 800		6.2	2.9
NDT NDD 3225-2.5	32	25	4.762	33.25	28.3	2.5×1	17 900	41 800	6.7	3.2
NDT NDD 3232-1.5 NDT 3232 2	32	32 4.762 33.2		33.25	28.3	1.5×1 1.5×2	11 500 18 900	24 800 44 600	6.2	2.9
NDD 3232-3							10 300	44 000		
NDT NDD 4025-2.5		25	6.35	41.75	35.1	2.5×1	28 500	70 000	19.3	6.0
NDT NDD 4032-1.5 NDT		32	32 6.35 41.75		41.75 35.1		18 400	41 200	18.0	5.5
NDD 4032-3	40					1.5×2	30 100	74 100		
NDT NDD 4040-1.5		40	6.35	41.75	35.1	1.5×1	18 400	41 200	19.2	6.0
NDT NDD 4040-3		70	0.00	41.75	00.1	1.5×2	30 100	74 100	10.2	0.0
NDT 5025-2.5		25	7.938	52.25	44.0	2.5×1	42 700	109 000	45.7	8.5
NDT 5032-2.5		32	7.938	52.25	40.0	2.5×1	42 700	109 000	48.9	9.4
NDT NDD 5040-1.5	50	40	7.938	52.25	44.0	1.5×1	27 500	66 500	45.5	8.5
NDT 5040-3	50	40	7.938	52.25	44.0	1.5×2	44 900	120 000	45.5	8.5
NDT NDD 5050-1.5 NDT NDD 5050-3		50	7.938	52.25	44.0	1.5×1 1.5×2	27 500 44 900	66 500 120 000	48.7	9.4

1		Seal (both sides)
A A B D INT		\$ PDPB
1	T B F	

Unit: mm

					Ball	nut dime	ensions						Tap hole	1
length	Nut outside diameter	Flange outside diameter	width	Nut length	Projection tub	e dimensions	Bolt ho	ole dime	nsions	Bolt hole PCD	Tap hole o	limensions	PCD	
Ľ	D	Α	В	Ĕ	D _r	T	X_1	Y_1	$Z_{\scriptscriptstyle 1}$	$W_{\scriptscriptstyle 1}$	M_2	t ₂	W_2	
107	78	105	12	83	60	12	6.6	11	6.5	91	M6	12	50	
120	78	105	12	96	60	12	6.6	11	6.5	91	M6	12	50	
107	78	105	12	83	60	12	6.6	11	6.5	91	M6	12	50	ND Series
136	100	133	15	106	76	15	9	14	8.5	116	M8	16	62	
122	100	133	15	92	76	15	9	14	8.5	116	M8	16	62	
136	100	133	15	106	76	15	9	14	8.5	116	M8	16	62	
140	120	156	18	107	96	15	11	17.5	11	136	M10	18	78	
158	120	156	18	125	96	15	11	17.5	11	136	M10	18	78	
140	120	156	18	107	96	15	11	17.5	11	136	M10	18	78	
158	120	156	18	125	96	15	11	17.5	11	136	M10	18	78	

Notes: 1. The right hand screw is the standard. Consult NSK for the left hand screws.

2. Seals are standard equipment.

B557 B558

B-3-3.10 Σ Series for Robots

1. Features

 Σ Series (NSK's Robotte) is a ball screw with a high-performance spline. It is ideal for various actuators such as the vertical axis of SCALA type robot.

A ball screw groove and a ball spline groove are made in one shaft, combining the ball screw and the ball spline.

Mount housing, nuts, and support bearings are combined into a single unit.

Timing pulley (prepared by the user) is directly secured at the end face of the nut.

High functions

A single shaft has both feeding mechanism and guide functions. This allows the shaft ends to move back and forth (linear motion), as well as to rotate.

Compact and lightweight

A ball screw nut and a spline nut are placed on one shaft, and a support bearings are also combined to the unit. This allows compact and high-precision design. Hollow shaft is standard to reduce weight. The hollow can be used for wiring and piping. Other components are also designed to be light in weight.

Low inertia

Because of return tube type ball nut of which outside diameter is decreased, low inertia design is enabled.

It reduces the inertia by 19% of conventional products.

2. Functions

As shown in Fig. 1, the ball screw nut and a spline nut are rotated independently to control rotation value. Thereby the shaft can move in any direction -- linear and rotational. Table 1 shows the relationship between power input and output.

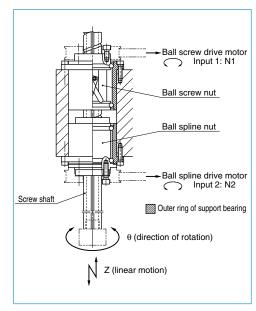


Fig. 1 Example structure of Z axis plus θ axis actuator

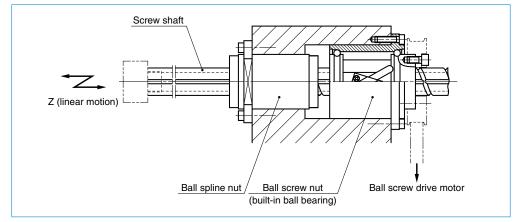


Fig. 2 Example structure of single Z axis unit

Shaft movem	ent (output)		Input	
Z (up-down movement) (mm/min)		① Ball screw (min ⁻¹)	② Spline (min ⁻¹)	Notes
Up, down	Stop	Rotate	Stop	
$N1 \times l$	0	N1	0	ı
Stop	Rotate	Rotate	Rotate	N1 = N2
0	N2	N1	N2	IN I = INZ
Up, down	Rotate	Stop	Rotate	
$N2 \times l$	N2	0	N2	_
Up, down	Rotate	Rotate	Rotate	N1≠N2
$ $ N1–N2 $ \times l$	N2	N1	N2	IN I + INZ

3. Specifications

(1) Ball recirculation system

A structure of return tube recirculation system is shown below.

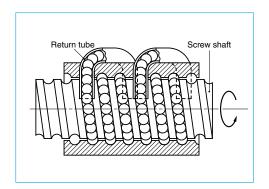


Fig. 3 Structure of return tube recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play for ball screw are as follows. The axial play for spline is 0 mm (preloaded product). Please consult NSK for other grades.

Table 2 Accuracy grade and axial play

Accuracy grade	C3, C5, Ct7
Avial play	Z, 0 mm (preloaded)
Axial play	T, 0.005 mm or less; S, 0.020 mm or less

(3) Allowable don value and the criterion of maximum rotational speed

NSK

Allowable d.n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Permissible d•n value: 70 000 or less

Criterion of maximum rotational speed: 3 000 min⁻¹

Note: Please also review the critical speed.

For details, see "Technical Description: Permissible Rotational Speed" (page B47).

(4) Application

SCALA type and Cartesian type industrial robots, semiconductor manufacturing machines, machines for automobile production facilities, material handling systems, other Z (vertical) axis and Z axis plus θ (rotation) axis actuators.

4. Design precautions

The overall length L can be extended to 25 times of the shaft diameter.

To remove the spline nut from the shaft for \checkmark assembling, use an arbor as shown in Fig. 4. (page B545). Avoid removing ball screw nut as much as possible. Refer to root diameter in the dimension table for arbor diameter. (NSK manufactures the arbors on request.)

For general precautions regarding ball screws, refer to "Precautions in Designing" (page B83) and "Precautions in Handling" (page B103).

B559 B560

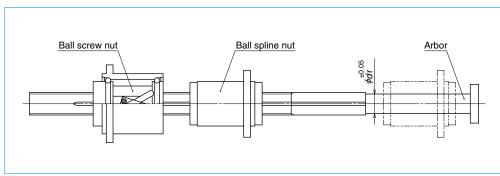


Fig. 4 Removing spline nut

5. Product categories

 Σ Series (NSK's Robotte) is four models with different moving functions and performances are available. Select a standard model if rigidity is important. A compact system is recommended for reducing the weight of machine.

Table 3 Σ Series product categories

Model	Appearance	Size	Structure (Movement)
Σ		Standard	Z+θ Unit
ΣZ		Standard	Z Unit
ΣC		Compact	Z+θ Unit
ΣCZ		Compact	Z Unit

6. Load rating and life

The relationship between load rating of the ball spline section and life is the same as in other NSK liner motion products. However, various loads that apply to Robotte must be taken into account. For example, the following factors must be considered in calculating life when the product is used as shown in Fig. 5.

- Fa: Load that is generated when the shaft moves in up-down direction. (Load is applied to the ball screw nut.)
- T: Torque that is generated to the shaft by Fa.
- Fr: Load that is generated by moment of inertia of the shaft and the work attached to Robotte as well as by centrifugal force when the arm rotates.
- θ : Direction of Fr load that changes by shaft rotation.

NSK has life calculation programs which take these factors into account. Please ask NSK for more details.

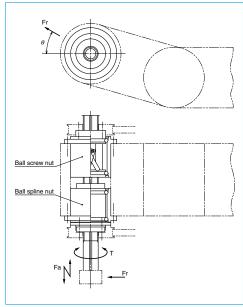
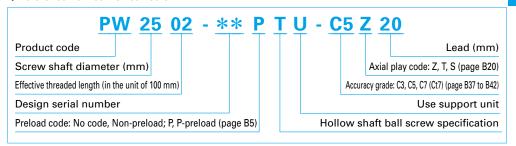
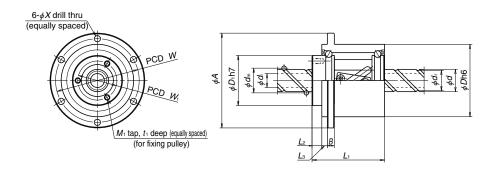
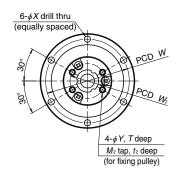



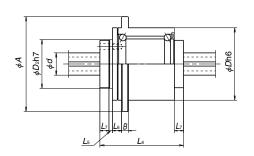
Fig. 5 Example structure of Z axis plus θ axis actuator

7. Structure of reference number

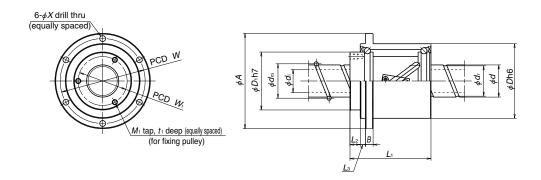
The following describes the structure of "Reference number for ball screw".

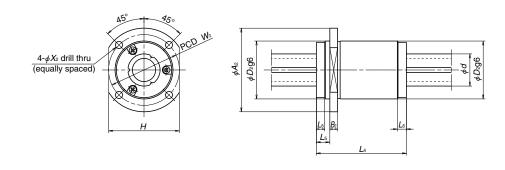

○Reference number for ball screw




B561 B562

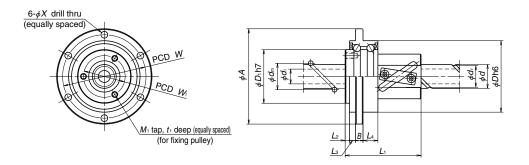
∑ Type

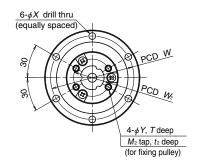

Unit: mm

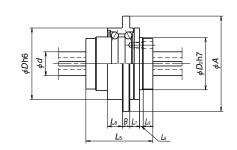

	Shaft	Lead	Ball	Ball	Root	Screw						В	all s	scre	w nut						
Model	dia.		dia.	circle	dia.	shaft	Basic load	rating (N)					[Dim	ensions	3					Moment
No.				dia.		hollow	Dynamic	Static													of inertia
	d	l	D_{w}	$d_{\scriptscriptstyle m}$	d,	d_{i}	Ca	$C_{\scriptscriptstyle 0a}$	D	Α	В	L_1	L ₂	L ₃	M_1	t ₁	W_1	D_1	W	Χ	(kg·cm²)
∑1610	16	10	0 175	16.75	10.4	(0)	4 710	8 110	40	64	5	47	7	4	2 1 1 1	6	20	OE.	EG	4 5	0.41
∑ 1632	16	32	3.175	16.75	13.4	(8)	2 990	4 870	48	64	5	52	/	4	3-M4	ь	28	35	90	4.5	0.44
∑ 2010		10					8 210	17 500				57									0.64
∑ 2020	20	20	3.175	20.75	17.4	(14)	5 290	10 300	54	70	6	63	8	4	3-M4	6	32	40	62	4.5	0.65
∑ 2040		40					3 360	6 170				57									0.64
∑ 2510		10					9 110	21 900				57									1.10
∑ 2520	25	20	3.175	25.75	22.4	(18)	5 870	13 200	58	74	6	63	8	4	3-M4	۵	38	15	66	4.5	1.18
∑ 2525	25	25	3.175	20.75	22.4	(10)	5 870	13 200		0 /4	74 0	72	0	4	3-1014		30	45	00	4.5	1.30
∑ 2550		50					3 730	7 500				64									1.20
∑ 3220	32	20	3.175	32.75	29.4	(25)	6 540	16 800	70	95	8	70	10	6	3-M5	10	1,1	53	02	6.6	2.60
∑ 3232	32	32	3.175	32.75	29.4	(20)	6 540	16 800	/0	90	0	91	10	0	3-1013	10	44	55	02	0.0	3.15
∑ 4020	40	20	3.969	41.0	36.9	(20)	9 770	26 300	0.5	110	8	73	10	6	4-M5	10	58	67	O.C.	6.6	5.96
∑ 4040	40	40	3.969	41.0	30.9	(30)	9 770	26 300	85	110	ŏ	107	10	Ö	4-1015	10	28	0/	96	0.0	7.85
∑ 4520	45	20	3.969	46.0	41.9	(3E)	10 300	29 700	00	115	8	73	10	6	4-M5	10	63	72	101	66	7.73
∑ 4540	45	40	3.909	40.0	41.9	(35)	10 300	29 700	90	1110	Ö	107	10	ס	4-IVIO	10	03	12	IUI	ט.ט	10.3

									Ва	ıll spl	line r	nut										
Mass	Basic load	rating (N)	Basic tord	que (N·m)							Dim	nensi	ions							Moment	Mass	
	Dynamic	Static	Dynamic	Static																of inertia		
(kg)	C_{r}	C_{0r}	C_{t}	C_{0t}	D	Α	В	L ₄	L ₅	L_6	L ₇	Y	T	M_2	t_2	W_2	D_2	W	X	(kg·cm²)	(kg)	1
0.50	5 530	7 270	61.5	91.3	48	64	5	60	2.5	6.5	6.5	4.5	6.5	M4	7	25	35	56	4.5	0.71	0.63	Serie
0.55	5 890	8 000	65.5	100	40	04	5	00	2.5	0.5	0.5	4.5	0.5	1014		25	30	50	4.5	0.71	0.03	8
0.74	6 260	8 720	86.3	135																		
0.81	6 610	9 450	91.1	145	54	70	6	65	2.5	6.5	6.5	5.5	6.5	M5	8	30.5	40	62	4.5	1.15	0.87	
0.74	6 610	9 450	91.1	145																		
0.81	6 630	9 450	115	185																		Н
0.88	7 290	10 900	125	210	58	74	6	70	2.5	65	6.5	5.5	6.5	M5	8	35.5	45	66	4.5	1.88	1.03	
1.00	7 290	10 900	125	210	50	/4		'	2.5	0.5	0.5	0.5	0.5	IVIO	O	33.3	40	00	4.5	1.00	1.03	г
0.91	7 290	10 900	125	210																		
1.46	7 630	11 600	165	285	70	95	8	75	2.5	7.5	6.5	5.5	6.5	M5	8	42	50	82	6.6	3.80	1.62	
1.83	7 950	12 400	175	305	70	55	Ü	/3	2.5	7.5	0.5	5.5	0.5	1013		42	30	02	0.0	3.00	1.02	
2.02	10 600	14 800	290	455	85	110	8	80	4	7.5	8	5.5	8	M5	8	55	65	96	6.6	9.74	2.38	
2.85	11 200	15 900	305	490	00	110	0	80	4	7.5	0	5.5	٥	IVIO	0	55	05	30	0.0	3.74	2.30	
2.17	11 200	15 900	340	550	an	115	8	85	4	7.5	8	5.5	8	M5	8	60	70	101	66	12.5	2.56	
3.06	11 700	17 000	360	590	90	113	0	00	4	7.5	٥	0.0	٥	טועו	O	00	70	101	0.0	12.0	2.00	

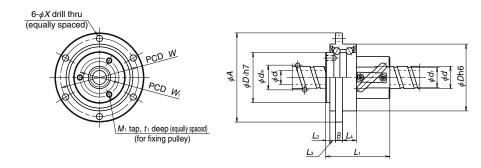
B563 B564

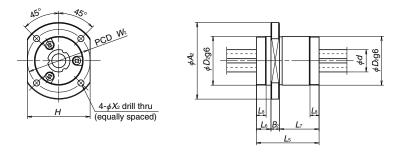

Unit: mm


	Shaft	Lead	Ball	Ball	Root	Screw						Ball	scre	w nı	ıt					
Model	dia.		dia.	circle	dia.	shaft	Basic load	rating (N)							ensions					
No.				dia.		hollow	Dynamic	Static												
	d	l	$D_{\rm w}$	d _m	d,	d _i	C _a	C_{0a}	D	Α	В	L ₁	L_2	L ₃	M_1	t ₁	W_1	D_1	W	X
∑ Z 1610	16	10	3.175	16.75	13.4	(8)	4 710	8 110	48	64	5	47	7	4	3-M4	6	28	35	E6	4.5
∑ Z1632	10	32	3.175	10.75	13.4	(0)	2 990	4 870	40	04	5	52		4	3-1014	O	20	30	50	4.5
∑ Z2010		10					8 210	17 500				57								
∑ Z2020	20	20	3.175	20.75	17.4	(14)	5 290	10 300	54	70	6	63	8	4	3-M4	6	32	40	62	4.5
∑ Z2040		40					3 360	6 170				57								
∑ Z2510		10					9 110	21 900				57								
∑ Z2520	25	20	3.175	25.75	22.4	(18)	5 870	13 200	58	74	6	63	8	4	3-M4	6	38	45	66	4.5
∑ Z2525	25	25	3.175	25.75	22.4	(10)	5 870	13 200	50	/4	O	72	0	4	3-1014	0	30	45	00	4.5
∑ Z2550		50					3 730	7 500				64								
∑ Z3220	32	20	3.175	32.75	29.4	(25)	6 540	16 800	70	95	8	70	10	6	3-M5	10	44	53	02	6.6
∑ Z3232	32	32	3.175	32.73	23.4	(23)	6 540	16 800	70	90	0	91	10	0	3-1010	10	44	55	02	0.0
∑ Z4020	40	20	3.969	41.0	36.9	(20)	9 770	26 300	85	110	8	73	10	6	4-M5	10	58	67	06	6.6
∑ Z 4040	40	40	3.909	41.0	30.9	(30)	9 770	26 300	05	110	0	107	10	O	4-1015	10	28	0/	90	0.0
∑ Z4520	45	20	3.969	46.0	41.9	(35)	10 300	29 700	00	115	8	73	10	6	4-M5	10	63	72	101	6.6
∑ Z 4540	45	40	3.909	40.0	41.9	(35)	10 300	29 700	90	115	0	107	10	Ü	4-1015	10	03	12	101	0.0


								Ball sp	line nut							
Moment	Mass	Basic load	rating (N)	Basic tor	que (N·m)				Di	mensio	ns				Mass	
of inertia (kg·cm²)	(kg)	Dynamic C _r	Static C _{or}	Dynamic $C_{\rm t}$	Static Cot	D_2	A_2	B_2	L ₄	L ₅	L ₆	Н	W_2	X	(kg)	M
0.41	0.50	5 530	7 270	61.5	91.3	35	55	6	60	10.5	6.5	45	4.5	4.5	0.05	Series
0.44	0.55	5 890	8 000	65.5	100	35	55	0	60	10.5	0.5	45	4.5	4.5	0.35	Sei,
0.64	0.74	6 260	8 720	86.5	135											
0.65	0.81	6 610	9 450	91.1	145	40	60	6	65	10.5	6.5	50	50	5.5	0.46	
0.64	0.74	6 610	9 450	91.1	145											
1.10	0.81	6 630	9 450	115	185											
1.18	0.88	7 290	10 900	125	210	45	65	6	70	10.5	6.5	55	55	5.5	0.57	
1.30	1.00	7 290	10 900	125	210	45	00		/0	10.5	0.5	00	55	0.0	0.57	
1.20	0.91	7 290	10 900	125	210											ı
2.60	1.46	7 630	11 600	165	285	50	70	6	75	10.5	6.5	60	60	5.5	0.64	
3.15	1.83	7 950	12 400	175	305	50	70	0	75	10.5	0.5	00	00	5.5	0.04	
5.96	2.02	10 600	14 800	290	455	65	88	8	80	12	8	76	76	6.6	1.20	
7.85	2.85	11 200	15 900	305	490	05	00	0	00	12	0	70	70	0.0	1.20	ı
7.73	2.17	11 200	15 900	340	550	70	93	8	85	12	8	81	81	6.6	1.39	
10.3	3.06	11 700	17 000	360	590	70	93	٥	00	12	O	01	01	0.0	1.39	

B565 B566


Unit: mm


	Shaft	Lead	Ball	Ball	Root	Screw							Ball	scr	ew	nut						
Model	dia.		dia.	circle	dia.	shaft	Basic load	d rating(N)						Di	mer	nsions						Moment
No.				dia.		hollow	Dynamic	Static														of inertia
	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	d _i	C _a	$C_{\scriptscriptstyle \mathrm{Oa}}$	D	Α	В	L ₁	L_2	L ₃	L_4	$M_{\scriptscriptstyle 1}$	t ₁	W_1	D_1	W	X	(kg·cm²)
∑C1610	16	10	3.175	16.75	13.4	(8)	4 710	8 110	48	64	5	46	3	4	10	3-M4	6	28	25	56	4.5	0.40
∑C1632	10	32	5.175	10.75	15.4	(0)	2 990	4 870	40	04	5	51	၁	ŧ	10	3-1014	U	20	33	50	4.5	0.43
∑C2010		10					8 210	17 500				56										0.63
∑C2020	20	20	3.175	20.75	17.4	(14)	5 290	10 300	54	70	6	63	4	4	10	3-M4	6	32	40	62	4.5	0.65
∑ C2040		40					3 360	6 170				56										0.63
∑C2510		10					9 110	21 900				56										1.04
∑ C2520	25	20	3.175	25.75	22.4	(18)	5 870	13 200	58	74	6	63	4	4	10	3-M4	6	38	15	66	4.5	1.13
∑ C2525	25	25	3.175	20.70	22.4	(10)	5 870	13 200	30	74	U	71	4	4	10	3-1014	0	30	45	00	4.5	1.24
∑ C2550		50					3 730	7 500				63										1.13

									E	3all s	pline	e nut											
Mass	Basic load	d rating(N)	Basic tor	que(N·m)							D	imer	nsior	าร							Moment	Mass	
	Dynamic	Static	Dynamic	Static																	of inertia		
(kg)	C _r	C_{or}	Ct	C_{Ot}	D	Α	В	L ₅	L ₆	L ₇	L ₈	L_9	Y	T	M_2	$t_{\scriptscriptstyle 3}$	W_2	D_2	W	X	(kg·cm²)	(kg)	M
0.41	4 300	5 090	47.9	63.9	40	64	5	45	2 E	6.5	10	6.5	4 5	e E	N 1 1	7	25	35	56	4.5	0.52	0.42	Series
0.43	4 300	5 090	47.9	63.9	48	04	5	45	2.5	0.5	10	0.5	4.5	0.5	IVI4	,	25	35	56	4.5	0.52	0.42	Sel,
0.53	4 730	5 820	65.1	90.5																			
0.56	5 110	6 540	70.5	100	54	70	6	50	2.5	6.5	10	6.5	5.5	6.5	M5	8	30.5	40	62	4.5	0.86	0.56	
0.53	5 110	6 540	70.5	100																			
0.60	5 130	6 540	87.8	125																			
0.64	5 870	8 000	100	155	58	74	6	55	2.5	6.5	10	6.5	5.5	6.5	M5	8	35.5	45	66	4.5	1.44	0.67	
0.69	5 870	8 000	100	155	50	/4	0	55	2.5	0.5	10	0.5	0.5	0.5	IVIO	0	30.0	45	00	4.5	1.44	0.67	
0.64	5 870	8 000	100	155																			i

B567 B568

- 11	Init:	m	m	
U	THE.		111	

	Shaft	Lead	Ball	Ball	Root	Screw						Ball	scr	ew	nut						
Model	dia.		dia.	circle	dia.	shaft	Basic load	rating(N)						Di	mer	nsions					
No.				dia.		hollow	Dynamic	Static													
	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	$d_{\scriptscriptstyle m r}$	d_{i}	C _a	$C_{\scriptscriptstyle \mathrm{Oa}}$	D	Α	В	L_1	L_2	L ₃	L ₄	M_1	t ₁	W_1	D_1	W	X
∑CZ1610	16	10	3.175	16.75	13.4	(0)	4 710	8 110	40	64	5	46	3	4	10	3-M4	6	20	O.E.	EG	4.5
∑CZ1632	סו	32	3.175	10.75	13.4	(8)	2 990	4 870	40	04	n	51	3	4	10	3-1014	b	28	35	90	4.5
∑CZ2010		10					8 210	17 500				56									
Σ CZ2020	20	20	3.175	20.75	17.4	(14)	5 290	10 300	54	70	6	63	4	4	10	3-M4	6	32	40	62	4.5
Σ CZ2040		40					3 360	6 170				56									
∑ CZ2510		10					9 110	21 900				56									
∑ CZ2520	25	20	3.175	25.75	22.4	(18)	5 870	13 200	E0	74	6	63	4	4	10	3-M4	6	20	15	66	4.5
∑ CZ2525	25	25	3.175	20.75	22.4	(18)	5 870	13 200	58	/4	O	71	4	4	10	3-1014	0	38	45	00	4.5
∑CZ2550		50					3 730	7 500				63									

								Ball	spline	nut							
Moment	Mass	Basic load	d rating(N)	Basic tor	que(N·m)					Dime	nsions					Mass	
of inertia		Dynamic	Static	Dynamic	Static												
(kg·cm²)	(kg)	C _r	C_{0r}	C_{t}	C_{Ot}	D_2	A_2	B_2	L ₅	L ₆	L ₇	L ₈	Н	W_2	X_2	(kg)	M
0.40	0.41	4.000	F 000	47.0	00.0	0.5			45	40.5	00.5	٥٠	4.5	45	4.5	0.00	Sel
0.43	0.43	4 300	5 090	47.9	63.9	35	55	6	45	10.5	28.5	6.5	45	45	4.5	0.26	eries
0.63	0.53	4 730	5 820	65.1	90.5												
0.65	0.56	5 110	6 540	70.5	100	40	60	6	50	10.5	33.5	6.5	50	50	5.5	0.35	
0.63	0.53	5 110	6 540	70.5	100												
1.04	0.60	5 130	6 540	87.8	125												
1.13	0.64	5 870	8 000	100	155	45	65	6	55	10.5	38.5	6.5	EE	55	5.5	0.44	
1.24	0.69	5 870	8 000	100	155	45	05	0	55	10.5	38.5	0.5	55	55	5.5	0.44	
1.13	0.64	5 870	8 000	100	155												

B569 B570

B-3-3.11 Ball Screw with L1 Seal designed for Minimal Grease Splatter [Patent application submitted]

1. Features

 Substantial reduction in grease splatter The amount of grease splatter for the L1 seal is reduced to 1/10 compared to NSK standard seal to contribute to maintain equipment and working environment clean.

 Adoption of non-contact type seal Seal torque is avoided by optimizing the seal shape. The current seals with relatively small splatter are all contact type seals, but the L1 seal is the first non-contact type seal to achieve low grease spatter.

 Seal cover is equipped as standard. To prevent grease from dripping, a seal cover is equipped as standard.

 Later fitting to NSK standard ball screws is available.

NSK ensures quick delivery because later fitting to "Compact FA Series" and "High Speed SS Series" is possible.

2. Specifications

(1) Applicable ball screw

Shaft diameter: 15 to 23 mm : 5 mm min. Lead

Lubricant : NSK standard grease, NSK

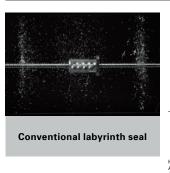
clean grease, grease for general

food

Environment : Ambient temperature

Short lead time: Can be fitted to NSK standard

stock ball screws.


Compact FA series (dia.15 to 25 mm) High speed SS series (dia.32 mm)

BSS2010-3E AS2 grease 3 000 min

Fig. 1 Comparison of grease splatter from the shaft

minimal grease splatter

Fig. 2 Results of grease splattering test

(2) Design-related precautions

When designing the screw shaft end, the one end shall be cut-through. For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

Table 1 Combinations of shaft diameter and lead

Lead Shaft dia.	5	10	20	25	Applicable series
15	0	0	0		
20	0	0	0		Compact FA
25	0	0	0	0	
32	0	0			High speed SS

Please contact NSK except for the above types.

Fig. 3 of grease splatter from the shaft

3. Example of reference number

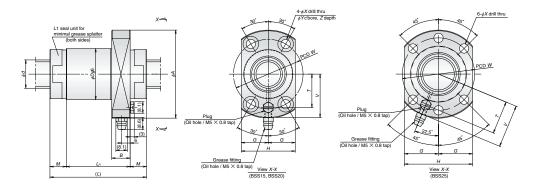
A structure of "Reference number for ball screw" is as follows.

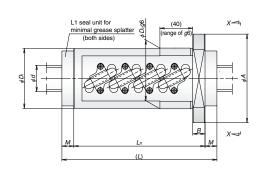
*"L1" is added at the end of "nut model code" and "Specifications number".

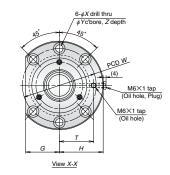
○Reference number for ball screw

W2005 -****L1 - C5Z10

NSK L1 equipped type ball screw code


4. Precautions for use


- Maximum temperatures are as follows. Compact FA series with L1 seal: 80 °C (at outside diameter of ball nut)
- High Speed SS series with L1 seal: 60 °C (at outside diameter of ball nut)
- Do not use the product in environments where foreign matter is present.
- Please note that L1 seal reduces grease splatter but cannot reduce it to zero.


The data shown in the catalog are the results of our tests, and no warranty is given to sealing performance on actual usage on machinery.

The amount of grease splatter is affected by usage conditions (rotational speed, temperature, greases, grease filling amount). Dust covers and other measures to keep machinery free of dust are recommended.

B571 B572

	0. (Basic load	rating (N)					Ва	all nut	dir	men:	sions					Total length	Internal	Standard
Model No.	Shaft dia.	Lead	Dynamic	Static	Dia.		Flan	ge		Nut length		Bolt	hole	S	Oil I		Seal dimensions	with nut & seal	spatial volume of nut	volume of grease replenishing
	d	l	$C_{\scriptscriptstyle a}$	C_{0a}	D	Α	G	Н	В	Ln	W	X	Y	Z	Τ	V	М	L	(cm³)	(cm³)
BSS1505-3E		5	E 460	10 200	20	E 1	155	21		30	39				18	25	10	50	2.0	1.0
BSS1510-3E	15	10	5 400	10 200	20	51	15.5	31	11	43	39	5.5	9.5	5.5	10	25	10	63	2.0	1.0
BSS1520-2E		20	5 070	8 730	32	55	16.5	33		51	43				20	27	15	81	2.8	1.4
BSS2005-3E		5	0 700	18 500						31							12	55	3.4	1.7
BSS2010-3E	20	10	0 /90	10 300	36	62	19	38	13	45	49	6.6	11	6.5	23.5	30.5	12	69	3.2	1.6
BSS2020-2E		20	5 900	11 700						54							18	90	3.2	1.0
BSS2505-3E		5		23 600						32							12	56	4.4	2.2
BSS2510-4E	25	10	12 800	32 300	40	62	24	10	12	56	51	6.6			23.5	20 5	12	80	4.7	2.4
BSS2520-2E	25	20	6 560	14 600		02	24	48	12	54	01	0.0	_	_	23.5	30.5	20	94	3.9	2.0
BSS2525-2E		25	0 500	14 000						63							20	103	4.3	2.2

Notes: 1. Maximum operating temperature: 80°C (at outside diameter of ball nut)

2. Grease nipple attachment is done only on the outer side of the flange (see diagram).

	0 6		Basic load	rating (N)					Ball	nut	dimer	nsio	ns					Total length	Internal	Standard
Model No.	Shaft dia.	Lead	Dynamic	Static	Di	a.		Fla	inge		Nut length	ı	Bolt I	nole	es	Oil hole position	Seal dimensions	with nut & seal	spatial volume of nut	volume of grease replenishing
	d	l	C _a	C_{0a}	D_1	D_2	Α	G	Н	В	Ln	W	X	Y	Z	T	М	L	(cm³)	(cm³)
HSS3205	32	5	18 500	56 100	57	58	85	32	42	13	89	71	6.6	11	6.5	33	9.5	108	10	5
HSS3210	32	10	46 300	108 000	73	74	108	41	53.5	15	160	90	9	14	8.5	45	14.5	189	43	22

Notes: 1. Maximum operating temperature: 60°C (at outside diameter of ball nut)

B573

B-3-3.12 Equipped with "NSK K1™" Lubrication Unit

This product is being applied for a patent.

1. Features

NSK K1 is a new, efficient lubrication unit. Equipped with NSK K1, the ball screws demonstrate a superb performance as shown below.

Long-term, maintenance-free usage

In mechanical environments where lubrication is difficult to apply, long-term running efficiency is maintained by using the NSK K1 in combination with grease.

[ex.] For automotive component processing lines, etc.

Does not pollute the environment

A very small volume of grease combined with NSK K1 can provide sufficient lubrication in the environment where grease is undesirable as well as in the environment where high cleanliness is required.

- [ex.] Food processing equipment, medical equipment, liquid crystal display/ semiconductor manufacturing equipment, etc.
- Good for environments where lubricant is washed away

When used with grease, life of the machine is prolonged even when the machine is washed entirely by water, or in an environment where the machine is exposed to rain or wind.

[ex.] Food processing equipment, housing/ construction machines, etc.

• Maintains efficiency in dusty environment In environment where oil- and grease-absorbing dust is produced, long-term efficiency in lubrication and prevention from foreign inclusions are maintained by using the NSK K1 in combination with grease.

[ex.] Woodworking machines, etc.

 Comparative duration test of samples with and without NSK K1

Sample, testing conditions and test result are shown in Table 1 and Fig. 1.

Without lubricant, operation became impossible after running 8.6 km. With NSK K1 alone, it was possible to continue running exceeding 10 000 km.

NSK conducts various tests under different conditions. Please consult NSK.

Table 1 Sample and testing conditions

Ball screw	Shaft dia. 20 mm, lead 20 mm
Lubrication	Comparison with only NSK K1 against no lubrication
Speed	4 000 min ⁻¹ (80 m/min)
Stroke	600 mm

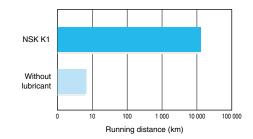


Fig. 1 Duration test results on ball screws without lubricant

2. Specifications

(1) Structure

The structure makes it possible to have a stable contact between the NSK K1 and outside of a ball screw with moderate force by a garter spring which fits onto outside of the NSK K1.

NSK K1 is installed between the ball screw nut and the labyrinth seal. The overall nut length is slightly longer than that of the standard ball screw.

Combination of NSK standard grease (factory-packed in the nut) and NSK K1 are standard specifications.

Fig. 2 NSK K1

(2) Accuracy grade and axial play

Accuracy grades, clearance and preload specifications remain unchanged from the existing products. There is a slight increase in torque due to the equipped NSK K1.

(3) Overall nut length after equipped with NSK K1™

The nut length becomes longer than that of standard ball screws after equipped with NSK K1. The nut length after equipped with K1 is shown in pages B577 to B580 for each type of ball recirculation. NSK K1 can be installed on other types not listed in the dimension table. Please consult with NSK if you require the K1 for a special ball nut.

(4) Application examples

Ball screws equipped with NSK K1 are maintenance-free for a long period of time. Its application is expanding in various industries.

Semiconductor/liquid crystal
display manufacturing equipment

Wood working
machines

Machine tools

Automobile manufacturing machines

3. Precautions for use

Temperature range for use: Maximum temperature: 50°C

Momentary maximum
temperature: 80°C

Chemicals that should not come to contact with K1:

Do not leave NSK K1 in organic solvent,
white kerosene such as hexane, thinner
which removes oil, and rust preventive oil
which contains white kerosene.

Note: Water-type cutting oil, oil-type cutting oil, grease such as mineral-type AS2 and ester-type PS2 do not damage K1 Seal.

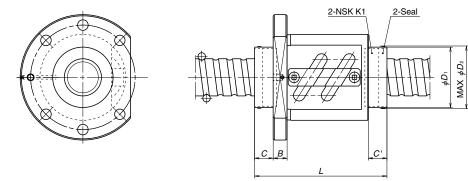
Note: NSK K1 is not applicable to the Compact FA series.

4. Example of reference number

A structure of "Reference number for ball screw" is as follows.

Note: "K1" is added at the end of "nut model code" and "Specifications number".

♦ Reference number for ball screw equipped with NSK K1


W1401 -** P K1 - C3 Z10

NSK K1 equipped type ball screw code

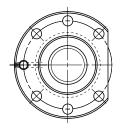
litions. Please consult NSK. products. There is a slight increase in torque to the equipped NSK K1.

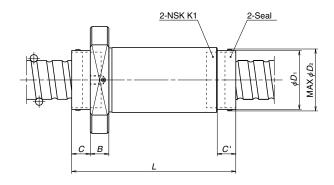
B575

(1) Tube type

Tube type

Model No.	Screw shaft dia.	Lead		talling nsion	Frange width	Overall length when equipped K1	K1 cap	dimension
woder No.	d	l	C	C'	B		Cap dia. ϕD_1	Protruding dimension ϕD_2
PFT1004-2.5	10	4	14	15	10	61.5	φ 22	MAX φ 24
PFT1205-2.5		5		15		66		<u>'</u>
LPFT1210-2.5	12	10	14	17	10	79	φ 26.5	MAX φ 29
PFT1405-2.5	14	5	14	15	10	65	ø 30	MAX \$\phi\$ 32
LPFT1510-2.5	15	10	14	15	10	76	φ30	MAX \$\dpsi 32
PFT1605-2.5	16	5	14	15	10	67	φ32	MAX φ 34
PFT2005-5		5				81	1	-
LPFT2010-2.5	20	10	14	14	10	78	φ38	MAX φ 40
LPFT2020-1.5	1	20				84	,	,
ZFT2505-10		5	16	17	10	115	φ 44	MAX φ 46
PFT2506-5		6	16	17	12	93	φ 44	MAX φ 46
PFT2510-2.5	25	10	16	17	12	89	φ 44	MAX φ 46
ZFT2510-3			40	40	10	103	,	
LPFT2520-2.5	-	20	12	12	12	109	φ38	MAX \$\phi 40
LPFT2525-1.5		25	12	12	12	98	φ 38	MAX φ 40
DFT2805-5	- 00	5	4.0	47	4.0	137		N443/ 450
PFT2810-2.5	28	10	16	17	12	90	φ 48	MAX φ 50
DFT2810-3 PFT3206-5						174 93		
ZFT3206-10		6	16	17		129	φ 52	MAX φ 54
PFT3210-5	1			17		122		
ZFT3210-5		10	16	17		122	φ 52	MAX φ 54
DFT3210-5	32			16	12	212	,	·
PFT3212-3		12	16	17		114	φ 52	MAX ø 54
DFT3212-3		12	10	16		198	φυΖ	IVIAΛ φ 54
LPFT3225-2.5		25	12	12		122	φ 46	MAX ø 48
LPFT3232-1.5		32	12	12		109	φ 46	MAX φ 48

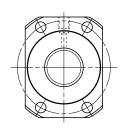

Notes: 1 NSK K1	I can be installed in other types not listed in the ta	ble Please consult NSK


^{2.} C,C' and L are the dimensions when one NSK K1 is equipped to both ends of the nut.

	Screw	Lead	Lead K1 inst		Frange		K1 cap	dimension	耍	
Model No.	shaft dia.	Load	dime	nsion	width	when equipped K1	Cap dia.	Protruding	틍	
	d	1	С	C'	В	,	ϕD_1	dimension ϕD_2	Equipped with NSK K1 TM	
PFT3610-5	_		J	20		131	7 = 1		€	
DFT3610-5		10	4.0	19	4-	221	. = 0	1440/ . 50	∰	
HZF3616-5	36	16	19	19	15	163	φ 56	MAX φ 58	S	
HZF3620-3.5		20		19		146			Ę	
PFT4008-5		8	19	20		117	φ 62	MAX φ 64	1	
ZFT4008-10			10	20		165	φ 02	1ν12-υν φ 04		
ZFT4010-7		10	19	20		152	φ 62	MAX ø 64		
DFT4010-5		10	10	19		222	φ 61	ΙνίΑλ φ 04	_	
PFT4012-5	40	12	19	20	16	144	φ 62	MAX φ 64		
DFT4012-5	40	12	10	19	'0	252	φ 61	1ν12-ντ φ 04	_	
HZF4016-5		16	19	19		164	φ 61	MAX φ 64	_	
HZF4020-5			20	19	19		189	φ 61	MAX φ 64	_
LPFT4032-2.5			32	14	14		151	φ 54	MAX φ 56	_
LPFT4040-1.5		40	14	14		133	φ 54	MAX φ 56	_	
DFT4510-5		10			16	222				
DFT4512-5	45	12	19	19	16	254	φ72	MAX φ 75		
HZF4520-5		20			18	190				
ZFT5010-10		10		20		194				
DFT5012-5	_	12		19		256				
ZFT5016-5	50	16	19	20	18	172	φ73	MAX φ 76		
DFT5016-5	1 00		10	19	'	300	Ψ,ο	Ινιν υτφ το		
HZF5020-5	_	20		19		192				
HZF5025-5		25		19		221				
DFT5516-5	_	16				178		MAX φ 87		
HZF5520-5	55	20	22	22	18	198	φ 81	MAX ø 81		
HZF5525-5		25				227		MAX ø 81	l	
DFT6316-5	63	16	22	22	18	322	ø 89	MAX φ 95		
DFT6320-5		20			'0	362	Ψ 00	ΙνιΑνν φ 33		

B577 B578

(2) Deflector(bridge) type




Deflector(bridge) type

	Screw shaft dia.	Lead		talling	Frange width	Overall length when equipped K1	K1 cap o	dimension
Model No.	d d	l	dimension		B L		Cap dia. ϕD_1	Protruding dimension ϕD_2
ZFD2005-6	20	5	9	9	12	87	φ32	MAX φ 34
ZFD2506-6	٥٦	6	10	-	12	102	4.20	MAX φ 40
ZFD2510-4	25	10	12	12		106	φ 38	
ZFD3208-8		8				136		
ZFD3210-6	32	10	12	12	12	138	φ 46	MAX φ 48
ZFD3212-6		12				153		
ZFD4010-8	40	10	1.4	1.4	16	167	, , ,	MAN 157
ZFD4012-8	40	12	14	14	16	189	φ 54	MAX φ 57
ZFD5010-8		10	1.4	1.4	10	169	1.04	NAAV 467
ZFD5012-6	50	12	14	14	18	167	φ 64	MAX φ 67

Notes: 1. NSK K1 can be installed in other types not listed in the table. Please consult NSK. 2. C,C' and L are the dimensions when one NSK K1 is equipped to both ends of the nut.

(3) End cap type

End cap type

Model No.	Screw shaft dia.	Lead		talling nsion	Frange width	Overall length when equipped K1	'	dimension	
Wiodel No.	d	l	С	C'	В	L	Cap dia. <i>∳</i> D₁	Protruding dimension ϕD_2	
UPFC1520-1.5	15	20	29	18	10	81	ø 30	MAX φ 32	
LPFC1616-3	16	16	28	18	10	74	φ 28	MAX ø 30	
LPFC2020-3	00	20	29.5	10	10	82	φ 34	MAX ø 36	
UPFC2040-1	20	40	29	18	10	77	φ32	MAX φ 34	
LPFC2525-3		25	21	10	97		NAAN/ 4 40		
UPFC2550-1	25	50	50	34	21	12	92	φ 44	MAX φ 46
LPFC3232-3	32		37	21	10	112	, 50	NANV 154	
UPFC3264-1	32	64	36.5	21	12	104	φ 52	MAX φ 54	
LPFC4040-3	40	40	43.5	24	15	133	φ 62	MAX φ 65	
LPFC5050-3	50	50	45.5	24	20	155	φ74	MAX φ 77	

Notes: 1. NSK K1 can be installed in other types not listed in the table. Please consult NSK.

2. C,C' and L are the dimensions when one NSK K1 is equipped to both ends of the nut.

B579 B580

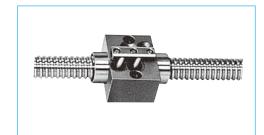
B-3-3.13 Special Ball Screws

In addition to the standard ball screws, NSK manufactures various types of ball screws in special shapes as shown below.

Nut with gear

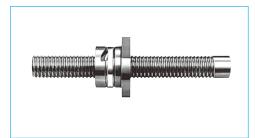
Lightly preloaded single nut with bearing seat

Nut with trunion



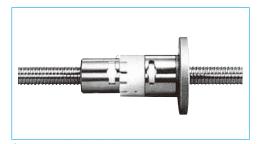
Double nut with right and left turn thread on each side of screw shaft

Thoroughly discuss with NSK the specifications before determining specifications and ordering ball screws in special shapes.


Double nut with flat mounting surface

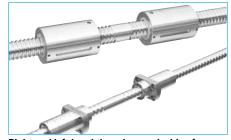
Lightly preloaded single nut with flat mounting surface

Hollow shaft, lightly preloaded single nut, with large shaft diameter and fine lead


Ceramic ball screw

Flanged to flanged ball nut

Cylindrical double nut


Spring preloaded ball screw

Ball screw for aircraft

Ball screw for nuclear power plant

Right and left hand thread on each side of screw

B581 B582

C-1 Monocarrier™

2. 3. 4.	Features	C7 C9 C10 C10 C11 C13 C13 C15 C17
c	 5.1. MCM Series Reference Number Coding 5.2. MCM Series Dimension Tab of Standard Products 5.3. MCM Series Accessories 	le C26 C47
b.	MCH Series	C73 e of C74

C-2 Toughcarrier™

	Features ·····	
	Classification and Series Accessories	
	Selection of Toughcarrier ······	
•	4.1 Selection Procedures ·······	
	4.2 Stroke and Lead ·····	C97
	4.3 Reference Number Coding a	
	Accuracy Grade 4.4 Maximum Speed	C98
	4.5 Rigidity	C101
	4.6 Basic Load Rating	C102
	4.7 Estimation of Life Expectancy	C103
	4.8 Example of Life Estimation.	
5.	TCH Series Dimension Table fo	
	Standard Products	
	5.2 TCH09 Series	
	5.3 TCH10 Series	C113
6.	Accessories	
	6.1 Sensor Unit	
	6.2 Cover Unit ······ 6.3 Motor Bracket ·····	
7	Motor Bracket Compatibility Table	
	Sensor Rail and Top Cover Unit	

Combination Table C129

C-3 Technical Materials

1.	Sensor Specification	
	1.2 Photo Sensor ······	
2.	Characteristics and Evaluation	
	Method ·····	C137
	2.1 Positioning Accuracy	C137
	2.2 Repeatability	C137
	2.3 Running Parallelism	C137
3.	Special Specifications	
	Maintenance ······	
	4.1 Maintenance Method	
	4.2 NSK K1™ Lubricant Unit ····	
5.	NSK Clean Grease LG2 Specification	

9. Toughcarrier High-Thrust Series · · C132 Monocarrier™

Toughcarrier™

C3-C90

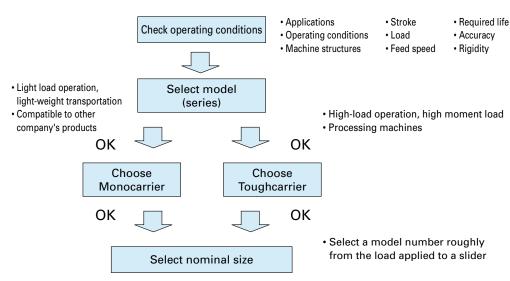
C91 -C132

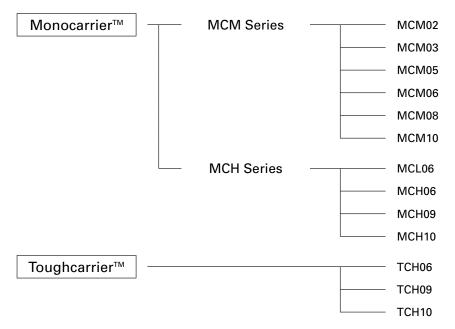
C133

-C140

Monocarrier[™], Toughcarrier[™]

All-in-one structure (ball screw, linear guide and base integrated) results in a light and compact actuator without extra work for design or adjustment when installing. Design and assembly loads can be reduced by unit type. Also, the many variations make it possible to deal with many different uses.


Monocarrier[™] and Toughcarrier[™] Classifications


■Toughcarrier™: High load capacity

Procedure for Selecting Monocarrier™ and Toughcarrier™ models

Monocarrier[™] and Toughcarrier[™] Composition

Nonocarner Toughcarrier THE

C-1 Monocarrier[™]

1 Features	C 5
2 Classification and Series	C 7
3 Accessories	C 9
4 Selection of Monocarrier	C10
4.1 Procedures for Selecting Monocarrier	C10
4.2 Rigidity	C10
4.3 Maximum Speed	C11
4.4 Accuracy Grade	C13
4.5 Stroke and Ball Screw Lead	C13
4.6 Basic Load Rating	C15
4.7 Estimation of Life Expectancy	C17
4.8 Example of Life Estimation	C19
5 MCM Series	C23
5.1 MCM Series Reference Number	
Coding	C25
5.2 MCM Series Dimension Table of	
Standard Products	C2 6
5.3 MCM Series Accessories	C47
6 MCH Series	C7 1
6.1 MCH Series Reference Number Coding	C73
6.2 MCH Series Dimension Table of	
Standard Products	C7 4
6.3 MCH Series Accessories	C 81

C-1 Monocarrier[™]

C3 C4

C-1-1 Features

into one unit.

Long term maintenance free

- Ouse of NSK K1 Lubrication Units and grease maintains a smooth lubricating performance for long periods in mechanical environments where lubrication is difficult to apply, where use of oil is not permitted because of hygienic issues, or where the mechanical equipment is subjected to frequent wash downs.
- ONSK K1 lubrication unit is available for food processing machines and medical equipment.

OLow temperature chrome plating is a standard feature for the bodies and sliders to control rusting in normal operating and storing environments. Fluoride low temperature chrome plating is optionally available for much higher rust prevention.

OGrease for clean environments and for general machinery is available.

3 Superb antirust capability

Light weight, compact design

Available in two different shapes of cross-section, depending on application.

Light weight type: MCM Series Rigid type: MCH Series

2 All -in-one structure

OThe all-in-one structure integrates a ball screw, a linear guide and support bearings into a single unit to significantly reduce design and installation time.

C-1 Monocarrier™

NSK's Monocarrier is the culmination of technology

and innovation in linear motion. This lightweight,

compact single axis linear actuator integrates quality NSK ball screw, linear guide and support bearings

- Multiple datum planes, the bottom and a lateral side of the rail, facilitate highly accurate installation.
- Olmmediate operation after installation and run-in is possible.
- OA wide selection of fine to high helix leads are available.

Ball screw A wide variety of le

A wide variety of leads, from fine leads to high helix leads, is available. A ball nut and a slider are integrated into one component.

Slider

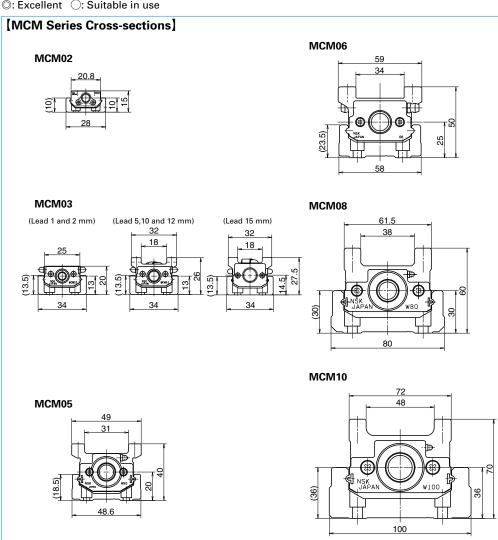
5 Quick Delivery

Linear guide (Ball groove)

Built in support bearings

MONOC

A R R I E R


Built in support bearing

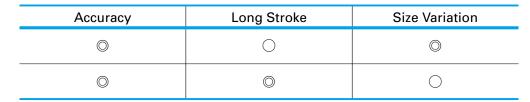

C-1-2 Classification and Series

Table 2.1

	Light Weight	Beam Rigidity	Moment Rigidity
MCM Series	0	0	0
MCH Series	0	0	0

©: Excellent O: Suitable in use

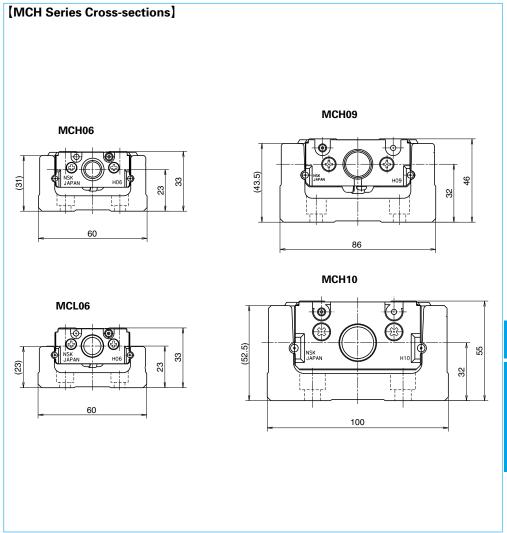


Fig. 2.1

Fig. 2.2

C-1-3 Accessories

MCM Series

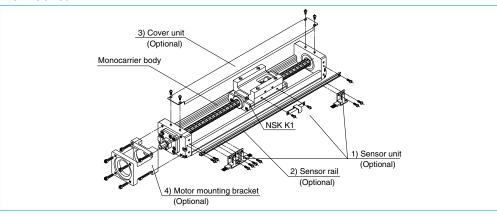


Fig. 3.1 Assembly: Accessories for MCM10 (example)

- 1) Sensor unit: Sensors, sensor mounting parts and a sensor dog are available in a set.
 - * When a sensor unit is used, the full cover unit cannot be used.
- 2) Sensor rail: Rail for sensor mounting is available.
- 3) Cover unit: Top cover or full cover (included top cover and side cover) is available.
- 4) Motor bracket for motor mounting: Available for a variety of models.

Note: We assemble accessories upon request.

MCH Series

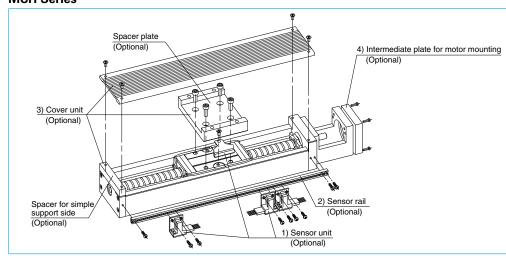


Fig. 3.2 Assembly: Accessories for MCH10 (example)

- 1) Sensor unit: Sensors, sensor mounting parts and a sensor dog are available in a set.
- 2) Sensor rail: Rail for sensor mounting is available.
- 3) Cover unit: Top cover (included spacer plate and spacer for simple support side) is available.
- 4) Intermediate plate for motor mounting: Available for a variety of models.

Note: We assemble accessories upon request.

C-1-4 Selection of Monocarrier C-1-4. 1 Procedures for Selecting **Monocarrier**

Select a model number of Monocarrier based on stroke and rigidity (refer to Figs. 4.2, and 4.3).

Select a ball screw lead referring to "C-1-4.3 Maximum Speed" so that the rotational speed does not exceed the limit.

Study the loads to be applied to the linear guide and obtain the equivalent load (Fe) substituting them for equation 1) or 2) on page C17. Obtain the mean effective load (Fm) substituting them for equation 3) on page C18, then calculate the life.

Study the loads to be applied to the ball screw and support unit. Obtain the mean effective load (Fm) substituting them for equation 3) on page C18, then calculate the life.

C-1-4. 2 Rigidity

Rigidity of rail

Selection

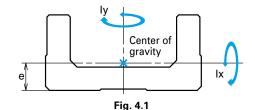


Table 4.1 Rigidity of rail

Model	Geometrical mo	oment of inertia	Center of gravity	Mass
No.	×10 ⁴	(mm ⁴)	(mm)	(kg/
INO.				100 mm)
	lx	ly	е	W
MCM02	0.097	1.32	3.3	0.11
MCM03	0.30	3.3	4.5	0.18
MCM05	0.78	11.4	6.0	0.31
MCM06	2.14	26.1	7.0	0.57
MCM08	5.90	81.0	9.2	0.88
MCM10	15.6	219	12.2	1.52
MCL06	2.58	29.6	7.8	0.56
MCH06	6.5	38.2	10.8	0.67
MCH09	28.7	172	15.5	1.48
MCH10	54.0	307	18	1.93

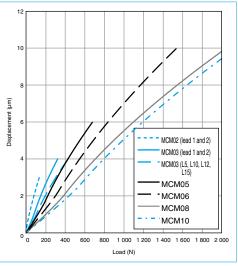


Fig. 4.2 MCM Series rigidity in radial direction

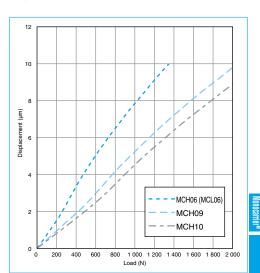


Fig. 4.3 MCH Series rigidity in radial direction

C-1-4. 3 Maximum Speed

(1) Maximum Speed of MCM Series

Maximum speed of Monocarrier is determined by critical speed of ball screw shaft and d • n value.

Do not exceed maximum speeds on the table below.

Table 4.2

	Ball screw lead	Stroke (mm)	Rail length L ₂ (mm)	Maximun speed (mm/s)
		50	100	(111111/07
	1	100	150	50
MCM02	l l	150	200	1
Single slider		50	100	
Siluei	2	100	150	100
		150	200	1
		50	115	
	1	100	190	50
		150	240	1
		50	115	
	2	100	190	100
MCM03		150	240	1
Single	_	50	140	
slider	5	250	340	250
	10	50	140	500
	10	250	340	300
	12	50 }	140 }	600
		250 50	340 140	
	15	250	340	750
	5	50	180	250
	5	600	730	250
	10	50 }	180 }	500
101105		600 50	730 180	
MCM05 Single	20	}	}	1 000
slider		300 300	730 430	
		400	530	2 500
	30	500	630	2 160
		600	730	1 570
		60	280	
MCM05	10	510	730	500
Double slider	20	210	430	1 000
	2.0	510	730	
	_	50 }	190 }	250
	5	700 800	940	190
		50	190	190
MCM06	10	700	840	500
Single		800	940	390
slider		300	440	
		[≀] 600	740	1 000
	20	700	840	990
	Ī	800	940	780
	5	110	340	250
NACNAGE	,	410	640	250
MCM06	4.0	110	340	500
	10			
Double slider	10	710 210	940 440	

	Ball screw	Stroke	Rail	Maximum
	lead	(mm)	length L2	speed
	icaa		(mm)	(mm/s)
		50 }	220	250
	5	700	870	250
		800	970	190
		50	220	
		600	770	500
	10	700	870	490
MCM08		800	970	380
Single		50	220	4.000
slider		} 600	770	1 000
	20	700	870	980
		800	970	770
		400	570	2 500
		500	670	2 480
	30	600	770	1 830
		700	870	1 400
		80	370	
WCW08	10	680	970	500
Double slider		180	470	
Siluei	20	680	∤ 970	1 000
		100	280	
		} 800	} 980	500
	10	900	1 080	420
		1 000	1 180	340
		100	280	
MCM10		?		1 000
Single	20	800 900	980 1 080	840
slider				
		1 000 500	1 180	690 2 500
			680	2 430
	30	600 700	780 880	1 870
		800	980	1 480
		70	380	1 480
		, , o	300	500
	10	670	980	
MCM10 Double		870	1 180	450
slider		170 }	480 }	1 000
0	20	670	980	1 000
		870	1 180	910
NI - 4 \A/I		N 4 :		

Note: When operating Monocarriers near critical speed or exceeding maximum speed in the table, please consult NSK.

(2) Maximum Speed of MCH Series

Maximum speed of Monocarrier is determined by critical speed of ball screw shaft and d • n value. Do not exceed maximum speeds on the table below.

Table 4.3

	Ball screw lead	Stroke (mm)	Rail length L ₂ (mm)	Maximum speed (mm/s)
MCH06	5	50 } 500	150	250
MCL06 Single	10	50 ≀ 500	150	500
slider	20	50 ≀ 500	150	1 000
MCH06	5	100	300	250
Double slider	10	100	300 } 600	500
	20	400	600	1 000
	5	100	240 } 840	250
		800	940	210
MCH09 Single	10	100	240	500
slider		800	940	410
	20	100	240 } 840	1 000
		800	940	830
	5	150 } 350	440 ≀ 640	250
MCH09 Double slider	10	150	440 ≀ 940	500
Siluci	20	450	440	1 000
	20	650	940	1 000

Note: When operating Monocarriers near critical sp	oeed
or exceeding maximum speed in the table, pl	ease
consult NSK.	

	Ball screw lead	Stroke (mm)	Rail length L ₂ (mm)	Maximum speed (mm/s)
		100	280 } 980	500
	4.0	900	1 080	420
	10	1 000	1 180	350
		1 100	1 280	290
MCH10		1 200	1 380	250
Single slider		100	280	1 000
		900	1 080	840
	20	1 000	1 180	700
		1 100	1 280	580
		1 200	1 380	490
	10	250 } 650	580 } 980	500
MCH10 Double		250	580	1 000
slider	20	850	1 180	910
		950	1 280	760
		1 050	1 380	630
Noto: Whar	operating	Monocarri	ere near cr	itical chood

Note: When operating Monocarriers near critical speed or exceeding maximum speed in the table, please consult NSK.

Note: When operating Monocarriers near critical sp	
	oeed
or exceeding maximum speed in the table, ple consult NSK.	ease

C11 C12

C-1-4. 4 Accuracy Grade

The accuracy grade of Monocarrier standard series is high grade (H), except for lead 1 and 2 mm of MCM02, and MCM03.

When you require strokes longer than 1 200 mm, please consult NSK about the accuracy grade.

Table 4.4							Unit : µm
Accuracy		High grade (H)			Precis	ion (P)	
Stroke (mm)	Repeatability	Running Parallelism (vertical)	Backlash	Repeatability	Positioning accuracy	Running Parallelism (vertical)	Backlash
- 200		14			20	8	
- 400		16			25	10	
- 600	±10	20	20 or less	±3	30	12	3 or less
- 700		23			30	15	1
- 1 000		23			35	15	
- 1 200		30			40	20	

C-1-4. 5 Stroke and Ball Screw Lead

(1) MCM Series Standard Combinations of Stroke and Ball Screw Lead

Table 4.5 Single slider

																				Ur	nit:	mm
Model No.	MCI	M02			MCI	M03				MC	M05	,	М	CM	06		MCI	M08	3	М	CM	10
Lead	1	2	1	2	5	10	12	15	5	10	20	30	5	10	20	5	10	20	30	10	20	30
50	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1					
100	1	1	1	/	1	1	1	1	1	1	1		1	1	\	1	1	1		1	1	
150	1	1	1	1	1	1	1	1	1	1	1		1	1	/	1	1	1		1	1	
200					1	1	1	1	1	1	1		1	1	/	1	1	1		1	1	
250					1	1	1	1	1	1	1		1	1	>	1	1	1		1	1	
300									1	1	1	1	1	1	1	1	1	1		1	1	
400									1	1	1	1	1	1	1	1	1	1	1	1	1	
500									1	1	1	1	1	1	1	1	1	1	1	1	1	1
600									1	1	1	1	1	1	1	1	1	1	1	1	1	1
700													1	1	1	1	1	1	1	1	1	1
800													1	1	/	1	1	1		1	1	1
900																				1	1	
1 000																				1	1	

Table 4.6 Double slider

Table	Table 4.6 Double slider												
							U	nit :	mm				
Model No.	MCI	V105	N	ICM	06	MC	M08	MC	M10				
Lead	10	20	5	10	20	10	20	10	20				
Stroke	_												
60	1												
70								/					
80						1							
_110	/		/	/									
160	1												
170								1	1				
180						1	1						
210	/	/	1	/	/								
270								1	1				
280						1	1						
310	1	1	1	1	1								
370								1	1				
380						1	1						
410	1	1	1	1	1								
470								1	1				
480						1	1						
510	1	1		1	1								
570								1	1				
580						1	1						
610				1	1								
670								1	1				
680						1	1						
710				1	1								
870								1	1				

Note: Please consult NSK about double slider of MCM02 and MCM03.

(2) MCH Series Standard Combinations of Stroke and Ball Screw Lead

Table 4.7 Single slider

							Uni	t : mm
Model No.	MCH06			1	VICH0	MCH10		
Lead Stroke	5	10	20	5	10	20	10	20
50	1	1	1					
100	1	1	1	1	1	1	1	1
200	1	1	1	1	1	1	1	1
300	1	1	1	1	1	1	1	1
400	1	1	1	1	1	1	1	1
500	1	1	1	1	1	1	1	1
600				1	1	1	1	1
700				1	1	1	1	1
800				1	1	1	1	1
900							1	1
1 000							1	1
1 100							1	1
1 200							1	1

Table 4.8 Double slider

						ı	Jnit :	mm
Model No.	N	ИСН(06	٨	1CH0	9	MC	H10
Lead Stroke	5	10	20	5	10	20	10	20
100	1	1						
150				1	1			
200	1	1						
250				1	1		1	1
300	1	1						
350				1	1		1	1
400		1	1					
450					1	1	1	1
550							1	1
650					1	1	1	1
750								1
850								1
950								1
1 050								1

Table 4.9 Limitations

		Lead	Slider	Stroke
	Model No.	(mm)		(mm)
	MCM02	1,2	Single	150
	MCM03	1,2	Single	150
MCM series	IVICIVIUS	5,10,12,15	Single	350
	MCM05	5,10,20,30*	Single	900
	IVICIVIUS	3,10,20,30	Double	810
	MCM06	5,10,20	Single	1 000
	IVICIVIO	5,10,20	Double	910
	NACNAGO	E 10 20 20*	Single	1 000
	MCM08	5,10,20,30*	Double	880
	MCM10	10,20,30*	Single	1 750
	IVICIVITO	10,20,30"	Double	1 600
	MCH06	5,10,20	Single	600
	IVICHUO	5,10,20	Double	500
	MCH09	E 10 20	Single	1 000
MCH series	IVICHUS	5,10,20	Double	850
	MCH10	10.20	Single	1 750
	IVICHIU	10,20	Double	1 600
	MCL06	5,10,20	Single	500

^{*)} Applicable only to single slider

靊

C13

C-1-4. 6 Basic Load Rating

(1) MCM Series Basic Load Rating

Table 4.10 Basic Load Rating

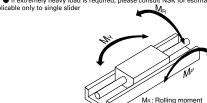
	Lead	Shaft dia	Basi	ic dynamic l			Basic static loa	ad rating (N)	Support unit
Model No.	ℓ (mm)	d (mm)	Ball screw C_a	Linear guide C	Support unit C_a	Rated running distance $L_{ m a}({ m km})$	Ball screw C_{0a}	Linear guide C_0	
MCM02	1	, 6	340(High grade) 405(Precision)	4 910	615	1	555(High grade) 615(Precision)	2 120	490
IVICIVIUZ	2	φ6	340(High grade) 405(Precision)	3 900	015	2	555(High grade) 615(Precision)	2 120	490
	1	φ6	735	10 900		1	1 230	4 900	
	2	φυ	735	8 650		2	1 230	4 900	
MCM03	5		1 810	7 850	2 670	5	2 880		1 040
IVICIVIOS	10	φ8	1 230	6 250	2 070	10	1 690	6 620	1 040
	12		1 230	5 880		12	1 090	0 020	
	15	φ 10	1 760	5 440		15	2 680		
	5		3 760	15 600		5	6 310		
MCM05	10	φ 12	2 420	12 400	4 400	10	3 790	10 900	1 450
IVICIVIOS	20	φ 12	2 420	9 850		20	3 790	10 300	
	30		3 260	8 600	6 550	30	5 400		2 730
	5		7 070	25 200		5	12 800		
MCM06	10	φ 15	7 070	20 000	6 550	10	12 800	17 000	2 730
	20	-	4 560	15 900		20	7 730		
	5		7 070	30 800		5	12 800		
MCM08	10	φ 15	7 070	24 400	7 100	10	12 800	22 800	3 040
IVICIVIUO	20	φισ	4 560	19 400	7 100	20	7 730	22 800	3 040
	30		5 070	16 930		30	8 730		
	10		11 000	33 500		10	21 100		
MCM10	20	φ 20	7 060	26 600	7 600	20	12 700	29 400	3 380
	30		11 700	23 200		30	22 700		

Notes: Sasic dynamic and static load ratings indicate values for one slider. Sasic load rating of linear guide is load of perpendicular direction to the axis that allows 90% of a group of the same Monocarriers to operate "Rated running distance" in table, that is equivalent to 1 million revolutions of ball screw and support unit under the same conditions without causing flaking by rolling contact fatigue. Sasic dynamic load rating of ball screw is load in the axial direction that allows 90% of ball screws of a group of the same Monocarriers to rotate 1 million revolutions under the same conditions without causing flaking by rolling contact fatigue. Basic dynamic load rating of support unit is constant load in the axial direction that allows 90% of support units of the same group of Monocarriers to rotate 1 million revolutions under the same conditions without causing flaking by rolling contact fatigue. Basic static load rating is load that results in combined permanent deformations at contact points of balls and ball groves of respective parts at a diameter of 0.01%.

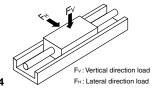
Table 4.11 Basic static moment load of linear guide

Model No.	Lead	Slider	Basic static moment (N · m)				
wiodei ivo.	(mm)	Silder	Rolling Mro	Pitching Mpo	Yawing Myo		
MCM02	1, 2		24	8	8		
MCM03	1, 2	Single	68	28	28		
IVICIVIOS	5, 10, 12 ,15		92	51	51		
MCM05	5, 10, 20, 30*	Single	229	89	89		
IVICIVIOS		Double	455	765	765		
MCM06	5, 10, 20	Single	415	174	174		
IVICIVIOO		Double	825	1 220	1 220		
MCM08	5, 10, 20, 30*	Single	770	300	300		
IVICIVIOO	3, 10, 20, 30	Double	1 540	2 050	2 050		
MCM10	10, 20, 30*	Single	1 170	425	425		
IVICIVITO	10, 20, 30	Double	2 340	2 940	2 940		

Notes:


Basic static moment of double slider is value when two sliders equipped with NSK K1 are butted against each other.

M_P: Pitching moment


My: Yawing moment

Basic static moment is value when rolling contact pressure of balls exceeds 4 000 N/mm².

If extremely heavy load is required, please consult NSK for estimation of fatigue life.

C15

(2) MCH Series Basic Load Rating

Table 4.12 Basic Load Rating

	Lead	Shaft dia	Basic dynamic load rating (N)			Basic static lo			
Model No.	ℓ (mm)	<i>d</i> (mm)	Ball screw C_a	Linear guide ${\cal C}$	Support unit C_a	Rated running distance $L_{ m a}({ m km})$	Ball screw C_{0a}	Linear guide Co	Limit load (N)
MCH06	5		3 760	22 800		5	6 310		
(MCL06)	10	φ 12	2 420	18 100	4 400	10	3 790	16 300	1 450
(IVICEOD)	20]	2 420	14 400		20	3 790		
	5		7 070	40 600		5	12 800		
MCH09	10	<i>φ</i> 15	7 070	32 200	7 100	10	12 800	30 500	3 040
	20	1	4 560	25 500		20	7 730	1 1	
MCH10	10	φ 20	11 000	44 600	7 600	10	21 100	42 000	3 380
MICHIU	20	φ 20	7 060	35 400	7 000	20	12 700	42 000	3 300

Notes: Basic dynamic and static load ratings indicate values for one slider. Basic load rating of linear guide is load of perpendicular direction to the axis that allows 90% of a group of the same Monocarriers to operate "Rated running distance" in table, that is equivalent to 1 million revolutions of ball screw and support unit under the same conditions without causing flaking by rolling contact fatigue. Basic dynamic load rating of ball screw is load in the axial direction that allows 90% of ball screws of a group of the same Monocarriers to rotate 1 million revolutions under the same conditions without causing flaking by rolling contact fatigue. Basic dynamic load rating of support unit is constant load in the axial direction that allows 90% of support units of the same group of Monocarriers to rotate 1 million revolutions under the same conditions without causing flaking by rolling contact fatigue. Basic static load rating is load that results in combined permanent deformations at contact points of balls and ball grooves of respective parts at a diameter of 0.01%.

Table 4.13 Basic static moment load of linear guide

Model No.	Slider	Basic static moment (N · m)					
Model No.	Silder	Rolling Mro	Pitching MPO	Yawing Myo			
MCH06	Single	335	133	133			
(MCL06)	Double	770	730	730			
MCH09	Single	890	385	385			
WICHIOS	Double	1 780	2 070	2 070			
MCH10	Single	1 460	610	610			
WICHTO	Double	2 920	3 430	3 430			

Notes:

Basic static moment of double slider is value when two sliders equipped with NSK K1 are butted against each other.

Basic static moment is value when rolling contact pressure of balls exceeds 4 000 N/mm².

If extremely heavy load is required, please consult NSK for estimation of fatigue life.

*) Applicable only to single slider

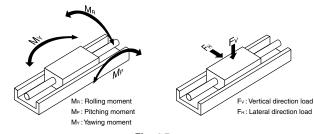


Fig. 4.5

nocarrier™

C-1-4. 7 Estimation of Life Expectancy

(1) Life of Linear Guide

Study the load to be applied to the linear guide of Monocarrier (Fig. 4.6). The equivalent load (Fe) is determined by substituting the load for equation 1) (Eq. 2): in case of the tightly coupled double slider type).

In case of the single slider

In case of the double slider

$$Fe = \frac{Y_{H}F_{H}}{2} + \frac{Y_{V}F_{V}}{2} + Y_{R}E_{Rd}M_{R} + Y_{P}E_{Pd}M_{P} + Y_{V}E_{Vd}M_{V} \dots 2)$$

 $F_{\rm H}$: Lateral direction load acting on the slider (N)

F_v: Vertical direction load acting on the slider (N)

 M_{\circ} : Rolling moment acting on the slider (N · m)

 $M_{\scriptscriptstyle D}$: Pitching moment acting on the slider (N · m)

 $M_{\rm v}$: Yawing moment acting on the slider (N · m)

ε_R, ε_{Rd}

: Dynamic equivalent coefficient to rolling moment

E P, E Pd

: Dynamic equivalent coefficient to pitching moment

ε y, ε yd

: Dynamic equivalent coefficient to vawing moment Refer to Table 4.14 about Dynamic equivalent coefficient.

 Y_{H} , Y_{V} , Y_{R} , Y_{P} , Y_{Y}

: 1.0 or 0.5

At equations 1) and 2) for obtaining equivalent load Fe, among F_H , F_V , $\mathcal{E}_P M_P$, $\mathcal{E}_R M_B$, $\mathcal{E}_{Y}M_{Y}$, the maximum load is assumed to be 1.0, and others are to be 0.5.

Table 4.14 Dynamic equivalent coefficient

Model No.	MCM02		MO3 Lead 5, 10, 12, 15	MCM05	МСМ06	MCM08	MCM10	MCH06 MCL06	MCH09	MCH10
ε _R	95.2 79.4 79.4 52.6		45.5	32.5	27.8	48.3	34.5	28.6		
ε,	174	113.9	84.2	81.3	65.1	48.8	45.2	75.1	47.9	41.0
$\epsilon_{_{\scriptscriptstyle{Y}}}$	174	113.9	84.2	81.3	65.1	48.8	45.2	75.1	47.9	41.0
$\epsilon_{_{\text{Rd}}}$	_	_	_	26.3	22.7	16.3	13.9	24.2	17.2	14.3
$\epsilon_{_{Pd}}$	_	_	_	10.4 (12.2)	9.7 (11.5)	7.6 (8.6)	7.1 (8.0)	11.4 (13.2)	8.11 (9.10)	6.98 (7.82)
$\epsilon_{\scriptscriptstyleYd}$	_	_	_	10.4 (12.2)	9.7 (11.5)	7.6 (8.6)	7.1 (8.0)	11.4 (13.2)	8.11 (9.10)	6.98 (7.82)

Note: Parenthesized figures are dynamic equivalent coefficient in case of the Monocarrier without NSK K1.

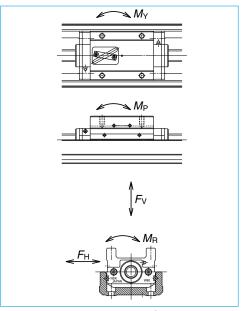


Fig. 4.6 Direction of load

In case when the load acting on the slider may fluctuate (In general, M_P , M_V may fluctuate with the acceleration/deceleration of slider), the mean effective load is determined by Eq. 3).

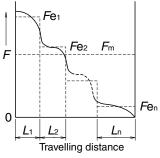


Fig. 4.7 Stepwise Fluctuating Load

Travelling distance under the equivalent load Fe_1 : L_1 Travelling distance under the equivalent load Fe₂: L₂

Travelling distance under the equivalent load Fe.: L.

$$Fm = \sqrt[3]{\frac{1}{L} (Fe_1^3L_1 + Fe_2^3L_2 + \cdots Fe_n^3L_n) \cdots 3}$$

Fm: Mean effective load of fluctuating loads

L: Total travelling distance

The life of linear guide is calculated by Eq. 4).

$$L = L_a \times \left(\frac{C}{f_W \cdot Fm}\right)^3 \dots 4$$

L: Life of linear guide (km)

Fm: Mean effective load acting on the linear guide (N)

C: Basic dynamic load rating of the linear guide (N)

L_a: Travelling distance (km)

 f_{w} : Load factor (refer to **Table 4.15**)

When the estimated life does not clear the required life, the life of the linear guide is to be calculated again after the following measures

- 1. Change from the single slider type to double slider type.
- 2. Use a larger size Monocarrier.

(2) Life of Ball Screw (Support unit)

The mean effective load is determined from the axial loads.

For calculation of the mean effective load, use

The life of ball screw is calculated by Eq. 5).

$$L = \ell \times \left(\frac{C_a}{f_W \cdot Fm}\right)^3 \times 10^6 \dots 5)$$

ℓ : Lead of ball screw (mm)

L: Life of ball screw (km)

C_a: Basic dynamic load rating of the ball screw (N)

Fm: Mean effective load acting on the ball screw (N)

 $f_{\rm w}$: Load factor (refer to **Table 4.15**)

The life of a support unit is calculated by Eq. 5). If the life of ball screw/support unit does not clear the required life, use a larger size Monocarrier.

After applying the calculations mentioned above, selection of the Monocarrier is completed.

Table 4.15 Values of load factor f...

Operating conditions	Load factor f _w
At smooth operation with no mechanical shock	1.0 – 1.2
At normal operation	1.2 – 1.5
At operation with mechanical shock and vibrations	1.5 – 3.0

C-1-4. 8 Example of Life Estimation

This section offers an example how to estimate the life of Monocarrier based on the life of each component.

<<Example of calculation-1>>

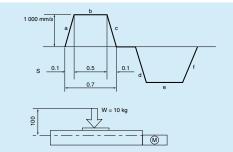


Fig. 4.8

1. Use condition

Stroke : 600 mm Maximum speed: 1000 mm/s Load mass : W = 10 kg $: a = 9.80 \text{ m/s}^2$ Acceleration Setting position: Horizontal Operating profile: See above figure

- 2. Selection of Model number (Interim Selection) Firstly, select a greater ball screw lead as the maximum speed is 1000 mm/s. The interim selection is MCM06060H20K00, a single slider specification MCM06 that has 600 mm stroke, as the stroke is 600 mm.
- 3. Calculation
- 3-1. Linear guide
- 3-1-1. Fatique life:

Multiply the result of the Eq. 1) by the dynamic equivalent coefficient (Table 4.14 single slider) to convert the load volume. From above operation profile.

- i) Constant speed $Fe_1 = Y_v \cdot F_v = Y_v \cdot W \cdot g$ $= 1 \cdot 10 \cdot 9.8 = 98 \text{ N}$
- ii) Accelerating $Fe_2 = Y_V \cdot F_V + Y_P \cdot \varepsilon_P \cdot M_P$

= 700 N

 $= 0.5 \cdot 10 \cdot 9.8 + 1 \cdot 65.1 \cdot 0.1 \cdot 100$

 $Fe_3 = Y_V \cdot F_V + Y_P \cdot \mathcal{E}_P \cdot M_P$ iii) Decelerating $= 0.5 \cdot 10 \cdot 9.8 + 1 \cdot 65.1 \cdot 0.1 \cdot 100$

= 700 N

Mean effective load Fm

$$Fm = \sqrt[3]{\frac{1}{L} \left(Fe_1^3 \cdot L_1 + Fe_2^3 \cdot L_2 + Fe_3^3 \cdot L_3 \right)}$$

$$= \sqrt[3]{\frac{1}{600} \left(98^3 \cdot 500 + 700^3 \cdot 50 + 700^3 \cdot 50 \right)}$$

$$= 387 \text{ N}$$

$$L = \left(\frac{C}{f_w \cdot F_m} \right)^3 \times L_a$$

$$= \left(\frac{15900}{1.2 \cdot 387} \right)^3 \times 20$$

$$= 8.02 \times 10^5 \text{ km}$$

3-1-2. Static safety factor: Divide the basic static load rating by the maximum load.

$$F_{\rm S} = \frac{C_{\rm o}}{Fe} = \frac{C_{\rm o}}{Fe_{\rm o}} = \frac{17\ 000}{700} = 24.2$$

3-2. Ball screw

3-2-1. Fatique life: Obtain the axial load of each stage of operation referring to the operation profile, then calculate the mean load.

By the process above.

i) Constant speed $Fe_1 = \mu \cdot W \cdot g = 0.01 \cdot 10 \cdot 9.8 = 0.98$

ii) Accelerating

 $Fe_2 = Fe_1 + W \cdot \alpha = 101 \text{ N}$

iii) Decelerating

$$Fe_2 = Fe_1 - W \cdot \alpha = 99 \text{ N}$$

Axial mean effective load Fm

$$Fm = \sqrt[3]{\frac{1}{L} \left(Fe_1^3 \cdot L_1 + Fe_2^3 \cdot L_2 + Fe_3^3 \cdot L_3 \right)}$$

$$= \sqrt[3]{\frac{1}{600} \left(0.98^3 \cdot 500 + 101^3 \cdot 50 + 99^3 \cdot 50 \right)}$$

$$= 55 \text{ N}$$

$$L = \left(\frac{C_a}{f_w \cdot F_m} \right)^3 \times \ell \times 10^6$$

$$= \left(\frac{4560}{1.2 \cdot 55} \right)^3 \times 20 \times 10^6 \text{ (mm)}$$

$$= 6.5 \times 10^6 \text{ km}$$

3-2-2. Static safety factor: Divide the basic static load rating by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{Fe} = \frac{C_{\rm 0a}}{Fe_2} = \frac{7.730}{101} = 76.5$$

3-2-3. Maximum rotational speed: According to the table of maximum speed on page C9. MCM06 with 20 mm lead and 600 mm stroke, is possible to operate under the maximum speed

of 1 000 mm/s.

3-3. Support unit

3-3-1. Fatique life: Use the axial load Fm = 55 N. that is the result of above calculation 3-2-1.

$$L = \left(\frac{C_s}{fw \cdot Fm}\right)^3 \times \ell \times 10^6 = \left(\frac{6550}{1.2 \times 55}\right)^3 \times 20 \times 10^6 \text{ (mm)}$$

3-3-2. Static safety factor: Divide the limit load by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{Fe} = \frac{C_{\rm 0a}}{Fe_2} = \frac{2730}{101} = 27.0$$

3-4. Result

MC	M06060H20K00	Linear guide	Ball screw	Support unit	
	F .: 116	8.02×	6.5×	1.95×	
	Fatigue life	10⁵ km	10 ⁶ km	10 ⁷ km	
Sta	tic safety factor	24.2	76.5	27.0	

In this case, the linear guide has the shortest fatique life of the components. Therefore, the linear guide fatigue life is used as the life of the Monocarrier. The interim selection of MCM06060H20K00, that is chosen based on the use conditions, satisfies the required life.

<<Example of calculation-2>>

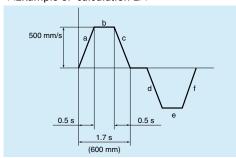


Fig. 4.9

1. Use condition

Stroke : 600 mm Maximum speed: 500 mm/s : W = 20 kgLoad mass Acceleration : 9.8 m/s² Setting position: Honizontal

Operating profile: See above figure

Fig. 4.10 2. Selection of Model number (Interim Selection) Select a 10 mm lead ball screw as the maximum speed is 500 mm/s.

The interim selection is MCM08068H10D00 as a double slider specification of MCM08 has 680 mm stroke, and the setting position is vertical.

3. Calculation

3-1. Linear guide

3-1-1. Fatigue life: Multiply the result of the Eq. 2) by the dynamic equivalent coefficient (Table 4.14. double slider) to convert the load volume. From operation profile (Fig. 4.9), the acceleration is 1 m/s².

- i) Constant speed $Fe_1 = Y_P \cdot \mathcal{E}_{Pd} \cdot M_P + Y_V \cdot \mathcal{E}_{Vd} \cdot M_V$ $= 1 \cdot 7.6 \cdot 20 \cdot 9.8 \cdot 0.15$ $+ 0.5 \cdot 7.6 \cdot 20 \cdot 9.8 \cdot 0.1$ = 298 N
- $Fe_2 = Y_P \cdot \varepsilon_{Pd} \cdot M_P + Y_V \cdot \varepsilon_{Vd} \cdot M_V$ ii) Accelerating $= 1 \cdot 7.6 \cdot 20 \cdot (9.8 + 1.0) \cdot$ $0.15 + 0.5 \cdot 7.6 \cdot 20 \cdot (9.8)$ $+ 1.0) \cdot 0.1 = 329 \text{ N}$
- $Fe_2 = Y_D \cdot \varepsilon_{Dd} \cdot M_D + Y_V \cdot \varepsilon_{Vd} \cdot M_V$ iii) Decelerating $= 1 \cdot 7.6 \cdot 20 \cdot (9.8 - 1.0)$ $0.15 + 0.5 \cdot 7.6 \cdot 20 \cdot (9.8)$ -1.0) $\cdot 0.1 = 268$ N

Mean effective load Fm

$$Fm = \sqrt[3]{\frac{1}{L} \left(Fe_1^3 \cdot L_1 + Fe_2^3 \cdot L_2 + Fe_3^3 \cdot L_3 \right)}$$

$$= \sqrt[3]{\frac{1}{600} \left(298^3 \cdot 350 + 329^3 \cdot 125 + 268^3 \cdot 125 \right)}$$

$$= 300 \text{ N}$$

$$L = L_a \times \left(\frac{C}{f_w \cdot F_m} \right)^3$$

$$L = L_a \times \left(\frac{C}{f_w \cdot F_m}\right)^3$$
= 10 \times \left(\frac{24 400}{1.2 \cdot 300}\right)^3
= 3.11 \times 10^6 \text{ km}

3-1-2. Static safety factor: Divide the basic static load rating by the maximum load.

$$F_{\rm s} = \frac{C_{\rm o}}{Fe} = \frac{C_{\rm o}}{Fe_{\rm o}} = \frac{22\,800}{329} = 69.3$$

3-2. Ball screw

3-2-1. Fatique life: Obtain the axial load of each stage of operation referring to the operation profile, then calculate the mean load.

i) Constant speed

 $Fe_1 = W \cdot g = 20 \cdot 9.8 = 196 \text{ N}$

ii) Accelerating

 $Fe_2 = Fe_1 + W \cdot \alpha = 196 + 20 \cdot 1 = 216 \text{ N}$

iii) Decelerating

 $Fe_3 = Fe_1 - W \cdot \alpha = 196 - 20 \cdot 1 = 176 \text{ N}$

Axial mean effective load Fm

$$Fm = \sqrt[3]{\frac{1}{L} \left(Fe_1^3 \cdot L_1 + Fe_2^3 \cdot L_2 + Fe_3^3 \cdot L_3 \right)}$$

$$= \sqrt[3]{\frac{1}{600} \left(196^3 \cdot 350 + 216^3 \cdot 125 + 176^3 \cdot 125 \right)}$$

$$= 197 \text{ N}$$

$$L = \ell \times \left(\frac{C_a}{f_w \cdot F_m} \right)^3 \times 10^6$$

$$= 10 \times \left(\frac{7070}{1 \cdot 2 \cdot 197} \right)^3 \times 10^6 \text{ (mm)}$$

$$= 2.67 \times 10^5 \text{ km}$$

3-2-2. Static safety factor: Divide the basic static load rating by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{Fe} = \frac{C_{\rm 0a}}{Fe_{\rm 2}} = \frac{12\,800}{216} = 59.2$$

3-3. Support unit

3-3-1. Fatigue life: Use the axial load Fm = 197 N, that is the result of above calculation 3-2-1.

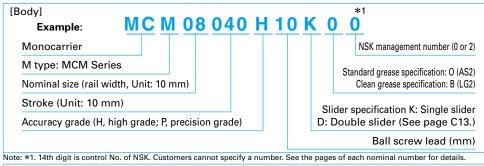
$$L = \ell \times \left(\frac{C_a}{fw \cdot Fm}\right)^3 \times 10^6 = 10 \times \left(\frac{7 \cdot 100}{1.2 \times 197}\right)^3 \times 10^6 \text{ (mm)}$$
$$= 2.70 \times 10^5 \text{ km}$$

3-3-2. Static safety factor: Divide the limit load by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{Fe} = \frac{C_{\rm 0a}}{Fe_2} = \frac{3\,040}{216} = 14.0$$

3-4. Result

MCM08068H10D00	Linear guide	Ball screw	Support unit
Fatiana life	3.11×		2.70 ×
Fatigue life	10 ⁶ km	10⁵ km	10⁵ km
Static safety factor	69.3	59.2	14.0


C-1-5 MCM Series	
1 MCM Series Reference Number	C25
Coding	
2 MCM Series Dimension Table of	
Standard Products	
MCM02	C26
MCM03	C27
MCM05	C31
MCM06	C35
MCM08	C39
MCM10	C43
3 MCM Series Accessories	
3. 1 Sensor Unit	C47
3. 2 Cover Unit	C51
3. 3 Motor Bracket	C53

MCM Series

C23

C-1-5 MCM Series

C-1-5.1 MCM Series Reference Number Coding

[With Accessories]

MC E 08 040 H 10 K 0 0 K 0 0 0 Example:

E: With MCM Accessories

NSK management number

Sensor unit

Cover unit

Note: Accessories are available separately.

Motor bracket

Table 1 Sensor unit (See page C47.)

Reference No. code	Specification	Reference No.
0	N/A	_
1	Proximity switch (normally close contact 3 pieces)	MC – SRxx – 10
2	Proximity switch (normally open contact 3 pieces)	MC – SRxx – 11
3	Proximity switch (normally open contact 1 piece, normally close contact 2 pieces)	MC – SRxx – 12
4	Photo sensor 3 pieces	MC – SRxx – 13

2) Sensor rail is not included in sensor unit. If you require the rail, please request separately. (See page C48 to C50.)

Table 2 Cover unit (See pages C51 to C52.)

Reference No. code	Specification	Reference No.
0	N/A	_
1	With top cover	MC - CVxxxxx - 01 (02) *
_	Full cover	MC – CVxxxxx – 00

Note 1) xxxxx: Reference number and stroke number 2)*: "-02" is only used for Monocarrier MCM03.

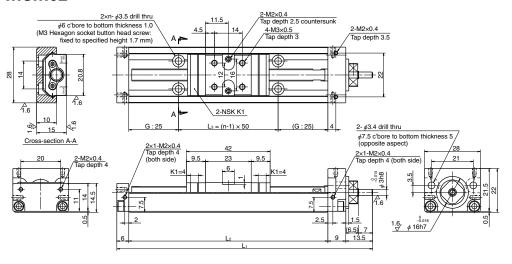

3) When a sensor unit is used, full cover unit cannot be used

Table 3 Motor bracket (See pages C53 to C69.)

		-						
Reference	Reference No.							
No. code	MCM03	MCM05	MCM06	MCM08	MCM10			
0	N/A	N/A	N/A	N/A	N/A			
1	MC-BK03-146-00	MC-BK05-145-00	MC-BK06-145-00	MC-BK08-145-00	MC-BK10-170-00			
2	MC-BK03-148-01	MC-BK05-146-00	MC-BK06-146-00	MC-BK08-146-00	MC-BK10-170-01			
3	MC-BK03-231-00	MC-BK03-231-00 MC-BK05-148-00 MC-BK06-148-00		MC-BK08-160-00	MC-BK10-190-00			
4	_	MC-BK05-160-00	MC-BK06-160-00	MC-BK08-170-00	MC-BK10-270-00			
5	_	MC-BK05-250-00	MC-BK06-170-00	MC-BK08-170-01	_			
6	_	_	MC-BK06-170-01	MC-BK08-190-00	_			
7	_	_	MC-BK06-250-00	MC-BK08-250-00	_			
8 – -		_	_	MC-BK08-270-00	_			
0=					N/A: Not applied			

C-1-5.2 MCM Series Dimension Table of Standard Products

MCM02

Dimension of MCM02 (Single slider)

Reference No.	Nominal stroke Stroke limit Ball screw lead			Bod	Body length (mm)		No. of mounting hole	Inertia	Mass
Reference No.	(mm)	(mm)	(mm)	L ₁	L ₂	Lз	n	$\times 10^{-7} (\text{kg} \cdot \text{m}^2)$	(kg)
MCM02005H01K			1						
MCM02005P01K	50	58		128.5	100	50	2	0.93	0.26
MCM02005H02K	50	50 56	2	120.5	100			0.93	0.20
MCM02005P02K			2						
MCM02010H01K		100 108	1	170 E	178.5 150	50 100	3	1.36	0.32
MCM02010P01K	100		'						
MCM02010H02K	100		2	176.5					
MCM02010P02K			2						
MCM02015H01K			1						
MCM02015P01K	150	158	1	228.5	200	150	4	1.81	0.00
MCM02015H02K	150	150 158	2	220.5	200	150	4	1.01	0.39
MCM02015P02K			2						

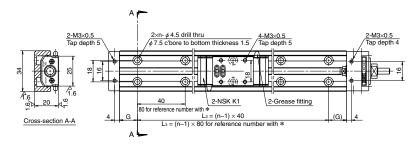
Monocarrier dynamic torque specification (N · cm)

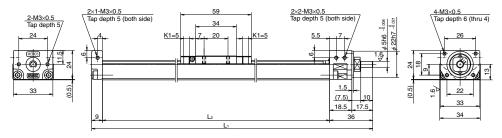
Ball screw lead

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table. 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	ioau iiiilii (N)
1		340 (High grade)	4 910		1	555 (High grade)		490
		405 (Precision)	4 910		ı	615 (Precision)		
2	φ6	340 (High grade)	2.000	615		555 (High grade)	2 120	
2		405 (Precision)	3 900		2	615 (Precision)		


Basic static moment load of linear guide


Clister	Basic static moment load (N · m)								
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}						
Single	24	8	8						

Accuracy grade: High grade (H)

MCM03 Accuracy grade: Precision (P)

Ball screw lead 1 and 2

Dimension of MCM03 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	В	ody len	gth (mn	٦)	No. of mounting hole	Inertia	Mass
Mererence No.	(mm)	(without K1)	(mm)	L ₁	L ₂	G	Lз	n	$\times 10^{-5} (kg \cdot m^2)$	(kg)
*MCM03005P01K00	50	56	1	160	115	17.5	80	2	0.015	0.6
*MCM03005P02K00	50	(66)	2	160	115	17.5	80		0.016	0.0
MCM03010P01K00	100	131	1	235	190	0 15	160		0.021	0.7
MCM03010P02K00	100	(141)	2					5	0.022	
MCM03015P01K00	03015P01K00 181 1	1	285	35 240	20	200	6	0.025	0.8	
MCM03015P02K00	130	(191)	2	200	240	20	200	0	0.026	0.0

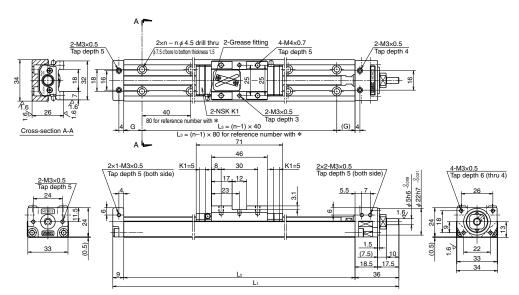
Note: Bolt hole pitch L_3 on items marked with * is 80 mm.

Monocarrier	dynamic	torque	specifi	cation	(N · cm)

ionocarrier dynamic tor	que specili	cation (iv · cm)
Ball screw lead	1	0.2 – 1.7
(mm)	2	0.2 - 1.7

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.
- 4. A spacer plate is required when using a cover unit or sensor unit for MCM03 with the lead of 1 or 2 mm. (See page C51.)

Basic load rating


Ξ	Lead	Shaft dia		Basic dynamic		Basic static lo				
	l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)	
(mm)		(mm)	C_{a}	C	C_{a}	L_{a} (km)	C_{0a}	C_0	ioad iimit (iv)	
Ξ	1		735 10 900		0.070	1	4.000			
	2	φ6	735	8 650	2 670	2	1 230	4 900	1 040	

Basic static moment load of linear guide

Cli-l	Basic static moment load (N · m)								
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}						
Single	68	28	28						

MCM03

Ball screw lead 5, 10 and 12

Dimension of MCM03 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	В	ody len	gth (mn	۱)	No. of mounting hole	Inertia	Mass	
11010101100110	(mm)	(without K1)	(mm)	L ₁	L ₂	G	Lз	n	× 10 ⁻⁵ (kg · m ²)	(kg)	
*MCM03005H05K00		69	5						0.057		
*MCM03005H10K00	50	(79)	10	185	140	30	80	2	0.080	0.6	
*MCM03005H12K00			12						0.097		
MCM03010H05K00		119	5	235		15	160		0.073		
MCM03010H10K00	100	(129)	10		190			5	0.092	0.7	
MCM03010H12K00		(123)	12						0.109		
MCM03015H05K00		169 (179)	5	285	240	20	200	6	0.089		
MCM03015H10K00	150		10						0.105	0.8	
MCM03015H12K00			12						0.122		
MCM03020H05K00		219	5						0.104		
MCM03020H10K00	200	(229)	10	335	290	25	240	7	0.118	0.9	
MCM03020H12K00		(223)	12						0.135		
MCM03025H05K00		269	5						0.120		
MCM03025H10K00	250	(279)	10	385	340	30	280	8	0.131	1.0	
MCM03025H12K00			12						0.147		

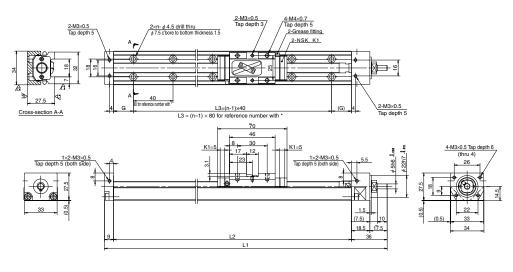
Note: Bolt hole pitch L_3 on items marked with * is 80 mm.

Monocarrier dynamic tor	que specifi	cation (N · cm)	Notes:
Ball screw lead	5	0.2 - 2.5	1. Frictional resistance of NSK K1 is included in dynamic torque in table.
(mm)	10	0.3 – 3.0	2. Grease is packed into ball screw, linear guide parts and support unit.
(11111)	12		Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo	ad rating (N)	
l	d	Ball screw	Linear guides	Support unit Rated running distance		Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	L _a (km)	C_{0a}	C_0	load limit (IV)
5		1 810 7 850			5	2 880		
10	φ8	φ8	6 250	2 670	10	1 000	6 620	1 040
12	,	1 230	5 880		12	1 690		

Basic static moment load of linear quide


Baoic otatio	momont road	or inioar gara							
004	Basic static moment load (N · m)								
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}						
Single	92	51	51						

C27

MCM03

Accuracy grade: High grade (H)

Ball screw lead 15

Dimension of MCM03 (Single slider)

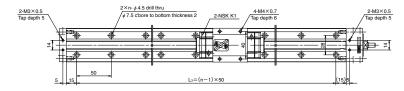
Reference No.		Nominal stroke	Stroke limit	Ball screw lead	Ball screw diameter	Е	Body len	gth (mm	1)	No. of mounting hole	Inertia	Mass
	Mererence No.	(mm)	(without K1)	(mm)	(mm)	<i>L</i> 1	L2	G	Lз	n	×10 ⁻⁴ (kg ⋅m ²)	(kg)
*	MCM03005H15K00	50	70 (80)			185	140	30	80	2	0.183	0.67
	MCM03010H15K00	100	120(130)			235	190	15	160	5	0.222	0.77
	MCM03015H15K00	150	170(180)	15	ø 10	285	240	20	200	6	0.260	0.87
	MCM03020H15K00	200	220(230)			335	290	25	240	7	0.298	0.97
	MCM03025H15K00	250	270(280)			385	340	30	280	8	0.336	1.07

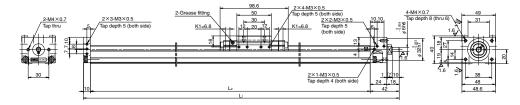
Note: Bolt hole pitch L_3 on items marked with * is 80 mm.

Monocarrier dynamic torque	e specifica	ition (N · cm)
Ball screw lead (mm)	15	0.3 - 5.6

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.
- 4. When a cover unit is added, an optional spacer plate is required. (See page C51.)


Basic load rating


Lead	Shaft dia Basic dynamic load rating (N)					Basic static l	Support unit		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guide	load limit (N)	
(mm)	(mm)	C_{a}	С	C_{a}	L_a (km)	C_{0a}	C_0	load limit (N)	
15	φ10	1 760	5 440	2 670	15	2 680	6 620	1 040	

Basic static load of linear guide

Slider	Basic st	atic moment load	l (N · m)		
Siluei	Rolling M _{RQ}	Pitching M _{PO}	Yawing M _{YO}		
Single	92	51	51		

Ball screw lead 5, 10 and 20

Dimension of MCM05 (Single slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod L ₁	y length (r L ₂	mm) <i>L</i> ₃	No. of mounting hole n	Inertia × 10 ⁻⁴ (kg · m ²)	Mass (kg)
MCM05005H05K00		81	5		180	150		0.025	
MCM05005H10K00	50	(95)	10	232			4	0.035	1.4
MCM05005H20K00		(55)	20					0.073	
MCM05010H05K00		131	5		230	200	5	0.031	
MCM05010H10K00	100	(145)	10	282				0.040	1.6
MCM05010H20K00		(143)	20					0.078	
MCM05015H05K00		181 (195)	5	332		280 250	6	0.036	
MCM05015H10K00	150		10		280			0.046	1.8
MCM05015H20K00			20					0.084	
MCM05020H05K00		231	5					0.042	
MCM05020H10K00	200	(245)	10	382	330	300	7	0.051	2.0
MCM05020H20K00		(243)	20					0.089	
MCM05025H05K00		281	5					0.047	
MCM05025H10K00	250	(295)	10	432	380	350	8	0.057	2.2
MCM05025H20K00			20					0.095	

Monocarrier dynamic tore	Monocarrier dynamic torque specification (N · cm)								
	5	1.0 - 4.8							
Ball screw lead	10	1.1 - 5.8							
(mm)	20	1.6 - 7.9							

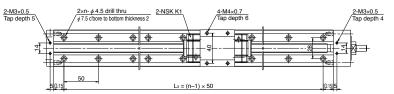
30

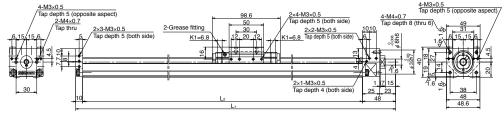
1.8 - 11.1

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating


Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo	Support unit load limit (N)	
l	d	Ball screw	Linear guides	Linear guides Support unit		Ball screw		
(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load IIIIII (IV)
5		3 760	15 600	4 400	5	6 310		
10		2 420	12 400		10	3 790	40.000	1 450
20	φ12	2 420	9 850		20	3 790	10 900	
30		3 260	8 600	6 550	30	5 400		2 730


Basic static moment load of linear guide

Clister	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single	229	89	89

MCM05

Ball screw lead 30

Dimension of MCM05 (Single slider)

Reference No.	Nominal stroke Stroke limit (mm) Ball screw lead Body length (mm)		nm)	No. of mounting hole	Inertia	Mass			
Mererence No.	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	× 10 ⁻⁴ (kg · m ²)	(kg)
MCM05030H05K00			5	482				0.053	
MCM05030H10K00	300	331	10		430	400	9	0.063	2.3
MCM05030H20K00	300	(345)	20		450	400		0.101	2.0
MCM05030H30K00			30	488				0.164	1
MCM05040H05K00			5			500		0.064	
MCM05040H10K00	400	0 431 (445)	10	582	530		11	0.074	2.7
MCM05040H20K00	400		20		000			0.112	
MCM05040H30K00			30	588	1			0.175	2.8
MCM05050H05K00			5	682			13	0.076	3.1
MCM05050H10K00	500	531	10		630	600		0.085	
MCM05050H20K00	300	(545)	20		030	000	15	0.123	
MCM05050H30K00			30	688				0.186	3.2
MCM05060H05K00			5					0.087	
MCM05060H10K00	600	631	10	782	730	700	15	0.096	3.5
MCM05060H20K00	000	(645)	20		, 50	'30		0.134	
MCM05060H30K00			30	788				0.198	3.6

Monocarrier dynamic torque specification (N · cm)

	5	1.0 - 4.8
Ball screw lead	10	1.1 - 5.8
(mm)	20	1.6 - 7.9
	30	1.8 – 11.1

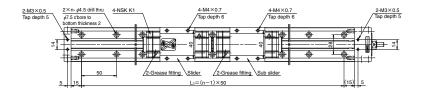
Notes:

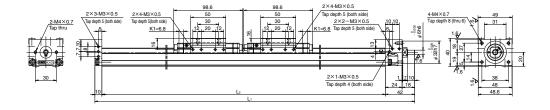
- Frictional resistance of NSK K1 is included in dynamic torque in table.
 Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	C	C_{a}	L_a (km)	C_{0a}	C_0	load lillit (N)
5		3 760	15 600		5	6 310		
10		2 420	12 400	4 400	10	3 790		1 450
20	φ12	2 420	9 850		20	3 790	10 900	
30		3 260	8 600	6 550	30	5 400		2 730

Basic static moment load of linear guide


Slider	Basic static moment load (N · m)						
Silder	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}				
Single	229	89	89				


C31 C32

Accuracy grade: High grade (H)

MCM05 (Double slider)

Accuracy grade: High grade (H)

Dimension of MCM05 (Double slider)

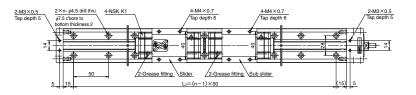
	Reference No.	Nominal stroke	minal stroke Stroke limit (mm)		Boo	ly length (r	nm)	No. of mounting hole	Inertia	Mass
	Reference No.	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	× 10 ⁻⁴ (kg · m ²)	(kg)
	MCM05006H10D00	60	82 (110)	10	332	280	250	6	0.058	2.3
	MCM05011H10D00	110	132 (160)	10	382	330	300	7	0.064	2.5
П	MCM05016H10D00	160	182 (210)	10	432	380	350	8	0.070	2.7
	MCM05021H10D00	210	232	10	482	430	400	0	0.075	2.8
Ξ	MCM05021H20D00	210	(260)	20	402	430	400	9	0.151	2.0

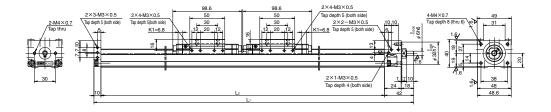
lotes.

Monocarrier dynamic torque specification (N · cm)							
Ball screw lead	10	1.5 - 7.6					
(mm)	20	2.3 – 11.8					

1. Frictional resistance of NSK K1 is included in dynamic torque in table.

- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating


Lead	Shaft dia		Basic dynamic	Basic dynamic load rating (N)			Basic static load rating (N)		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)	
(mm)	(mm)	C_{a}	С	C_{a}	L_{a} (km)	C_{0a}	C_0	load liffiit (N)	
5		3 760	15 600		5	6 310			
10	φ 12	2 420	12 400	4 400	10	3 790	10 900	1 450	
20		2 420	9 850		20	3 790			

Basic static moment load of linear guide

Clister	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Double	455	765	765

MCM05 (Double slider)

Dimension of MCM05 (Double slider)

D (N	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass
Reference No.	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	× 10 ⁻⁴ (kg · m ²)	(kg)
MCM05031H10D00	310	332	10	582	530	500	11	0.086	3.2
MCM05031H20D00	310	(360)	20	502	550	500	''	0.162	3.2
MCM05041H10D00	410	432	10	682	630	600	12	0.098	3.6
MCM05041H20D00	410	(460)	20	002	630	600	13	0.174	3.0
MCM05051H10D00	510	532	10	782	730	700	15	0.109	4.2
MCM05051H20D00	510	(560)	20	/82	/30	700	15	0.185	4.2

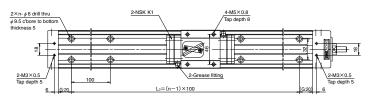
Monocarrier dynamic torque specification (N · cm)

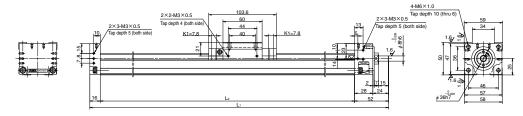
Ball screw lead	10	1.5 - 7.6
(mm)	20	2.3 – 11.8

Notes:

- Frictional resistance of NSK K1 is included in dynamic torque in table.
 Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating


	Lead	Shaft dia		Basic dynamic load rating (N)				Basic static load rating (N)		
_	l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)	
	(mm)	(mm)	C_{a}	С	C_{a}	L _a (km)	C_{0a}	C_0	load IIITIII (N)	
	5		3 760	15 600		5	6 310			
	10	φ 12	2 420	12 400	4 400	10	3 790	10 900	1 450	
	20		2 420	9 850		20	3 790			


Basic static moment load of linear guide

Clister	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Double	455	765	765

C33

Accuracy grade: High grade (H)

Dimension of MCM06 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass
Reference No.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	\times 10 ⁻⁴ (kg \cdot m ²)	(kg)
		86	5					0.066	
◇MCM06005H10K00	50	(102)	10	258	190	100	2	0.077	2.7
◇MCM06005H20K00		(102)	20					0.122	
MCM06010H05K02		136	5					0.080	
MCM06010H10K00	100	(152)	10	308	240	200	3	0.092	3.0
MCM06010H20K00		(102)	20					0.137	
		186	5					0.095	
	150	(202)	10	358	290	200	3	0.106	3.5
		(202)	20					0.152	
MCM06020H05K02		236	5					0.110	
MCM06020H10K00	200	(252)	10	408	340	300	4	0.121	3.8
MCM06020H20K00		(202)	20					0.167	1
		286	5					0.125	
	250	(302)	10	458	390	300	4	0.136	4.2
		(552)	20					0.181	
MCM06030H05K02		336	5					0.139	
MCM06030H10K00	300	(352)	10	508	440	400	5	0.150	4.5
MCM06030H20K00		(002)	20					0.196	

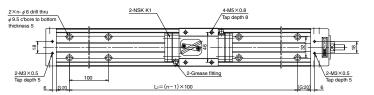
Notes: 1. Dimension G is 45 for items marked with \diamondsuit .

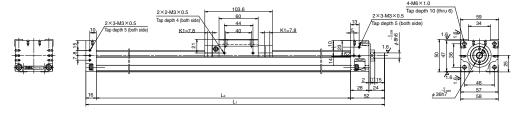
2. The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Grease	Lead	High-grade, precision-grade
Standard	5	02
Standard	10, 20	00
LG2	5	B2
LGZ	10, 20	B0

Monocarrier dynamic torque specification (N · cm)							
B.II. I. I.	5	1.9 - 7.4					
Ball screw lead (mm)	10	2.2 - 8.6					
(11111)	20	2.8 – 11.0					


- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating

	Lead	Shaft dia		Basic dynamic load rating (N)				ad rating (N)	
	l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
	(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load littit (N)
	5		7 070	25 200		5	12 800		
_	10	φ 15	7 070	20 000	6 550	10	12 800	17 000	2 730
	20		4 560	15 900		20	7 730		

Basic static moment load of linear guide

Clister	Basic st	atic moment load	d (N·m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single	415	174	174

Dimension of MCM06 (Single slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod L ₁	y length (r L2	nm) <i>L</i> 3	No. of mounting hole	Inertia × 10 ⁻⁴ (kg · m ²)	Mass (kg)		
MCM06040H05K02	(11111)	,	5	-1	-2	L-3	***	0.169	(kg)		
MCM06040H10K00	400	436 (452)	10	608	540	500	6	0.180	5.2		
MCM06040H20K00		(432)	20					0.225			
MCM06050H05K02		536	5					0.198			
MCM06050H10K00	500	(552)	10	708	640	600	7	0.209	6.0		
MCM06050H20K00		(/	20					0.255			
MCM06060H05K02	600			636	5				_	0.228	
MCM06060H10K00		(652)	10	808	740	700	8	0.239	6.7		
MCM06060H20K00		, , ,	20					0.284			
MCM06070H05K02		736	5				_	0.257			
MCM06070H10K00	700	(752)	10	908	840	800	9	0.268	7.4		
MCM06070H20K00			20					0.314			
MCM06080H05K02	000	836	5	4 000	040	000	40	0.286	0.4		
MCM06080H10K00	800	(852)	10	1 008	940	900	10	0.298	8.1		
MCM06080H20K00			20					0.343			

Note: The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Grease	Lead	High-grade, precision-gra
Standard	5	02
Stariuaru	10, 20	00
LG2	5	B2
LGZ	10, 20	B0

Monocarrier dynamic torque specification (N · cm)					
D.II	5	1.9 - 7.4	2		
Ball screw lead (mm)	10	2.2 - 8.6	•		
(111/11)	20	20 110	٠		

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table. 2. Grease is packed into ball screw, linear
- guide parts and support unit. 3. Consult NSK for life estimates under
- large moment loads.

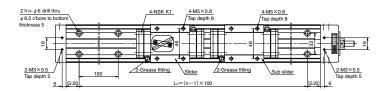
Basic load rating

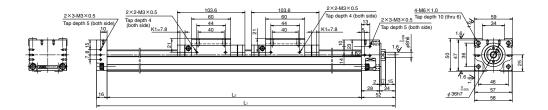
Lead	Shaft dia	Basic dynamic load rating (N)				Basic static lo	ad rating (N)	
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	C	$C_{\rm a}$	$L_{\rm a}$ (km)	C_{0a}	C_0	load liffit (N)
5		7 070	25 200		5	12 800		
10	φ15	7 070	20 000	6 550	10	12 800	17 000	2 730
20		4 560	15 900		20	7 730		

Basic static moment load of linear guide

CI: I	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single	415	174	174

C35


C36


MCM06

Accuracy grade: High grade (H)

MCM06 (Double slider)

Accuracy grade: High grade (H)

Dimension of MCM06 (Double slider)

Deference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass
Reference No.	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	$ imes 10^{-4}$ (kg \cdot m ²)	(kg)
MCM06011H05D02	110	132	5	408	340	300	4	0.114	4.4
MCM06011H10D00	110	(164)	10	400	340	300	4	0.136	4.4
MCM06021H05D02		232	5					0.143	
MCM06021H10D00	210	(264)	10	508	440	400	5	0.166	5.1
MCM06021H20D00		(204)	20					0.257	
MCM06031H05D02		332	5					0.173	
MCM06031H10D00	310	(364)	10	608	540	500	6	0.195	5.8
MCM06031H20D00		(304)	20					0.286	

Note: The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Grease	Lead	High-grade, precision-grade
Standard	5	02
Standard	10, 20	00
1 G2	5	B2
LGZ	10, 20	B0

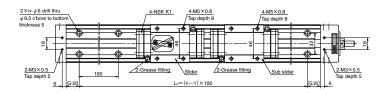
Monocarrier dynamic torque specification (N ⋅ cm) Ball screw lead 5 2.3 − 8.5 10 2.7 − 10.9

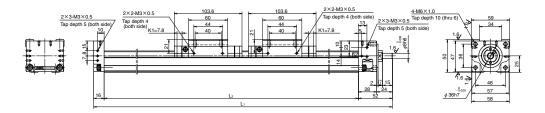
20

4.0 - 15.9

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
 3. Consult NSK for life estimates under large moment loads.


Basic load rating


Lead	Shaft dia		Basic dynamic load rating (N)				ad rating (N)	
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C _a	L_{a} (km)	C_{0a}	C_0	load liffiit (N)
5		7 070	25 200		5	12 800		
10	φ 15	7 070	20 000	6 550	10	12 800	17 000	2 730
20		4 560	15 900		20	7 730		

Basic static moment load of linear guide

Clister	Basic st	Basic static moment load (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Double	825	1 220	1 220					

MCM06 (Double slider)

Dimension of MCM06 (Double slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass
neterence No.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	\times 10 ⁻⁴ (kg · m ²)	(kg)
MCM06041H05D02		100	5					0.202	
MCM06041H10D00	410	432 (464)	10	708	640	600	7	0.224	6.6
MCM06041H20D00		(464)	20					0.316	
MCM06051H10D02	510	532	10	808	740	700	8	0.254	7.3
MCM06051H20D00	510	(564) 20	000 /40	740	740 700	0	0.345	7.3	
MCM06061H10D02	610	632	10	908	840	800	9	0.283	8.0
MCM06061H20D00	010	(664)	20	300	040	800	9	0.375	0.0
MCM06071H10D02	710	732	10	1 008	940	900	10	0.313	8.7
MCM06071H20D00	,10	(764)	20	1 000	5-40	500	10	0.404	0.7

Note: The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Grease	Lead	High-grade, precision-grade
Standard	5	02
Stariuaru	10, 20	00
LG2	5	B2
LUZ	10, 20	B0

Monocarrier dynamic torque specification (N · cm)

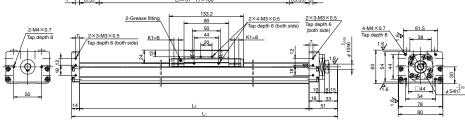
D.II	5	2.3 - 8.5
Ball screw lead (mm)	10	2.7 – 10.9
(11111)	20	4.0 - 15.9

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

	Lead	Shaft dia		Basic dynamic load rating (N)			Basic static lo		
	l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
	(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load IIITIII (IV)
_	5		7 070	25 200		5	12 800		
	10	φ 15	7 070	20 000	6 550	10	12 800	17 000	2 730
	20		4 560	15 900		20	7 730		


Basic static moment load of linear guide

Cli-l	Basic static moment load (N · m)				
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}		
Double	825	1 220	1 220		

C37 C38

Accuracy grade: High grade (H)

Dimension of MCM08 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass		
Reference No.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	\times 10 ⁻⁴ (kg \cdot m ²)	(kg)		
◇MCM08005H05K02	50	86	5	285	220	100	2	0.082	4.1		
◇MCM08005H10K00	30	(102)	10	200	220	100	_	0.100	4.1		
MCM08010H05K02		136	5	335	270	200		0.097			
MCM08010H10K00	100	(152)	10				3	0.114	4.6		
MCM08010H20K00		(102)	20					0.190			
		186	5					0.111			
◇MCM08015H10K00	150	150	150	(202)	10	385	320	200	3	0.129	5.1
		(===)	20					0.205			
MCM08020H05K02	200	200 236	236	5	435	370	300	4	0.126	5.5	
MCM08020H10K00			(252)	10					0.144		
MCM08020H20K00		(202)	20					0.220			
		286	5					0.141			
	250	(302)	10	485	420	300	4	0.159	6.0		
		(002)	20					0.235			
MCM08030H05K02		336	5					0.156			
MCM08030H10K00	300	300	300	300 (352)	10	535	470	400	5	0.173	6.5
MCM08030H20K00		(002)	20	20				0.249			

Notes: 1. Dimension G is 60 for items marked with \diamondsuit .

2. The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

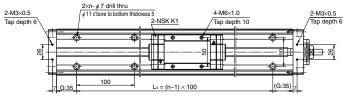
Coding for columns 13 and 14

Grease	Lead	High-grade, precision-grade
Standard	5	02
Staridard	10, 20	00
I G2	5	B2
LUZ	10, 20	B0
	10, 20	

Monocarrier dynamic tore	que specifi	cation (N · cm)	Ν
	5	1.0 - 5.9	1
Ball screw lead	10	2.0 - 7.8	2
(mm)	20	2.5 – 10.8	9
	30	2.8 – 12.0	3

- I. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit. 3. Consult NSK for life estimates under large

Basic load rating


Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo	ad rating (N)	
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load liffiit (N)
5		7 070	30 800		5	12 800		
10	, 15	7 070	24 400		10	12 800		
20	φ 15	4 560	19 400	7 100	20	7 730	22 800	3 040
30		5 070	16 930		30	8 730		

Basic static moment load of linear guide

CI:-I	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single	770	300	300

MCM08

Ball screw lead 30

Dimension of MCM08 (Single slider)

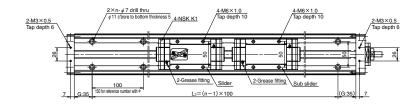
Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass	
Reference No.	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	× 10 ⁻⁴ (kg · m ²)	(kg)	
MCM08040H05K02			5					0.185		
MCM08040H10K00	400	436	10	635	570	500	6	0.203	7.4	
MCM08040H20K00	400	(452)	20	033	370	300	"	0.279	7.4	
MCM08040H30K00			30					0.405		
MCM08050H05K02			5					0.214		
MCM08050H10K00	500	536	10	735	670	670 600	600 7	7	0.232	
MCM08050H20K00	500	(552)	20	/35	670			0.308	8.4	
MCM08050H30K00			30	1			0.435			
MCM08060H05K02	600		5					0.244		
MCM08060H10K00		600	636 (652)	10	835	770	700	8	0.262	9.3
MCM08060H20K00				20					0.338	
MCM08060H30K00			30					0.464	1	
MCM08070H05K02			5					0.273		
MCM08070H10K00	700	736	10	935	870	800	9	0.291	10.5	
MCM08070H20K00	700	(752)	20	935	0/0	000	9	0.367	1 10.5	
MCM08070H30K00			30					0.494		
MCM08080H05K02		836	5					0.303		
MCM08080H10K00	800	K00 800	(852)	10	1 035	970	900	10	0.320	11.2
MCM08080H20K00		(002)	20					0.396		
Note: The pominal number in the above table is for high grade grade appointing. In the case of other positiontings, see the following										

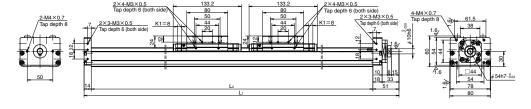
Note: The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Basic load rating

Grease	Lead	High-grade, precision-grade
Standard	5	02
Standard	10, 20	00
I G2	5	B2
LGZ	10, 20	B0


fonocarrier dynamic tord	que specifi	cation (N · cm)	
	5	1.0 - 5.9	
Ball screw lead	10	2.0 - 7.8	:
(mm)	20	2.5 – 10.8	
	30	2.8 - 12.0	٠


- 1. Frictional resistance of NSK K1 is included in dynamic torque in table. 2. Grease is packed into ball screw, linear guide
- parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo	ad rating (N)	
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load littlit (N)
5		7 070	30 800		5	12 800		
10	φ15	7 070	24 400		10	12 800		
20	φισ	4 560	19 400	7 100	20	7 730	22 800	3 040
30		5 070	16 930		30	8 730		İ

Basic static moment load of linear guide

Clister	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single	770	300	300

Dimension of MCM08 (Double slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	ly length (r	nm)	No. of mounting hole	Inertia	Mass
neterence No.	(mm)	(without K1)	(mm)	<i>L</i> ₁	L ₂	Lз	n	× 10 ⁻⁴ (kg · m ²)	(kg)
*MCM08008H10D00	80	103 (135)	10	435	370	300	3	0.169	6.5
MCM08018H10D00	180	203	10	535	470	400	5	0.199	7.5
MCM08018H20D00	100	(235)	20	555	470	400	5	0.351	7.5
MCM08028H10D00	280	303	10	635	570	500	6	0.228	8.4
MCM08028H20D00	200	(335)	20	635	570	500	0	0.380	0.4
MCM08038H10D00	380	403	10	735	670	600	7	0.257	9.4
MCM08038H20D00	360	(435)	20	735	0/0	000	/	0.409	1 9.4

Notes: 1. Bolt hole pitch L3 on item marked with * is 150 mm.

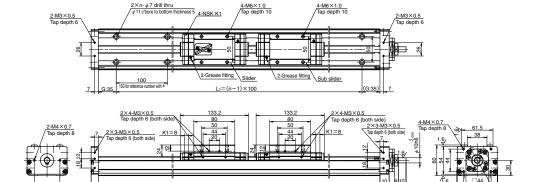
2. The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Grease	Lead	High-grade, precision-grade
Standard	10, 20	00
LG2	10.20	B0

Monocarrier dynamic tor	que specifi	cation (N · cm)
Ball screw lead	10	2.5 – 10.8
(mm)	20	4.0 - 17.2

Ball screw lead	10	2.5 – 10.8
(mm)	20	4.0 - 17.2


- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	Shaft dia		Basic dynamic	load rating (N)	Basic static lo			
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	L_{a} (km)	C_{0a}	C_0	load liffit (N)
10		7 070	24 400	= 400	10	12 800		
20	φ 15	4 560	19 400	7 100	20	7 730	22 800	3 040

Basic static moment load of linear guide

Clister	Basic static moment load (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}				
Double	1 540	2 050	2 050				

Dimension of MCM08 (Double slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod <i>L</i> ₁	y length (r L2	nm) <i>L</i> 3	No. of mounting hole	Inertia ×10 ⁻⁴ (kg·m ²)	Mass (kg)
MCM08048H10D00 MCM08048H20D00	480	503 (535)	10 20	835	770	700	8	0.287 0.439	10.3
MCM08058H10D00 MCM08058H20D00	580	603 (635)	10 20	935	870	800	9	0.316 0.468	11.5
MCM08068H10D00 MCM08068H20D00	680	703 (735)	10 20	1 035	970	900	10	0.346 0.498	12.2

Note: The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

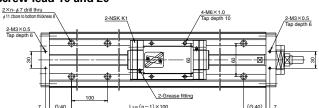
Coding for columns 13 and 14

Grease	Lead	High-grade, precision-grade
Standard	10, 20	00
LG2	10, 20	B0

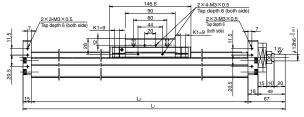
Monocarrier dynamic torque specification (N · cm)

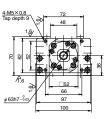
Ball screw lead	10	2.5 – 10.8
(mm)	20	4.0 - 17.2

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table. 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating

Lead	Shaft dia		Basic dynamic	load rating (N)	Basic static lo			
l	d	Ball screw	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ball screw	Linear guides	Support unit load limit (N)	
(mm)	(mm)	C_{a}			L_a (km)	C_{0a}	C_0	load IIITIIt (IV)
10	=	7 070	24 400	7.400	10	12 800		0.040
20	φ15	4 560	19 400	7 100	20	7 730	22 800	3 040


Basic static moment load of linear guide


		Ū					
004	Basic static moment load (N · m)						
Slider	Rolling M _{RO}		Yawing M _{YO}				
Double	1 540	2 050	2 050				

C41 C42

Dimension of MCM10 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	mm)	No. of mounting hole	Inertia	Mass
neierence No.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	$\times 10^{-4} (kg \cdot m^2)$	(kg)
MCM10010H10K00	100	133	10	362	280	200	2*	0.332	7.8
MCM10010H20K00	100	(151)	20	302	200	200	۷۳	0.446	7.0
◇MCM10015H10K00	150	183	10	412	330	300	4	0.378	8.7
	150	(201)	20	412	330	300	4	0.492	6.7
MCM10020H10K00	200	233	10	462	380	300	300 4	0.425	9.5
MCM10020H20K00		(251)	20	402	300	300		0.539	5.5
◇MCM10025H10K00	250	283	10	512	430 400	400	5	0.472	10.4
	250	(301)	20	312		3	0.586	10.4	
MCM10030H10K00	300	333	10	562	480	400	5	0.519	11.2
MCM10030H20K00	300	(351)	20	302	400	400	5	0.633	11.2
MCM10040H10K00	400 433 10	662	580	500	6	0.612	13.0		
MCM10040H20K00	400	(451)	20	002	500	300	0	0.726	13.0
MCM10050H10K00		533	10					0.706	
MCM10050H20K00	500	(551)	20	762	680	600	7	0.820	14.6
MCM10050H30K00		(186)	30					1.010	

Notes: 1) Dimension G is 15 for items marked with \diamondsuit .

2) *: Use mounting holes on each end of the rail.

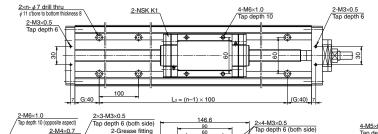
Monocarrier	dynamic	torque	specifi	cation	(N	. с

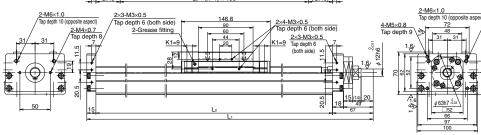
nocumer dynamic ton	que opeem	cution (iv ciri)
Dall a see land	10	2.7 – 10.8
Ball screw lead (mm)	20	3.1 – 12.7
(11111)	20	E 1 10 0

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating


Lead	Shaft dia		Basic dynamic	load rating (N)	Basic static lo			
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C _a	С	C _a	L _a (km)	C_{0a}	C_0	ioau iiriit (iv)
10		11 000	33 500		10	21 100		
20	φ20	7 060	26 600	7 600	20	12 700	29 400	3 380
30		11 700	23 200		30	22 700		1


Basic static moment load of linear guide

Clister	Basic static moment load (N · m)							
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Single	1 170	425	425					

Accuracy grade: High grade (H)

Ball screw lead 30

Dimension of MCM10 (Single slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod L ₁	y length (r L ₂	mm) <i>L</i> ₃	No. of mounting hole	Inertia × 10 ⁻⁴ (kg · m ²)	Mass (kg)
MCM10060H10K00		633	10				_	0.800	
MCM10060H20K00	600	(651)	20	862	780	700	8	0.914	16.3
MCM10060H30K00		(031)	30					1.104	
MCM10070H10K00		733	10					0.893	
MCM10070H20K00	700	(751)	20	962	880	800	9	1.007	18.0
MCM10070H30K00		(751)	30					1.197	
MCM10080H10K00		833	10					0.987	
MCM10080H20K00	800	(851)	20	1 062	980	900	10	1.101	19.7
MCM10080H30K00		(001)	30					1.291	
MCM10090H10K00	900	933	10	1 162	1 080	1 000	11	1.081	21.4
MCM10090H20K00	300	(951)	20	1 102	1 000	1 000	''	1.195	21.4
◇MCM10100H10K00	1 000	1 033	10	1 262	1 180	1 000	11	1.174	23.1
◇MCM10100H20K00	1 000	(1 051)	20	1 202	1 100	1 000	11	1.288	23.1

Note: Dimension G is 90 for items marked with ♦.

Monocarrier dynamic torque specification (N \cdot cm)

Dell sees lead	10	2.7 – 10.8
Ball screw lead (mm)	20	3.1 – 12.7
(11111)	30	5.1 – 18.0

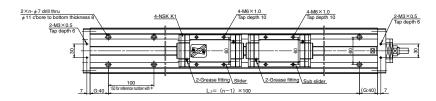
Notes:

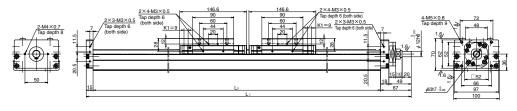
- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	Shaft dia		Basic dynamic	load rating (N)	Basic static lo			
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	C	C_{a}	L_{a} (km)	C_{0a}	C_0	ioau iii/iit (N)
10		11 000	33 500		10	21 100		
20	φ20	7 060	26 600	7 600	20	12 700	29 400	3 380
30		11 700	23 200		30	22 700		

Basic static moment load of linear guide

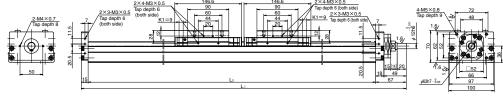

0	Basic static moment load (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}				
Single	1 170	425	425				


C43 C44

MCM10 (Double slider)

Accuracy grade: High grade (H)

MCM10 (Double slider)



Dimension of MCM10 (Double slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod L ₁	y length (r	mm) <i>L</i> 3	No. of mounting hole	Inertia × 10 ⁻⁴ (kg · m ²)	Mass (kg)
*MCM10007H10D00	70	86 (122)	10	462	380	300	3	0.463	11.0
MCM10017H10D00	170	186	10	562	480	400	5	0.557	12.7
MCM10017H20D00	170	(222)	20	302	400	400	5	0.785	12.7
MCM10027H10D00	270	286	10	662	580	500	6	0.650	13.4
MCM10027H20D00	270	(322)	20	002	300	300	0	0.878	13.4
MCM10037H10D00	370	386	10	762	680	600	7	0.744	15.1
MCM10037H20D00	370	(422)	20	702	000	000	,	0.972	15.1
MCM10047H10D00	470	486	10	862	780	700	8	0.838	17.8
MCM10047H20D00	470	(522)	20	002	700	700	0	1.066	17.0

Note: Bolt hole pitch L_3 on item marked with * is 150 mm.

2-M3×0.5	SK K1 4-M6×1.0 Tap depth 10	4-M6×1.0 Tap depth 10	2-M3×0.5 Tap depth 6
Tap depth 6		8 - 8 - 8	
100	2-Grease fitting Slider 2-Greas	se fitting Sub slider	<u> </u>
_7G:40	L ₃ = (n-1) ×100	(G:40)	<u>7</u>

Dimension of MCM10 (Double slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod L ₁	y length (r L ₂	nm) L ₃	No. of mounting hole	Inertia × 10 ⁻⁴ (kg · m ²)	Mass (kg)
MCM10057H10D00 MCM10057H20D00	570	586 (622)	10 20	962	880	800	9	0.931 1.159	19.5
MCM10067H10D00 MCM10067H20D00	670	686 (722)	10 20	1 062	980	900	10	1.025 1.253	21.2
	870	886 (922)	10 20	1 262	1 180	1 000	11	1.212 1.440	23.6

Note: Dimension G is 90 for items marked with \diamondsuit .

Monocarrier dynamic torque specification (N · cm)						
Ball screw lead 10 4.2 – 15.6						
(mm)	20	5.0 – 19.6				

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	Shaft dia		Basic dynamic	Basic static load rating (N)					
	l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
	(mm)	(mm)	C_{a}	С	C_{a}	L _a (km)	C_{0a}	C_0	ioau iirriit (iv)
	10		11 000	33 500		10	21 100		
		φ 20	7 060	26 600	7 600	20	12 700	29 400	3 380

Basic static moment load of linear guide

Clister.	Basic static moment load (N · m)					
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}			
Double	2 340	2 940	2 940			

Monocarrier dynamic torque specification (N \cdot cm)

Ball screw lead	10	4.2 – 15
(mm)	20	5.0 - 19

Notes

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	Lead Shaft dia Basic dynamic load rating (N)					Basic static lo		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	C	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load liffiit (N)
10		11 000	33 500	= 000	10	21 100		
20	φ20	7 060	26 600	7 600	20	12 700	29 400	3 380

Basic static moment load of linear guide

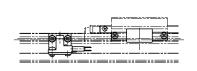
	Clister	Basic static moment load (N · m)				
_	Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}		
	Double	2 340	2 940	2 940		

C45 C46

Proximity switch

(Example of assembly)

	Model No.	F	A (mm)	B (mm)	Body width W (mm)		
MCM02		MC-SR02-00	MC-SR02-01	MC-SR02-02	17	2	28
MCM03 MCM05		MC-SR03-10	MC-SR03-11	MC-SR03-12	17	3	34
		MC-SR05-10	MC-SR05-11	MC-SR05-12	17	15	48.6
	MCM06	MC-SR06-10	MC-SR06-11	MC-SR06-12	17	19	58
	MCM08	MC-SR08-10	MC-SR08-11	MC-SR08-12	16	27	80
	MCM10	MC-SR10-10	MC-SR10-11	MC-SR10-12	16	35	100
Quantity	Proximity switch (normally open contact)	_	3 1		E2S-W13 (OMRON Corp.)		
Qualitity	Proximity switch (normally close contact)	3	_	2	E2S-W1	4 (OMRO	N Corp.)


Notes: 1. See page C135 for proximity switch specification.

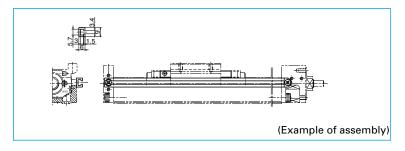
A sensor unit consists of sensors, a sensor dog and sensor mounting parts.
 Sensor unit for MCM02 contains two sensor dogs.

4. A spacer plate is required when using a cover unit or sensor unit for MCM03 with the lead of 1 or 2 mm. (Refer to page C51.)

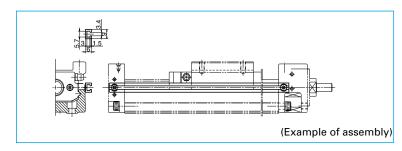
Photo sensor

(Example of assembly)

Model No.	Reference No.	C (mm)	D (mm)	Body width W (mm)	Remarks
MCM03	MC-SR03-13	24	0.5	34	
MCM05	MC-SR05-13	24	5	48.6	EE-SX674 (OMRON Corp.)
MCM06	MC-SR06-13	24	9	58	3 sets
MCM08	MC-SR08-13	23	17	80	(EE-1001 connector attachment)
MCM10	MC-SR10-13	22	24	100	


Notes: 1. See page C136 for photo sensor specification.
2. A sensor unit consists of sensors, a sensor dog and sensor mounting parts.
3. A spacer plate is required when using a cover unit or sensor unit for MCM03 with the lead of 1 or 2 mm. (Refer to page C51.)

(1) Sensor Rail


Sensor rail for MCM03: MC-SRL3- * * * *

Sensor rail for MCM05: MC-SRL5- * * * *

Sensor rail for MCM02: MC-SRL2- * * * * Sensor rail for MCM06: MC-SRL6- * * * * Sensor rail for MCM08: MC-SRL8- * * * * Sensor rail for MCM10: MC-SRL1- * * * *

Notes: 1. * * * * is the same as rail dimension L_2 .

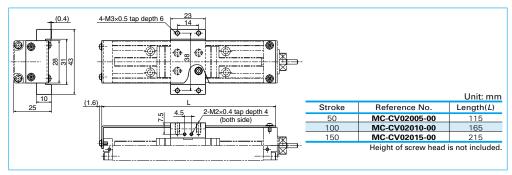
- 2. Please assemble the attached seat between the sensor rail and the support unit for MCM03, MCM05, MCM06 and MCM08.
- 3. For combinations of sensors and rails, see pages C49 to C50.

MCM Series and Sensor Rail Combination Table

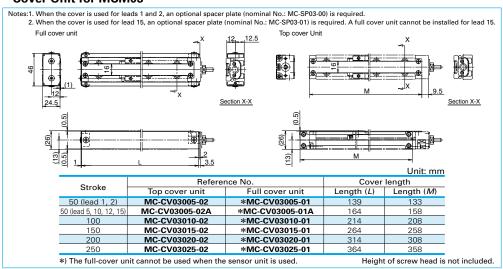
Table 4	,		
Model No.	Body length L ₂ (mm)	Reference No.	Sensor rail reference No
	100	MCM02005H01K MCM02005P01K MCM02005H02K MCM02005P02K	MC-SRL2-0100 [※]
MCM02	150	MCM02010H01K MCM02010P01K MCM02010H02K MCM02010P02K	MC-SRL2-0150
	200	MCM02015H01K MCM02015P01K MCM02015H02K MCM02015P02K	MC-SRL2-0200
	115	MCM03005P01K00 MCM03005P02K00	MC-SRL3-0115
	140	MCM03005H05K00 MCM03005H10K00 MCM03005H12K00 MCM03005H15K00	MC-SRL3-0140
	190	MCM03010P01K00 MCM03010P02K00 MCM03010H05K00 MCM03010H10K00 MCM03010H12K00 MCM03010H15K00	MC-SRL3-0190
MCM03	240	MCM03015P01K00 MCM03015P02K00 MCM03015H05K00 MCM03015H10K00 MCM03015H12K00 MCM03015H15K00	MC-SRL3-0240
	290	MCM03020H05K00 MCM03020H10K00 MCM03020H12K00 MCM03020H15K00	MC-SRL3-0290
	340	MCM03025H05K00 MCM03025H10K00 MCM03025H12K00 MCM03025H15K00	MC-SRL3-0340
	180	MCM05005H05K00 MCM05005H10K00 MCM05005H20K00	MC-SRL5-0180
	230	MCM05010H05K00 MCM05010H10K00 MCM05010H20K00	MC-SRL5-0230
	280	MCM05015H05K00 MCM05015H10K00 MCM05015H20K00 MCM05006H10D00	MC-SRL5-0280
	330	MCM05020H05K00 MCM05020H10K00 MCM05020H20K00 MCM05011H10D00	MC-SRL5-0330
MCM05	380	MCM05025H05K00 MCM05025H10K00 MCM05025H20K00 MCM05016H10D00	MC-SRL5-0380
	430	MCM05030H05K00 MCM05030H10K00 MCM05030H20K00 MCM05030H30K00 MCM05021H10D00 MCM05021H20D00	MC-SRL5-0430
	530	MCM05040H05K00 MCM05040H10K00 MCM05040H20K00 MCM05040H30K00 MCM05031H10D00	MC-SRL5-0530

Model No.	Body length L ₂ (mm)	Reference No.	Sensor rail reference No
	530	MCM05031H20D00	MC-SRL5-0530
	630	MCM05050H05K00 MCM05050H10K00 MCM05050H20K00 MCM05050H30K00 MCM05050H30K00 MCM05041H10D00 MCM05041H20D00	MC-SRL5-0630
MCM05	730	MCM05060H05K00 MCM05060H10K00 MCM05060H20K00 MCM05060H30K00 MCM05051H10D00 MCM05051H20D00	MC-SRL5-0730
	190	MCM06005H05K02 MCM06005H10K00 MCM06005H20K00	MC-SRL6-0190
	240	MCM06010H05K02 MCM06010H10K00 MCM06010H20K00	MC-SRL6-0240
	290	MCM06015H05K02 MCM06015H10K00 MCM06015H20K00	MC-SRL6-0290
	340	MCM06020H05K02 MCM06020H10K00 MCM06020H20K00 MCM06011H05D02 MCM06011H10D00	MC-SRL6-0340
	390	MCM06025H05K02 MCM06025H10K00 MCM06025H20K00	MC-SRL6-0390
	440	MCM06030H05K02 MCM06030H10K00 MCM06030H20K00 MCM06021H05D02 MCM06021H10D00 MCM06021H20D00	MC-SRL6-0440
MCM06	540	MCM06040H05K02 MCM06040H10K00 MCM06040H20K00 MCM06031H05D02 MCM06031H10D00 MCM06031H20D00	MC-SRL6-0540
	640	MCM06050H05K02 MCM06050H10K00 MCM06050H20K00 MCM06041H05D02 MCM06041H10D00 MCM06041H20D00	MC-SRL6-0640
	740	MCM06060H05K02 MCM06060H10K00 MCM06060H20K00 MCM06051H10D00 MCM06051H20D00	MC-SRL6-0740
	840	MCM06070H05K02 MCM06070H10K00 MCM06070H20K00 MCM06061H10D00 MCM06061H20D00	MC-SRL6-0840
	940	MCM06080H05K02 MCM06080H10K00 MCM06080H20K00 MCM06071H10D00 MCM06071H20D00	MC-SRL6-0940

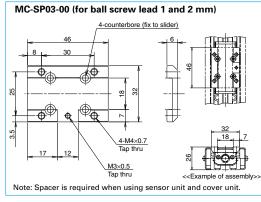
^{*)} When using NSK standard sensors, prepare two sensor rails. Two sensor rails will also be required for another Monocarriers depending on signal points of sensors. Contact NSK for details.

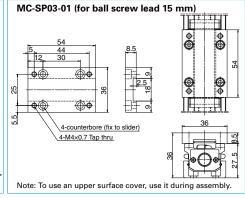

Model No.	Body length L ₂ (mm)	Reference No.	Sensor rail reference No.
	220	MCM08005H05K02 MCM08005H10K00	MC-SRL8-0220
	270	MCM08010H05K02 MCM08010H10K00 MCM08010H20K00	MC-SRL8-0270
	320	MCM08015H05K02 MCM08015H10K00 MCM08015H20K00	MC-SRL8-0320
	370	MCM08020H05K02 MCM08020H10K00 MCM08020H20K00 MCM08008H10D00	MC-SRL8-0370
	420	MCM08025H05K02 MCM08025H10K00 MCM08025H20K00	MC-SRL8-0420
	470	MCM08030H05K02 MCM08030H10K00 MCM08030H20K00 MCM08018H10D00 MCM08018H20D00	MC-SRL8-0470
MCM08	570	MCM08040H05K02 MCM08040H10K00 MCM08040H20K00 MCM08040H30K00 MCM08028H10D00 MCM08028H20D00	MC-SRL8-0570
	670	MCM08050H05K02 MCM08050H10K00 MCM08050H20K00 MCM08050H30K00 MCM08038H10D00 MCM08038H20D00	MC-SRL8-0670
	770	MCM08060H05K02 MCM08060H10K00 MCM08060H20K00 MCM08060H30K00 MCM08048H10D00 MCM08048H20D00	MC-SRL8-0770
	870	MCM08070H05K02 MCM08070H10K00 MCM08070H20K00 MCM08070H30K00 MCM08058H10D00 MCM08058H20D00	MC-SRL8-0870
	970	MCM08080H05K02 MCM08080H10K00 MCM08080H20K00 MCM08080H30K00 MCM08068H10D00 MCM08068H20D00	MC-SRL8-0970

Model No.	Body length L ₂ (mm)	Reference No.	Sensor rail reference No.
	280	MCM10010H10K00 MCM10010H20K00	MC-SRL1-0280
	330	MCM10015H10K00 MCM10015H20K00	MC-SRL1-0330
	380	MCM10020H10K00 MCM10020H20K00 MCM10007H10K00	MC-SRL1-0380
	430	MCM10025H10K00 MCM10025H20K00	MC-SRL1-0430
	480	MCM10030H10K00 MCM10030H20K00 MCM10017H10K00 MCM10017H20K00	MC-SRL1-0480
	580	MCM10040H10K00 MCM10040H20K00 MCM10027H10K00 MCM10027H20K00	MC-SRL1-0580
MCM10	680	MCM10050H10K00 MCM10050H20K00 MCM10050H30K00 MCM10037H10K00 MCM10037H20K00	MC-SRL1-0680
	780	MCM10060H10K00 MCM10060H20K00 MCM10060H30K00 MCM10047H10K00 MCM10047H20K00	MC-SRL1-0780
	880	MCM10070H10K00 MCM10070H20K00 MCM10070H30K00 MCM10057H10K00 MCM10057H20K00	MC-SRL1-0880
	980	MCM10080H10K00 MCM10080H20K00 MCM10080H30K00 MCM10067H10K00 MCM10067H20K00	MC-SRL1-0980
	1 080	MCM10090H10K00 MCM10090H20K00	MC-SRL1-1080
	1 180	MCM10100H10K00 MCM10100H20K00 MCM10087H10K00 MCM10087H20K00	MC-SRL1-1180

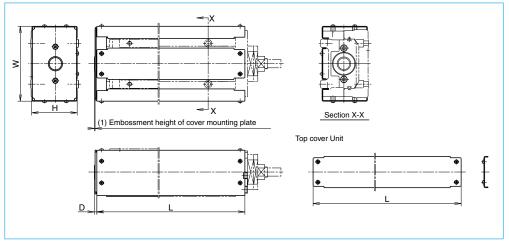

NSI

C-1-5. 3 Cover Unit


Cover Unit for MCM02



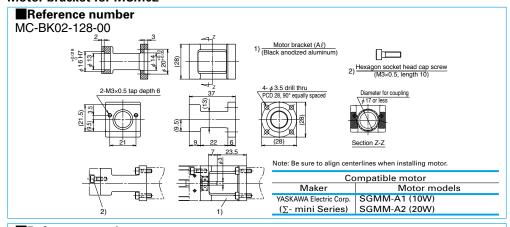
Cover Unit for MCM03

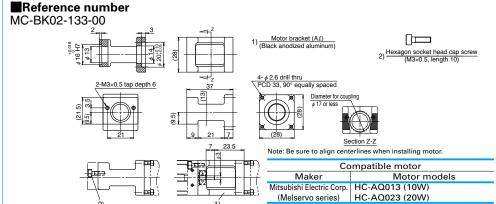


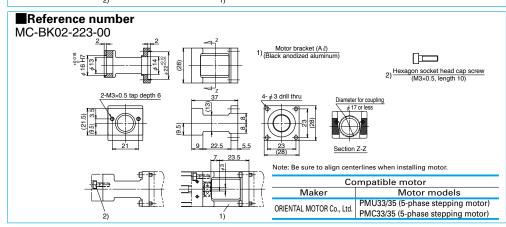
Spacer for MCM03 (Optional)

Cover unit for MCM05, 06, 08, and 10

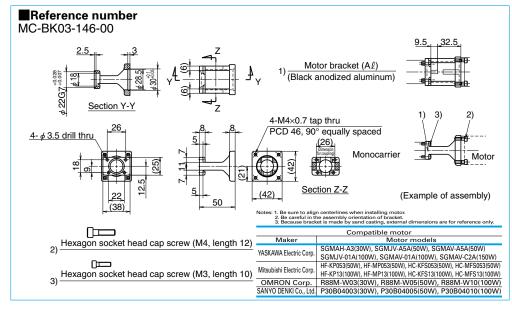
Unit: mm

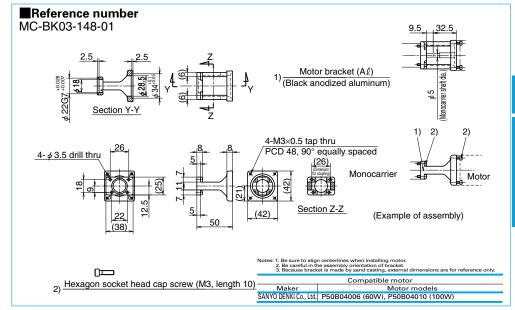

Maralal Nia	Str	oke	Cover unit r	eference No.	Cover length				
Model No.	Single slider	Double slider	Top cover Unit	Full cover Unit*1	Length (L)	Height (H)	Width (W)	End part (D)	
	50	_	MC-CV05005-01	MC-CV05005-00	200				
	100	_	MC-CV05010-01	MC-CV05010-00	250	1			
	150	60	MC-CV05015-01	MC-CV05015-00	300	1			
	200	110	MC-CV05020-01	MC-CV05020-00	350	1			
MCM05	250	160	MC-CV05025-01	MC-CV05025-00	400	38.5	65	2.6	
	300	210	MC-CV05030-01	MC-CV05030-00	450				
	400	310	MC-CV05040-01	MC-CV05040-00	550	1			
	500	410	MC-CV05050-01	MC-CV05050-00	650	1			
	600	510	MC-CV05060-01	MC-CV05060-00	750	1			
	50	_	MC-CV06005-01	MC-CV06005-00	225				
	100	_	MC-CV06010-01	MC-CV06010-00	275	1			
	150	_	MC-CV06015-01	MC-CV06015-00	325	1			
	200	110	MC-CV06020-01	MC-CV06020-00	375	1		_*2	
Г	250	_	MC-CV06025-01	MC-CV06025-00	425	1			
MCM06	300	210	MC-CV06030-01	MC-CV06030-00	475	48.5	75		
	400	310	MC-CV06040-01	MC-CV06040-00	575	40.5			
	500	410	MC-CV06050-01	MC-CV06050-00	675				
	600	510	MC-CV06060-01	MC-CV06060-00	775				
	700	610	MC-CV06070-01	MC-CV06070-00	875	1			
	800	710	MC-CV06080-01	MC-CV06080-00	975	1			
	50	_	MC-CV08005-01	MC-CV08005-00	248				
	100	_	MC-CV08010-01	MC-CV08010-00	298				
	150	_	MC-CV08015-01	MC-CV08015-00	348				
	200	80	MC-CV08020-01	MC-CV08020-00	398				
	250	_	MC-CV08025-01	MC-CV08025-00	448				
MCM08	300	180	MC-CV08030-01	MC-CV08030-00	498	56.5	90	2.6	
	400	280	MC-CV08040-01	MC-CV08040-00	598				
	500	380	MC-CV08050-01	MC-CV08050-00	698				
	600	480	MC-CV08060-01	MC-CV08060-00	798				
	700	580	MC-CV08070-01	MC-CV08070-00	898				
	800	680	MC-CV08080-01	MC-CV08080-00	998				
	100	_	MC-CV10010-01	MC-CV10010-00	308				
	150	_	MC-CV10015-01	MC-CV10015-00	358				
	200	70	MC-CV10020-01	MC-CV10020-00	408				
	250	_	MC-CV10025-01	MC-CV10025-00	458				
	300	170	MC-CV10030-01	MC-CV10030-00	508				
мсм10	400	270	MC-CV10040-01	MC-CV10040-00	608	66.5	110	3.6	
IVICIVITU	500	370	MC-CV10050-01	MC-CV10050-00	708	00.5	110	3.6	
	600	470	MC-CV10060-01	MC-CV10060-00	808				
	700	570	MC-CV10070-01	MC-CV10070-00	908				
	800	670	MC-CV10080-01	MC-CV10080-00	1008]			
	900	_	MC-CV10090-01	MC-CV10090-00	1108]			
Г	1000	870	MC-CV10100-01	MC-CV10100-00	1208				

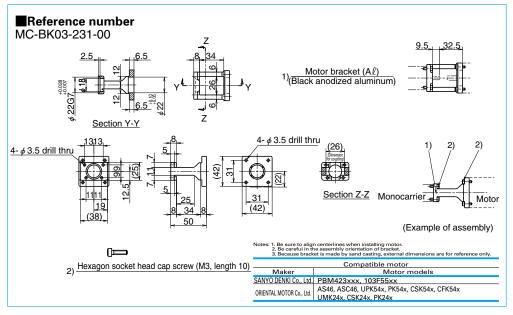

Note: The dimensions of cover shown above do not include the head height of fixing machine screws. Add the head of machine screws of approximately 2.5 mm to the outer measurement of a cover unit. Set a margin for mechanical interference with surrounding components.

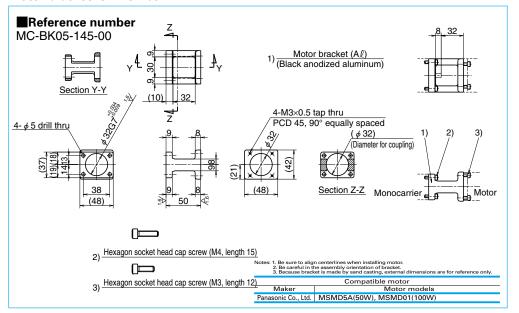

- *1) When using sensor unit, full-cover unit cannot be used.
- *2) A cover mounting plate is not used to MCM06.

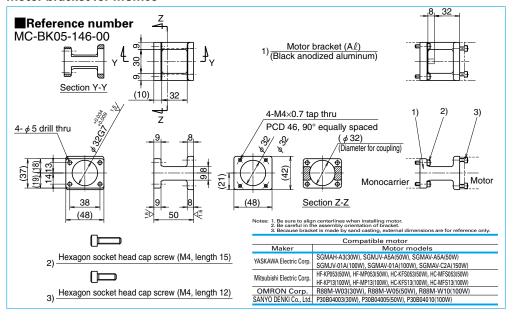
Motor models are subject to change at the motor manufacturers. For details, please contact the manufacturer.

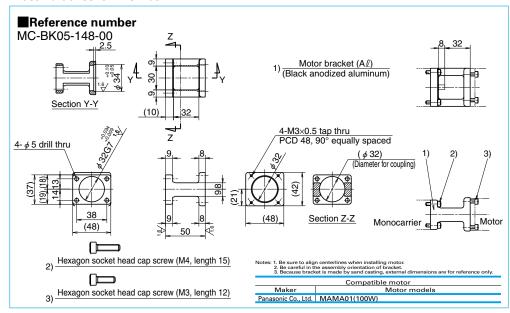

Motor bracket for MCM02

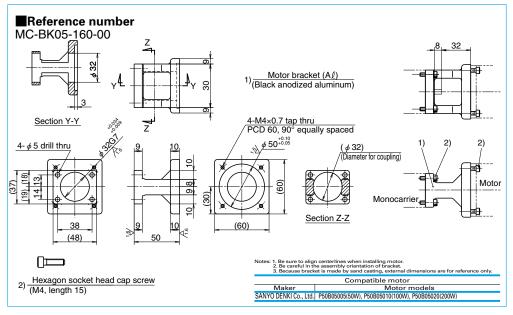


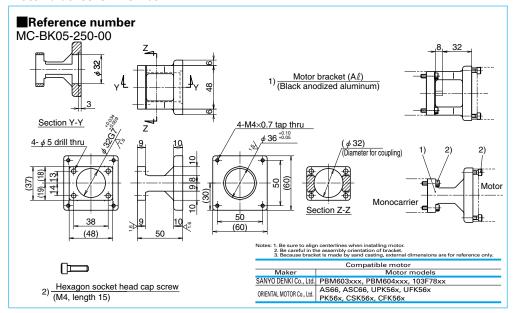


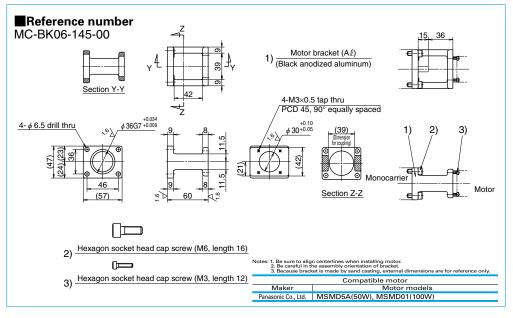

Motor bracket for MCM03

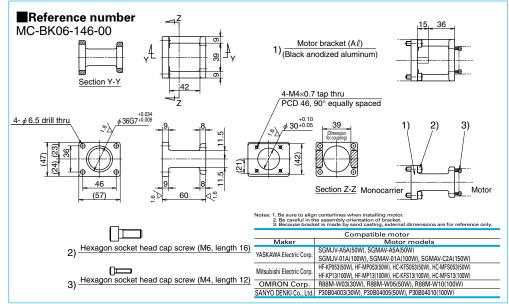


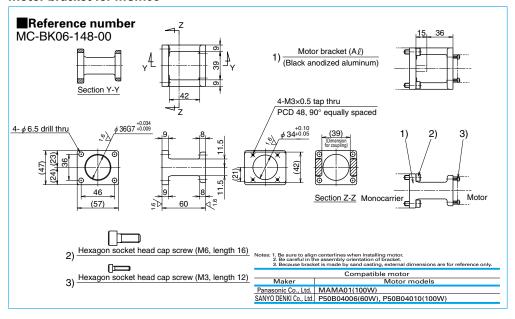


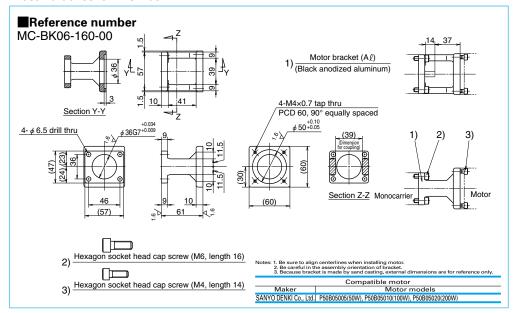

Motor bracket for MCM05


Motor bracket for MCM05

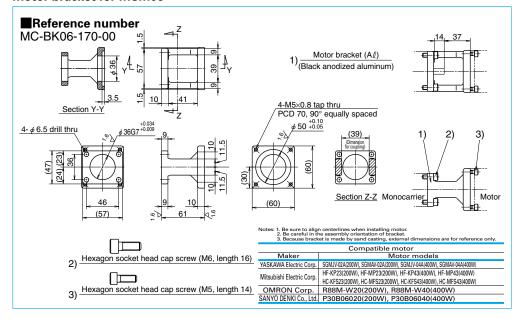


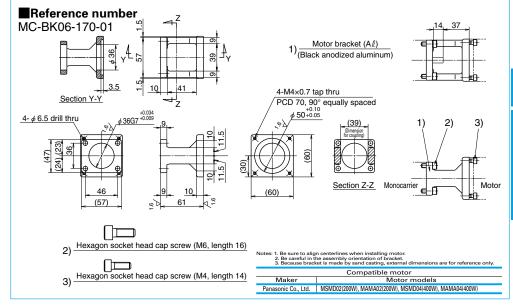


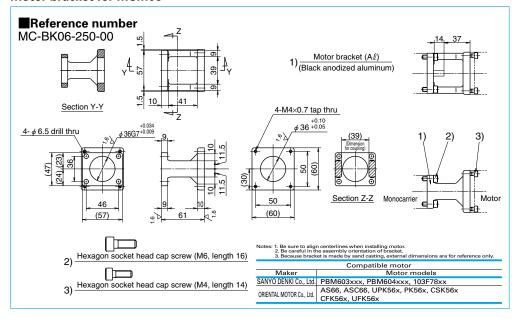

Motor bracket for MCM05

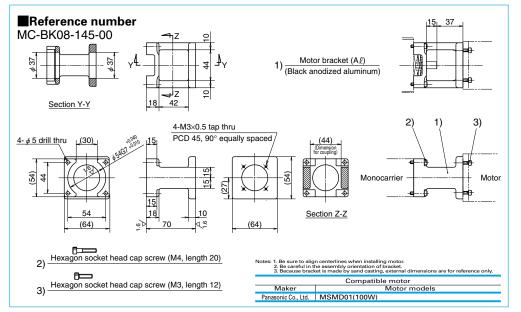


Motor bracket for MCM06

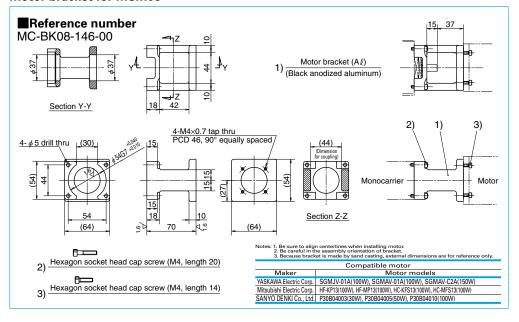


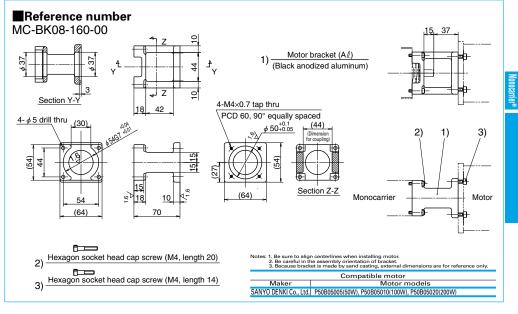


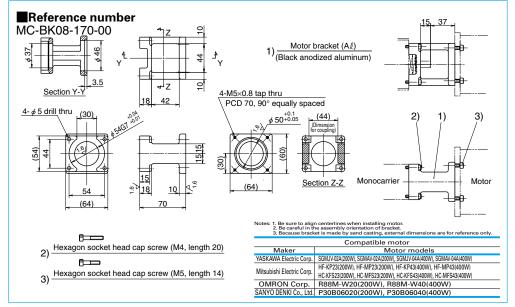


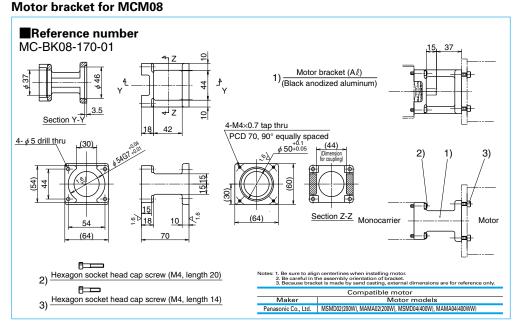


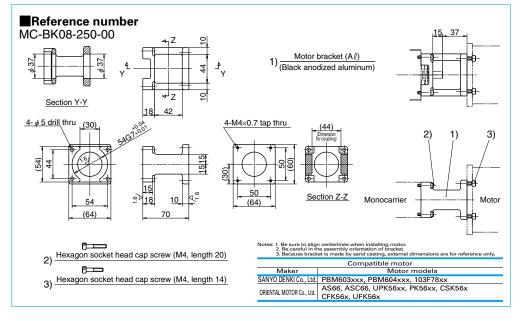
Motor bracket for MCM06

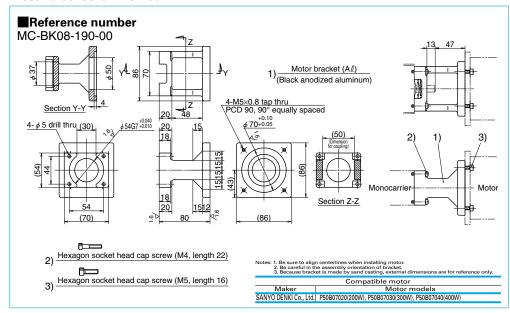


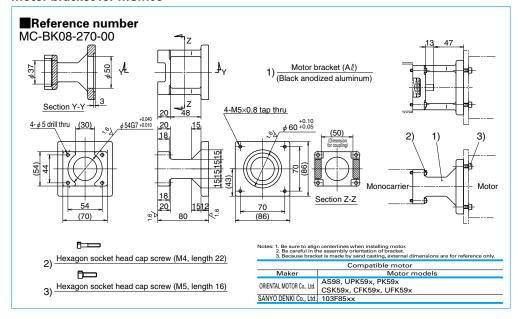


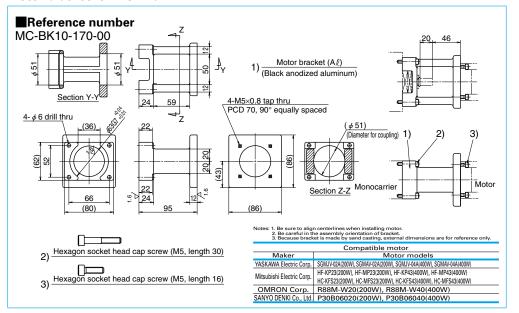

Motor bracket for MCM08



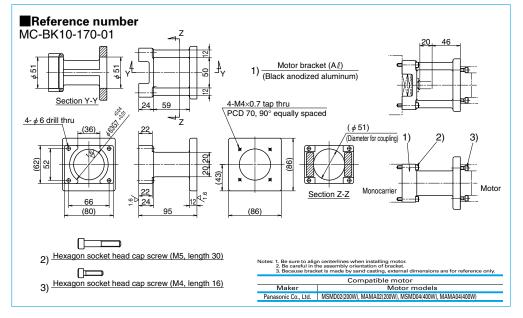

NSI

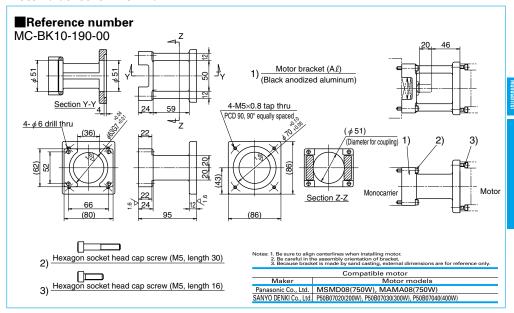

Motor bracket for MCM08

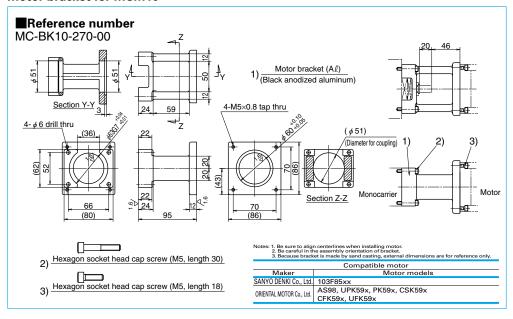

Motor bracket for MCM08



NSI


Motor bracket for MCM08


Motor bracket for MCM10


Motor bracket for MCM10

Motor bracket for MCM10

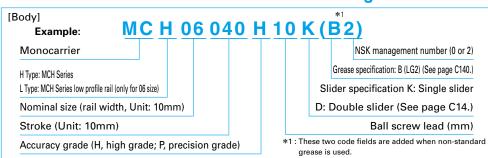
Motor bracket for MCM10

Motor Availability Table of Motor Bracket for MCM Series

Table	e 5																
Model No.	Reference No.	Motor bracket	Material	Stepping motor					Wattag	e of AC serve	o motor						
viodel No.	code	reference No.	Motor manufacturer	model No.	10	20	30	50	60	100	150	200	300	400	750		
	1	MC-BK02-128-00	YASKAWA Electric Corp.		SGMM-A1	SGMM-A2											
MCM02	2	MC-BK02-133-00	Mitsubishi Electric Corp.		HC-AQ013	HC-AQ023											
IVICIVIUZ	3	MC-BK02-223-00	ORIENTAL MOTOR Co., Ltd.	PMU33/35 (5-phase)													
	3	IVIC-BKU2-223-00	ONIENTAL WOTON CO., Etd.	PMC33/35 (5-phase)													
			YASKAWA Electric Corp.				SGMAH-A3	SGMJV-A5A		SGMJV-01A	SGMAV-C2A						
			IAGINAVIA Electric corp.				SGIVIAI IPAS	SGMAV-A5A		SGMAV-01A	JGIVIAV-CZA						
								HF-KP053		HF-KP13							
	1	MC BYON 146 OO	Mitsubishi Electric Corp.					HF-MP053		HF-MP13							
	I IM	WIC-BK03-140-00	Witsubishi Electric Corp.					HC-KFS053		HC-KFS13							
								HC-MFS053		HC-MFS13							
			OMRON Corp.				R88M-W03	R88M-W05		R88M-W10							
мсмоз			SANYO DENKI Co., Ltd.				P30B04003	P30B04005		P30B04010							
	2	MC-BK03-148-01	SANYO DENKI Co., Ltd.						P50B04006	P50B04010							
			SANYO DENKI Co., Ltd.	PBM423xxx													
			SANYO DENKI Co., Ltd.	103F55xx													
				AS46, ASC46													
	3	MC-BK03-231-00		UPK54x, PK54x													
			ORIENTAL MOTOR Co., Ltd.	CSK54x, CFK54x													
				UMK24x, CSK24x													
				PK24x													
	1	MC-BK05-145-00	Panasonic Co., Ltd.					MSMD5A		MSMD01							
			YASKAWA Electric Corp.				SGMAH-A3	SGMJV-A5A		SGMJV-01A	SGMAV-C2A				1		
								SGMAV-A5A		SGMAV-01A				\vdash	—		
	2	MC-BK05-146-00						HF-KP053		HF-KP13							
			Mitsubishi Electric Corp.					HF-MP053		HF-MP13							
								HC-KFS053		HC-KFS13							
								HC-MFS053		HC-MFS13							
			OMRON Corp.				R88M-W03	R88M-W05		R88M-W10							
MCM05			SANYO DENKI Co., Ltd.				P30B04003	P30B04005		P30B04010							
	3	MC-BK05-148-00	Panasonic Co., Ltd.							MAMA01							
	4	MC-BK05-160-00	SANYO DENKI Co., Ltd.					P50B05005		P50B05010		P50B05020					
			SANYO DENKI Co., Ltd.	PBM603xx,													
	5 M			PBM604xx													
		l	SANYO DENKI Co., Ltd.	103F78xx													
		MC-BK05-250-00		AS66, ASC66													
			ORIENTAL MOTOR Co., Ltd.	UPK56x, UFK56x													
				PK56x, CSK56x,													
	1	MC-BK06-145-00		CFK56x				MSMD5A		MSMD01							
	- 1	MC-BK06-145-00	Panasonic Co., Ltd.														
			YASKAWA Electric Corp.					SGMJV-A5A SGMAV-A5A		SGMJV-01A SGMAV-01A							
								HF-KP053		HF-KP13							
		MC-BK06-146-00	2 MC-BK06-146-00						HF-MP053		HF-MP13						
	2 1			MC-BK06-146-00	Mitsubishi Electric Corp.					HC-KFS053		HC-KFS13					
									HC-MFS053		HC-MFS13						
			OMRON Corp.				R88M-W03	R88M-W05		R88M-W10							
			SANYO DENKI Co., Ltd.				P30B04003	P30B04005		P30B04010							
			SANYO DENKI Co., Ltd.				1 30004003	1 30004000	P50B04006	P50B04010							
	3	MC-BK06-148-00	Panasonic Co., Ltd.						1 30004000	MAMA01							
			SANYO DENKI Co., Ltd.					P50B05005		P50B05010		P50B05020					
	4	MC-BK06-160-00	SAINTO DENKI CO., LIU.					FSUBUSUUS		POUBUOUTU		F50B05020		_			
												SGMJV-02A		SGMJV-04A			
			YASKAWA Electric Corp.									SGMAV-02A		SGMAV-04A			
MCM06											_	HF-KP23		HF-KP43			
												HF-MP23		HF-MP43			
	5	MC-BK06-170-00	Mitsubishi Electric Corp.									HC-KFS23		HC-KFS43			
												HC-MFS23		HC-MFS43			
			OMRON Corp.								\vdash	R88M-W20		R88M-W40			
			SANYO DENKI Co., Ltd.								 	P30B06020	 	P30B06040			
	 										 	MSMD02	 	MSMD04			
	6	MC-BK06-170-01	Panasonic Co., Ltd.									MAMA02		MAMA04	l .		
	-	<u> </u>		PBM603xxx,		 					 	IVIPIIVIPIUZ		IVIPIVIPO4			
			SANYO DENKI Co., Ltd.	PBM604xxx											l .		
			SANYO DENKI Co., Ltd.	103F78xx							_		 	_	_		
	7	MC-BK06-250-00	GRATO DENKI CO., Eld.	AS66 ASC66		-					 						
	,	DK00-250-00		UPK56x, PK56x											ı		
			ORIENTAL MOTOR Co., Ltd.	U. KUUA, I KUUX	I	1	1	I	1	l	1	1	1	1	i .		
			ONIENTAL MOTOR Co., Etd.	CSKEEN CEKEEN	l .			1	1				1	1	1		
			ONIENTAL MOTOR Co., Eta.	CSK56x, CFK56x UFK56x													

C67 C68

fodel No.	Reference No.	Motor bracket	Motor manufacturer	Stepping motor													
iouei IVO.	code	reference No.	IVIOLOI MANUIACLUIEI	model No.	10	20	30	50	60	100	150	200	300	400	750		
	1	MC-BK08-145-00	Panasonic Co., Ltd.							MSMD01							
	'	WIC-BK00-145-00															
			YASKAWA Electric Corp.							SGMJV-01A	SGMAV-C2A						
											SGMAV-01A						
										HF-KP13							
	2	MC-BK08-146-00	Mitsubishi Electric Corp.							HF-MP13							
													HC-KFS13				
										HC-MFS13					_		
			SANYO DENKI Co., Ltd.				P30B04003	P30B04005		P30B04010					_		
	3	MC-BK08-160-00	SANYO DENKI Co., Ltd.					P50B05005		P50B05010		P50B05020			_		
			YASKAWA Electric Corp.									SGMJV-02A		SGMJV-04A			
												SGMAV-02A		SGMAV-04A	_		
												HF-KP23		HF-KP43			
	4	MC-BK08-170-00	Mitsubishi Electric Corp.									HF-MP23		HF-MP43			
												HC-KFS23		HC-KFS43			
												HC-MFS23		HC-MFS43			
1CM08			OMRON Corp.									R88M-W20		R88M-W40			
			SANYO DENKI Co., Ltd.									P30B06020		P30B06040	_		
	5	MC-BK08-170-01	Panasonic Co., Ltd.									MSMD02		MSMD04			
												MAMA02		MAMA04	_		
	6	MC-BK08-190-00	SANYO DENKI Co., Ltd.	PBM603xxx.								P50B07020	P50B07030	P50B07040	_		
	7 MC-BK08		SANYO DENKI Co., Ltd.														
			SANYO DENKI Co., Ltd.	PBM604xxx 103F78xx											-		
		MC-BK08-250-00	SANYO DENKI Co., Ltd.	AS66, ASC66											_		
		IVIC-BK06-250-00		UPK56x, PK56x													
			ORIENTAL MOTOR Co., Ltd.	CSK56x, CFK56x													
				UFK56x													
			SANYO DENKI Co., Ltd.	103F85xx													
		MC-BK08-270-00	SANTO DENKI CO., Eta.	AS98													
	8			UPK59x, PK59x													
			ORIENTAL MOT	ORIENTAL MOTOR Co., Ltd.	CSK59x, CFK59x												
					UFK59x												
												SGMJV-02A		SGMJV-04A			
			YASKAWA Electric Corp.									SGMAV-02A		SGMAV-04A			
												HF-KP23		HF-KP43			
												HF-MP23		HF-MP43			
	1	MC-BK10-170-00	Mitsubishi Electric Corp.									HC-KFS23		HC-KFS43			
												HC-MFS23		HC-MFS43			
			OMRON Corp.									R88M-W20		R88M-W40			
			SANYO DENKI Co., Ltd.									P30B06020		P30B06040			
												MSMD02		MSMD04			
ICM10	2	MC-BK10-170-01	Panasonic Co., Ltd.									MAMA02		MAMA04			
															MSM		
	3	MC-BK10-190-00	Panasonic Co., Ltd.												MAM		
			SANYO DENKI Co., Ltd.									P50B07020	P50B07030	P50B07040			
			SANYO DENKI Co., Ltd.	103F85xx													
				AS98													
	4	MC-BK10-270-00		UPK59x, PK59x													
			ORIENTAL MOTOR Co., Ltd.	CSK59x, CFK59x													
				UFK59x							1						



C-1-6 MCH Series	
1. MCH Series Reference Number	C73
Coding	
2. MCH Series Dimension Table of	
Standard Products	
MCL06	C74
MCH06	C75
MCH09	C77
MCH10	C79
3. MCH Series Accessories	
3.1 Sensor Unit	C81
3.2 Cover Unit	C83
3.3 Intermediate Plate for Motor	C87

MCH Series

C71 C72

C-1-6. 1 MCH Series Reference Number Coding

14th digit is control No. of NSK. Customers cannot specify a number. See the pages of each nominal number for details.

[With Accessories]

Example:

MCS 06 040 H 10 K 0 2 K 0 0 0

S: With MCH Accessories

R: With MCL Accessories

NSK management number

Sensor unit

Cover unit

Note: Option parts are available separately.

Intermediate plate for motor

Table 1 Sensor unit (See page C81.)

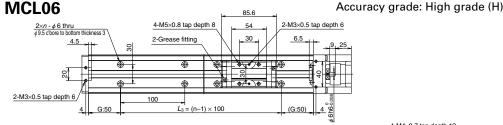
Reference No. code	Specification	Reference No.
0	N/A	_
1	Proximity switch (Normally close contact 3 pieces)	MC—SRHxx—10
2	Proximity switch (Normally open contact 3 pieces)	MC—SRHxx—11
3	Proximity switch (Normally open contact 1 piece, Normally close contact 2 pieces)	MC—SRHxx—12
4	Photo sensor 3 pieces	MC—SRHxx—13

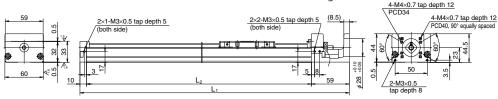
Notes: 1) xx: Nominal size

2) Sensor rail is not included in a sensor unit. If you require the rail, please specify upon ordering. (See page C81 to C82.)

Table 2 Cover unit (See page C83 to C85.)

Reference No. code	Specification	Reference No.
0	N/A	_
1	For single slider	MC—HVxxxxx—00
'	For double slider	MC—HVxxxxxD00


Note: xxxxx; Nominal size and stroke number


Table 3 Intermediate plate for motor (See page C87 to C90.)

the second secon											
Reference		Model No.									
No. code	MCH06 (MCL06)	MCH09	MCH10								
0	N/A	N/A	N/A								
1	MC-BKH06-145-00	MC-BKH09-145-00	MC-BKH10-170-00								
2	MC-BKH06-146-00	MC-BKH09-146-00	MC-BKH10-170-01								
3	MC-BKH06-231-00	MC-BKH09-170-00	MC-BKH10-190-00								
4	MC-BKH06-250-00	MC-BKH09-170-01	MC-BKH10-190-01								
5	_	MC-BKH09-231-00	MC-BKH10-250-00								
6	_	MC-BKH09-250-00	MC-BKH10-270-00								

N/A: Not applicable

C-1-6. 2 MCH Series Dimension Table of Standard Products

- Rail of MCL 06 is made lighter than that of MCH 06 by lowering rail height. Weight ratio between MCH 06 and MCL 06 is 5 to 4.
- Double slider specification is also available for MCL 06.
- ●Combinations of stroke and ball screw lead of MCL 06 are the same as those of MCH 06.

Dimension of MCL06 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead		Bod	ly length (r	Inertia	Mass	
nererence no.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	× 10 ⁻⁶ (kg · m ²)	(kg)
♦MCL06005H05K02	50	53	5	219	150	0 100	2	2.38	1.0
		(65)	10	219	130			3.45	7 1.0
MCL06010H05K02	100	103	5	269	200	100	2	3.17	1.3
MCL06010H10K02		(115)	10	203 200	200			4.12	1.5
MCL06020H05K02	200	203	5	369	300	200	3	4.51	1.9
MCL06020H10K02		(215)	10	309	300		3	5.46	
MCL06030H10K02	300	303	10	469	400	300	4	6.80	2.6
MCL06030H20K02	300	(315)	20	409	400	300	4	10.6	
MCL06040H10K02	400	403	10	569	500	400	5	8.13	3.2
MCL06040H20K02	400	(415)	20	569	500	400	٥	11.9	3.2
MCL06050H10K02	500	503	10	669	600	500	6	9.47	3.9
MCL06050H20K02	500	(515)	20	669 60	500	500	6	13.3	

Notes: 1. Dimension G is 25 for items marked with \diamondsuit .

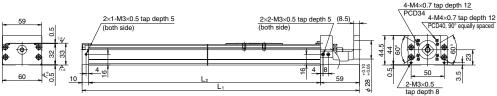
2. The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Grease	ease High-grade Precision-grade Mi		Monocarrier dynamic torque specification					
Standard	02	(None)		5	1.0 – 4.			
LG2	B2	В0	Ball screw lead	10	1.1 – 5.			
			(mm)	20	1.6 – 7.			

Notes:

- Trictional resistance of NSK K1 is included in dynamic
 torque in table.
 Grease is packed into ball screw, linear quide parts and
 - support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating

Lead	Shaft dia		Basic dy	namic load rating	(N)	Basic static lo	Comment out it		
l	d Ball screw		Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)	
(mm)	(mm)	C_{a}	C	C_{a}	L_{a} (km)	C_{0a}	C_0	load IIITIIL (IV)	
5		3 760	22 800		5	6 310		1 450	
10	φ12	2 420	18 100	4 400	10	3 790	16 300		
20]	2 420	14 400		20	3 790			

Basic static moment load of linear guide

Clister.	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single	335	133	133

Accuracy grade: High grade (H)

Dimension of MCH06 (Single slider)

Reference No.	ence No. Nominal stroke (mm) Kroke (mm) Ball screw lead (mm) Ball screw lead (mm) L1 L2 L3 n					Inertia × 10 ⁻⁶ (kg · m²)	Mass (kg)		
	50	53 (65)	5 10 20	219	150	100	2	2.38 3.45 7.25	1.8
MCH06010H05K02 MCH06010H10K02 MCH06010H20K02	100	103 (115)	5 10 20	269	200	100	2	3.17 4.12 7,92	2.2
MCH06020H05K02 MCH06020H10K02 MCH06020H20K02	200	203 (215)	5 10 20	369	300	200	3	4.51 5.46 9.26	3.0
MCH06030H05K02 MCH06030H10K02 MCH06030H20K02	300	303 (315)	5 10 20	469	400	300	4	5.85 6.80 10.6	3.7
MCH06040H05K02 MCH06040H10K02 MCH06040H20K02	400	403 (415)	5 10 20	569	500	400	5	7.18 8.13 11.9	4.5
MCH06050H05K02 MCH06050H10K02 MCH06050H20K02	500	503 (515)	5 10 20	669	600	500	6	8.52 9.47 13.3	5.2

Notes: 1. Dimension G is 25 for items marked with \diamondsuit .

Mo

2. The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

1.6 - 7.9

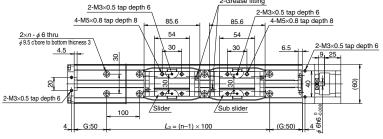
Coding for columns 13 and 14

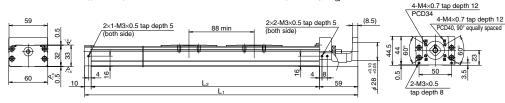
Grease	High-grade	Precision-grade
Standard	02	(None)
LG2	B2	В0

onocarrier dynamic torque specification (N · cm)						
Ball screw lead	5	1.0 – 4.8				
	10	1.1 – 5.8				

Notes:

- Frictional resistance of NSK K1 is included in dynamic torque in table.
- Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating


	Lead	Shaft dia	Basic dynamic load rating (N)				Basic static lo		
-	l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
	(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load IIITIIL (IV)
	5		3 760	22 800		5	6 310		
	10	φ12	2 420	18 100	4 400	10	3 790	16 300	1 450
	20		2 420	14 400		20	3 790		

Basic static moment load of linear guide

Slider	Basic static moment load (N · m)						
	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}				
Single	335	133	133				

MCH06 (Double slider)

Dimension of MCH06 (Double slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	<i>L</i> 1	Bod L2	y length (r <i>L</i> 3	nm)	Inertia × 10-6(kg · m2)	Mass (kg)
MCH06010H05D02	100	115	5	200	300	300 200	3	4.82	2.5
MCH06010H10D02	100	(139)	10	369			3	6.72	3.5
MCH06020H05D02	200	215	5	469	400	300	4	8.06	4.2
MCH06020H10D02		(239)	10					15.7	
MCH06030H05D02	300	315	5	500	569 500	500 400	5	9.40	5.0
MCH06030H10D02	300	(339)	10	569				17.0	5.0
MCH06040H10D02	400	415	10	669	600	500	6	10.7	5.7
MCH06040H20D02	400	(439)	20	009	800	500	0	18.3	5./

Note: The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Grease	High-grade	Precision-grade
Standard	02	(None)
LG2	B2	В0

Ionocarrier dynamic torque specification (N · cm)						
Ball screw lead (mm)	5	1.2 - 5.2				
	10	1.5 - 9.6				
	20	2.3 – 11.8				

Notes:

- Frictional resistance of NSK K1 is included in dynamic torque in table.
- Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	Shaft dia		Basic dy	namic load rating	Basic static lo			
l	d	Ball screw	Linear guides Support unit R		Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	L_{a} (km)	C_{0a}	C_0	load little (14)
5		3 760	22 800		5	6 310		
10	φ12	2 420	18 100	4 400	10	3 790	16 300	1 450
20]	2 420	14 400		20	3 790		

Basic static moment load of linear guide

	Slider	Basic static moment load (N · m)					
		Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}			
	Double	770	730	730			

C75 C76

Accuracy grade: High grade (H)

Accuracy grade: High grade (H)

Dimension of MCH09 (Single slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	<i>L</i> 1	Bod L ₂	y length (r	nm)	Inertia × 10 ⁻⁶ (kg · m ²)	Mass (kg)
MCH09010H05K02	(******)		5	E1	LZ	L3	11	9.2	11.57
MCH09010H10K02 MCH09010H20K02	100	107 (121)	10	339.5	240	100	2	10.7	5.0
MCH09020H05K02 MCH09020H10K02	200	207	5	439.5	340	200	3	12.4 13.9	6.5
MCH09020H20K02	200	(221)	20	400.0	040	200		20.0	0.0
MCH09030H05K02 MCH09030H10K02	300	307	5 10	539.5	440	300	4	15.6 17.1	8.1
MCH09030H20K02 MCH09040H05K02		(321)	20 5					23.2 18.8	
MCH09040H10K02	400	407 (421)	10	639.5	540	400	5	20.3	9.7
MCH09040H20K02 MCH09050H05K02		507	20 5					26.4 22.0	
MCH09050H10K02 MCH09050H20K02	500	(521)	10 20	739.5	640	500	6	23.5 29.6	11
MCH09060H05K02 MCH09060H10K02	600	607	5 10	839.5	740	600	7	25.2 26.7	13
MCH09060H20K02	. 000	(621)	20	659.5	740	000	,	32.8	13
MCH09070H05K02 MCH09070H10K02	700	707	5 10	939.5	840	700	8	28.4 30.0	14.5
MCH09070H20K02		(721)	20					36.0	
MCH09080H05K02 MCH09080H10K02	800	807 (821)	10	1 039.5	940	800	9	31.6 33.2	16
MCH09080H20K02	1	(021)	20					39.2	

Note: The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

2.0 - 10.8

Coding for columns 13 and 14

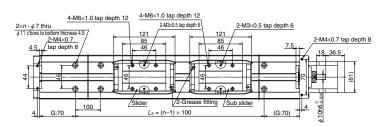
Grease	High-grade	Precision-grade
Standard	02	(None)
LG2	B2	B0

Monocarrier dynamic torque specification (N \cdot cm)						
D. I. I. I.	5	1.0 - 5.9				
Ball screw lead						

(mm)

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 10 2.0 7.8 2. Grease is packed into ball screw, linear guide parts and support unit.
 - 3. Consult NSK for life estimates under large moment loads.


Basic load rating


	Lead	Shaft dia		Basic dy	namic load rating	(N)	Basic static lo		
	l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
	(mm)	(mm)	C_{a}	С	C_{a}	L_{a} (km)	C_{0a}	C_0	load littilt (IV)
	5		7 070	40 600		5	12 800		
•	10	φ 15	7 070	32 200	7 100	10	12 800	30 500	3 040
	20		4 560	25 500		20	7 730		

Basic static moment load of linear guide

Clister	Basic st	Basic static moment load (N · m)							
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}						
Single	890	385	385						

MCH09 (Double slider)

Dimension of MCH09 (Double slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead		Bod	ly length (r	mm)	Inertia	Mass
hererence ino.	(mm)	(without K1)	(mm)	<i>L</i> ₁	L ₂	Lз	n	× 10 ⁻⁶ (kg · m ²)	(kg)
MCH09015H05D02	150	183	5	539.5	440	300	4	16.1	8.9
MCH09015H10D02	150	(211)	10		440	300	4	19.2	
MCH09025H05D02	250	283	5	639.5	540	400	5	19.3	11
MCH09025H10D02		(311)	10				5	22.4	
MCH09035H05D02	350	383	5	739.5	640	500	6	22.5	12
MCH09035H10D02	350	(411)	10				0	25.6	
MCH09045H10D02	450	483	10	839.5	740	600	7	28.8	14
MCH09045H20D02	450	(511)	20	039.5	740		/	40.9	
MCH09065H10D02	650	683	10	1 039.5	940	800	9	35.2	17
MCH09065H20D02	030	(711)	20		940		9	47.3	

Note: The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

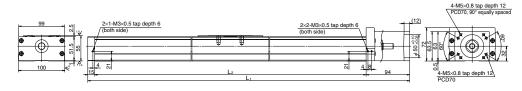
Standard 02 (None)	ade
100 00 00	
LG2 B2 B0	

Nonocarrier dynamic tore	que specifi	cation (N · cm)
D	5	1.5 - 7.0
Ball screw lead (mm)	10	2.5 – 10.8
(11111)	20	4.0 - 17.2

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	Shaft dia		Basic dy	namic load rating	Basic static lo	Support unit		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Ball screw Linear guides	
(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load limit (N)
5		7 070	40 600		5	12 800		3 040
10	φ 15	7 070	32 200	7 100	10	12 800	30 500	
20]	4 560	25 500		20	7 730		


Basic static moment load of linear guide

Clister	Basic st	Basic static moment load (N · m)							
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}						
Double	1 780	2 070	2 070						

C77

C78

Accuracy grade: High grade (H)

Dimension of MCH10 (Single slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	<i>L</i> ₁	Bod L ₂	y leng	th (mm) <i>L</i> 3	n	Inertia × 10 ⁻⁶ (kg · m²)	Mass (kg)
MCH10010H10K02 MCH10010H20K02	100	126 (142)	10 20	389	280	65	150	2	33.2 41.1	7.3
MCH10020H10K02 MCH10020H20K02	200	226 (242)	10 20	489	380	40	300	3	43.4 51.3	9.5
MCH10030H10K02 MCH10030H20K02	300	326 (342)	10 20	589	480	15	450	4	53.7 61.6	12
MCH10040H10K02 MCH10040H20K02	400	426 (442)	10 20	689	580	65	450	4	62.4 71.8	14
MCH10050H10K02 MCH10050H20K02	500	526 (542)	10 20	789	680	40	600	5	74.7 82.3	16
MCH10060H10K02 MCH10060H20K02	600	626 (642)	10 20	889	780	15	750	6	84.9 92.5	19
MCH10070H10K02 MCH10070H20K02	700	726 (742)	10 20	989	880	65	750	6	95.1 103	21
MCH10080H10K02 MCH10080H20K02	800	826 (842)	10 20	1 089	980	40	900	7	105 113	23
MCH10090H10K02 MCH10090H20K02	900	926 (942)	10 20	1 189	1 080	15	1 050	8	116 123	25
MCH10100H10K02 MCH10100H20K02	1 000	1 026 (1 042)	10 20	1 289	1 180	65	1 050	8	126 133	27
MCH10110H10K02 MCH10110H20K02	1 100	1 126 (1 142)	10 20	1 389	1 280	40	1 200	9	136 143	29
MCH10120H10K02 MCH10120H20K02	1 200	1 226 (1 242)	10 20	1 489	1 380	15	1 350	10	146 154	32

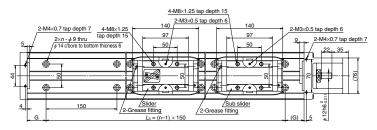
Note: The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

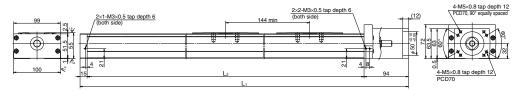
Coding for columns 13 and 14

	Grease	High-grade	Precision-grade	Monocarrier dynamic torque specification (N · cn						
Ī	Standard	02	(None)	Ball screw lead	10	2.7 - 10.8				
	LG2	B2	B0	(mm)	20	3.1 – 12.7				

ation (N · cm) Note

- Frictional resistance of NSK K1 is included in dynamic torque in table.
- Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating


Lead	Shaft dia		Basic dy	Basic static lo				
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	C	C_{a}	L_{a} (km)	C_{0a}	C_0	load III III (IV)
10	4.00	11 000	44 600	7 000	10	21 100	42.000	3 380
20	φ 20	7 060	35 400	7 600	20	12 700	42 000	

Basic static moment load of linear guide

Clinter	Basic static moment load (N · m)							
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Single	1 460	610	610					

MCH10 (Double slider)

Dimension of MCH10 (Double slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead		Boo	ly leng	th (mm)		Inertia	Mass
Herefelice No.	(mm)	(without K1)	(mm)	L ₁	L ₂	G	Lз	n	× 10 ⁻⁶ (kg · m ²)	(kg)
MCH10025H10D02	250	282	10	689	580	65	450	4	67.1	15
MCH10025H20D02	250	(314)	20	000	500	05	400	4	82.4	15
MCH10035H10D02	350	382	10	789	680	40	600	5	77.3	17
MCH10035H20D02	350	(414)	20	763		40	600	5	92.5	''
MCH10045H10D02	450	482	10	889	780	15	750	6	87.5	- 20
MCH10045H20D02	450	(514)	20				750	6	103	
MCH10055H10D02	550	582	10	989	880	65	750	6	97.7	22
MCH10055H20D02	550	(614)	20					6	113	
MCH10065H10D02	650	682	10	1 089	980	40	900	7	108	- 24
MCH10065H20D02	650	(714)	20	1 009	960	40	900		123	
MCH10075H20D02	750	782 (814)	20	1 189	1 080	15	1 050	8	133	26
MCH10085H20D02	850	882 (914)	20	1 289	1 180	65	1 050	8	143	28
MCH10095H20D02	950	982 (1 014)	20	1 389	1 280	40	1 200	9	154	30
MCH10105H20D02	1 050	1 082 (1 114)	20	1 489	1 380	15	1 350	10	164	33

Note: The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Grease	High-grade	Precision-grade	Monocarrier dynamic tor	que specifi	cation (N · cm)
Standard	02	(None)	Ball screw lead	10	4.2 - 15.6
LG2	B2	B0	(mm)	20	5.0 – 19.6

Notes:

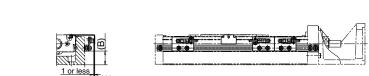
- 1. Frictional resistance of NSK K1 is included in dynamic
 torque in table.
- 2. Grease is packed into ball screw, linear guide parts and
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

	Lead	Shaft dia	Basic dynamic load ra			(N)	Basic static lo	ad rating (N)	
	l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
_	(mm)	(mm)	C_{a}	С	C_{a}	L_{a} (km)	C_{0a}	C_0	load III III (IV)
	10	10 20 \$\phi 20	11 000	44 600	7 000	10	21 100	42.000	2 200
	20		7 060	35 400	7 600	20	12 700	42 000	3 380

Basic static moment load of linear quide

				_		
Slider	Basic static moment load (N · m)					
	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}			
	Double	2 920	3 430	3 430		


C79 C80

C-1-6. 3 MCH Series Accessories

C-1-6. 3. 1 Sensor Unit

Proximity switch

Sensor rail is not included in a sensor unit.

(Example of assembly)

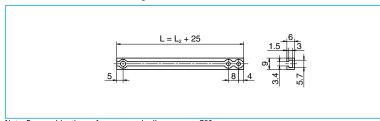
=1 1=						•	•
Model No.		Reference No.			A (mm)	B (mm)	Body width W (mm)
MCH06		MC-SRH06-10	MC-SRH06-11	MC-SRH06-12	17	10	60
MCH09		MC-SRH09-10	MC-SRH09-11	MC-SRH09-12	16	21	86
	MCH10	MC-SRH10-10	MC-SRH10-11	MC-SRH10-12	16	16	100
Quantity	Proximity switch (normally open contact)	_	3	1	E2S-W1	3 (OMRO	N Corp.)
Qualitity	Proximity switch (normally close contact)	3	_	2	E2S-W1	4 (OMRO	N Corp.)

Notes: 1. See page C135 for proximity switch specifications. 2. A sensor unit consists of sensors, a sensor dog and sensor mounting parts.

●Photo sensor

Sensor rail is not included in a sensor unit.

(Example of assembly)


Model No.	Reference No.	C (mm)	D (mm)	E (mm)	Body width W (mm)	Remarks
MCH06	MC-SRH06-13	24	2	11	60	EE-SX674 (OMRON Corp.)
MCH09	MC-SRH09-13	23	12	21	86	3 sets
MCH10	MC-SRH10-13	23	29	16	100	(EE-1001 connector attachment)

Notes: 1. See page C136 for proximity switch specifications. 2. A sensor unit consists of sensors, a sensor dog and sensor mounting parts.

(1) Sensor rail

Reference number: MC-SRL- * * * *

 \bullet * * * * is the same as rail dimension L_2 .

Note: For combinations of sensors and rails, see page C82.

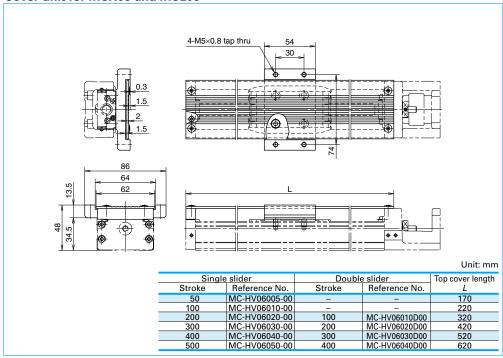
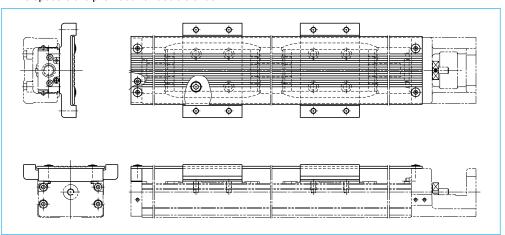
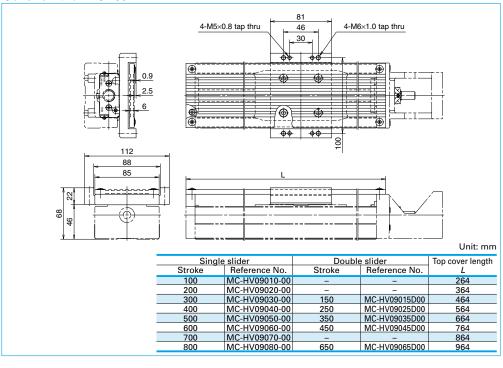

Body of MCH Series and Sensor Rail Combination Table

Table 4			
Model No.	Body length L_2 (mm)	Reference No.	Sensor rail reference No.
	150	MCH06005H05K02 MCH06005H10K02 MCH06005H20K02	MC-SRL-0150
	200	MCH06010H05K02 MCH06010H10K02 MCH06010H20K02	MC-SRL-0200
	300	MCH06020H05K02 MCH06020H10K02 MCH06020H20K02 MCH06010H05D02 MCH06010H10D02	MC-SRL-0300
MCH06	400	MCH06030H05K02 MCH06030H10K02 MCH06030H20K02 MCH06020H05D02 MCH06020H10D02	MC-SRL-0400
	500	MCH06040H05K02 MCH06040H10K02 MCH06040H20K02 MCH06030H05D02 MCH06030H10D02	MC-SRL-0500
	600	MCH06050H05K02 MCH06050H10K02 MCH06050H20K02 MCH06040H10D02 MCH06040H20D02	MC-SRL-0600
	150	MCL06005H05K02 MCL06005H10K02	MC-SRL-0150
	200	MCL06010H05K02 MCL06010H10K02	MC-SRL-0200
1401.00	300	MCL06020H05K02 MCL06020H10K02	MC-SRL-0300
MCL06	400	MCL06030H10K02 MCL06030H20K02	MC-SRL-0400
	500	MCL06040H10K02 MCL06040H20K02	MC-SRL-0500
	600	MCL06050H10K02 MCL06050H20K02	MC-SRL-0600
	240	MCH09010H05K02 MCH09010H10K02 MCH09010H20K02	MC-SRL-0240
	340	MCH09020H05K02 MCH09020H10K02 MCH09020H20K02	MC-SRL-0340
	440	MCH09030H05K02 MCH09030H10K02 MCH09030H20K02 MCH09015H05D02 MCH09015H10D02	MC-SRL-0440
МСН09	540	MCH09040H05K02 MCH09040H10K02 MCH09040H20K02 MCH09025H05D02 MCH09025H10D02	MC-SRL-0540
	640	MCH09050H05K02 MCH09050H10K02 MCH09050H20K02 MCH09035H05D02 MCH09035H10D02	MC-SRL-0640
	740	MCH09060H05K02 MCH09060H10K02 MCH09060H20K02 MCH09045H10D02 MCH09045H20D02	MC-SRL-0740

Model No.	Body length L_2 (mm)	Reference No.	Sensor rail reference No.
		MCH09070H05K02	
	840	MCH09070H10K02	MC-SRL-0840
		MCH09070H20K02	
MCH09		MCH09080H05K02	
IVICIIUS		MCH09080H10K02	
	940	MCH09080H20K02	MC-SRL-0940
		MCH09065H10D02	
		MCH09065H20D02	
	280	MCH10010H10K02	MC-SRL-0280
	200	MCH10010H20K02	IVIC-3NL-0200
	380	MCH10020H10K02	MC-SRI -0380
	300	MCH10020H20K02	IVIC-STL-USOU
	480	MCH10030H10K02	MC-SRL-0480
	460	MCH10030H20K02	IVIC-30L-0460
	580	MCH10040H10K02	MC-SRL-0580
	580	MCH10025H10D02	IVIC-SHL-0580
		MCH10050H10K02	
	680	MCH10050H20K02	MC-SRL-0680
		MCH10035H10D02	IVIC-SHL-0080
		MCH10035H20D02	
		MCH10060H10K02	
	780	MCH10060H20K02	140 CDL 0700
		MCH10045H10D02	MC-SRL-0780
		MCH10045H20D02	
		MCH10070H10K02	
	880	MCH10070H20K02	MC CDL 0000
MCUIO	880	MCH10055H10D02	MC-SRL-0880
MCH10		MCH10055H20D02	
		MCH10080H10K02	
	980	MCH10080H20K02	MC CDL 0000
	980	MCH10065H10D02	MC-SRL-0980
		MCH10065H20D02	
		MCH10090H10K02	
	1 080	MCH10090H20K02	MC-SRL-1080
		MCH10075H20D02	
		MCH10100H10K02	
	1 180	MCH10100H20K02	MC-SRL-1180
		MCH10085H20D02	
		MCH10110H10K02	
	1 280	MCH10110H20K02	MC-SRL-1280
		MCH10095H20D02	
		MCH10120H10K02	
	1 380	MCH10120H20K02	MC-SRL-1380
		MCH10105H20D02	

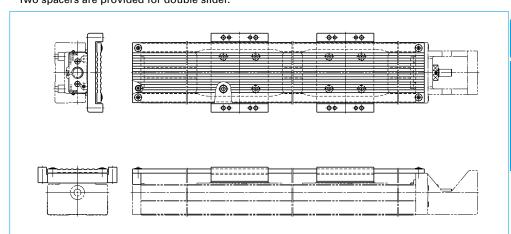

C-1-6, 3, 2 Cover Unit

Cover unit for MCH06 and MCL06

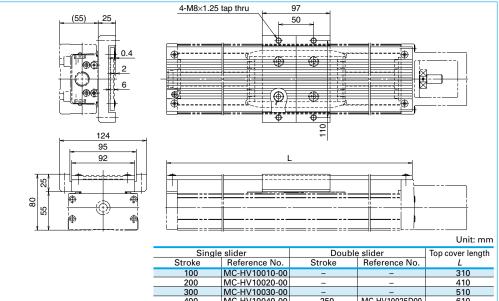


Cover unit for double sliders

Two spacers are provided for double slider.

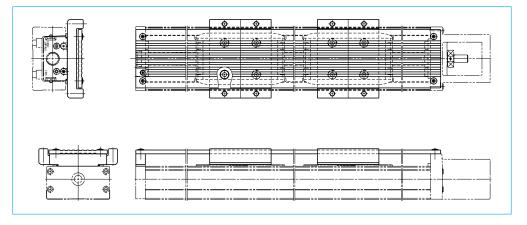


Cover unit for MCH09



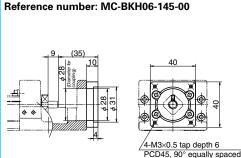
Cover unit for double sliders

Two spacers are provided for double slider.

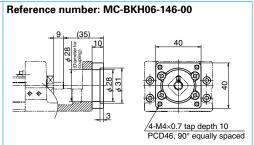

Monocarri e

Single slider		Double slider		Top cover length
Stroke	Reference No.	Stroke	Reference No.	L
100	MC-HV10010-00	-	-	310
200	MC-HV10020-00	_	_	410
300	MC-HV10030-00	_	_	510
400	MC-HV10040-00	250	MC-HV10025D00	610
500	MC-HV10050-00	350	MC-HV10035D00	710
600	MC-HV10060-00	450	MC-HV10045D00	810
700	MC-HV10070-00	550	MC-HV10055D00	910
800	MC-HV10080-00	650	MC-HV10065D00	1 010
900	MC-HV10090-00	750	MC-HV10075D00	1 110
1 000	MC-HV10100-00	850	MC-HV10085D00	1 210
1 100	MC-HV10110-00	950	MC-HV10095D00	1 310
1 200	MC-HV10120-00	1 050	MC-HV10105D00	1 410

●Cover unit for double sliders

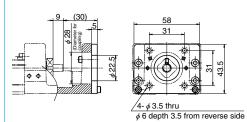

Two spacers are provided for double slider.

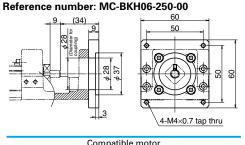
C-1-6, 3, 3 Intermediate Plate for Motor


- Please ask NSK about motors not listed in compatible motor list.
- ●In case of parallel motor mount, please consult with NSK. ●Be sure to align centerlines when installing motor.
- Motor models are subject to change at the motor manufacturers. For details, please contact the manufacturer.

Motor Bracket for MCH06 and MCL06

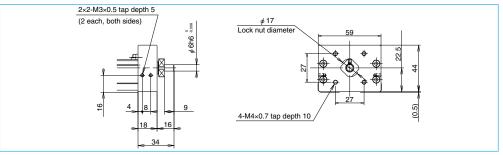
40
4-M3×0.5 tap depth 6 PCD45, 90° equally space


4-M3×0.5 tap depth 6 PCD45, 90° equally spaced
Compatible motor
Motor modele


	Compatible motor			
Maker	Motor models			
YASKAWA Electric Corp.	SGMAH-A3(30W), SGMJV-A5A(50W), SGMAV-A5A(50W)			
YASKAWA Electric Corp.	SGMJV-01A(100W), SGMAV-01A(100W)			
	HF-KP053(50W), HF-MP053(50W), HC-KFS053(50W)			
Mitsubishi Electric Corp.	HC-MFS053(50W), HF-KP13(100W), HF-MP13(100W)			
	HC-KFS13(100W), HC-MFS13(100W)			
OMRON Corp.	R88M-W03(30W), R88M-W05(50W), R88M-W10(100W)			
SANYO DENKI Co., Ltd.	P30B04xxx P Series			

Panasonic Co., Ltd. MSMD5A(50W), MSMD01(100W) Reference number: MC-BKH06-231-00

Maker

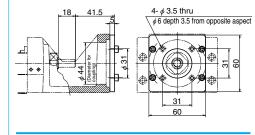


ı				
	Compatible motor			
	Maker Motor models			
	ORIENTAL MOTOR	AS46, ASC46, UPK54x, PK54x, CSK54x, CFK54x, UMK24x, CSK24x, PK24x		
	Co., Ltd.	CSK54x, CFK54x, UMK24x, CSK24x, PK24x		
	SANYO DENKI Co., Ltd. PBM423xxx, 103F55xx			
ı				

Compatible motor			
Maker	Motor models		
ORIENTAL MOTOR	AS66, ASC66, UPK56x, UFK56x,		
Co., Ltd.	PK56x, CSK56x, CFK56x		
OMRON Corp.	MUMS02(200W), MUMS04(400W)		
SANYO DENKI Co., Ltd.	PBM603xx, PBM604xx, 103F78xx		

Diameter of ball screw shaft end to install a pulley for parallel motor mount of MCH06

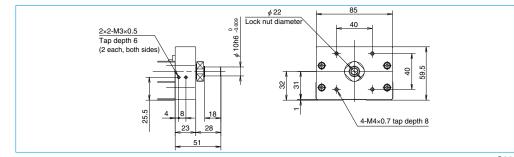
Motor Bracket for MCH09


444 (100 m)	4.MA-0.7 tap thru PCD46, 90° equ (MC-BKH09-146-00)
Reference No	Compatible motor

aker nic Co., Ltd.	Motor models MSMD5A(50W), MSMD01(100W)
nic Co., Ltd.	MSMD5A(50W) MSMD01(100W)
	INDINES (COTT), INDINES I (1001)
Electric Corp.	SGMJV-A5A(50W), SGMAV-A5A(50W) SGMJV-01A(100W), SGMAV-01A(100W)
Electric Corp.	HF-KP053(50W), HF-MP05(50W), HC-KFS053(50W) HC-MFS053(50W), HF-KP13(100W), HF-MP13(100W) HC-KFS13(100W), HC-MFS13(100W)
N Corp.	R88M-W05(50W), R88M-W10(100W) P30B04xxx P Series
)	Electric Corp.

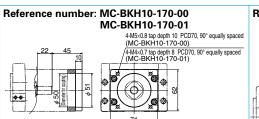
Reference number: MC-BKH09-170-00 MC-BKH09-170-01 4-M5x0.8 tap depth 10 PCD70, 90° equally spaced (MC-BKH09-170-00) 4-M4×0.7 tap depth 8 PCD70, 90° equally spaced

Reference No.	Compatible motor				
neierence No.	Maker	Motor models			
	YASKAWA Electric Corp.	SGMJV-02A(200W), SGMAV-02A(200W)			
	TABRAWA Electric Corp.	SGMJV-04A(400W), SGMAV-04A(400W)			
		HF-KP23(200W), HF-MP23(200W), HF-KP43(400W)			
MC-BKH09-170-00	Mitsubishi Electric Corp.	HF-MP43(400W), HC-KFS23(200W), HC-MFS23(200W)			
		HC-KFS43(400W), HC-MFS43(400W)			
	OMRON Corp.	R88M-W20(200W), R88M-W40(400W)			
	SANYO DENKI Co., Ltd.	P30B06xxx P Series			
MC DVII00 470 04	Panasonic Co., Ltd.	MSMD02(200W), MSMA02(200W)			
MC-BKH09-170-01	ranasonic Co., Ltd.	MSMA04(400W), MSMD04(400W)			


	Compatible motor					
Maker Motor models						
SANYO DENKI Co., Ltd	PBM423xxx, 103F55xx					
ORIENTAL MOTOR	AS46, ASC46, UPK54x, PK54x, CSK54x, CFK54x					
Co., Ltd.	UMK24x, CSK24x, PK24x					

4-M4×0.7 tap thru

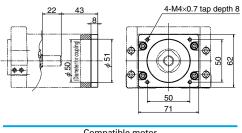
Reference number: MC-BKH09-250-00


Compatible motor					
Maker	Motor models				
	PBM603xx, PBM604xx, 103F78xx				
ORIENTAL MOTOR	AS66, ASC66, UPK56x, UFK56x, PK56x				
Co., Ltd.	CSK56x, CFK56x				

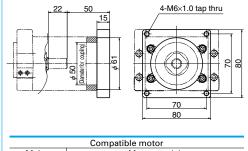
Diameter of ball screw shaft end to install a pulley for parallel motor mount of MCH09

Accessories

Motor Bracket for MCH10

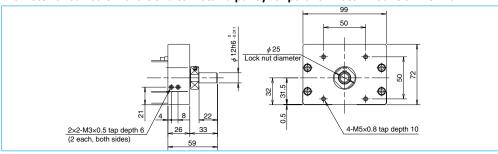

Reference No.	Compatible motor			
neierence No.	Maker	Motor models		
	V4.0K4N44 EL 0	SGMJV-02A(200W), SGMAV-02A(200W)		
	YASKAWA Electric Corp.	SGMJV-04A(400W), SGMAV-04A(400W)		
		HF-KP23(200W), HF-MP23(200W), HF-KP43(400W)		
MC-BKH10-170-00	Mitsubishi Electric Corp.	HF-MP43(400W), HC-KFS23(200W), HC-MFS23(200W)		
		HC-KFS43(400W), HC-MFS43(400W)		
	OMRON Corp.	R88M-W20(200W), R88M-W40(400W)		
	SANYO DENKI Co., Ltd.	P30B06xxx P Series		
MC DVII10 170 01	Panasonic Co., Ltd.	MSMD02(200W), MSMA02(200W)		
MC-BKH10-170-01	Panasonic Co., Ltd.	MSMD04(400W), MSMA04(400W)		

Reference number: MC-BKH10-190-00 MC-BKH10-190-01 4-M6×1.0 tap depth 12 PCD90, 90° equally spaced (MC-BKH10-190-00) 4-M5×0.8 tap depth 10 PCD90, 90° equally spaced (MC-BKH10-190-01)


Reference No.	Compatible motor			
neierence ivo.	Maker	Motor models		
MC-BKH10-190-00	Mitsubishi Electric Corp.	HC-KFS73(750W), HC-MFS73(750W) HF-KP73(750W), HF-MP73(750W)		
MC-BKH10-190-01	SANYO DENKI Co., Ltd.	P50B07xxx P Series		

Reference number: MC-BKH10-270-00

Reference number: MC-BKH10-250-00



	Compatible motor
Maker	Motor models
SANYO DENKI Co., Ltd.	PBM603xx, PBM604xx, 103F78xx
ORIENTAL MOTOR	AS66, ASC66, UPK56x, PK56x, CSK56x, CFK56x
Co., Ltd.	UMK56x, UFK56X

Compatible motor					
Maker	Motor models				
ORIENTAL MOTOR	AS98, ASC98, UPK59x, PK59x, CSK59x, CFK59x				
Co., Ltd.	UMK59x, UFK59x				

Diameter of ball screw shaft end to install a pulley for parallel motor mount of MCH10

Motor Availability Table of Intermediate Plate for MCH Series Table 5

Table	J									
Model No.	Reference No.	Motor bracket	Motor manufacturer	Stepping motor			Wattage of A			
	code	reference No.		model No.	30	50	100	200	400	750
	1	MC-BKH06-145-00	Panasonic Co., Ltd.			MSMD5A SGMJV-A5A	MSMD01 SGMJV-01A			
			YASKAWA Electric Corp.		SGMAH-A3	SGMAV-A5A	SGMAV-01A			
						HF-KP053	HF-KP13			
	2	MC-BKH06-146-00	Mitsubishi Electric Corp.			HF-MP053	HF-MP13			
						HC-KFS053 HC-MFS053	HC-KFS13 HC-MFS13			
			OMRON Corp.		R88M-W03					
			SANYO DENKI Co., Ltd.	P30B04xxx (P Series)						
			SANYO DENKI Co., Ltd.	PBM423xxx						
MCH06 MCL06	3	MC-BKH06-231-00	ORIENTAL MOTOR Co., Ltd.	103F55xx AS46 , ASC46 UPK54x , PK54x CSK54x , CFK54x						
			Official Motor Co., Etc.	UMK24x , CSK24x PK24x PBM603xx						
			SANYO DENKI Co., Ltd.	PBM604xx 103F78xx						
	4	MC-BKH06-250-00	ORIENTAL MOTOR Co., Ltd.	AS66 , ASC66 UPK56x , UFK56x PK56x , CSK56x CFK56x						
	1	MC BKHOO 14E OO	OMRON Corp.			MCMADEA	MCMD01	MUMS02	MUMS04	
		MC-BKH09-145-00	Panasonic Co., Ltd.			MSMD5A SGMJV-A5A	MSMD01 SGMJV-01A			
			YASKAWA Electric Corp.			SGMAV-A5A				
	2	MC-BKH09-146-00	Mitsubishi Electric Corp.			HF-KP053 HF-MP05 HC-KFS053 HC-MFS053	HF-KP13 HF-MP13 HC-KFS13 HC-MFS13			
			OMRON Corp.			R88M-W05	R88M-W10			
			SANYO DENKI Co., Ltd.	P30B04xxx (P Series)						
			YASKAWA Electric Corp.						SGMJV-04A	
		MC-BKH09-170-00						SGMAV-02A HF-KP23	SGMAV-04A HF-KP43	—
	3		Mitsubishi Electric Corp.					HF-MP23 HC-KFS23 HC-MFS23	HF-MP43 HC-KFS43 HC-MFS43	
			OMRON Corp.					R88M-W20	R88M-W40	
MCH09			SANYO DENKI Co., Ltd.	P30B06xxx (P Series)				1.401.40.00	14014004	
	4	MC-BKH09-170-01	Panasonic Co., Ltd.					MSMD02 MSMA02	MSMD04 MSMA04	
		MC-BKH09-231-00	SANYO DENKI Co., Ltd.	PBM423xxx 103F55xx						
	5		ORIENTAL MOTOR Co., Ltd.	AS46 , ASC46 UPK54x , PK54x CSK54x , CFK54x UMK24x , CSK24x PK24x						
	6	MC-BKH09-250-00	SANYO DENKI Co., Ltd.	PBM603xx PBM604xx 103F78xx						
			ORIENTAL MOTOR Co., Ltd.	AS66 , ASC66 UPK56x , UFK56x PK56x , CSK56x CFK56x						
			YASKAWA Electric Corp.					SGMJV-02A	SGMJV-04A	
	1	MC-BKH10-170-00	Mitsubishi Electric Corp.					HF-KP23 HF-MP23	SGMAV-04A HF-KP43 HF-MP43	
			OMRON Corp.					HC-KFS23 HC-MFS23 B88M-W20	HC-KFS43 HC-MFS43 R88M-W40	
			SANYO DENKI Co., Ltd.	P30B06xxx (P Series)						
	2	MC-BKH10-170-01	Panasonic Co., Ltd.					MSMD02	MSMD04	
								MSMA02	MSMA04	HC-KFS73
MCH10	3	MC-BKH10-190-00	Mitsubishi Electric Corp.							HC-MFS73 HF-KP73 HF-MP73
	4	MC-BKH10-190-01	SANYO DENKI Co., Ltd.	P50B07xxx (P Series)						
			SANYO DENKI Co., Ltd.	PBM603xx PBM604xx 103F78xx						
	5	MC-BKH10-250-00	ORIENTAL MOTOR Co., Ltd.	AS66 , ASC66 UPK56x , PK56x CSK56x , CFK56x UMK56x , UFK56x						
	6	MC-BKH10-270-00	ORIENTAL MOTOR Co., Ltd.	AS98 , ASC98 UPK59x , PK59x CSK59x , CFK59x UMK59x , UFK59x						

C89 C90

C-2 Toughcarrier™

1. Features	C93
2. Classification and Series	C93
3. Accessories	C95
4. Selection of Toughcarrier	C96
4.1 Selection Procedures	C96
4.2 Stroke and Lead	C97
4.3 Reference Number Coding and Accuracy Grade	C98
4.4 Maximum Speed	C99
4.5 Rigidity	C101
4.6 Basic Load Rating	C102
4.7 Estimation of Life Expectancy	C103
4.8 Example of Life Estimation	C105
5. TCH Series Dimension Table for Standard Products	C109
5.1 TCH06 Series	C109
5.2 TCH09 Series	C111
5.3 TCH10 Series	C113
6. Accessories	C115
6.1 Sensor Unit	C115
6.2 Cover Unit	C116
6.3 Motor Bracket	C119
7. Motor Bracket Compatibility Table	C128
8. Sensor Rail and Top Cover Unit Combination Table	C129
9. Toughcarrier High-Thrust Series	C132

C-2 Toughcarrier™

C91 C92

C-2 Toughcarrier[™]

C-2-1 Features

Greatly improved load capacity due to switching of rolling elements to rollers.

Mounting dimensions are compatible with those of the MCH Series, allowing substitution.

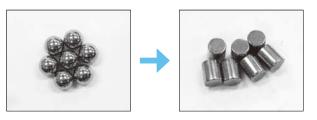
Light weight and compact design

Taking into account part composition and rigidity, the cross sections of the rail and slider are the same as MCH series.

Superb rust-preventive ability

Low-temperature chrome plating comes standard.

All-in-one structure

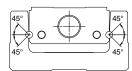

- 1) The all-in-one structure integrates a ball screw, a linear guide and a support unit into a single structure to significantly reduce design time.
- The bottom and one side of the rail are datum surfaces to facilitate highly accurate installation.Models with pin holes are also available as standard.
- 3) Immediate operation after installation and run-in is possible due to pre-packed grease.
- 4) A wide selection of ball screw leads are available.

Long-term maintenance-free operation

Use of NSK K1 lubrication unit and grease maintains smooth lubricating performance for long periods.

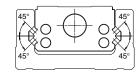
Updated rolling elements

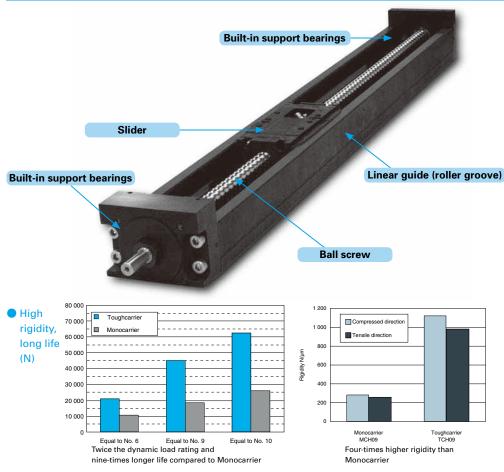
Rollers are installed as rolling elements for the first time anywhere.

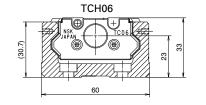


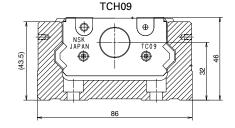
C-2-2 Classification and Series

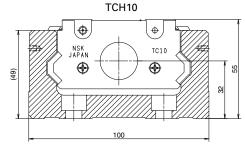
Structure


Rolling elements: Balls

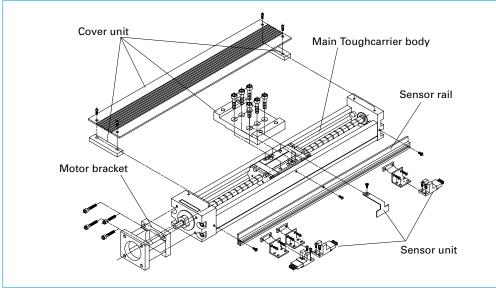

MCH Series


Rolling elements: Rollers


TCH Series



Cross-sections of TCH Series



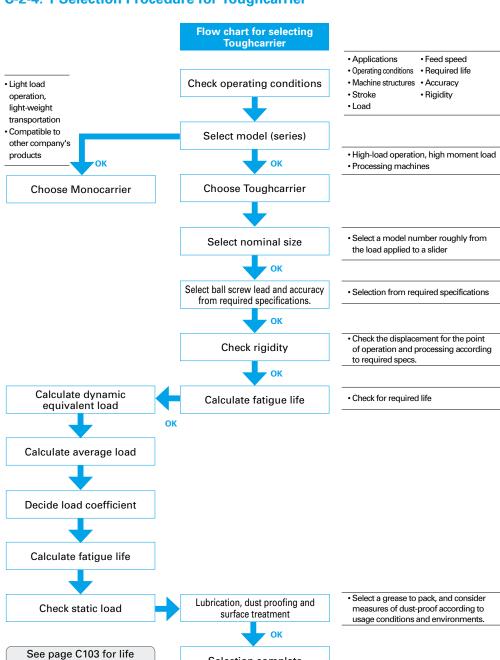
Selection

calculation.

C-2-3 Accessories

Accessories for Toughcarrier

Assembly Example of accessories


Sensor unit, cover unit, motor bracket and sensor rail are available as options for Toughcarrier. Contact NSK for other specifications other than those of NSK standard accessories.

- 1. Sensor unit:
 - ●Photo sensor...Use of both OMRON EE-SX674 and EE-1001
- Proximity switch...Use of OMRON E2S-W13, E2S-W14

Available in a unit including sensor fitting clamps.

- 2. Sensor rail : This rail holds the sensor. Please order the appropriate rail according to the
- 3. Cover unit : This unit consists of a top cover and spacer plate.
- 4. Motor bracket: Brackets are available for a variety of models from different motor manufacturers. Please consult NSK when the mounting dimensions differ from your order.

C-2-4 Selection of Toughcarrier C-2-4. 1 Selection Procedure for Toughcarrier

Selection complete

C-2-4, 2 Stroke and Lead

◆ Combinations of rail length and lead

● TCH06

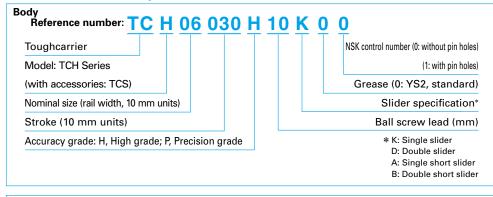
Slider type			Standar	d slider					Short	slider		
Silder type	Si	ngle slid	er	Do	ouble slic	der	Si	ngle slid	er	Do	ouble slic	der
Lead (mm) Rail length (mm)	5	10	20	5	10	20	5	10	20	5	10	20
150	1	1	1				1	1				
200	/	/	1				1	1				
300	1	1	1	1	1		1	1		1	1	
400	✓	✓	/	✓	1		1	1		✓	1	
500	1	/	1	/	1		1	1		1	1	
600	1	1	1	_	1	1	1	1			1	

^{*20} mm lead for short sliders not available.

■ TCH09

Slider type			Standar	d slider					Short	slider		
Silder type	Si	ngle slid	er	Do	uble slic	der	Si	ngle slid	er	Do	ouble slic	der
Lead (mm)	5	10	20	5	10	20	5	10	20	5	10	20
240	1	1	1				1	1	1			
340	1	1	1				1	1	1			
440	1	/	/	1	1		1	1	1	1	1	
540	1	1	1	1	1		1	1	1	1	1	
640	1	/	1	1	1		1	1	1	1	1	
740	1	1	1		1	1	1	1	1		1	1
840	1	1	1				1	1	1			
940	✓	1	1		1	1	1	1	1		1	1

● TCH10


Slider type		Standar	d slider		Short slider			
Silder type	Single	slider	Double	slider	Single	slider	Double	slider
Lead (mm)	10	20	10	20	10	20	10	20
280	1	1			1	1		
380	1	1			1	1		
480	1	/			✓	✓		
580	1	/	/	/	/	/	1	1
680	1	1	1	1	✓	✓	1	✓
780	/	/	/	1	\	\	1	1
880	1	1	1	1	✓	✓	1	✓
980	1	1	1	1	/	1	1	1
1 080	1	1		1	/	1		✓
1 180	/	/		1	/	/		1
1 280	1	1		1	\	/		1
1 380	1	/		/	/	/		/

♦ Availability

Model No.	Lead (mm)	Slider	Rail length (mm)
TCH06	5, 10, 20	Single	600
101100	5, 10, 20	Double	000
TCH09	5, 10, 20	Single	940
101103	5, 10, 20	Double	340
TCH10	10, 20	Single	1 380
101110	10, 20	Double	1 300

C-2-4. 3 Reference Number Coding and Accuracy Grade

Reference number coding for TCH Series

Special specifications Reference number: TC H 06 030 H 10 K -	XX	(B
3: Toughcarrier for special specs		Design serial number
5: Toughcarrier high-thrust series*		
* For the specifications of the High-Thrust Series, se	e page C132.	

Reference number for accessories

1. Sensor unit	3. Cover unit
Reference number: TC - SRH XX - 00	Reference number: $TC - HV XX XXX - K 00$
Toughcarrier	Toughcarrier
Sensor unit	Cover unit
Nominal size: 06, 09 and 10	Nominal size: 06, 09 and 10
Control no. : see page C115	Stroke (nominal)
	Slider specs: refer to the body reference no.
	Control no.: See pages C116 to C118
2. Sensor rail	4. Motor bracket
Reference number: TC - SRL X - XXXX	Reference number: $TC - BKH XX - XXX - 00$
Toughcarrier	Toughcarrier
Sensor rail	Motor bracket
Nominal size: 06 is 6, 09 is 9, and 10 is 1.	Nominal size: 06, 09 and 10
Body rail length	Dimension for motor mounting
	Control no.

♦ Accuracy grade

	- 1	I۰	it:	

Grade	Hiç	High grade (H grade)			Precision grade (P grade)			
Stroke (mm)	Repeatability	Running parallelism	Backlash	Repeatability	Positioning	Running parallelism	Backlash	
Stroke (ITIITI)		(vertical)			accuracy	(vertical)		
~ 200		14			20	8		
~ 400		16			25	10		
~ 600	±10	20	20 or less	±3	30	12	3 or less	
~ 700	±10	22	20 01 1655	±S	30	15	3 01 1635	
~ 1 000	1	23			35	15		
~ 1 200		30			40	20		

C-2-4. 4 Maximum Speed

Maximum speed (standard slider)

Maximum speed of the Toughcarrier is determined by the critical speed of the ball screw shaft and the $d \cdot n$ value.

Do not exceed the maximum speed in the table below.

	Chualia	Dall saus	Body rail	Maximum	
	Stroke	Ball screw	length L2	speed	
	(nominal)	lead (mm)	(mm)	(mm/s)	
	50		150	(111111/3/	
	100		200	1	
	200	5	300	250	
	300		400		
	400		500		
	500		600		
	50		150		
TCH06	100		200		
Single	200	10	300	500	
slider	300		400		
Sildoi	400		500		
	500		600		
	50		150]	
	100		200	1	
	200	20	300	1 000	
	300		400		
	400		500		
	500		600		
	130	_	300		
	230	5	400	250	
TCH06	330		500		
Double	130		300]	
slider	230	10	400	500	
Siluei	330] 10	500] 000	
	430		600		
	430	20	600	1 000	
	100		240		
	200]	340]	
	300		440	250	
	400	5	540		
	500]	640		
	600		740]	
	700		840	1	
	800		940	210	
	100		240		
	200		340	1	
TCH09	300		440		
Single	400	10	540	500	
slider	500] 10	640		
Siluei	600		740]	
	700		840		
	800		940	410	
	100		240		
	200		340]	
	300		440]	
	400	20	540	1 000	
	500	20	640]	
	600		740]	
	700	1	840	1	
	/ / / / /			820	

	Stroke	Ball screw	Body rail	Maximum	
			length L2	speed	
	(nominal)	lead (mm)	(mm)	(mm/s)	
	170		440	(, -,	
	270	5	540	250	
	370	1	640	200	
TOLICO	170		440		
TCH09	270	i	540	1	
Double	370	10	640	500	
slider	470		740		
	670	1	940	1	
	470	20	740	1 000	
	670	20	940	1 000	
	100		280		
	200		380		
	300		480		
	400		580	500	
	500		680	300	
	600	10	780]	
	700		880		
	800		980		
	900		1 080	440	
	1 000		1 180	360	
TCH10	1 100	-	1 280	300	
Single	1 200		1 380	250	
slider	100 200		280 380	ļ	
	300	1	480		
	400		580	1 000	
	500		680		
	600		780		
	700	20	880		
	800	-	980	-	
	900	1	1 080	870	
	1 000	1	1 180	720	
	1 100	-	1 280	600	
	1 200	•	1 380	510	
	270		580	0.10	
	370	1	680	1	
	470	10	780	500	
	570	1	880	1	
TCH10 Double slider	670	1	980	1	
	270		580		
	370		680	1	
	470	1	780	1 000	
	570]	880	1 000	
	670	20	980		
	770]	1 080		
	870		1 180	930	
	970	[1 280	780	
	1 070		1 380	650	
N 16	1 070		1 380	650	

Note: If you need to operate the Toughcarrier near the critical speed or in excess of the maximum speed in the table, please consult NSK.

Maximum speed (short slider)

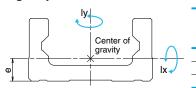
Maximum speed of the Toughcarrier is determined by the critical speed of the ball screw shaft and the $d \cdot n$ value.

Do not exceed the maximum speed in the table below.

	Stroke (nominal)	Ball screw lead (mm)	Body rail length <i>L</i> ²	Maximum speed	
	(110111111111)	loud (IIIII)	(mm)	(mm/s)	
	70		150		
	120	i	200	i	
	220	i _	300	050	
	320	5	400	250	
TCH06	420	1	500	1	
	520	1 1	600	1	
Single	70		150		
slider	120	1	200	1	
	220	4.0	300		
	320	10	400	500	
	420	i	500	i	
	520	1	600	1	
	170		300		
	270	5	400	250	
TCH06	370		500	250	
Double	170		300		
slider	270		400		
oao.	370	10	500	500	
	470	i	600	i	
	140		240		
	240	1	340	250	
	340	1	440		
	440	i _	540		
	540	5	640		
	640	1	740		
	740		840	240	
	840	i	940	190	
	140		240		
	240	i	340	1	
TOLICO	340	i	440		
TCH09	440		540	500	
Single	540	10	640	1	
slider	640	i	740	1	
	740	1	840	480	
	840	i	940	380	
	140		240		
	240	1	340	1	
	340	1	440		
	440		540	1 000	
	540	20	640		
	640	1	740		
	740		840	960	
	840		940	760	
	0-10		0-10	, , , , ,	

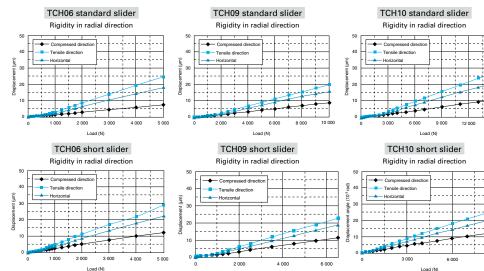
	Stroke	Ball screw	Body rail	Maximur	
	(nominal)	lead (mm)	length L2	speed	
	(IIOIIIIIai)	leau (IIIIII)	(mm)	(mm/s)	
	250		440		
	350	5	540	250	
	450		640		
TCH09	250		440		
Double	350		540	500	
slider	450	10	640	300	
Siluei	550		740		
	750		940	460	
	550	20	740	1 000	
	750		940	930	
	160		280		
	260		380		
	360		480	F00	
	460 560		580 680	500	
	660 760	10	780 880	ļ	
	860		980	490	
	960		1 080	400	
	1 060		1 180	330	
	1 160		1 280	280	
TCH10	1 260		1 380	240	
Single	160		280	2-10	
slider	260		380	İ	
	360		480	1 000	
	460		580		
	560	1	680		
	660	20	780	1	
	760	20	880		
	860		980	980	
	960		1 080	800	
	1 060		1 180	660	
	1 160		1 280	560	
	1 260		1 380	480	
	360		580		
	460		680		
	560	10	780	500	
	660		880		
	760		980		
TCH10 Double slider	360		580		
	460 560		680 780	1 000	
	660		880	1 000	
	760	20	980	-	
	860	20	1 080	980	
	960		1 180	800	
	1 060		1 280	660	
	1 160		1 380	560	
	1 100		1 300	500	

Note: If you need to operate the Toughcarrier near the critical speed or in excess of the maximum speed in the table, please consult NSK.

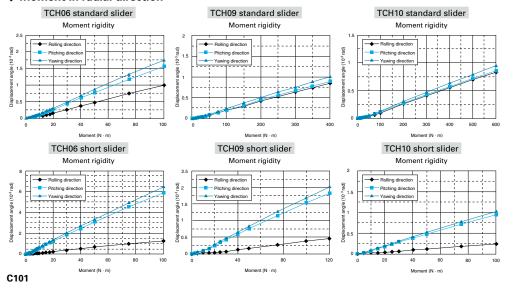

C99 C100

Load (N

NSK


C-2-4. 5 Rigidity

Rigidity of rail



	Geometrical mom	nent of inertia×104	Center of gravity	Mass
Model no.	(mı	m⁴)	(mm)	(kg/100mm)
	lx	ly	е	W
TCH06	6.47	36.2	10.6	0.6
TCH09	28.4	162	15.7	1.32
TCH10	46	283	17.2	1.73

♦ Rigidity in radial direction

♦ Moment in radial direction

Load (N)

C-2-4. 6 Basic Load Rating

♦ Basic load rating for TCH series

Standard slider

		Shaft dia.	Basic d	ynamic load ra			oad rating (N)	Support bearing	
Model no.	(mm)	(mm)	Ball screw C_a	Linear guide C	Support bearings C_a	Ball screw C_{0a}	Linear guide C_0	Support bearing limit load (N)	
	5		3 760			6 310			
TCH06	10	10 φ 12 2 260 20 2 260	20 900	6 600	3 780	45 000	2 700		
	20				3 780				
	5		7 100			13 000			
TCH09	10	φ 15	7 060	44 900	8 800	12 700	96 900	5 090	
	20		4 560			7 750			
TCH10	10	φ 20	10 900	62 400	9 600	21 700	132 000	5 670	
ICHIU	20	φ 20	7 060	62 400	9 000	12 700	132 000	5 670	

Short slider

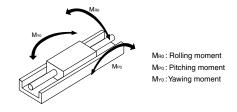
Model no.	l	Shaft dia. d (mm)	Basic d ^o Ball screw <i>C</i> a	ynamic load ra Linear guide C	ting (N) Support bearings Ca		oad rating (N) Linear guide C₀	Support bearing limit load (N)	
TCH06	5	φ 12	3 760	12 200	6 600	6 310	22 500	2 700	
101100	9 10 $^{\varphi}$ 12	Ψ 12	2 260	12 200	0 000	3 780	22 300	2 700	
	5		7 100			13 000			
TCH09	10	<i>φ</i> 15	7 060	27 900	8 800	12 700	52 500	5 090	
	20		4 560			7 750			
TCH10	10 10 ϕ 20 10 900		10 900	38 700	9 600	21 700	71 500	5 670	
101110	20	φ 20	7 060	36 700	9 000	12 700	71 500	5 070	

Basic dynamic and static load ratings indicate values for one slider.
 Basic dynamic load rating of linear guide is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball mounting surface.
 Basic dynamic load rating of ball screw is load in the axial direction that allows 90% of ball screws of a group of the same Toughcarriers to rotate 1 million

revolutions under the same condition without causing flaking by rolling contact fatigue.

Basic dynamic load rating of support bearings is load that allows 1 million revolutions under the same condition.

Basic static load rating is load that results in combined permanent deformations at contact points of rolling elements and rolling surfaces of respective parts at a diameter of 0.01%.


♦ Basic static moment load of linear guide

Standard slider

Model no.	Slider	Basic s	static moment load	(N·m)
woder no.	Silder	Rolling Mro	Pitching M _P o	Yawing M _{Y0}
TCH06	Single	800	340	340
TCH09	Single	2 510	1 340	1 340
TCH10	Single	3 980	2 150	2 150

Short slider

	Model no.	Slider	Basic static moment load (N·m)						
	woder no.	Silder	Rolling Mro	Pitching M _™	Yawing M _{Y0}				
	TCH06	Single	400	85	85				
	TCH09	Single	1 350	390	390				
·	TCH10	Single	2 150	630	630				

C-2-4. 7 Estimation of Life Expectancy

(1) Life of linear guide for Toughcarrier

Study the load to be applied to the linear guide of Toughcarrier (Fig. 1). The equivalent load (Fe) is determined by substituting the load for equation 1) (Eq. 2) or 2') for tightly coupled double slider type).

For single slider

For double slider

For double sliders, calculation of the load applied to each slider is required.

Dynamic equivalent load is only for rolling moment.

This is the same procedure as for linear guide selection where two sliders are installed in a rail. Check the mean load for each slider, and calculate shortest life becomes the life of linear guide.

When lateral direction (F_{H}) and vertical direction (F_{ν}) loads are applied to the center of the coordinate in Fig. 1,

$$F_{\text{HA}} = \frac{F_{\text{H}}}{2} + \frac{M_{\text{Y}}}{\ell}, F_{\text{VA}} = \frac{F_{\text{V}}}{2} + \frac{M_{\text{P}}}{\ell}$$

$$F_{\text{HB}} = \frac{F_{\text{H}}}{2} - \frac{M_{\text{Y}}}{\ell}, F_{\text{VB}} = \frac{F_{\text{V}}}{2} - \frac{M_{\text{P}}}{\ell}$$

[Slider A]

$$Fe_{A} = Y_{H} \cdot F_{HA} + Y_{V} \cdot F_{VA} + Y_{R} \varepsilon_{R} \frac{M_{R}}{2} \dots 2)$$

$$= Y_{H} \left(\frac{F_{H}}{2} + \frac{M_{V}}{\ell} \right) + Y_{V} \left(\frac{F_{V}}{2} + \frac{M_{P}}{\ell} \right) + Y_{R} \varepsilon_{R} \frac{M_{R}}{2}$$

$$Fe_{B} = Y_{H} \cdot F_{HB} + Y_{V} \cdot F_{VB} + Y_{R} \varepsilon_{R} \frac{M_{R}}{2} \dots 2)^{t}$$

$$= Y_{H} \left[\frac{F_{H}}{2} - \frac{M_{V}}{\theta} \right] + Y_{V} \left[\frac{F_{V}}{2} - \frac{M_{P}}{\theta} \right] + Y_{R} \varepsilon_{R} \frac{M_{R}}{2}$$

 $F_{\rm H}$: Lateral direction load acting on the slider (N)

F_v: Vertical direction load acting on the slider (N)

 $M_{\rm R}$: Rolling moment acting on the slider (N · m)

 $M_{\rm P}$: Pitching moment acting on the slider (N · m)

 $M_{\rm Y}$: Yawing moment acting on the slider (N · m)

ε _B: Dynamic equivalent coefficient to rolling moment

ε_P: Dynamic equivalent coefficient to pitching moment

ε , : Dynamic equivalent coefficient to yawing moment

ℓ : Sliders span (m)

*For dynamic equivalent coefficient, see table 1.

$$Y_{H}$$
, Y_{V} , Y_{R} , Y_{P} , Y_{Y} : 1.0 or 0.5

At equations 1), 2) and 2') for obtaining equivalent load Fe, the maximum value of Y in the values for each equation is assumed to be 1.0. For others it is assumed to be 0.5.

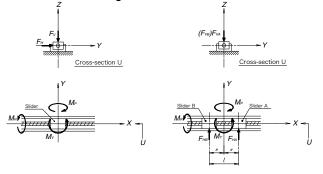
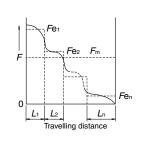



Fig.1 Direction of load

If the loads acting on the slider fluctuate (in general, M_P and M_Y may fluctuate with the acceleration/deceleration of slider), the mean effective load is determined by Eq. 3).

Travelling distance under the equivalent load Fe₁: L₁ Travelling distance under the equivalent load Fe_2 : L_2

Travelling distance under the equivalent load Fe.: L.

Mean effective load Fm is calculated by the following equation.

$$Fm = \sqrt[10]{\frac{10}{3}} \sqrt{\frac{1}{I}} (Fe_1^{\frac{10}{3}} \cdot L_1 + Fe_2^{\frac{10}{3}} \cdot L_2 + \dots + Fe_n^{\frac{10}{3}} \cdot L_n) \cdots 3)$$

Fm: Mean effective load of fluctuating loads (N)

L: Total travelling distance (mm)

The life of linear guide for Toughcarrier is determined by Eq. 4).

$$L = 50 \times \left(\frac{C}{f_{\rm w} \cdot Fm}\right)^{\frac{10}{3}} \dots 4)$$

L: Life of linear guide (km)

C: Basic dynamic load rating of linear guide (N)

Fm: Mean effective load acting on linear guide (N)

f_w: Load coefficient (see table 2)

When the estimated life does meet clear the required life, the life of the linear quide is calculated again after following measures are taken.

1: Change from single slider type to double slider type.

2: Use a larger Toughcarrier.

(2) Life of Ball Screw (Support Bearing)

The mean effective load is determined from the axial load.

Axial direction mean effective load Fm

$$Fm = \sqrt[3]{\frac{1}{L}(Fe_1^3 \cdot L_1 + Fe_2^3 \cdot L_2 + \dots + Fe_n^3 \cdot L_n)} \dots 5$$

The life of ball screw is determined by Eq. 6).

$$L = \ell \times \left(\frac{C_a}{f_w \cdot Fm}\right)^3 \times 10^6 \dots 6)$$

ℓ : Ball screw lead (mm)

L: Life of ball screw (mm)

C_a: Basic dynamic load rating of ball screw (N)

Fm: Mean effective load acting on ball screw (N)

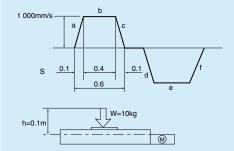
f...: Load factor (see table 2)

The life of a support bearing is calculated by Eq. 6). If the life of ball screw/support bearing does not meet the required life, use a larger size Toughcarrier. After applying the calculations mentioned above, selection of the Toughcarrier is completed.

Table 2 Value of load factor

Operating conditions	Load factor f _w
At smooth operation with no mechanical shock	$1.0 \sim 1.2$
At normal operation	1.2 ~ 1.5
At operation with mechanical shock and vibration	$1.5\sim3.0$

*When the bottom of rail is not fastened, the load factor is 1.5 or greater.


Table 1 Dynamic equivalent coefficient

	TCH06			TCH09			TCH10		
	Rolling	Pitching	Yawing	Rolling	Pitching	Yawing	Rolling	Pitching	Yawing
Standard slider	56	93	93	39	51	51	33	44	44
Short slider	56	186	186	39	95	95	33	80	80

C-2-4. 8 Example of Life Estimation

Example of life estimation for Toughcarrier

Example-1

1. Use condition

Stroke : 500 mm

Maximum speed : 1 000 mm/s

Load mass : W = 10 kg

Acceleration : 9.80 m/s²

Setting position : Horizontal

Operating profile: See figure to above

2. Selection of model number (interim selection) First, select a greater ball screw lead as the maximum speed is 1 000 mm/s.

The interim selection is TCH06050H20K00, a single slider specification TCH06 that has 500 mm stroke, as the stroke is 500 mm.

- 3. Calculation
- 3-1. Linear guide
- 3-1-1. Fatigue life: Multiply the result of Eq. 1) by the dynamic equivalent coefficient (**Table 1** single slider) to convert the load volume. From operation profile in the above figure, the acceleration is 10 m/s².

i) Constant speed
$$Fe_1 = Y_{\text{V}} \cdot F_{\text{V}} = Y_{\text{V}} \cdot W \cdot g$$

$$= 1 \cdot 10 \cdot 9.8 = 98 \text{ N}$$
ii) Accelerating $Fe_2 = Y_{\text{V}} \cdot F_{\text{V}} + Y_{\text{P}} \cdot \varepsilon_{\text{P}} \cdot M_{\text{P}}$

$$= Y_{\text{V}} \cdot W \cdot g + Y_{\text{P}} \cdot \varepsilon_{\text{P}} hW\alpha$$

$$= 0.5 \cdot 10 \cdot 9.8 + 1 \cdot 93 \cdot 0.1 \cdot 10 \cdot 10$$

$$= 979 \text{ N}$$

Mean effective load Fm

$$Fm = \frac{{}^{10}}{{}^{3}}\sqrt{\frac{1}{L}\left(Fe_{3}^{\frac{10}{3}} \cdot L_{1} + Fe_{2}^{\frac{10}{3}} \cdot L_{2} + Fe_{3}^{\frac{10}{3}} \cdot L_{3}\right)}$$

$$= \frac{{}^{10}}{{}^{3}}\sqrt{\frac{1}{500}\left(98^{\frac{10}{3}} \cdot 400 + 979^{\frac{10}{3}} \cdot 50 + 979^{\frac{10}{3}} \cdot 50\right)}$$

$$= 605 \text{ N}$$

$$L = 50 \times \left(\frac{C}{f_{w} \cdot Fm}\right)^{\frac{10}{3}}$$
$$= 50 \times \left(\frac{20\ 900}{1.2 \cdot 605}\right)^{\frac{10}{3}}$$
$$= 3.65 \times 10^{6} \text{ km}$$

3-1-2. Static safety factor: Divide the basic static load rating by the maximum load.

$$F_{\rm S} = \frac{C_{\rm o}}{Fe} = \frac{C_{\rm o}}{Fe_{\rm o}} = \frac{45\ 000}{979} = 45.9$$

3-2. Ball screw

3-2-1. Fatigue life: Obtain the axial load of each stage of operation referring to the operation profile, and then calculate the mean load.

By the process above, i) Constant speed

$$Fe_1 = \mu \cdot W \cdot g = 0.01 \cdot 10 \cdot 9.8 = 0.98 \text{ N}$$

ii) Accelerating

$$Fe_2 = Fe_1 + W \cdot \alpha = 0.98 + 10 \cdot 10 = 101 \text{ N}$$

iii) Decelerating

$$Fe_3 = Fe_1 + W \cdot \alpha = 0.98 - 10 \cdot 10 = 99 \text{ N}$$

Axial mean effective load

$$Fm = \sqrt[3]{\frac{1}{L} \left(Fe_1^3 \cdot L_1 + Fe_2^3 \cdot L_2 + Fe_3^3 \cdot L_3 \right)}$$

$$= \sqrt[3]{\frac{1}{500} \left(0.98^3 \cdot 400 + 101^3 \cdot 50 + 99^3 \cdot 50 \right)}$$

$$= 59 \text{ N}$$

$$L = \ell \times \left(\frac{C_a}{f_w \cdot Fm} \right)^3 \times 10^6$$

$$= 20 \times \left(\frac{2260}{1.2 \cdot 59} \right)^3 \times 10^6$$

$$= 6.50 \times 10^5 \text{ km}$$

3-2-2. Static safety factor: Divide the basic static load rating by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{Fe} = \frac{C_{\rm 0a}}{Fe_{\rm 2}} = \frac{3780}{101} = 37.4$$

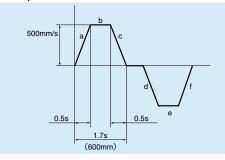
- 3-3. Support bearings
- 3-3-1. Fatigue life: Use the axial load Fm = 59 N that is the result of the calculation in 3-2-1, above.

$$L = \ell \times \left(\frac{C_a}{f_w \cdot Fm}\right)^3 \times 10^6$$

$$= 20 \times \left(\frac{6600}{1.2 \cdot 59}\right)^3 \times 10^6$$

$$= 1.62 \times 10^7 \text{ km}$$

3-3-2. Static safety factor: Divide the limit load by the maximum axial load.


$$F_{\rm S} = \frac{C_{\rm 0a}}{Fe} = \frac{C_{\rm 0a}}{Fe_2} = \frac{2730}{101} = 26.7$$

3-4. Result

TCH06050H20K00	Linear guide	Ball screw	Support bearings	
Cations life	3.65×	6.50×	1.62×	
Fatigue life	10 ⁶ km	10⁵ km	10 ⁷ km	
Static safety factor	45.9	37.4	26.7	

Example of life estimation

Example-2

1. Use condition

Stroke : 600 mm Maximum speed: 500 mm/s

Load mass : W = 20 kg

Acceleration Setting position: Vertical

: 9.8 m/s² Operating profile: See fiure to above

2. Selection of model number (interim selection) Select a 10 mm lead ball screw as the maximum speed is 500 mm/s.

The interim selection is TCH09067H10D00 (double slider specification) from the stroke and the vertical setting position.

3. Calculation

3-1. Linear guide

3-1-1. Fatigue life: Multiply the result of Eq. 2) and 2') by the dynamic equivalent coefficient (Table 1 double slider) to convert the load volume. From operation profile in the above figure, the acceleration is 1 m/s². The interim slider span is 0.13.

Under this condition,

$$F_{\rm H} = 0$$
, $F_{\rm V} = 0$, $M_{\rm R} = 0$

in Eq., and both sliders have the same load with different direction.

i) Constant speed

Fe₁ =
$$Y_H \cdot \frac{M_V}{\ell} + Y_V \cdot \frac{M_P}{\ell}$$

= $0.5 \cdot \frac{0.1 \cdot 20 \cdot 9.8}{0.13} + 1.0 \cdot \frac{0.15 \cdot 20 \cdot 9.8}{0.13}$
= 302 N

ii) Accelerating

$$Fe_2 = Y_H \cdot \frac{M_Y}{\ell} + Y_V \cdot \frac{M_P}{\ell}$$

$$= 0.5 \cdot \frac{0.1 \cdot 20 \cdot (9.8 + 1.0)}{0.13} + 1.0 \cdot \frac{0.15 \cdot 20 \cdot (9.8 + 1.0)}{0.13}$$

= 333 N

iii) Decelerating

$$Fe_3 = Y_H \cdot \frac{M_V}{\ell} + Y_V \cdot \frac{M_P}{\ell}$$

$$= 0.5 \cdot \frac{0.1 \cdot 20 \cdot (9.8 - 1.0)}{0.13} + 1.0 \cdot \frac{0.15 \cdot 20 \cdot (9.8 - 1.0)}{0.13}$$

$$= 271 \text{ N}$$

Mean effective load Fm

$$Fm = \sqrt[10]{\frac{1}{3}} \left(Fe^{\frac{10}{3}} \cdot L_1 + Fe^{\frac{10}{2}} \cdot L_2 + Fe^{\frac{10}{3}} \cdot L_3 \right)$$

$$= \sqrt[10]{\frac{1}{600}} \left(302^{\frac{10}{3}} \cdot 350 + 333^{\frac{10}{3}} \cdot 125 + 271^{\frac{10}{3}} \cdot 125 \right)$$

$$= 304 \text{ N}$$

$$L = 50 \times \left(\frac{C}{f_w \cdot Fm} \right)^{\frac{10}{3}}$$

$$= 50 \times \left(\frac{44900}{1.2 \cdot 304} \right)^{\frac{10}{3}}$$

$$= 4.63 \times 10^8 \text{ km}$$

3-1-2. Static safety factor: Divide the basic static load rating by the maximum load.

$$Fs = \frac{C_0}{Fe} = \frac{C_0}{Fe_2} = \frac{96\,900}{333} = 290$$

3-2. Ball screw

3-2-1. Fatigue life: Obtain the axial load of each stage of operation referring to the operation profile, and then calculate the mean load.

i) Constant speed

$$Fe_1 = W \cdot a = 20 \cdot 9.8 = 196 \text{ N}$$

ii) Accelerating

$$Fe_2 = Fe_1 + W \cdot \alpha = 196 + 20 \cdot 1.0 = 216 \text{ N}$$

iii) Decelerating

$$Fe_2 = Fe_1 - W \cdot \alpha = 196 - 20 \cdot 1.0 = 176 \text{ N}$$

Axial mean effective load Fm

$$Fm = \sqrt[3]{\frac{1}{L} \left(Fe_1^3 \cdot L_1 + Fe_2^3 \cdot L_2 + Fe_3^3 \cdot L_3 \right)}$$

$$= \sqrt[3]{\frac{1}{600} \left(196^3 \cdot 350 + 216^3 \cdot 125 + 176^3 \cdot 125 \right)}$$

$$= 197 \text{ N}$$

$$L = \ell \times \left(\frac{C_3}{f_w \cdot Fm} \right)^3 \times 10^6$$

$$= 10 \times \left(\frac{7060}{1 \cdot 2 \cdot 197} \right)^3 \times 10^6$$

$$= 2.66 \times 10^5 \text{ km}$$

3-2-2. Static safety factor: Divide the basic static load rating by the maximum axial load.

$$Fs = \frac{C_{0a}}{Fe} = \frac{C_{0a}}{Fe_2} = \frac{12700}{216} = 58.7$$

3-3. Support bearings

3-3-1. Fatique life: Use the axial load Fm = 197 N that is the result of the calculation in 3-2-1, above.

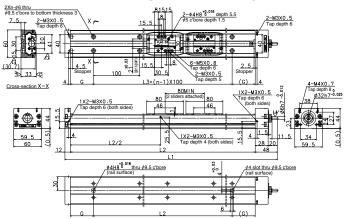
$$L = \ell \times \left(\frac{C_a}{f_w \cdot Fm}\right)^3 \times 10^6$$

$$= 10 \times \left(\frac{8800}{1.2 \cdot 197}\right)^3 \times 10^6$$

$$= 5.15 \times 10^5 \text{ km}$$

3-3-2. Static safety factor: Divide the limit load by the maximum axial load.

$$Fs = \frac{C_{0a}}{Fe} = \frac{C_{0a}}{Fe_0} = \frac{5\ 090}{216} = 23.5$$

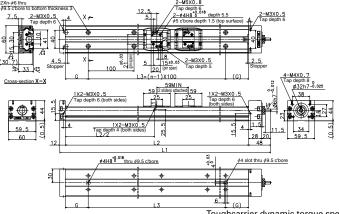

3-4. Result

TCH09067H10D00	Linear guide	Ball screw	Support bearings
	4.63×	2.66×	5.15×
Fatigue life	10º km	10⁵ km	10⁵ km
Static safety factor	290	58.7	23.5

TCH06

C-2-5 TCH Series Dimension Table for Standard Products C-2-5. 1 TCH06 series

♦ TCH06 Standard Slider Specifications (with pin holes)



Toughcarrier dynamic torque specifications

Unit: N · cm

Model no.	Slider specifications	Ball screw lead	Accuracy grade			
iviouei no.	Silder specifications	(mm)	High grade	Precision grade		
		5	1.0 ~ 6.0	1.8 ~ 9.0		
	Single standard slider	10	1.1 ~ 7.2	2.0 ~ 10.6		
TCH06		20	1.6 ~ 9.5	2.2 ~ 12.9		
101100		5	1.2 ~ 7.2	2.0 ~ 10.1		
	Double standard sliders	10	1.2 ~ 9.5	2.2 ~ 12.9		
		20	1.8 ~ 14.1	2.8 ~ 17.5		

◆ TCH06 Short Slider Specifications (with pin holes)

Toughcarrier dynamic torque specifications

Unit: N · cm

Model no.	Slider specifications	Ball screw lead	Accuracy grade			
	Silder specifications	(mm)	High grade	Precision grade		
	Single short slider	5	0.8 ~ 5.9	1.8 ~ 8.9		
TCH06	Single Short Slider	10	1.0 ~ 7.0	2.0 ~ 10.4		
TCHU6	Double short sliders	5	1.0 ~ 7.0	2.0 ~ 10.0		
	Donnie 211011 2110612	10	1.2 ~ 9.2	2.2 ~ 12.6		

TCH06 Standard Slider Specifications (Single)

Reference number	Nominal	Stroke limit	Ball screw	В	ody len	gth (mr		No. of mounting holes		Mass
	stroke (mm)	(mm)	lead (mm)	L1	L2	L3	G	n	× 10 ⁻⁶ (kg · m ²)	(kg)
* TCH06005H05K00 (01)			5						2.94	
* TCH06005H10K00 (01)	50	63	10	210	150	100	25	2	3.38	2.2
* TCH06005H20K00 (01)			20						5.10	
* TCH06010H05K00 (01)			5						3.74	
* TCH06010H10K00 (01)	100	113	10	260	200	100	50	2	4.18	2.5
*TCH06010H20K00 (01)			20						5.90	
TCH06020H05K00 (01)			5						5.34	
TCH06020H10K00 (01)	200	213	10 360	300	200	50	3	5.78	3.3	
TCH06020H20K00 (01)			20						7.50	
TCH06030H05K00 (01)			5						6.84	
TCH06030H10K00 (01)	300	313	10	460	400	300	50	4	7.28	3.9
TCH06030H20K00 (01)			20						9.00	
TCH06040H05K00 (01)			5						8.44	
TCH06040H10K00 (01)	400	413	10	560	500	400	50	5	8.88	4.6
TCH06040H20K00 (01)			20						10.6	
TCH06050H05K00 (01)			5						10.1	
TCH06050H10K00 (01)	500	513	10	660	600	500	50	6	10.5	5.3
TCH06050H20K00 (01)			20						12.2	

Items marked with * are unavailable for upside-down operation.

TCH06 Standard Slider Specifications (Double)

Reference number	Nominal	Stroke limit	Ball screw	, ,		gth (mr	n)	No. of mounting holes		Mass	
Tiererence number	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	G	n	\times 10 ⁻⁶ (kg · m ²)	(kg)	
* TCH06013H05D00 (01)	130	133	5	360	300	200	50	3	5.47	3.6	
* TCH06013H10D00 (01)	130	133	10	300	300	200	50	3	6.32	3.0	
*TCH06023H05D00 (01)	230	233	5	460	400	300	50	4	7.06	4.2	
*TCH06023H10D00 (01)	230	233	10	400	400	300	50	4	7.91	4.2	
* TCH06033H05D00 (01)	330	333	5	560	500	400	50	5	8.64	4.9	
* TCH06033H10D00 (01)	330	333	10	300	500	400	50	5	9.49	4.9	
TCH06043H10D00 (01)	430	433	10	660	600	500	50	6	11.08	5.6	
TCH06043H20D00 (01)	430	433	20	000	000	300	50	0	14.4	7 5.6	

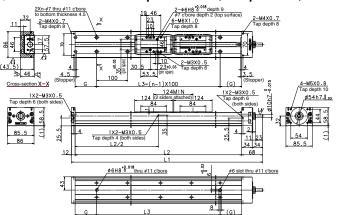
Items marked with * are unavailable for upside-down operation.

TCH06 Short Slider Specifications (Single)

Reference number	Nominal stroke (mm)					gth (mr	n) G	No. of mounting holes	Inertia × 10 ⁻⁶ (kg · m ²)	Mass (kg)
	Stroke (ITIITI)	(111111)	,	L ₁	L ₂	L3	G	"		(1/9)
* TCH06007H05A00 (01)	70	84	5	210	150	100	25	2	2.87	2.1
* TCH06007H10A00 (01)		04	10	210	100	100			3.06	2.1
* TCH06012H05A00 (01)	120	134	5	260	200	100	50	2	3.67	2.4
* TCH06012H10A00 (01)	120	134	10	200	200	100	30		3.86	2.4
TCH06022H05A00 (01)	220	234	5	360	300	200	50	3	5.27	3.2
TCH06022H10A00 (01)	220	234	10	300	300	200	50)	5.46	3.2
TCH06032H05A00 (01)	320	334	5	460	400	300	50	4	6.77	3.8
TCH06032H10A00 (01)	320	334	10	460	400	300	50	4	6.96	3.0
TCH06042H05A00 (01)	420	434	5	560	500	400	50	5	8.37	4.5
TCH06042H10A00 (01)	420	434	10	500	500	400	50	o o	8.56	4.5
TCH06052H05A00 (01)	520	534	5	660	600	500	50	6	9.97	5.2
TCH06052H10A00 (01)	520	554	10	000	000	500	50	0	10.2	U.Z

Items marked with * are unavailable for upside-down operation.

TCH06 Short Slider Specifications (Double)

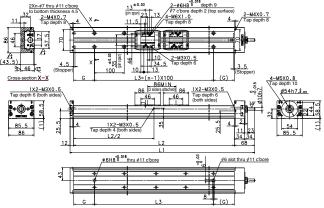

Reference number	Nominal	Stroke limit	Ball screw	Body length (mm)				No. of mounting holes		Mass	
Treference framber	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	G	n	× 10 ⁻⁶ (kg · m ²)	(kg)	
* TCH06017H05B00 (01)	170	175	5	360	300	200	50	3	5.34	3.4	
* TCH06017H10B00 (01)	170	175	10	360	300	200	50	3	5.81	3.4	
TCH06027H05B00 (01)	270	275	5	460	400	300	50	4	6.93	4.0	
TCH06027H10B00 (01)	270	2/5	10	400	400	300	30	4	7.40	1 4.0	
TCH06037H05B00 (01)	270	275	5	560	500	400	50	-	8.51	4.7	
TCH06037H10B00 (01)	370	375	10	560	500	400	50	5	8.98	4.7	
TCH06047H10B00 (01)	470	475	10	660	600	500	50	6	10.57	5.4	

Items marked with * are unavailable for upside-down operation.

C109

C-2-5. 2 TCH09 Series

♦ TCH09 Standard Slider Specifications (with pin holes)



Toughcarrier dynamic torque specifications

Unit: N · cm

Model no.	Slider specifications	Ball screw lead	Accuracy grade				
woder no.	Silder specifications	(mm)	High grade	Precision grade			
		5	2.8 ~ 7.7	4.2 ~ 12.8			
TCH09	Single standard slider	10	3.7 ~ 9.5	4.5 ~ 15.1			
		20	3.7 ~ 12.6	5.1 ~ 17.9			
		5	3.2 ~ 8.7	4.5 ~ 14.1			
	Double standard sliders	10	4.2 ~ 12.6	5.1 ~ 17.9			
		20	5.7 ~ 18.9	6.3 ~ 23.3			

♦ TCH09 Short Slider Specifications (with pin holes)

Toughcarrier dynamic torque specifications

Unit: N · cm

Model no.	Slider specifications	Ball screw lead	Accuracy grade				
iviouei no.	Slider specifications	(mm)	High grade	Precision grade			
		5	2.0 ~ 6.9	3.5 ~ 12.0			
TCH09 -	Single short slider	10	2.9 ~ 8.7	3.8 ~ 14.3			
		20	2.9 ~ 11.8	4.3 ~ 17.1			
		5	2.5 ~ 7.9	3.8 ~ 13.3			
	Double short sliders	10	3.4 ~ 11.8	4.3 ~ 17.1			
		20	4.9 ~ 18.1	5.5 ~ 22.6			

TCH09 Standard Slider Specifications (Single)

TCH 09

Reference number	Nominal	Stroke limit	Ball screw	В	ody len	gth (mr	n)	No. of mounting holes		Mass
Reference number	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	G	n	× 10 ⁻⁶ (kg · m ²)	(kg)
* TCH09010H05K00 (01) * TCH09010H10K00 (01)	100	108	5 10	320	240	100	70	2	9.13 11.0	6.5
* TCH09010H20K00 (01)	100	100	20	320	240	100	/ / /	2	18.6	0.5
TCH09020H05K00 (01)			5						14.2	
TCH09020H10K00 (01) TCH09020H20K00 (01)	200	208	10 20	420	340	200	70	3	16.0 23.6	7.9
TCH09020H20K00 (01)			5						18.1	
TCH09030H10K00 (01)	300	308	10	520	440	300	70	4	19.9	9.4
TCH09030H20K00 (01)			20						27.5	
TCH09040H05K00 (01) TCH09040H10K00 (01)	400	408	5 10	620	540	400	70	5	21.9 23.8	10.8
TCH09040H20K00 (01)	400	400	20	020	040	100	/ 0		31.4	10.0
TCH09050H05K00 (01)			5					_	25.9	
TCH09050H10K00 (01) TCH09050H20K00 (01)	500	508	10 20	720	640	500	70	6	27.7 35.3	12.3
TCH09060H05K00 (01)			5						29.4	
TCH09060H10K00 (01)	600	608	10	820	740	600	70	7	31.3	13.6
TCH09060H20K00 (01) TCH09070H05K00 (01)			20 5						38.9 33.5	
TCH09070H10K00 (01)	700	708	10	920	840	700	70	8	35.4	15.0
TCH09070H20K00 (01)	,	700	20	020	0.0	, 00	, ,	Ŭ	43.0	10.0
TCH09080H05K00 (01)	000	000	5	1 000	040	000	70		37.4	10.4
TCH09080H10K00 (01) TCH09080H20K00 (01)	800	808	10 20	1 020	940	800	70	9	39.3 46.9	16.4
language and and contain the con-		2.1								

Items marked with * are unavailable for upside-down operation.

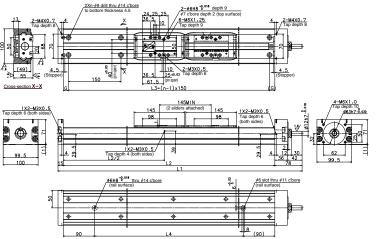
TCH09 Standard Slider Specifications (Double)

Reference number	Nominal	Stroke limit	Ball screw	В	ody len	gth (mr	n)	No. of mounting holes		Mass
rtererence number	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	G	n	× 10 ⁻⁶ (kg · m ²)	(kg)
*TCH09017H05D00 (01) *TCH09017H10D00 (01)	170	184	5 10	520	440	300	70	4	19.47 22.89	10.3
*TCH09027H05D00 (01) *TCH09027H10D00 (01)	270	284	5 10	620	540	400	70	5	23.35 26.77	11.7
TCH09037H05D00 (01) TCH09037H10D00 (01)	370	384	5 10	720	640	500	70	6	27.22 30.64	13.2
TCH09047H10D00 (01) TCH09047H20D00 (01)	470	484	10 20	820	740	600	70	7	34.55 48.24	14.5
TCH09067H10D00 (01) TCH09067H20D00 (01)	670	684	10 20	1 020	940	800	70	9	42.27 55.96	17.3

Items marked with * are unavailable for upside-down operation.

TCH09 Short Slider Specifications (Single)

Reference number	Nominal	Stroke limit	Ball screw	В	ody len	gth (mr	n)	No. of mounting holes		Mass
Tiererenee mamber	stroke (mm)	(mm)	lead (mm)	L ₁	L2	Lз	G	n	× 10 ⁻⁶ (kg · m ²)	(kg)
* TCH09014H05A00 (01)			5						8.9	
* TCH09014H10A00 (01)	140	146	10 20	320	240	100	70	2	10.1	6.1
*TCH09014H20A00 (01) TCH09024H05A00 (01)			5						14.6 13.9	
TCH09024H05A00 (01)	240	246	10	420	340	200	70	3	15.1	7.5
TCH09024H20A00 (01)	2.0	2.10	20	120	0.0		'		19.6	7.0
TCH09034H05A00 (01)			5						17.8	
TCH09034H10A00 (01)	340	346	10	520	440	300	70	4	18.9	9.0
TCH09034H20A00 (01)			20 5						23.5 21.7	
TCH09044H05A00 (01) TCH09044H10A00 (01)	440	446	10	620	540	400	70	5	22.8	10.4
TCH09044H20A00 (01)	1440	440	20	020	040	100	١,٠		27.4	10.4
TCH09054H05A00 (01)			5						25.6	
TCH09054H10A00 (01)	540	546	10	720	640	500	70	6	26.7	11.9
TCH09054H20A00 (01) TCH09064H05A00 (01)			20 5						31.3 29.2	
TCH09064H10A00 (01)	640	646	10	820	740	600	70	7	30.3	13.2
TCH09064H20A00 (01)	040	040	20	020	740	000	/ 0	,	34.9	13.2
TCH09074H05A00 (01)			5						33.3	
TCH09074H10A00 (01)	740	746	10	920	840	700	70	8	34.4	14.6
TCH09074H20A00 (01)			20						39.9	
TCH09084H05A00 (01) TCH09084H10A00 (01)	840	846	5 10	1 020	940	800	70	9	37.2 38.3	16.0
TCH09084H20A00 (01)	040	040	20	1 020	540	000	′0	9	42.8	10.0
. 5.1.5555 .TIEOH00 (01)									0	

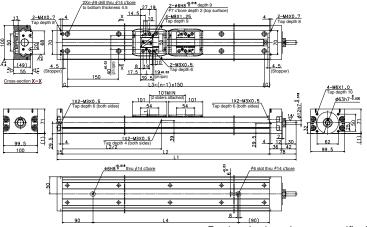

Items marked with * are unavailable for upside-down operation.

TCH09 Short Slider Specifications (Double)

Reference number	Nominal	Stroke limit	Ball screw	В	ody len	gth (mr	n)	No. of mounting holes		Mass
Reference number	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	Lз	G	n	× 10 ⁻⁶ (kg · m ²)	(kg)
TCH09025H05B00 (01) TCH09025H10B00 (01)	250	260	5 10	520	440	300	70	4	18.96 20.86	9.5
TCH09035H05B00 (01) TCH09035H10B00 (01)	350	360	5 10	620	540	400	70	5	22.84 24.74	10.9
TCH09045H05B00 (01) TCH09045H10B00 (01)	450	460	5 10	720	640	500	70	6	26.71 28.61	12.4
TCH09055H10B00 (01) TCH09055H20B00 (01)	550	560	10 20	820	740	600	70	7	32.52 40.13	13.7
TCH09075H10B00 (01) TCH09075H20B00 (01)	750	760	10 20	1 020	940	800	70	9	40.24 47.85	16.5

C-2-5. 3 TCH 10 Series

◆ TCH10 Standard Slider Specifications (with pin holes)



Toughcarrier dynamic torque specifications

Unit: N · cm

Andal na	Slider specifications	Ball screw lead	Accuracy grade				
viouei no.	Silder specifications	(mm)	High grade	Precision grade			
	Single standard slider	10	3.5 ~ 12.3	3.7 ~ 21.2			
TCH10	Single standard slider	20	4.1 ~ 16.6	4.3 ~ 25.5			
	Double standard sliders	10	4.1 ~ 16.6	4.3 ~ 25.5			
	Double Standard Sliders	20	5.4 ~ 25.2	5.6 ~ 34.1			

♦ TCH10 Short Slider Specifications (with pin holes)

Toughcarrier dynamic torque specifications

Unit: N · cm

Model no	Slider specifications	Ball screw lead	Accuracy grade				
woder no.	Silder specifications	Ball screw lead (mm) 10 20 10 20	High grade	Precision grade			
	Single short slider	10	3.6 ~ 11.7	3.8 ~ 20.5			
TCH10	Single Short Slider	20	4.4 ~ 15.4	4.6 ~ 24.2			
ICHIU	Double short sliders	10	4.4 ~ 15.4	4.6 ~ 24.2			
	Double Short Sliders	20	6.0 ~ 22.7	6.2 ~ 31.5			

TCH10 Standard Slider Specifications (Single)

TCH 10

Reference number	Nominal	Stroke limit	Ball screw		Body	length	(mm)		No. of mounting		Mass
Reference number	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	L4	G	holes n	× 10 ⁻⁶ (kg · m ²)	(kg)
* TCH10010H10K00 (01) * TCH10010H20K00 (01)	100	126	10 20	373	280	150	100	65	2	42.72 58.52	9.6
TCH10020H10K00 (01) TCH10020H20K00 (01)	200	226	10 20	473	380	300	200	40	3	54.97 65.62	11.5
TCH10030H10K00 (01) TCH10030H20K00 (01)	300	326	10 20	573	480	450	300	15	4	67.22 77.87	13.5
TCH10040H10K00 (01) TCH10040H20K00 (01)	400	426	10 20	673	580	450	400	65	4	79.47 90.12	15.4
TCH10050H10K00 (01) TCH10050H20K00 (01)	500	526	10 20	773	680	600	500	40	5	91.72 102.37	17.4
TCH10060H10K00 (01) TCH10060H20K00 (01)	600	626	10 20	873	780	750	600	15	6	104.02 114.67	19.3
TCH10070H10K00 (01) TCH10070H20K00 (01)	700	726	10 20	973	880	750	700	65	6	116.22 126.87	21.2
TCH10080H10K00 (01) TCH10080H20K00 (01)	800	826	10 20	1 073	980	900	800	40	7	128.52 139.17	23.2
TCH10090H10K00 (01) TCH10090H20K00 (01)	900	926	10 20	1 173	1 080	1 050	900	15	8	140.70 151.35	25.2
TCH10100H10K00 (01) TCH10100H20K00 (01)	1 000	1 026	10 20	1 273	1 180	1 050	1 000	65	8	152.94 163.59	27.1
TCH10110H10K00 (01) TCH10110H20K00 (01)	1 100	1 126	10 20	1 373	1 280	1 200	1 100	40	9	165.19 175.84	29.1
TCH10120H10K00 (01) TCH10120H20K00 (01)	1 200	1 226	10 20	1 473	1 380	1 350	1 200	15	10	177.43 188.08	31.1

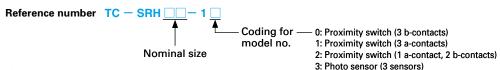
TCH10 Standard Slider Specifications (Double)

Items marked with * are unavailable for upside-down operation

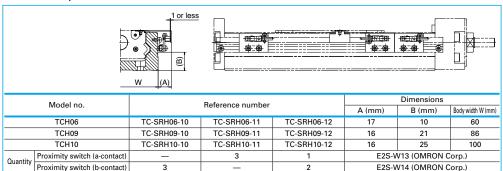
Reference number	Nominai	Stroke limit	Ball screw		Body	length	(mm)		No. of mounting		IVIass
Reference number	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	L ₄	G	holes n	× 10 ⁻⁶ (kg · m ²)	(kg)
* TCH10027H10D00 (01) * TCH10027H20D00 (01)	270	281	10 20	673	580	450	400	65	4	83.02 104.31	16.8
* TCH10037H10D00 (01) * TCH10037H20D00 (01)	370	381	10 20	773	680	600	500	40	5	95.27 116.56	18.8
TCH10047H10D00 (01) TCH10047H20D00 (01)	470	481	10 20	873	780	750	600	15	6	107.57 128.86	20.7
TCH10057H10D00 (01) TCH10057H20D00 (01)	570	581	10 20	973	880	750	700	65	6	119.77 141.06	22.6
TCH10067H10D00 (01) TCH10067H20D00 (01)	670	681	10 20	1 073	980	900	800	40	7	132.07 153.36	24.6
TCH10077H20D00 (01)	770	781	20	1 173	1 080	1 050	900	15	8	165.54	26.6
TCH10087H20D00 (01)	870	881	20	1 273	1 180	1 050	1 000	65	8	177.78	28.5
TCH10097H20D00 (01)	970	981	20	1 373	1 280	1 200	1 100	40	9	190.03	30.5
TCH10107H20D00 (01)	1 070	1 081	20	1 473	1 380	1 350	1 200	15	10	202.27	32.5

TCH10 Short Slider Specifications (Single)

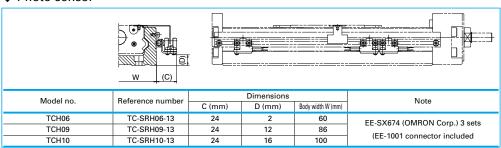
Items marked with * are unavailable for upside-down operation


Reference number	Nominal	Stroke limit	Ball screw		Body	length	(mm)		No. of mounting		Mass
Reference number	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	L4	G	holes n	× 10 ⁻⁶ (kg · m ²)	(kg)
* TCH10016H10A00 (01) * TCH10016H20A00 (01)	160	170	10 20	373	280	150	100	65	2	41.20 79.81	8.9
TCH10026H10A00 (01) TCH10026H20A00 (01)	260	270	10 20	473	380	300	200	40	3	53.45 59.54	10.9
TCH10036H10A00 (01) TCH10036H20A00 (01)	360	370	10 20	573	480	450	300	15	4	65.70 71.79	12.8
TCH10046H10A00 (01) TCH10046H20A00 (01)	460	470	10 20	673	580	450	400	65	4	77.95 84.04	14.8
TCH10056H10A00 (01) TCH10056H20A00 (01)	560	570	10 20	773	680	600	500	40	5	90.20 96.29	16.7
TCH10066H10A00 (01) TCH10066H20A00 (01)	660	670	10 20	873	780	750	600	15	6	102.50 108.59	18.6
TCH10076H10A00 (01) TCH10076H20A00 (01)	760	770	10 20	973	880	750	700	65	6	114.70 120.79	20.6
TCH10086H10A00 (01) TCH10086H20A00 (01)	860	870	10 20	1 073	980	900	800	40	7	127.00 133.09	22.6
TCH10096H10A00 (01) TCH10096H20A00 (01)	960	970	10 20	1 173	1 080	1 050	900	15	8	139.18 145.27	24.5
TCH10106H10A00 (01) TCH10106H20A00 (01)	1 060	1 070	10 20	1 273	1 180	1 050	1 000	65	8	151.42 157.51	26.5
TCH10116H10A00 (01) TCH10116H20A00 (01)	1 160	1 170	10 20	1 373	1 280	1 200	1 100	40	9	163.67 169.76	28.4
TCH10126H10A00 (01) TCH10126H20A00 (01)	1 260	1 270	10 20	1 473	1 380	1 350	1 200	15	10	175.91 182.00	30.4

TCH10 Short Slider Specifications (Double)


Items marked with * are unavailable for upside-down operation

Reference number	Nominai	Stroke IIIIII	Dali screw	Body length (mm)					Jivo. or mounting		iviass
Reference number	stroke (mm)	(mm)	lead (mm)	L1	L ₂	Lз	L4	G	holes n	× 10 ⁻⁶ (kg · m ²)	(kg)
TCH10036H10B00 (01) TCH10036H20B00 (01)	360	369	10 20	673	580	450	400	65	4	79.97 92.14	15.6
TCH10046H10B00 (01) TCH10046H20B00 (01)	460	469	10 20	773	680	600	500	40	5	92.22 104.39	17.5
TCH10056H10B00 (01) TCH10056H20B00 (01)	560	569	10 20	873	780	750	600	15	6	104.52 116.69	19.4
TCH10066H10B00 (01) TCH10066H20B00 (01)	660	669	10 20	973	880	750	700	65	6	116.72 128.89	21.4
TCH10076H10B00 (01) TCH10076H20B00 (01)	760	769	10 20	1 073	980	900	800	40	7	129.02 141.19	23.4
TCH10086H20B00 (01)	860	869	20	1 173	1 080	1 050	900	15	8	153.37	25.3
TCH10096H20B00 (01)	960	969	20	1 273	1 180	1 050	1 000	65	8	165.61	27.3
TCH10106H20B00 (01)	1 060	1 069	20	1 373	1 280	1 200	1 100	40	9	177.86	29.2
TCH10116H20B00 (01)	1 160	1 169	20	1 473	1 380	1 350	1 200	15	10	190.10	31.2


C-2-6 Accessories C-2-6. 1 Sensor Unit

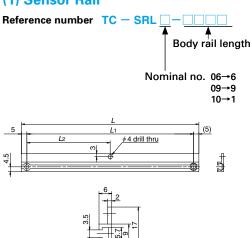
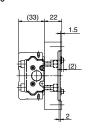
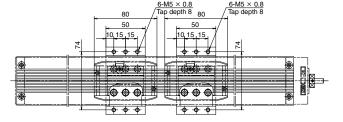
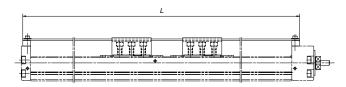

◆ Proximity switch

Photo sensor

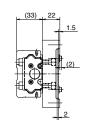

(1) Sensor Rail

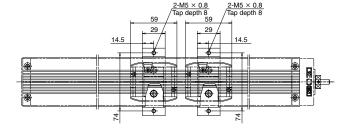


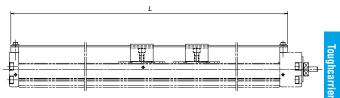
Model no.	Body rail		Dimensions	
Wiodol IIo.	length	L	L 1	L ₂
	150	168	158	79
	200	218	208	104
TCH06	300	318	308	154
10100	400	418	408	204
	500	518	508	254
	600	618	608	304
	240	258	248	124
	340	358	348	174
	440	458	448	224
TCH09	540	558	548	274
1 CHU9	640	658	648	324
	740	758	748	374
	840	858	848	424
	940	958	948	474
	280	298	288	144
	380	398	388	194
	480	498	488	244
	580	598	588	294
	680	698	688	344
TCH10	780	798	788	394
TCHTO	880	898	888	444
	980	998	988	494
	1 080	1 098	1 088	544
	1 180	1 198	1 188	594
	1 280	1 298	1 288	644
	1 380	1 398	1 388	694


C-2-6. 2 Cover Unit

◆ Cover Unit TC-HV06XXXK00 TC-HV06XXXD00

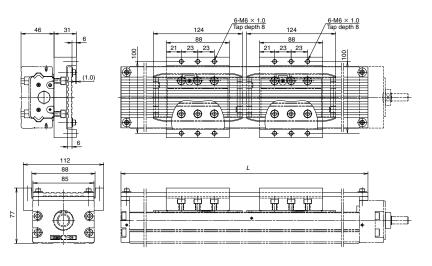




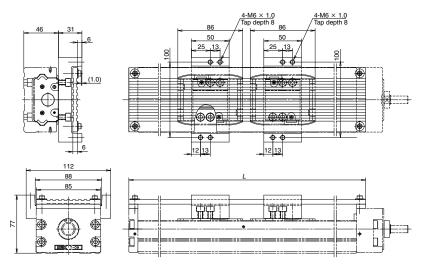


TC-HV06XXXA00 TC-HV06XXXB00

TCH06

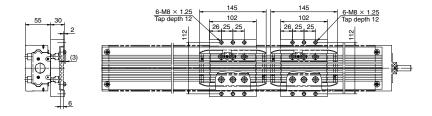

		Slider specifications								
Body rail length	Dimensions	Stan	dard	Sh	ort					
body rail leligtii	L	Single	Double	Single	Double					
150	170	TC-HV06005K00	_	TC-HV06007A00	_					
200	220	TC-HV06010K00	_	TC-HV06012A00	_					
300	320	TC-HV06020K00	TC-HV06013D00	TC-HV06022A00	TC-HV06017B00					
400	420	TC-HV06030K00	TC-HV06023D00	TC-HV06032A00	TC-HV06027B00					
500	520	TC-HV06040K00	TC-HV06033D00	TC-HV06042A00	TC-HV06037B00					
600	620	TC-HV06050K00	TC-HV06043D00	TC-HV06052A00	TC-HV06047B00					

TCH Series


Accessories

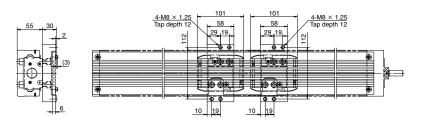
NSK

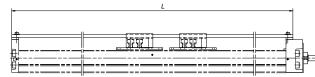
TC-HV09XXXK00 TC-HV09XXXD00


TC-HV09XXXA00 TC-HV09XXXB00

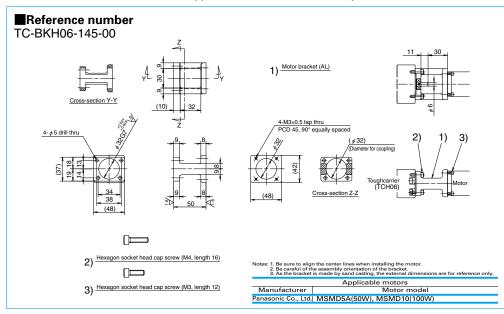
TCH09

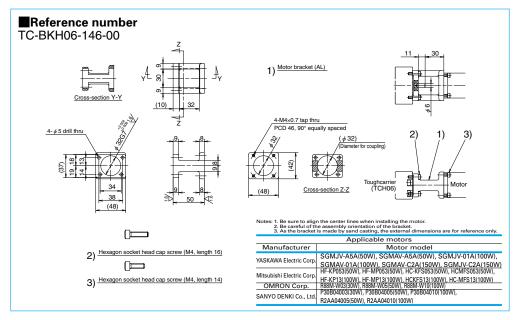
		Slider specifications								
Body rail length	Dimensions	Stan	dard	Sh	ort					
body rail leligtii	L	Single	Double	Single	Double					
240	264	TC-HV09010K00	_	TC-HV09014A00	_					
340	364	TC-HV09020K00	_	TC-HV09024A00	_					
440	464	TC-HV09030K00	TC-HV09017D00	TC-HV09034A00	TC-HV09025B00					
540	564	TC-HV09040K00	TC-HV09027D00	TC-HV09044A00	TC-HV09035B00					
640	664	TC-HV09050K00	TC-HV09037D00	TC-HV09054A00	TC-HV09045B00					
740	764	TC-HV09060K00	TC-HV09047D00	TC-HV09064A00	TC-HV09055B00					
840	864	TC-HV09070K00	_	TC-HV09074A00	_					
940	964	TC-HV09080K00	TC-HV09067D00	TC-HV09084A00	TC-HV09075B00					

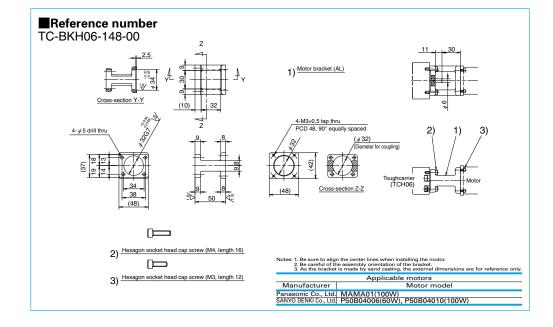

TC-HV10XXXK00 TC-HV10XXXD00

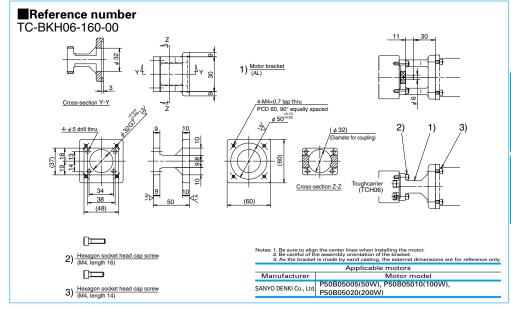


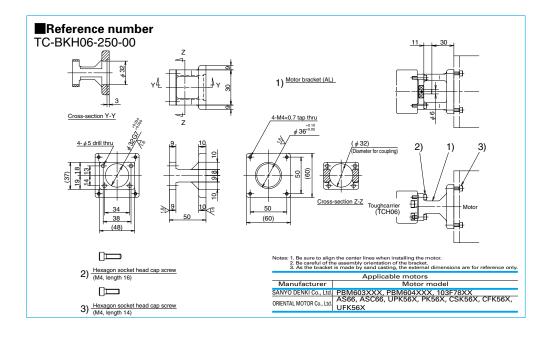
TC-HV10XXXA00 TC-HV10XXXB00

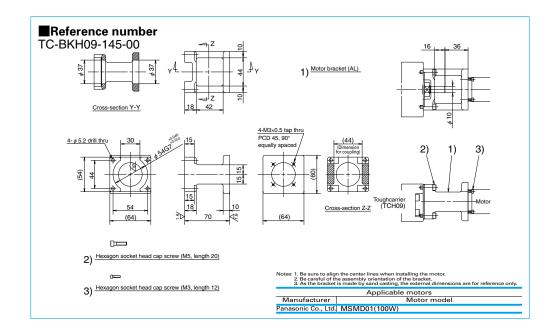


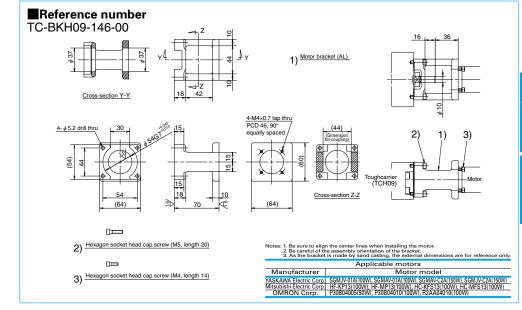

TCH10

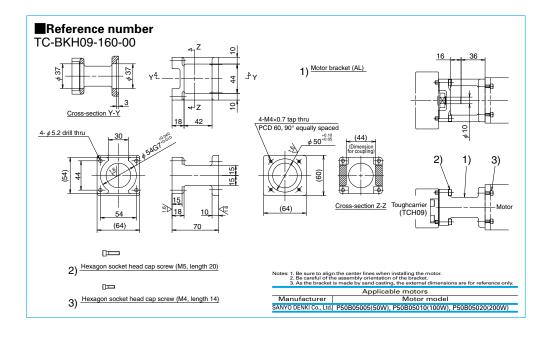

		Slider specifications								
Dady vall langels	Dimensions	Stan	dard	Sh	ort					
Body rail length	L	Single	Double	Single	Double					
280	310	TC-HV10010K00	_	TC-HV10016A00	_					
380	410	TC-HV10020K00	_	TC-HV10026A00	_					
480	510	TC-HV10030K00	_	TC-HV10036A00	_					
580	610	TC-HV10040K00	TC-HV10027D00	TC-HV10046A00	TC-HV10036B00					
680	710	TC-HV10050K00	TC-HV10037D00	TC-HV10056A00	TC-HV10046B00					
780	810	TC-HV10060K00	TC-HV10047D00	TC-HV10066A00	TC-HV10056B00					
880	910	TC-HV10070K00	TC-HV10057D00	TC-HV10076A00	TC-HV10066B00					
980	1 010	TC-HV10080K00	TC-HV10067D00	TC-HV10086A00	TC-HV10076B00					
1 080	1 110	TC-HV10090K00	TC-HV10077D00	TC-HV10096A00	TC-HV10086B00					
1 180	1 210	TC-HV10100K00	TC-HV10087D00	TC-HV10106A00	TC-HV10096B00					
1 280	1 310	TC-HV10110K00	TC-HV10097D00	TC-HV10116A00	TC-HV10106B00					
1 380	1 410	TC-HV10120K00	TC-HV10107D00	TC-HV10126A00	TC-HV10116B00					

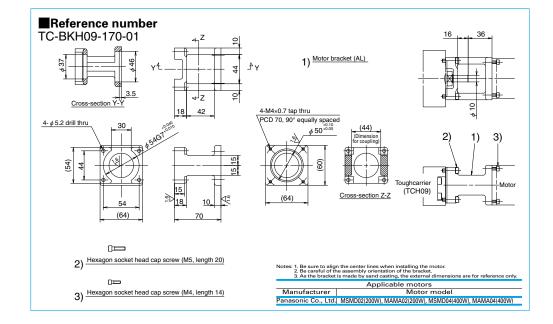

♦ Motor bracket

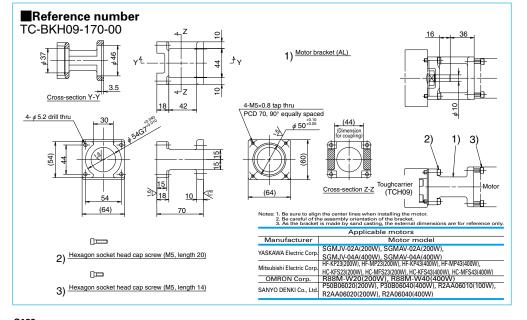

Motor models are subject to change at the motor manufacturers. For details, please contact the manufacturer. For motors other than applicable motors shown below, please contact NSK.



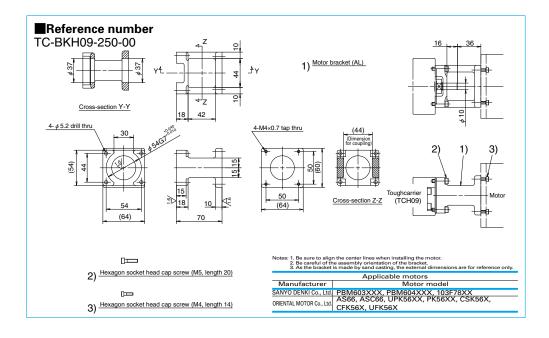


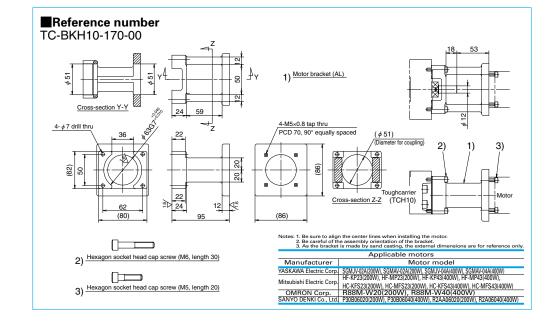


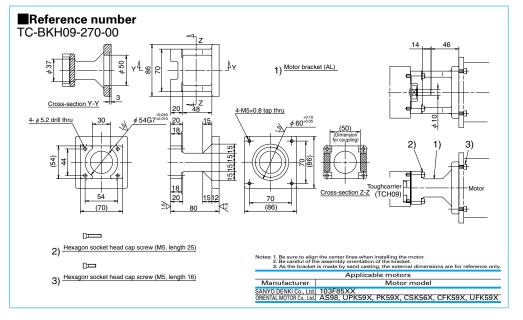


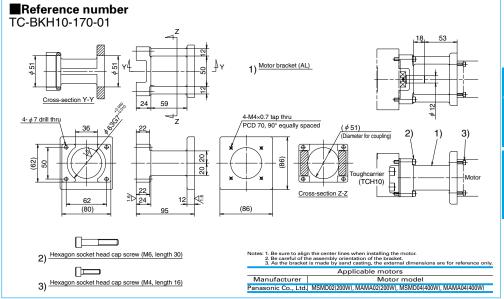




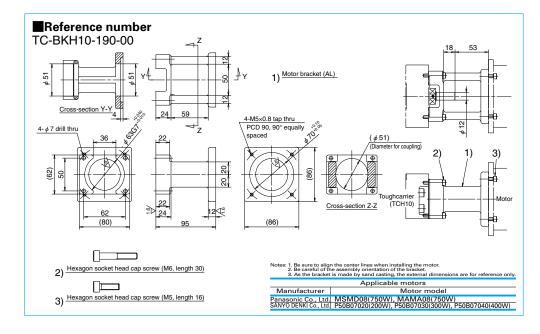


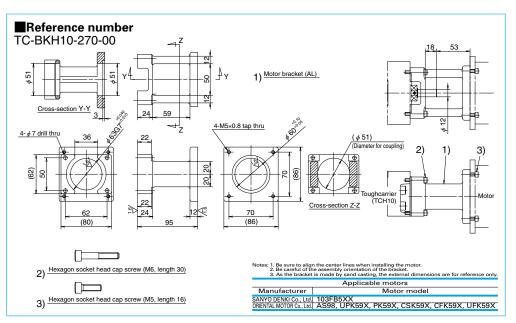






C123





C125

Toughcarrier™ TCH Series

Accessories NSK

C-2-7 Motor Bracket Compatibility Table

Model No.	Reference number	Motor manufacturer	Stepping motor				Watt	age of AC servo	motor			
Luci IVU.	TC-BKH06-145-00		model no.	30W	50W MSMD5A	60W	100W MSMD10	150W	200W	300W	400W	750V
	TC-BKH06-145-00	Panasonic Co., Ltd.			SGMJV-A5A		SGMJV-01A	SGMJV-C2A				
		YASKAWA Electric Corp.			SGMAV-A5A		SGMAV-01A	SGMAV-C2A				
					HF-KP053		HF-KP13					
	TC-BKH06-146-00	Mitsubishi Electric Corp.			HF-MP053 HC-KFS053		HF-MP13 HC-KFS13					
	I C-BKH06-146-00				HC-KFS053 HC-MFS053		HC-KFS13 HC-MFS13					
		OMRON Corp.		R88M-W03	R88M-W05		R88M-W10					
		SANYO DENKI Co., Ltd.		P30B04003	P30B04005		P30B04010					
					R2AA04005		R2AA04010					
TCH06	TC-BKH06-148-00	Panasonic Co., Ltd. SANYO DENKI Co., Ltd.				P50B04006	MAMA01 P50B04010					
TCHU6	TC-BKH06-160-00	SANYO DENKI Co., Ltd. SANYO DENKI Co., Ltd.			P50B05005	P50B04006	P50B04010		P50B05020			
			PBM603XXX									
		SANYO DENKI Co., Ltd.	PBM604XXX									
			103F78XX									
			ASG6 ASC66									
	TC-BKH06-250-00		UPK56X									
		ORIENTAL MOTOR Co., Ltd.	PK56X									
			CSK56X									
			CFK56X UFK56X									
	TC-BKH09-145-00	Panasonic Co., Ltd.	UFK56X				MSMD01					
	10 010 100-140-00						SGMJV-01A	SGMJV-C2A				
		YASKAWA Electric Corp.					SGMAV-01A	SGMAV-C2A				
							HF-KP13					
	TC-BKH09-146-00	Mitsubishi Electric Corp.					HF-MP13					
							HC-KFS13 HC-MFS13					
					P30B04005		P30B04010					
		SANYO DENKI Co., Ltd.					R2AA04010					
	TC-BKH09-160-00	SANYO DENKI Co., Ltd.			P50B05005		P50B05010		P50B05020			
		YASKAWA Electric Corp.							SGMJV-02A SGMAV-02A		SGMJV-04A SGMAV-04A	
									HF-KP23		HF-KP43	_
									HF-MP23		HF-MP43	
	TC-BKH09-170-00	Mitsubishi Electric Corp.							HC-KFS23		HC-KFS43	
									HC-MFS23		HC-MFS43	
		OMRON Corp.							R88M-W20 P30B06020		R88M-W40 P30B06040	
		SANYO DENKI Co., Ltd.					R2AA06010		R2AA06020		R2AA06040	
TCH09							11270100010		MSMD02		MSMD04	
	TC-BKH09-170-01	Panasonic Co., Ltd.							MAMA02		MAMA04	
	TC-BKH09-190-00	SANYO DENKI Co., Ltd.							P50B07020	P50B07030	P50B07040	
		SANYO DENKI Co., Ltd.	PBM603XXX PBM604XXX									
		ONITIO DENITION, Etc.	103F78XX									
			AS66									
	TC-BKH09-250-00		ASC66									
		ODIFIETH MOTOR O	UPK56X									
		ORIENTAL MOTOR Co., Ltd.	PK56X CSK56X									
			CFK56X									
			UFK56X									
			AS98									
			UPK59X PK59X									
	TC-BKH09-270-00	ORIENTAL MOTOR Co., Ltd.	CSK59X									
			CFK59X									
			UFK59X									
		SANYO DENKI Co., Ltd.	103F85XX									
		YASKAWA Electric Corp.							SGMJV-02A SGMAV-02A		SGMJV-04A SGMAV-04A	
									HF-KP23		HF-KP43	
		A.C. 111151 5							HF-MP23		HF-MP43	
	TC-BKH10-170-00	Mitsubishi Electric Corp.							HC-KFS23		HC-KFS43	
									HC-MFS23		HC-MFS43	
		OMRON Corp.		1					R88M-W20 P30B06020		R88M-W40 P30B06040	_
		SANYO DENKI Co., Ltd.							P30B06020 R2AA06020		P30B06040 R2AA06040	
	TO DW//								MSMD02		MSMD04	
TCH10	TC-BKH10-170-01	Panasonic Co., Ltd.							MAMA02		MAMA04	L
		Panasonic Co., Ltd.										MSMI
	TC-BKH10-190-00						-		DEAD.	DEAD	DEAD	MAM
		SANYO DENKI Co., Ltd. SANYO DENKI Co., Ltd.	103FB5XX	1			-		P50B07020	P50B07030	P50B07040	<u> </u>
		SAINTO DENKI CO., Ltd.	AS98	1						-	<u> </u>	
			UPK59X									
	TC-BKH10-270-00	ORIENTAL MOTOR Co., Ltd.	PK59X									
		CHILIVIAL MOTOR CO., LTd.	CSK59X									
			CFK59X	1								
		1	UFK59X	1	I	I	1	1	I	I	I	1

C127 C128

C-2-8 Sensor Rail and Top Cover Unit Combination Table

o Selisui	nali aliu i	op Gover	Offic Coffibi	Hation Table	
Model No.	Reference number	Rail length (L2)	Sensor rail reference number	Cover unit reference number	
	TCH06005H05K00				
	TCH06005H10K00	1		TC-HV06005K00	
	TCH06005H20K00	150	TC-SRL6-0150		
Ī	TCH06007H05A00			TC 111/00007400	
	TCH06007H10A00			TC-HV06007A00	
	TCH06010H05K00				
	TCH06010H10K00			TC-HV06010K00	
	TCH06010H20K00	200	TC-SRL6-0200		
	TCH06012H05A00			TC-HV06012A00	
	TCH06012H10A00			TC-HV00012A00	
	TCH06020H05K00				
	TCH06020H10K00			TC-HV06020K00	
	TCH06020H20K00				
	TCH06013H05D00			TC-HV06013D00	
	TCH06013H10D00	300	TC-SRL6-0300	TC-HV00013D00	
	TCH06022H05A00			TC-HV06022A00	
	TCH06022H10A00			TC-11V00022A00	
	TCH06017H05B00			TC-HV06017B00	
	TCH06017H10B00			10-000017600	
	TCH06030H05K00				
	TCH06030H10K00			TC-HV06030K00	
	TCH06030H20K00				
TCH06	TCH06023H05D00			TC-HV06023D00	
	TCH06023H10D00	400	TC-SRL6-0400	10-11/00023500	
	TCH06032H05A00			TC-HV06032A00	
	TCH06032H10A00			10111000027100	
	TCH06027H05B00			TC-HV06027B00	
	TCH06027H10B00			10-11/0002/000	
	TCH06040H05K00				
	TCH06040H10K00			TC-HV06040K00	
	TCH06040H20K00				
	TCH06033H05D00			TC-HV06033D00	
	TCH06033H10D00	500	TC-SRL6-0500	10111000000000	
	TCH06042H05A00			TC-HV06042A00	
	TCH06042H10A00			10111000427100	
	TCH06037H05B00			TC-HV06037B00	
	TCH06037H10B00			1011100007800	
	TCH06050H05K00				
	TCH06050H10K00			TC-HV06050K00	
	TCH06050H20K00				
	TCH06043H10D00	600	TC-SRL6-0600	TC-HV06043D00	
	TCH06043H20D00		10-31120-0000	10-11/00040000	
	TCH06052H05A00			TC-HV06052A00	
	TCH06052H10A00				
	TCH06047H10B00			TC-HV06047B00	

[•] Sensor rail reference numbers are determined according to the rail length. Select a sensor rail appropriate for your requirements.

Model No.	Reference number	Rail length (L2)	Sensor rail reference number	Cover unit reference numb
	TCH09010H05K00			
	TCH09010H10K00			TC-HV09010K00
	TCH09010H20K00 TCH09014H05A00	240	TC-SRL9-0240	
	TCH09014H10A00	-		TC-HV09014A00
	TCH09014H10A00	1		10-11/03014/400
	TCH09020H05K00			
	TCH09020H10K00	1		TC-HV09020K00
	TCH09020H20K00	340	TC CDI 0 0040	
	TCH09024H05A00	340	TC-SRL9-0340	
	TCH09024H10A00			TC-HV09024A00
	TCH09024H20A00			
	TCH09030H05K00			
	TCH09030H10K00			TC-HV09030K00
	TCH09030H20K00			
	TCH09017H05D00			TC-HV09017D00
	TCH09017H10D00	440	TC-SRL9-0440	
	TCH09034H05A00 TCH09034H10A00	-		TC-HV09034A00
	TCH09034H20A00	1		TC-11V09034A00
	TCH09025H05B00	-		
	TCH09025H10B00	1		TC-HV09025B00
	TCH09040H05K00			
	TCH09040H10K00	1		TC-HV09040K00
	TCH09040H20K00	1		
	TCH09027H05D00	1		TC 111/000037D00
	TCH09027H10D00	540	TC-SRL9-0540	TC-HV09027D00
	TCH09044H05A00] 540	TC-311E3-0540	
	TCH09044H10A00			TC-HV09044A00
	TCH09044H20A00			
	TCH09035H05B00 TCH09035H10B00			TC-HV09035B00
	TCH09050H05K00	_		TC LIVOODEOKOO
TCH09	TCH09050H10K00			TC-HV09050K00
	TCH09050H20K00 TCH09037H05D00	-		
	TCH09037H09D00	-		TC-HV09037D00
	TCH09054H05A00	640	TC-SRL9-0640	
	TCH09054H10A00	1		TC-HV09054A00
	TCH09054H20A00	1		
	TCH09045H05B00	1		TO 111/200 (ED 00
	TCH09045H10B00	1		TC-HV09045B00
	TCH09060H05K00			
	TCH09060H10K00			TC-HV09060K00
	TCH09060H20K00]		
	TCH09047H10D00			TC-HV09047D00
	TCH09047H20D00	740	TC-SRL9-0740	1011100047200
	TCH09064H05A00	1		TO 1 1/0000 44 00
	TCH09064H10A00	1		TC-HV09064A00
	TCH09064H20A00	-		
	TCH09055H10B00 TCH09055H20B00	-		TC-HV09055B00
	TCH09055H20B00 TCH09070H05K00		+	
	TCH09070H05K00	1		TC-HV09070K00
	TCH09070H20K00	-		10-11/030/0100
	TCH09074H05A00	840	TC-SRL9-0840	
	TCH09074H10A00	1		TC-HV09074A00
	TCH09074H20A00	1		
	TCH09080H05K00			
	TCH09080H10K00	1		TC-HV09080K00
	TCH09080H20K00]		
	TCH09067H10D00]		TC U\/00067D00
	TCH09067H20D00	940	TC-SRL9-0940	TC-HV09067D00
	TCH09084H05A00	340	10-31123-0340	
	TCH09084H10A00]		TC-HV09084A00
	TCH09084H20A00]		
	TCH09075H10B00	1		TC-HV09075B00
	TCH09075H20B00	I .	T. Control of the Con	

Sensor rail reference numbers are determined according to the rail length. Select a sensor rail appropriate for your requirements.

C129 C130

[•] Shapes and numbers of spacer plates for cover unit are selected according to slider specifications.

[•] Shapes and numbers of spacer plates for cover unit are selected according to slider specifications.

Model No.	Reference number	Rail length (L2)	Sensor rail reference number	Cover unit reference number
	TCH10010H10K00 TCH10010H20K00			TC-HV10010K00
	TCH10016H10A00 TCH10016H20A00	280	TC-SRL1-0280	TC-HV10016A00
	TCH10020H10K00			TC-HV10020K00
	TCH10020H20K00 TCH10026H10A00	380	TC-SRL1-0380	TC-HV10026A00
	TCH10026H20A00 TCH10030H10K00			
	TCH10030H20K00	480	TC-SRL1-0480	TC-HV10030K00
	TCH10036H10A00 TCH10036H10A00			TC-HV10036A00
	TCH10040H10K00 TCH10040H20K00			TC-HV10040K00
	TCH10027H10D00 TCH10027H20D00			TC-HV10027D00
	TCH10046H10A00	580	TC-SRL1-0580	TC-HV10046A00
	TCH10046H20A00 TCH10036H10B00			TC-HV10036B00
	TCH10036H20B00 TCH10050H10K00			
	TCH10050H20K00			TC-HV10050K00
	TCH10037H10D00 TCH10037H20D00	600	TC CDI 1 0600	TC-HV10037D00
	TCH10056H10A00 TCH10056H20A00	680	TC-SRL1-0680	TC-HV10056A00
	TCH10046H10B00			TC-HV10046B00
	TCH10046H20B00 TCH10060H10K00			TC-HV10060K00
	TCH10060H20K00 TCH10047H10D00			
	TCH10047H20D00 TCH10066H10A00	780	TC-SRL1-0780	TC-HV10047D00
	TCH10066H20A00			TC-HV10066A00
	TCH10056H10B00 TCH10056H20B00			TC-HV10056B00
T01140	TCH10070H10K00 TCH10070H20K00			TC-HV10070K00
TCH10	TCH10057H10D00			TC-HV10057D00
	TCH10057H20D00 TCH10076H10A00	880	TC-SRL1-0880	TC-HV10076A00
	TCH10076H20A00 TCH10066H10B00			
	TCH10066H20B00 TCH10080H10K00			TC-HV10066B00
	TCH10080H20K00			TC-HV10080K00
	TCH10067H10D00 TCH10067H20D00	980	TC-SRL1-0980	TC-HV10067D00
	TCH10086H10A00 TCH10086H20A00	380	10-31111-0960	TC-HV10086A00
	TCH10076H10B00			TC-HV10076B00
	TCH10076H20B00 TCH10090H10K00			TC-HV10090K00
	TCH10090H20K00 TCH10077H20D00		TO OD! 4 4000	TC-HV10077D00
	TCH10096H10A00	1 080	TC-SRL1-1080	TC-HV10096A00
	TCH10096H20A00 TCH10086H20B00			TC-HV10086B00
	TCH10100H10K00			TC-HV10100K00
	TCH10100H20K00 TCH10087H20D00			TC-HV10087D00
	TCH10106H10A00	1 180	TC-SRL1-1180	TC-HV10106A00
	TCH10106H20A00 TCH10096H20B00			TC-HV10096B00
	TCH100301120B00			
	TCH10110H20K00			TC-HV10110K00
	TCH10097H20D00 TCH10116H10A00	1 280	TC-SRL1-1280	TC-HV10097D00
	TCH10116H20A00			TC-HV10116A00
	TCH10106H20B00 TCH10120H10K00		-	TC-HV10106B00
	TCH10120H20K00			TC-HV10120K00
	TCH10107H20D00 TCH10126H10A00	1 380	TC-SRL1-1380	TC-HV10107D00
	TCH10126H10A00 TCH10126H20A00		1	TC-HV10126A00

[·] Sensor rail reference numbers are determined according to the rail length. Select a sensor rail appropriate for your

C-2-9 Toughcarrier High-Thrust Series (Special product)

Specifications

The life of the feeding system is improved by use of higher load capacity ball screw part and support bearings for standard Toughcarrier.

			TCI	H06	TCI	⊣ 09	TCI	1 10
	Shaft diameter	(mm)	12		20		25	
	Lead	(mm)	10	20	10	20	20	25
Ball screw	Basic dynamic Ioa Ca	d rating (N)	3 760	2 970	11 500	8 790	9 760	9 760
	Basic static load ra Coa	ating (N)	6 310	4 240	25 700	18 500	23 600	23 600
	Basic dynamic load rating C (N)		20 900		44	900	62	400
Linear guide	Basic static load rating Co (N)		45 000		96 900		132 000	
Support bearings	Basic dynamic load rating (N)		5	900	18 800		21 900	
	Load limit (N)		3	500	11	500	26 600	

- 1) Only compatible with standard slider.
- 2) Applicable strokes are as follows.

TCH06: Stroke 500 mm TCH09: Stroke 800 mm TCH10: Stroke 1 200 mm

3) High and precision grades are available for accuracy

♦ Features

- 1) Mounting dimensions are the same as Monocarrier MCH Series and standard Toughcarrier.

 (Interchangeable)

 2) Permissible rotational speed is faster than standard Toughcarrier due to different ball recirculation
- system.

C131

[·] Shapes and numbers of spacer plates for cover unit are selected according to slider specifications.

C-3 Technical Materials

1. Sensor Specification	C135
1.1 Proximity Switch	C135
1.2 Photo Sensor	C136
2. Characteristics and Evaluation Method	C137
2.1 Positioning Accuracy	C137
2.2 Repeatability	C137
2.3 Running Parallelism	C137
3. Special Specifications	C138
4. Maintenance	C139
4.1 Maintenance Method	C139
4.2 NSK K1™ Lubricant Unit	C139
5. NSK Clean Grease LG2 Specification	C140

C-3 Technical Materials

nnical Materia

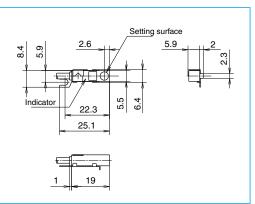
C133 C134

C-3-1 Sensor Specification

C-3-1. 1 Proximity Switch

Use of OMRON E2S-W13 and E2S-W14

ltem	E2S-W13 type	E2S-W14 type
Setting surface	Front face	
Sensing distance	1.6 mm ±15%	
Setting distance	0 to 1.2 mm	
Differential travel	10% max. of sensing distance	
Detectable object type	Ferrous metal	
Standard sensing object	Iron,12 × 12 × 1 mm	
Response frequency	1 kHz min.	
Power supply voltage (operating voltage range)	12 to 24 VDC; ripple (pp), 10% max (10 to 30 VDC)	
Current consumption	13 mA max. at 24 VDC with no load	
Control output (Switching Capacity)	NPN open collector output, 50 mA max. (30 VDC max.)	
Control output (Residual voltage)	1.0 V max. with a load current of 50 mA and a cable length of 1 m	
Indicator	Operation indicator (orange)	
Operating status (with sensing object approaching)	NO (Normally open contact) NC (Normally close contact	
Wire lead length	1 000 mm	


Notes: 1) Do not make a wrong connection. 2) Please contact NSK for PNP output type.

Movement mode	Output type	Type	Time chart	Output circuit	
NO	- NPN	E2S-W13 type	Target object Ves No Output transistor (load) ON OFF ON OFF OFF	brown +V	
NC		E2S-W14 type	Target object Yes No Output transistor (load) ON OFF ON ON ON OFF	*(Maximum load current: 50 mA)	

E2S-W13 (Normally open contact)

E2S-W14 (Normally close contact)

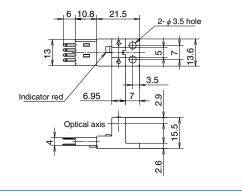
The external appearances are the same.

C-3-1, 2 Photo Sensor

Use of OMRON EE-SX674

ltem	EE-SX674 type		
Slot width	5 mm		
Standard reference object	Opaque, 2 × 0.8 mm		
Differential distance	0.025 mm		
Light source	GaAs infrared LED with peak wavelength of 940 nm		
Indicator (without detecting object)	ON GaP red LED (peak emission wavelength, 690 nm)		
Supply voltage	5 to 24 VDC ±10%; ripple (pp), 10% max.		
Current consumption	35 mA max.		
Control output	NPN open collector output models, 5 to 24 VDC, 100 mA load current		
Response frequency	1 kHz max. (3 kHz typ.)		
Ambient illumination	Fluorescent light, 1 000 lx max.		
Ambient temperature	-25°C to 55°C (-13°F to 131°F) (for operating); -30°C to 80°C (-22°F to 176°F) (for storing)		
Ambient humidity	5 to 85% RH (for operating); 5 to 95% RH (for storing)		
Connecting method	EE-1001/1006 Connectors, soldering terminals		
Notes 1) Do not make a summary and the			

Notes: 1) Do not make a wrong connection.


2) Please contact NSK for PNP output type.

	Туре	Movement mode	Time chart	Connection terminal	Output circuit
	EE-SX674 type	Light-ON	Incident Interrupted Indicator ON (red) OFF Output ON transistor OFF Incident (relay) Releases Incident Incident Incident Incident Interrupted Incident Inci	When terminals L and ⊕ are short circuited	Indicator (#)
		Dark-ON	Incident Interrupted Indicator ON (red) OFF Output ON transistor OFF Incident OFF I	When terminals L and ⊕ are open circuited	Main circuit Less than 100 mA

EE-SX674 (Sensor)

EE-1001 (Connector)

A connector is mounted to the sensor in the right figure.

C135

C-3-2 Characteristics and Evaluation Method

C-3-2. 1 Positioning Accuracy

Perform successive positioning from the reference position in a specific direction. Measure the difference between the actual and desired travel distances for each point from the reference position. Repeat this measurement seven times to determine the average value. Measure such average value over the entire travel distance at the intervals specified for each model and take the maximum difference of the average values determined at respective positions as the measured value.

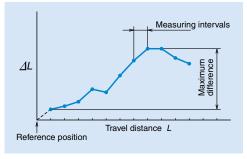


Fig. 1

C-3-2. 3 Running Parallelism (Vertical direction)

We specify the parallelism of slider to the datum bottom surface of rail. An indicator is moved in the axial slider making its stylus slightly touching on the rail bottom surface. The slider is moved in the axial direction for the checking. We define the total indicator reading as the running parallelism. During the checking, the rail is not fixed to the table base. Please be aware that, in general application, the rail is fixed to the machine base, and thus the wobbly rolling error will be added to the running parallelism.

C-3-2. 2 Repeatability

Repeat positioning at any point seven times from the same direction to measure the stopping position and determine one half of the maximum difference of readings. Repeat this measurement over the entire travel distance at the intervals specified for each model. Take the maximum difference of the determined values as the measured value. Express one half of the maximum difference with a plus-or-minus (±) sign.

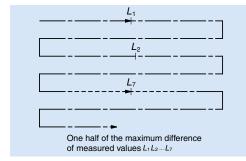


Fig. 2

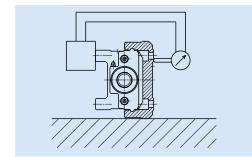


Fig. 3 Setting of indicator

C-3-3 Special Specifications

Please consult NSK if your requirement is not in the standard products.

(1) Surface Treatment

Fluoride low temperature chrome plating
 Note: Ball screw parts (including low temperature chrome plating.)

(2) Special Machining (Processing)

- i) Shaft end processing
- · Key way processing
- · One flat or two flats processing
- ii) Pin hole processing
- Slider
- Rail

Note: Due to interference with the internal construction, the position of pin hole is limited. Please consult with NSK about the pin position.

(3) Motor Bracket and Intermediate Plate for Motor Mounting

- We provide motor mounting brackets and intermediate plates that are not listed in the catalog.
- We assemble motor upon request if the motor is provided in advance.

Note: Motion check of the motor is unavailable.

(4) Reversed Motor Mount

The reversed motor mount is available. Please consult NSK.

Notes: 1) We do not check motor running condition.

 Please refer to the bottom of page C87 to C89 for the configuration of reversed motor mounting of the MCH series.

(5) Right and Left Turn Thread

Right and left turn ball screw is available. Please consult with NSK for available leads.

(6) Ball-Screw-Less Specification (Only Linear Guide Part)

A ball-screw-less rail part with the same cross section of standard Monocarriers is available for a driven linear guide. It will lessen a height adjustment work compared with a construction with two standard Monocarriers.

Note: Height grinding adjustment of the two axes assembly is not available.

Technical Materials

C137 C138

C-3-4 Maintenance C-3-4.1 Maintenance Method

- 1. For standard Monocarrier, we pack grease in the slider, linear guides and ball screw.
- 2. Monocarriers are equipped with NSK K1 Lubrication Unit as a standard feature, therefore, you may use it for 5 years or 10 000 km depending on your application, whichever comes first, without maintenance. However, replenishment of preceded grease may extend its life substantially.
- 3. The NSK K1 Lubrication Unit is ideal in environments where oily dust exists. However, the life may be shorter than described in Clause 2 above. In such a case, it requires increasing the frequency of replenishment.

 A Nozzle for the NSK grease pump for MCH Monocarriers is available as an option.
 NSK reference number: NSK HGP NZ8

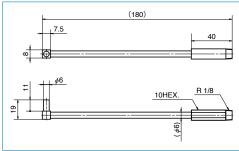


Fig. 4 NSK HGP NZ8

Precautions for handling

- 1. Please consult with NSK when the motor is coupled to the ball screw using a pulley because there is a restriction on allowable load to the end of ball screw shaft.
- 2. To extend high performance of NSK K1 lubrication unit, please observe the following.

1. Temperature range Ambient temperature: 50°C

Max. instantaneous temperature: 80°C

2. Use of chemicals Never leave a Monocarrier in close proximity of grease

removing organic solvents such as hexane or thinner. Never

immerse it in an antirust solvent that contains kerosene.

Note: Other oils, such as water-based and oil based cutting oil, and grease do not cause any problems.

C-3-4. 2 NSK K1[™] Lubricant Unit

NSK K1 lubrication unit exhibits outstanding features, confirmed by abundant experimental data, along with proven performance of linear guides and ball screws that are equipped with NSK K1.

(1) High-Speed Durability Test of Linear Guides without Lubricant

Results of high-speed durability testing of a linear guide without lubricant are shown in **Fig. 5** While the linear guide cannot be operated without lubricant for even short periods without damage, the installation of the NSK K1 permits the linear guide to run over 25 000 km without any problem.

	Test piece: LH30AN (Preload Z1)	
Conditions	Speed: 3.3 m/s	
	Stroke: 1 800 mm	
No lubricant	All grease removed	
NSK K1	All grease removed + NSK K1	

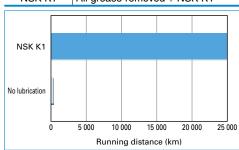


Fig. 5 Results of high-speed durability test of linear guides without lubricant

(2) High-Speed Durability Test of Ball Screws without Lubricant

Results of high-speed durability testing of ball screw without lubrication are shown in **Fig. 6**While the ball screw cannot be operated without a lubricant at 8.5 km without damage, the installation of the NSK K1 permits the ball screw to run over 21 000 km without any problem.

Conditions	Test piece: BS2020 (Ball screw)
	Shaft diameter: 20 mm
	Lead: 20 mm
	Load: none
	Speed: 1.3 m/s (4 000 min ⁻¹)
	Stroke: 600 mm
No lubricant	All grease removed
NSK K1	All grease removed + NSK K1

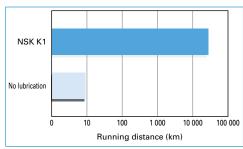


Fig. 6 Results of high-speed durability test of ball screws without lubricant

NSK K1 Lubrication Units for food processing and medical devices are available.

For safety equipment of food processing and medical care, NSK provides the Monocarrier equipped with special NSK K1 Lubrication Unit that is made of materials approved by the FDA. Dimensions are the same as the standard NSK K1 Lubrication Unit, and special handling care is not required.

C-3-5 NSK Clean Grease LG2 Specification

Features

This grease was developed by NSK to be exclusively used for linear guides and ball screws in clean rooms. Compared to the fluoride grease which are commonly used in clean rooms, LG2 has several advantages such as: higher in lubrication function, longer lubrication life, more stable torque (resistant to wear), and higher rust prevention. In dust generation, LG2 is more than equal to fluoride grease in keeping dust volume low. Since the base oil is not a special oil but a mineral oil, LG2 can be handled in the same manner as general grease.

Applications

LG2 is lubrication grease for rolling contact machine components such as linear guides and ball screws for processing equipment for semiconductors and LCD which require highly clean environment at normal pressure in normal temperatures. It cannot be used in a vacuum environment.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil + Synthetic hydrocarbon oil
Consistency	199
Dropping point	201°C
Volume of evaporation	1.40% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.8% (100°C, 24 hr)
Base oil kinematic Viscosity	32 mm²/s (40°C)

Other

BLOCK

Other

1. Special Environments D1
1.1 Specifications for Special Environments D1
1.2 Lubrication and Materials D3
1.3 Rust Prevention and Surface Treatment D5
1.4 Measures Against Special Environments ······ D7
1.5 Table to Cope with Special Environments D11
1.6 Precautions for
Handling D12
2. Lubrication ····· D13
2.1 Grease Lubrication D13
2.2 Oil Lubrication ····· D24
3. RoHS Compliant D24

1 Special Environments

1.1 Specifications for Special Environments

1. Linear guide

Table 1.1 Linear guide specifications

Environment	Condition	NSK linear guide specifications			Technical Explanation	
Liivii oiiiileiit	Condition	Rail, slide	Steel balls/rollers	Ball recirculation component	Lubrication/surface treatment	Page No.
		Standard material	Standard material	Standard material	LG2, LGU Grease	D8
	Atmosphere,	Standard material	Standard material	Standard material	NSK K1 lubrication unit	D10
					LG2, LGU Grease	D8
Clean	normal temperature				NSK K1 lubrication unit	D10
		Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
	Atmosphere-Vacuum, normal temperature				Fluoride grease	
	Atmosphere-Vacuum up to 200°C					
	Atmosphere-Vacuum, normal temperature				Fluoride grease	
	Atmosphere-Vacuum up to 200°C					
Vacuum	Atmosphere-Vacuum up to 300°C	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Molybdenum disulfide	
	High vacuum up to 500°C				Special silver film	D7
	Vapor, steam	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel		
Corrosion	vapor, otoarri	Standard material	Standard material	Standard material	Fluoride low temperature chrome plating	D5
	Acid, alkali	Otanidara materiar				D5
		Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel		D5
	Acid, alkali, clean				Fluoride low temperature chrome plating	D5
resistance					LG2, LGU Grease	D8
	Strong acid,				Fluoride low temperature chrome plating	D5
	strong alkali				Fluoride grease	
	Organic solvent				Fluoride grease	
	Atmosphere	Standard material	Standard material		ET-100K Grease	
High	up to 150°C			Austenitic stainless steel	E1-100K Grease	
Ü	Atmosphere up to 200°C	Martensitic stainless steel	Managaratia atainlara ataal		Fluoride grease	
temperature	Atmosphere up to 200°C,	iviarteristic stariless steer	iviariensino stanness steer		E	
	Corrosion resistant				Fluoride grease	
Low temperature	-273°C and higher	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Solid lubricant	
Radiation	Atmoonhoro	Standard material	Standard material	Standard material	D. P. C. C. C.	
resistance	Atmosphere	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Radiation resistant grease	
	Fine particles,	Standard material	Standard material	Standard material		D10
Foreign	wooden chips		Martensitic stainless steel	Austenitic stainless steel	NCV V1 lubrication	D10
matters	Water,	Martensitic stainless steel	Standard material	Standard material	NSK K1 lubrication unit	D10
	under water		Martensitic stainless steel	Austenitic stainless steel		D10

2. Ball screw

Table 1.2 Ball screw specifications

Environment	Condition	Non ban screw specification				Technical Explanation
Liivii oiiiileiit	Condition	Screw shaft, ball nut	Steel balls	Ball Recirculation component	Lubrication/surface treatment	Page No.
		Standard material	Standard material	Standard material	LG2, LGU Grease	D8
	Atmosphere,	Standard material	Standard material	Standard material	NSK K1 lubrication unit	D10
					LG2, LGU Grease	D8
	normal temperature				NSK K1 lubrication unit	D10
Clean		Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
	Atmosphere-Vacuum, normal temperature				Fluoride grease	
	Atmosphere-Vacuum up to 200°C					
	Atmosphere-Vacuum up to 200°C, Corrosion resistant	Ceramic	Ceramic	Ceramic	Fluoride grease	
	Atmosphere-Vacuum, normal temperature				Fluoride grease	
Vaauum	Atmosphere-Vacuum up to 200°C	Martanaitia atainlaga ataal	Martensitic stainless steel	Austenitic stainless steel		
Vacuum	Atmosphere-Vacuum up to 300°C	ividitensitic stanness steer	Martensitic stainless steel	Austennic stanness steer	Molybdenum disulfide	
	High vacuum up to 500°C				Special silver film	D7
		Standard material	Standard material		Fluoride low temperature	D5
Corrosion Acid, alkali, clear		Martensitic stainless steel Martensitic stainless steel			chrome plating	D5
resistance		Precipitation hardening stainless steel	Precipitation hardening stainless steel	Austenitic stainless steel	EL	
	Strong acid, strong alkali, clean, nonmagnetic		Ceramic		Fluoride grease	
N	Atmosphere-Vacuum, clean	Special austenitic stainless steel		A . 25 . 1 . 1	Fluoride grease	
Nonmagnetic	Atmosphere-Vacuum, up to 200°C, clean	Ceramic	Ceramic	Austenitic stainless steel	Fluoroplastic	
	Atmosphere up to 200°C	Standard material	Standard material		Fluoride grease	
High	Atmosphere up to 200°C	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
temperature	Atmosphere up to 500°C,	C '	C i-	Austennic stamiess steer		
	corrosion resistance	Ceramic	Ceramic		Fluoride grease	
Low temperature	-273°C and higher	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Solid lubricant	
Radiation		Standard material	Standard material	Standard material	D 10 0 0 0 0	
resistance	Atmosphere	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Radiation resistant grease	
	Fine particles,	Standard material	Standard material	Standard material		D10
Foreign	wooden chips				NSK K1 lubrication unit	D10
matters	Water, under water	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel		D10

1.2 Lubrication and Materials

1. Lubrication

Grease can be used for high rotation and magnetic field. However, grease evaporates or solidifies in special environment such as vacuum, high temperature, and low temperature. Solid lubricant is

used when it is difficult to use grease. Functions of solid lubricant differ greatly by condition where it is used. It is important to select the most suitable solid lubrication for the environment.

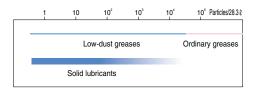


Fig. 2.1 Lubrication in clean environment

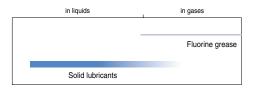


Fig. 2.3 Lubrication in corrosive environment

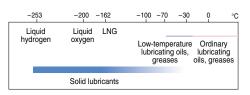


Fig. 2.5 Lubrication in low temperature

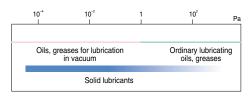


Fig. 2.2 Lubrication in vacuum

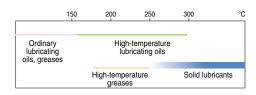


Fig. 2.4 Lubrication in high temperature

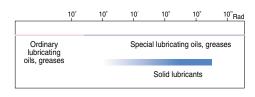


Fig. 2.6 Lubrication in radioactive environment

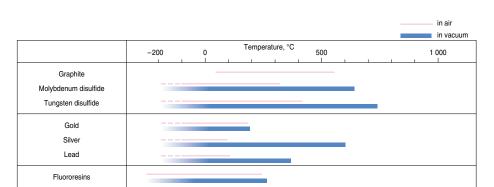


Fig. 2.7 Temperature range for using solid lubricants

2. Materials

Iron type metals are used in vacuum, high temperature, and high speed environments as

the basic material. We generally use nonmagnetic stainless steel for nonmagnetic materials.

Table 2.1 Characteristics of metal materials

Application	Type of steel	Linear expansivity ×10 ⁻⁶ /°C	Young's modulus GPa	Hardness* HB
For clean environment, vacuum environment, corrosion resistance, low temperature, high temperature, radioactive resistance	Martensitic stainless steel SUS440C	10.1	200	580
	Austenitic stainless steel SUS304	16.3	193	150
	Precipitation hardening stainless steel SUS630	10.8	200	277 – 363
Nonmagnetic	Nonmagnetic stainless steel	17.0	195	420

^{*)} Hardness of steel is usually indicated by Rockwell C Scale. For comparison, these figures are expressed by Brinell number.

1.3 Rust Prevention and Surface Treatment

1. Fluoride low temperature chrome plating The use environment of NSK linear guides ball screws, and monocarriers is expanding from general industrial machines, semiconductor and liquid crystal manufacturing systems to aerospace equipment.

Among all measures to cope with environment, rust prevention is the most challenging. Such environment includes:

- Moisture for washing machines and other equipment
- Chemicals used in the wet processing of semiconductor and liquid crystal display manufacturing equipment.

NSK has developed electrolytic rust prevention black film treatment (black chrome plating) which is added by fluoro resin impregnating treatment. (Hereinafter referred as "Fluoride low temperature chrome plating".) This surface treatment methods has proved its superiority as the rust prevention of linear guides and ball screws which are used in the above equipment.

• What is "Fluoride low temperature chrome plating?"

This is a type of black chrome plating which forms a black film (1 to 2 μ m in thickness) on the metal surface. Fluoroplastic coating is added to the film to increase corrosion resistance.

- Accuracy control is easily manageable due to low temperature treatment and to the absence of hydrogen embrittlement.
- Product accuracy is less affected due to the thin film which has high corrosion resistance.
- This method is superior to other surface treatments in durability on the rolling surface.
- Inexpensive compared with products with other surface treatment and stainless steel products.

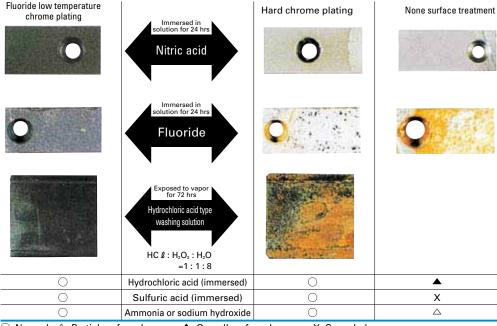
Do not use organic solvent because it adversely affects antirust property of the plating.

Humidity chamber test

D5

Table 3.1 Results of the humidity test

		Test sample	Fluoride low temperature chrome plating	Hard chrome plating	Electroless nickel plating	Equivalent to SUS440C material	Standard steel
Chara	Characteristic		(recommended)	(reference)	(reference)		
		Тор	(Ground) B	(Ground) B	(Ground) A	(Ground) C	(Ground) D
	Rusting	Side	(Ground) A	(Ground) A	(Ground) A	(Ground) C	(Ground) E
	usti	Bottom	(Ground) A	(Ground) A	(Ground) A	(Ground) C	(Ground) E
	æ	End	(Machined) A	(Machined) C	(Machined) A	(Machined) C	(Machined) E
		Chamfer/grinding recess	(Drawn) A	(Drawn) D	(Drawn) A	(Drawn) C	(Drawn) E
Corrosion-resistant property	t (ma	t conditions> Festing chamber: High emperature, highly moist chamber ade by DABAI ESPEC) Femperature: 70°C Relative humidity: 95%	0	0	0	C	•
Corrosic	Tim "rai tem con Rar	Festing time: 96 h The to "ramp-up" and supper and supper and the humidity ditions supper and the humidity ditions supper and the humidity ditions supper s			The state of the s		
		Film thickness	5 µm	0.5 – 7 μm	10 μm	_	_


Rusting

A: No rust C: Spotty rust

Chemical corrosion resistance test

Table 3.2 Results of the corrosion resistance test

Test conditions Rail base material: Equivalent to SUS440C Chemical density: 1 mol/ ℓ

○: Normal △: Partial surface damage ▲: Overall surface damage X: Corroded

Surface treatment durability test

Peeling resistance of surface treatment

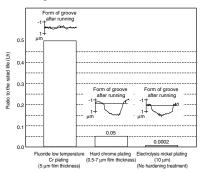


Fig. 3.1 Results of durability test

Total evaluation

Table 3.3 Evaluation

_	7 Wallabio longai	ability	Quality otubility	Durubility	0000
Fluoride low temperature chrome plating	© (4 m)	0	0	0	0
Hard chrome plating	△ (2 m)	0	Х	\triangle	Δ
Electroless nickel plating	© (4 m)	0	Δ	Х	Δ
Material equivalent to SUS440C	(3.5 m)	0	0	0	Δ
	©: Excellent		○: Suitable in use		

Available length Rust prevention Quality stability Durability Cost

 \triangle : Not so good for use

X: Problem in use

Other

1.4 Measures Against Special Environments

1. In vacuum

Silver-film plated ball screw

Ball screws that are plated by soft metal (special silver film) as a solid lubricant are developed the application for vacuum environment such as semiconductor manufacturing equipment and surface modification systems.

Durability test in high vacuum

Test equipment and conditions

Table 4.1 shows ball screw specifications. Fig. 4.1 is a schematic of the testing system in vacuum chamber. Table 4.2 shows testing conditions.

Table 4.1 Ball screw specifications

	Table 4.1 Ball screw specifications				
Shaft diameter		12 mm			
	Lead	4 mm			
Steel ball diameter		2.381 mm			
Numbers of circuit of balls		2.5 turns, 1 circuit			
Axis load (preload)		29.4 N			
Maximum surface pressure (preload volume)		about 690 MPa			
	Shaft	SUS630			
rial	Nut	SUS440C			
Nut Ball return tube		SUS304			
2	Steel balls	SUS440C			
Solid lubricant		Special silver film			

Table 4.2 Testing conditions

Rotational speed	300 min ⁻¹		
Vacuum chamber	1.3×10 ⁻⁵ – 1.3×10 ⁻⁶ Pa		
pressure	1.5×10 - 1.5×10 1 a		
Stroke	160 mm		

Evaluation method

It is understood that the rolling bearing with solid lubrication reaches end of life when the lubrication film deteriorates, resulting in sudden rise of friction torque. In this test, ball screw rotation torque was constantly measured to study durability and operation. Results were then evaluated.

Test results

Fig. 4.2 shows two distinctive examples obtained in the torque characteristic test.

Photo 4.1 Vacuum testing system

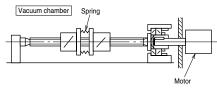


Fig. 4.1 Schematic of the testing system

Test results of the ball screw (a)

The torque tendency was stable until about 1 \times 10 7 rev. Then the torque characteristics slightly deteriorated. At about 1.35 \times 10 7 rev, the torque suddenly rose. At this point, it was determined that the ball screw reached the end of its life.

Test results of the ball screw (b)

Torque value is a little higher in the test (a). The value is also little unstable. The torque momentarily soared several times during the test (some 10 N·cm). It is thought this is attributable to the repeated peeling/sticking of the surface film made of soft metal (silver, etc.).

When the torque finally soared at 1.13×10^7 rev., it was determined that the ball screw reached the end of its life.

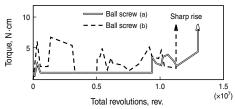


Fig. 4.2 Torque variation

Table 4.3 Ball screw durability

	Classification	Ball screw (a)	Ball screw (b)
	Total revolutions (rev.)	1.35×10 ⁷	1.13×10 ⁷
Life	Total traveling distance (km)	54.0	45.2
	Total traveling hours*(h)	750	628

^{*)} Total traveling hours when operated constantly at 300 min⁻¹

Conclusion

Table 4.3 explains results of the two ball screw durability tests.

From these results and other findings, it is estimated that a life of more than 1×10^7 rev. is possible with a load of about 29.4 N.

Torque may soar momentarily before the ball screw reaches its final life due to peeling/sticking of the surface film made of soft metal like silver. For this reason, it is recommendable to select a drive motor with extra torque capacity.

2. Clean environment

NSK Clean Grease LG2 and LGU

NSK Clean Grease LG2 is used in clean room for NSK linear guides, ball screws, Monocarriers, XY Modules, Megatorque motors, XY tables, etc. with low-dust emitting specifications. For its low dust emission and high durability, LG2 earns trust and high reputation of semiconductor equipment manufacturers.

LG2 is superior in many areas to fluorine greases which are commonly used in clean room.

Features

- Remarkably low dust emission
- Long life -- More than ten times longer than fluoride greases, and equivalent to ordinary greases.
- Excellent rust prevention -- Significantly higher capacity than fluorine greases.
- Low and stable torque -- 20% or less than that of fluorine greases

Table 4.4 Nature of Clean Grease LG2 and LGU

Name	Thickener	Base oil	Base oil kinematic viscosity mm²/s (40°C)	Consistency	Dropping point °C
Clean Grease LG2	Lithium soap	Synthetic hydrocarbon oil + mineral oil	32	199	201
Clean Grease LGU	Diurea	Synthetic hydrocarbon oil	95.8	201	260

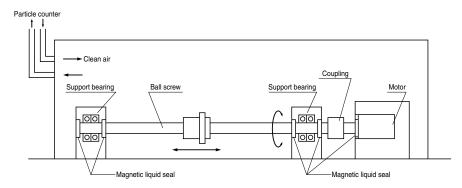
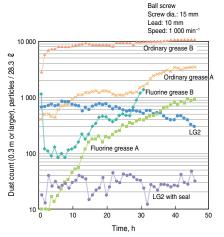



Fig. 4.3 Setting to measure dust generated by ball screw

D7

● Feature 1: Remarkably low dust emission

Compared with fluoride greases, dust emission by LG2 is low and stable for long period of time.



Fig. 4.4 Comparison in dust emission characteristics

Fig. 4.5 Dust emission from linear guide (Linear guide: LU09)

• Feature 2: Long life

Life is ten times or longer than fluorine greases, and equivalent to ordinary greases. This stretches maintenance intervals.

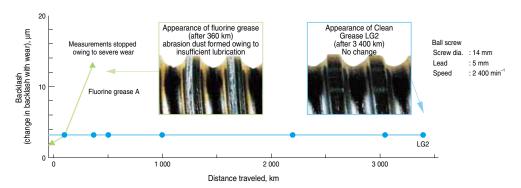


Fig. 4.6 Results of ball screw durability test

● Feature 3: Excellent rust prevention capacity

The rust prevention capacity is significantly higher than fluoride type greases. Handling and preparation for operation are easy.

Ball screw rust prevention test (test conditions: 96 hr at humidity 95%, temperature 70°C)

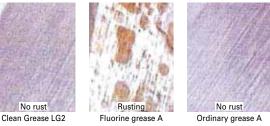


Photo 4.2

Table 4.5 Rust prevention test on bearing

Туре	Rusting after 7 days
NSK Clean Grease LG2	No rust
Fluorine grease B	Rusted

Test conditions: 19 mg is sealed in ball bearing 695

: Temp. 90°C, Humidity 60%

Evaluation : Studied by microscope

● Feature 4: Stable torque

Torque is 20% or lower than fluorine greases.

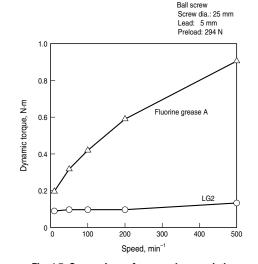


Fig. 4.7 Comparison of torque characteristics

Total evaluation

Table 4.6 Evaluation

Characteristic	LG2	Fluorine grease	General grease
Dust generation	0	O-A	△ - X
Torque	0	Х	O-A
Durability	0	△ – X	0
Rust prevention ability	0	△ - X	0

○: Suitable △: Not very suitable X: Problem in use

3. Environment with foreign matters

NSK K1 lubrication unit (linear guide and ball screw)

Molded oil is made of a lubrication oil and polyolefin which has affinity with the lubrication oil. More than 70% of the mass is lubrication oil.

Molded oil which is formed into NSK K1 lubrication unit effectively seals linear guides, continually supplying lubrication oil. NSK K1 lubrication unit has made it possible to use linear guides in water or powder dust.

NSK K1 lubrication unit for ball screws is also available.

For monocarriers, NSK K1 is equipped as a standard feature.

Features

- Extend maintenance-free intervals
- No contamination of surrounding environment
- Prolong life of the products exposed to water

Refer to pages A38, B569 and C139 for details of NSK K1 lubrication unit.

1.5 Table to Cope With Special Environments

1. Linear guides

Series		Special	environm	nent whic	h linear g	guide car	tolerate
Se	Model No.	Clean	Vacuum	Corrosion	High temp.	Hygienic	High dust proofing
	NH15	0		0		0	
	NH20	0	0	0	0	0	
	NH25	0	0	0	0	0	
NH	NH30	0	0	0	0	0	
INH	NH35	0		0	0	0	
	NH45	0		0	0		
	NH55	0		0			
	NH65	0		0			
	VH15	0		0			0
	VH20	0		0			0
	VH25	0		0			0
VH	VH30	0		0			0
	VH35	0		0			0
	VH45	0		0			0
	VH55	0		0			0
	TS15	0		0			
	TS20	0		0			
TS	TS25	0		0			
	TS30	0		0			
	TS35	0		0			
	NS15	0	0	0	0	0	
	NS20	0	0	0	0	0	
NS	NS25	0	0	0	0	0	
	NS30	0	0	0	O*	0	
	NS35	0		0		0	
	LW17	0		0	O*	0	
	LW21	0		0	O*	0	
LW	LW27	0		0	0	0	
	LW35	0		0		0	
	LW50	0		0			
	PU05	0		0			
	PU07	0		0			
PU	PU09	0		0		0	
	PU12	0		0		0	
	PU15	0		0		0	
	LU05	0		0			
	LU07	0		0			
	LU09_L	0	0	0	0	0	
LU	LU09_R	0		0		0	
	LU12_L	0	0	0	0	0	
	LU12_R	0		0		0	
	LU15	0	0	0	O*	0	

Series	NA - d-I NI	Special	environm	ent which	h linear g		tolerate
Sel	Model No.	Clean	Vacuum	Corrosion	High temp.	Hygienic	High dust proofing
	PE05	0		0			
	PE07	0		0			
PE	PE09	0		0		0	
	PE12	0		0		0	
	PE15	0		0		0	
	LE05	0		0			
	LE07	0	0	0	O*		
	LE09_L	0	0	0	O*	0	
LE	LE09_R	0		0		0	
	LE12_L	0	0	0	0	0	
	LE12_R	0		0		0	
	LE15_L	0	0	0	0	0	
	LE15AR	0		0		0	
포	LH08	0		0			
Miniature LH	LH10	0		0			
€	LH12	0	0	0	O*	0	
	RA15	0		0			
	RA20	0		0			
	RA25	0		0			
RA	RA30	0		0			
nA	RA35	0		0			
	RA45	0		0			
	RA55	0		0			
	RA65	0		0			
	LA25	0		0			
	LA30	0		0			
LA	LA35	0		0			
LA	LA45	0		0			
	LA55	0		0			
	LA65	0		0			
	HA25	0		0			
	HA30	0		0			
НΑ	HA35	0		0			
	HA45	0		0			
	HA55	0		0			
	HS15	0		0			
	HS20	0		0			
HS	HS25	0		0			
	HS30	0		Ö			
	HS35	0		0			

^{*)} Dust-proof parts are not applicable to high-temperature environmental use.

2. Ball screws

Series		Specia	al enviro	nment	
	Clean	Vacuum	Rust prevention	High temp.	Foreign matters
KA Series	0	0	0		
For Contaminated environments VSS Type					0
Made-to-order ball screw	0*		0*	0*	0*

*Available in the made-to-order ball screw.

Please consult NSK.

3. Monocarriers

Please consult with NSK for special environmental use.

1.6 Precautions for Handling

Please observe the following precautions to maintain high functions of ball screws and linear motion guide bearings in special environment over a long period.

- Products are washed to remove oil, and wrapped in a way to protect them from moisture. Use the product as soon as possible after opening the package.
- After opening, store the ball slide (randommatching type linear guide) and ball nut (R series ball screw) in a clean, air-tight container such as desiccater with desiccating agent (e.g. silica gel).
 Do not apply rust preventive oil or paper or product that vaporizes rust preventive agent.
- Wear plastic gloves and handle product in clean place.

2. Lubrication

There are two types of lubricating method -- grease and oil -- for ball screws, linear guides and monocarriers.

Use a lubricant agent and method most suitable to condition requirements and purpose to optimize functions of ball screws, linear guides and monocarriers.

In general, lubricants with low base oil kinematic viscosity are used for high-speed operation, in which thermal expansion has a large impact, and in low temperatures.

Lubrication with high base oil kinematic viscosity is used for oscillating operations, low speeds and high temperatures.

The following are lubrication methods using grease and oil.

2.1 Grease Lubrication

Grease lubrication is widely used because it does not require a special oil supply system or piping. Grease lubricants made by NSK are:

- Various types of grease in bellows tubes that can be instantly attached to a grease pump;
- NSK Grease Unit that consists of a hand grease pump and various nozzles. They are compact and easy to use.

1. NSK grease lubricants

Table 1.1 shows the marketed general grease widely used for linear guides, ball screws, and monocarrier for specific uses, conditions and purposes.

Table 1.1 Grease lubricant for linear guides, ball screws and monocarriers

Type	Thickener	Base oil	Base oil kinematic viscosity	Range of use	Purpose
			mm²/s (40°C)	temperature (°C)	
AS2	Lithium type	Mineral oil	130	-10 - 110	For general use at high load
PS2	Lithium type	Synthetic oil + synthetic hydrocarbon oil	15.9	-50 - 110	For low temperature and high frequency operation
LR3	Lithium type	Synthetic oil	30	-30 - 130	For high speed, medium load
LG2	Lithium type	Mineral oil + synthetic hydrocarbon oil	32	-20 - 70	For clean environment
LGU	Diurea	Synthetic hydrocarbon oil	95.8	-30 - 120	For clean environment
NF2	Urea composite type	Synthetic hydrocarbon oil	26	-40 - 100	For fretting resistance

(1) NSK Grease AS2

Features

It is an environmentally friendly and widely used grease for high load application. It is mineral oil based grease containing lithium thickener and several additives. It is superb in load resistance as well as stability in oxidization. It not only maintains good lubrication over a long period of time, but also demonstrates superb capability in retaining water. Even containing a large amount of water, it does not lose grease when it is softened.

Application

It is a standard grease for general NSK linear guides, ball screws and monocarriers. It is prevalently used in many applications because of its high base oil viscosity, high load resistance, and stability in oxidization.

(2) NSK Grease LR3

Features

It contains a special synthetic oil for high temperature and stability, and a carefully selected anti-oxidation agent. This grease dramatically increases lubrication life under high temperature conditions. It is used for high speed, medium load. Lubrication life exceeded 2 000 hours in the endurance test at 150°C. Its rust prevention capacity in severe conditions such as water and moist environments is further strengthened.

Application

It is a standard grease for ball screws PSS type (shaft dia. 15 mm or over), FSS type, FA type (except shaft dia. 10 mm with lead of 4mm and shaft dia. 12 mm with lead of 5 mm) and VFA type. It is ideal for operation with medium load, at high speed such as positioning in high tact material handling equipment.

(3) NSK Grease PS2

Features

The major base oil component is synthetic oil with mineral oil. It is an excellent lubrication especially for low temperature operation. It is for high speed and light load.

Application

It is a standard grease for NSK miniature linear guides and ball screws. It is especially superb for low temperature operation, but also functions well in normal temperatures, making it ideal for small equipment with light load.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil
Consistency	275
Dropping point	181°C
Volume of evaporation	0.24% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr
Oil separation	2.8% (100°C, 24 hr)
Base oil kinematic viscosity	130 mm²/s (40°C)

Nature

Thickener	Lithium soap base
Base oil	Synthetic oil
Consistency	228
Dropping point	208°C
Volume of evaporation	0.58% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	1.9% (100°C, 24 hr)
Base oil kinematic viscosity	30 mm ² /s (40°C)

Nature

Thickener	Lithium soap base
Base oil	Synthetic oil + Synthetic hydrocarbon oil
Consistency	275
Dropping point	190°C
Volume of evaporation	0.60% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	3.6% (100°C, 24 hr)
Base oil kinematic viscosity	15.9 mm²/s (40°C)

D13 Cquipment with right load.

(4) NSK Grease LG2

Features

This grease was developed by NSK to be exclusively used for linear guides and ball screws in clean room. Compared to the fluorine grease which are commonly used in clean room, LG2 has several advantages such as:

- · Higher in Iubrication function
- Longer lubrication life
- More stable torque (resistant to wear)
- · Higher rust prevention.

In dust generation, LG2 is more than equal to fluorine grease in keeping dust volume low. Since the base oil is not a special oil but a mineral oil, LG2 can be handled in the same manner as general greases.

Application

LG2 is a lubrication grease for rolling element products such as linear guides and ball screws for semiconductor and liquid crystal display (LCD) processing equipment which require a highly clean environment. Because LG2 is exclusively for a clean environment at normal temperatures, however, it cannot be used in a vacuum environment.

Refer to "Special environment" in page D8 for detailed data on superb characteristics of NSK Grease LG2.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil + Synthetic hydrocarbon oil
Consistency	199
Dropping point	201°C
Volume of evaporation	1.40% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.8% (100°C, 24 hr)
Base oil kinematic viscosity	32 mm²/s (40°C)

(5) NSK Grease LGU

Features

This is a proprietary urea base grease of NSK featuring low dust emission exclusively for ball screws and linear guides which are used in clean rooms.

In comparison with fluorine base grease, which has been used commonly in clean rooms. LGU has better

lubricating property, longer duration of lubricant, better torque variation, much better anti-rust property, and equivalent or better dust emission. In addition, this grease can be handled in the same way as the other common grease because high-grade synthetic oil is used as the base oil.

LGU grease contains much less metallic elements compared to LG2 grease. It can be used in high temperature environment.

Application

This is exclusive lubrication grease for ball screws and linear guides that are installed in equipment that requires cleanliness, as same as LG2 grease, and it can be used in high temperature range of -30 to 120°C.

This cannot be used in vacuum.

Nature

Thickener	Diurea
Base oil	Synthetic hydrocarbon oil
Consistency	201
Dropping point	260°C
Volume of evaporation	0.09% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.6% (100°C, 24 hr)
Base oil kinematic viscosity	95.8 mm²/s (40°C)

(6) NSK Grease NF2

Features

It uses high-grade synthetic oil as the base oil and urea base organic compound as the thickener. It has remarkable anti-fretting corrosion property. It can be used in wide temperature range, from low to high, and has superior lubrication life.

Application

This grease is suitable for ball screws and linear guides of which application include oscillating operations. Allowable temperature range is -40 to 100°C.

Nature

Diurea
Synthetic hydrocarbon oil
288
260°C
0.22% (99°C, 22 hr)
Satisfactory (Method B, 100°C, 24 hr)
0.5% (100°C, 24 hr)
26 mm²/s (40°C)

Precautions for handling

- Wash the linear guides and ball screws to remove oil prior to applying Clean Grease LG2 or LGU, so the grease functions are fully utilized.
- Clean grease is exclusively used for clean environments at normal temperatures.

Note) Refer to NSK Grease Unit Catalog (CAT. No.3317) for details of NSK Grease.

2. Before use of NSK Precision Products

Wipe off the rust preventive oil before use for the products that the oil is applied.

If grease is not applied, apply grease, and move a ball slide or ball nut a few strokes so the grease permeates into the ball slide and inside the nut. (Move the ball slide or the ball nut 5 to 10 times with full stroke.)

Then wipe off the excess grease.

How to replenish grease and volume of grease to be replenished

Use grease fitting if exclusive grease supply component is not used. Supply required amount through grease fitting by a grease pump.

Wipe off old grease and accumulated dust before supplying new grease. If grease fitting is not used or there is no oil filler, apply grease directly to the rail or to the ball groove of the screw shaft. Remove the seal if possible, move a ball slide or ball nut a few strokes so that the grease permeates into the ball slide, nut and inside the slider.

Once grease is replenished, another supply is not required for a long time. But under some operational conditions, it is necessary to periodically replenish grease. The following are replenishing methods.

* When replenishing using a grease pump:

Use a grease pump and fill the inside of ball slide, ball nut and monocarrier slider with grease. Supply grease until it comes out from the ball slide, ball nut or monocarrier slider area. Move ball slide, ball nut or monocarrier slider by hand while filling them with grease, so the grease permeates all areas. Do not operate the machine immediately after replenishing. Always try the system a few times to spread the grease throughout the system and to remove excess grease. Trial operations are necessary because the resistance to sliding force and screw torque greatly increases immediately after replenishment (full-pack state) and may cause problems. The agitating resistance of grease is accountable for this phenomenon. Wipe off excess grease that accumulates at end of rail and screw shaft after trial runs so the grease does not move to other areas.

- * When there is an exclusive grease supply system and the volume from the spout can be controlled, the criterion is:
- All at once, replenish the amount that fills about 50% of the internal space of the ball slide or the internal space of the ball nut. This method eliminates waste of grease and is efficient.

Tables 1.2, 1.3 and **1.4** show internal spaces of ball slide, ball nut and monocarrier slider for reference.

Other

Table 1.2 Inside space of the slide of linear guide

NH Series

Series NH High-load type Ultra-high-load type Ultra-high-load type Ultra-high-load type Ultra-high-load type Ultra-high-load type 15 3 4 20 6 8 25 9 13 30 13 20 35 22 30	Unit: cr				
15 3 4 20 6 8 25 9 13 30 13 20	Series	NH			
20 6 8 25 9 13 30 13 20	Model No.	High-load type	Ultra-high-load type		
25 9 13 30 13 20	15	3	4		
30 13 20	20	6	8		
	25	9	13		
35 22 30	30	13	20		
55 22 55	35	22	30		
45 47 59	45	47	59		
55 80 100	55	80	100		
65 139 186	65	139	186		

LW Series | Unit: cm3

	Unit: cm
Series Model No.	LW
17	3
21	3
27	7
35	24
50	52

VH Series

VIII OCITICS	•	Unit: cm³	
Series	VH		
Model No.	High-load type	Super-high-load type	
15	3	4	
20	6	8	
25	9	13	
30	13	20	
35	22	30	
45	47	59	
55	80	100	

PU. LU Series

. 0, _0			Unit: cm ³	
Series	PU		L	U
Model No.	Standard type	High-load type	Standard type	High-load type
05	0.1	-	0.1	-
07	0.1	1	0.1	-
09	0.2	0.3	0.2	0.3
12	0.3	0.4	0.3	0.4
15	0.8	1.1	0.8	1.1

TS Series | | Init: cm³

	Onit: cm
Series Model No.	TS
15	2
20	3
25	6
30	9
35	15

PE,		

Unit: cm ³						
Series	Р	E	LE			
Model No.	Standard type	High-load type	Medium-load type	Standard type	High-load type	
05	0.1	-	0.1	0.1	_	
07	0.2	ī	0.1	0.2	0.3	
09	0.4	0.5	0.2	0.4	0.5	
12	0.5	0.7	0.3	0.5	0.7	
15	1.2	1.6	0.8	1.2	1.6	

NS Series

Unit: cm			
Series	NS		
Model No.	Medium-load type	High-load type	
15	2	3	
20	3	4	
25	5	8	
30	8	12	
35	12	19	

Miniature LH Series

	Offit. Ciff
Series Model No.	LH
08	0.2
10	0.4
12	1.2

RA Series

		Unit: cm
Series	RA	
Model No.	High-load type	Super-high-load typ
15	1	1.5
20	2	2.5
25	3	3.5
30	5	6
35	6	8
45	10	13
55	15	20
65	33	42

LA Series

		Unit: cm ³			
Series	LA				
Model No.	High-load type	Super-high-load type			
25	8	12			
30	14	18			
35	21	29			
45	38	48			
55	68	86			
65	130	177			

HA. HS Series

IIA, IIO O	Unit: cm³	
Series Model No.	НА	HS
15	-	5
20	1	9
25	16	16
30	27	25
35	42	40
45	67	_
55	122	-

Table 1.3 Inside space of ball nut

Return tube type (single nut)										
	Unit: cm³		Unit: cm³		Unit: cm³		Unit: cm³			
Nut model	Inside space	Nut model	Inside space	Nut model	Inside space	Nut model	Inside space			
1004 – 2.5	0.8	2005 – 5	4.3	2525 – 1.5	7.5	4005 – 10	14			
1205 – 2.5	1.2	2010 – 2.5	4.7	2805 – 5	6	4010 – 5	30			
1210 – 2.5	1.4	2020 - 1.5	4.2	3205 – 5	7	4012 – 5	34			
1405 – 2.5	2.2	2504 – 5	3.2	3206 – 5	9.5	4510 – 5	34			
1510 – 2.5	2.3	2505 – 5	5	3210 – 5	22	5010 – 5	37			
1605 – 2.5	2.6	2506 – 5	7	3225 – 2.5	17	5010 – 10	59			
1616 – 1.5	2.1	2510 – 3	9.5	3232 - 1.5	15					
2004 – 5	2.7	2520 - 2.5	12	3610 – 5	32					

Deflector (bridge) type (single nut)

(Siligic	Unit: cm ³
Nut model	Inside space
2505 – 6	6.5
2510 – 4	10
3205 – 8	9.5
3210 – 6	28
4010 – 8	42
5010 – 8	52

End cap type

	Unit: cm³
Nut model	Inside space
1520 – 1.5	1.9
2040 – 1	2.8
2550 – 1	4.2

Note:

Nut model: shaft diameter, lead, total number of turns of balls Please consult NSK for other specifications.

Refer to B110 to B146 for Compact FA Series.

Table 1.4 Inside space of the monocarrier

MCM Series		Unit: cm³			Unit: cm³	MCH Serie	Unit: cm³	
Model No.	Lead	Inside	Model No.	Lead		Model No.	Lead	Inside
wiodei ivo.	(mm)	space	wiodei ivo.	(mm)	space	Model No.	(mm)	space
NACNA00	1	0.3		5	8.3	MCH06	5	2.8
MCM02	2	0.3	MCM06	10	6.5 MCL06		10	2.7
	1	1		20	5.5	IVICLUB	20	2.7
	2	0.9		5	11.6		5	5.8
MCM03	10	1.8		10	9.8	MCH09	10	5.8
	12	1.7	MCM08	20	8.7		20	5.6
	5	4.2		30	4.3		10	10.9
	10	4		10	19.4	MCH10	20	10.1
MCM05	20	2.1	MCM10	20	17.4			
	30	2.0		30	8.8			

4. Intervals of checks and replenishments

Although the grease is of high quality, it gradually deteriorates and its lubrication function diminishes. Also, the grease in the ball slide and ball nut is gradually removed by stroke movement. In some environments, the grease becomes dirty, and foreign objects may enter. Grease should be replenished depending on frequency of use. The following is a guide of grease replenishment intervals for linear guides and ball screws.

Table 1.5 Intervals of checks and replenishments for grease lubrication

Intervals of checks	Items to check	Intervals of replenishments
3-6 months	Dirt, foreign matters such as	Usually once per year. Every 3 000 km for material handling
	cutting chips	system that travels more than 3 000 km per year. Replenish
		if checking results warrant it necessary.

Notes: 1) As a general rule, do not mix greases of different brands.

- 2) Grease viscosity varies by temperature. Viscosity is particular high in winter due to low temperatures. Pay attention to increases in linear guide and monocarrier sliding resistance and ball screw and monocarrier torque in such conditions.
- 3) When the ambient temperature is low, or in Winter, if it is difficult to pump out the grease from the container, wait until the grease is softened.
- 4) In locations where coolant is dispersed or scattered, emulsification of lubricants and rinsing with water may significantly deteriorate the integrity of the lubricant and efficiency of the grease. Protect the grease unit from coolant by shielding it with a cover, etc.

5. NSK Grease Unit

Supply grease to NSK linear guides and ball screws by manual type hand grease pump. Install grease in bellows tube to the pump. Several types of grease (80 g) are available.

Grease in bellows tube

(1) Composition of NSK Grease Unit

Components and grease types are shown below.

			Name	(Tube color)	Reference number
NSK (Grease Unit				
	— NSK Grease —	,	– NSK Grease AS2	(Brown)	NSK GRS AS2
	(80 g in a bellows tub	e)	– NSK Grease PS2	(Orange)	NSK GRS PS2
			_ NSK Grease LR3	(Green)	NSK GRS LR3
			– NSK Grease LG2	(Blue)	NSK GRS LG2
			– NSK Grease LGU	(Yellow)	NSK GRS LGU
			– NSK Grease NF2	(Gray)	NSK GRS NF2
L	— NSK Hand Grease Pu	mp Unit			
	— NSK Hand Gre (Straight noz		NZ1 One nozzle is p	provided with han	NSK HGP d pump.)
	Grease nozzle	(used with ha	and grease pump)		
			– NSK straight nozzle		NSK HGP NZ1
			– NSK chuck nozzle		NSK HGP NZ2
			– NSK drive fitting no	zzle	NSK HGP NZ3
			– NSK point nozzle		NSK HGP NZ4
			– NSK flexible nozzle		NSK HGP NZ5
			– NSK flexible extensi	ion pipe	NSK HGP NZ6
			– NSK straight extens	ion pipe	NSK HGP NZ7

(2) NSK Greases (80 g in bellows tube)

Refer to pages D14 and D15 for their natures and details.

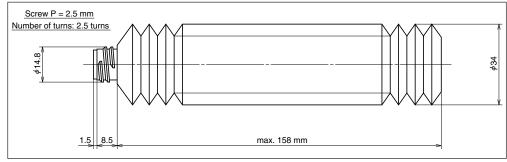


Fig. 1.1 Bellows tube

(3) NSK Manual Grease Pump Unit

a) NSK Hand Grease Pump (Reference number: NSK HGP)

Features

- Light-weight ······ Can be operated by one hand, yet there is no worry to make a mistake.
- Inserting by high pressure ···· Insert at 15 Mpa.
- No leakingDoes not leak when held upside down.
- Easy to change grease ···· Simply attach grease in bellows tube.
- Remaining grease ····· Can be confirmed through slit on tube.
- Several nozzles ······ Six types of nozzles to choose from.

Specifications

- Discharge pressure ·· 15 Mpa
- Spout volume ······ 0.35 cc/shot
- Mass of main body ... Without nozzle 240 g
 Provided nozzle 90 g
- Grease tube outer diameter ϕ 38.1
- Accessory Several nozzles for a unique application can be attached

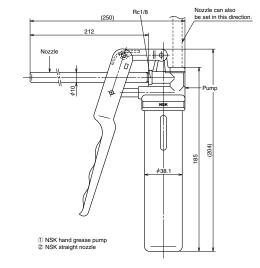


Fig. 1.2 NSK Hand Grease Pump with NSK straight nozzle

*Air is contained in the unopened bellows tube. Try the system tens of times when to use the hand grease pump. The tube will be use after deflated from the tube.

b) Nozzles

Table 1.6 Nozzles that can be attached to NSK Hand Grease Pump

Name	Designation code	Use	Dimensions
NSK straight nozzle	NSK HGP NZ1	Can be used with grease fitting A, B, and C under JIS B1575 standard.	R1/8
NSK chuck nozzle	NSK HGP NZ2	Same as above. However, there is no need to press the hand pump because the grease fitting and the nozzle come to contact due to the chucking mechanism at the tip.	R1/8
NSK fitting nozzle	NSK HGP NZ3	Dedicated for the $-\phi 3$ drive-in grease fitting.	30 111 M6V1.0 00 155 155
NSK point nozzle	NSK HGP NZ4	Used for linear guides and ball screws which do not have grease fitting. Supplies grease directly to the ball grooves, or through the opening of ball slide or ball slide to inside.	TIP. # 1.5 R1/8 R1/8
NSK flexible nozzle	NSK HGP NZ5	The tip of the flexible nozzle is chuck nozzle. The straight nozzle is not available for use.	14HEX 14HEX R1/8
NSK flexible extension pipe	NSK HGP NZ6	Flexible extension pipe connects the grease pump and the nozzle	Rp1/8 14HEX. R1/8
NSK straight extension pipe	NSK HGP NZ7	Straight extension pipe connects the grease pump and the nozzle.	Rp1/8 12HEX. R1/8
NSK nozzle for MCH	NSK HGP NZ8	For MCH Series grease replenishment	7.5 (180) OHEX R1/8

Table 1.7 Grease fittings used for NSK linear guide

Series	Model number	Tap hole for grease fitting	Standard grease fitting	Straight nozzle NZ1	Chuck nozzles NZ2	Drive-in nipple nozzle NZ3	Point nozzle NZ4	Flexible nozzle NZ5
	NH15	φ3	Drive-in type			0		
NH	NH20, 25, 30, 35*	M6×0.75	B type	0	0			0
	NH45, 55, 65	Rc1/8	B type	0	0			0
	VH15	φ3	Drive-in type					
VH	VH20, 25, 30, 35*	M6×0.75	B type	0	0			0
	VH45, 55	Rc1/8	B type	0	0			0
то.	TS15	φ3	Drive-in type					
TS	TS20, 25, 30, 35*	M6×0.75	B type	0	0			0
	NS15	φ3	Drive-in type					
NS	NS20, 25, 30, 35*	M6×0.75	B type	0	0			0
	LW17	φ3	Drive-in type					
LW	LW21, 27, 35*	M6×0.75	B type	0	0			0
	LW50	Rc1/8	B type	Ö	Ō			Ō
BU	PU05, 07, 09, 12	_					0	
PU	PU15	φ3	Drive-in type					
LU	LU05, 07, 09, 12, 15	-	- "				0	
PE	PE05, 07, 09, 12	_	_				0	
PE	PE15	φ3	Drive-in type					
LE	LE05, 07, 09, 12, 15	-	- "				0	
N4::	LH08, 10	_	_				0	
Miniature LH	LH12	φ3	Drive-in type					
	RA15, 20	φ3	Drive-in type					
RA	RA25, 30, 35*	M6×0.75	B type	0	0			0
	RA45, 55, 65	Rc1/8	B type	0	0			0
	LA25, 30, 35*	M6×0.75	B type	0	0			
LA	LA45, 55, 65	Rc1/8	B type	0	0			0
	HA25, 30, 35*	M6×0.75	B type	0	0			0
HA	HA45, 55	Rc1/8	B type	0	0			0
шс	HS15	φ3	Drive-in type			0		
HS	HS20, 25, 30, 35*	M6×0.75	B type	0	0			0

^{*)} If using a chuck nozzle, avoid interference with table and rail.

Note: 1) For PU, PE, LU, and LE Series, apply grease directly to ball groove, etc. using point nozzle.

2) A long threaded grease fitting is required for NSK linear guides because of dust-proof parts. Please refer to the sections pertaining to the lubrication and dust-proof parts of each series.

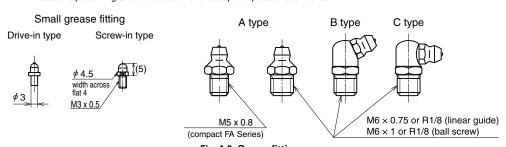


Fig. 1.3 Grease fittings

Table 1.8 Applicable grease nozzle for ball screws

Ser	iesTap hole f grease fitting	or	Model no.			Standard grease fitting	Straight nozzle NZ1	Chuck nozzles NZ2	Drive-in fitting nozzle NZ3	Point nozzle NZ4	Flexible nozzle NZ5
	0 . 54	High-accuracy, clean	USS			A type	0	0		0	0
	Compact FA	General	PSS		M5×0.8	A type	O*1	O*1		0	O*1
		Transfer equipment				A type	O*1	O*1		0	O*1
	Ministrus		B 4 A	Shaft dia. 12 or less	_	-				0	
	Miniature, f	ine iead	MA	Shaft dia. 16 or over	M6×1	-				0	
	Small equi	pment	FA		M6×1	-	O*2	O*2		0	O*2
Finished	Machine	toolo	SA	Shaft dia. 36 or less	M6×1	-	0	0		0	0
shaft end	iviaciiiie	toois	SA	Shaft dia. 40 or over	Rc1/8	-	0	0		0	0
	Stainless steel		KA	Shaft dia. 12 or less and lead 2 or less	M3×0.5	-			0	0	
				except above	M6×1	-	O*2	O*2		0	O*2
	Transfer equipment		Ι//⊢Δ ⊢	Shaft dia. 12 or less	φ 2.7	-				0	
				Shaft dia. 15 or over	φ 3.5	-				0	
			RMA		_	-				0	
	Miniature, fine lead		MS	Shaft dia. 12 or less	-	-				0	
	iviiniature, i	ine iead	IVIS	Shaft dia. 16 or over	M6×1	-				0	
	Small equi	pment	FS		M6×1	-	O*2	O*2		0	O*2
			SS	Shaft dia. 36 or less	M6×1	-	0	0		0	0
	Machine	tools		Shaft dia. 40 or over	Rc1/8	-	0	0		0	0
			HSS		M6×1	-	0	0		0	0
Blank			RMS		-	-				0	
shaft end			RNFTL	Shaft dia. 12 or less	M3×0.5	-			0	0	
onant ona			ININI IL	Shaft dia. 14 or over	M6×1	-	0	0		0	0
			RNFBL	Shaft dia. 12 or less	M3×0.5	-			0	0	
	Transfer equ	uipment		Shaft dia. 14 or over	M6×1	-	0	0		0	0
			RNCT		-	-				0	
			RNFCL	Shaft dia. 12 or less	M3×0.5	-			0	0	
				Shaft dia. 15 or over	M6×1	-	0	0		0	0
			RNSTL		M6×1	_	0	0		0	0

^{*1} Unavailable for shaft dia. 25 mm *2 If using A type grease fitting, may not install the nozzle.

Table 1.9 Applicable grease nozzles for Monocarriers

Series	Model no.	Tap hole for grease fitting	Standard grease fitting	Straight nozzle NZ1	Chuck nozzles NZ2	Drive-in fitting nozzle NZ3	Flexible nozzle NZ5	MCH exclusive fitting nozzle NZ8
	MCM02	-	-					
MCM	MCM03,05,08,10	φ3	Drive-in type			0		0*
	MCM06	M6×0.75	A type	0	0		0	
MCH	MCH06,09,10	φ3	Drive-in type					0

^{*)} Use of NZ3 is recommended.

2.2 Oil Lubrication

Required amount of new oil is regularly supplied by:

- Manual or automatic intermittent supply system;
- Oil mist lubricating system via piping.

Equipment for oil lubrication is more costly than grease lubrication. However, oil mist lubricating system supplies air as well as oil, raising the inner pressure of the ball slide. This prevents foreign matters from entering, and the air cools the system. Use an oil of high atomizing rate such as ISO VG 32 to 68 for the oil mist lubrication system.

ISO VG 68 to 220 are recommended for common intermittent replenishment system. Approximate volume of oil Q for a ball slide of linear guide per hour can be obtained by the following formula.

> In case of ball type linear guides except the LA Series

 $Q = n/150 \text{ (cm}^3/\text{hr)}$ In case of LA Series, RA Series $Q \ge n/100 \text{ (cm}^3/\text{hr)}$

n: Linear guide code

e.g. When NH45 is used,

n = 45

Therefore.

 $Q = 45/150 = 0.3 \text{ cm}^3/\text{hr}$

Similarly, approximate oil supply volume Q to ball screw can be obtained by the following formula.

 $Q = d/15 \text{ (cm}^3/\text{hr)}$

d: Nominal shaft diameter of the ball screw

e.g. When the shaft diameter is 50,

d = 50

Therefore,

 $Q = 50/15 = 3.3 \text{ cm}^3/\text{hr}$

For oil lubrication by gravity drip, the oil supply position and installation position of the ball slide or ball nut are crucial. In case of linear guide, unless it is installed to a horizontal position, the oil flows only on the down side, and does not spread to all raceway surface. This may cause insufficient lubrication. For ball screw lubrication as well, oil does not spread if the oil orifice is installed at the bottom, causing insufficient lubrication. Please consult NSK to correct such situations prior to use. NSK has internal design which allows oil lubricant to flow throughout the system. Table 2.1 shows the criterion of intervals of oil checks and replenishments.

Table 2.1 Intervals of checks and replenishments

Method	Intervals of checks	Items to check	Replenishment or intervals of changes
Automatic intermittent supply	Weekly	Volume of oil, dirt, etc.	Replenish at each check. Suitable volume for tank capacity.
Oil bath	Daily before operation	Oil surface	Make a suitable criterion based on consumption

Notes: 1) As with grease lubrication, do not mix oil lubricant with different types.

- 2) Some components of the linear guide and ball screw are made of plastic. Avoid using an oil that adversely affects synthetic resin.
- 3) When using oil mist lubricating system, please confirm an oil supply amount at the each outlet part.

3. RoHS Compliant

1. Linear Guides

- · Linear Guides listed in the catalog except the products for special environments, are compliant with
- · Please consult NSK for RoHS of special parts and lubricant provided by customer, and customersupplied product.

2. Ball Screws

· Ball screws listed in the catalog except the products for special environments, are compliant with RoHS.

3. Monocarriers

· Monocarriers listed in the catalog are compliant with RoHS.

4. Ball Screw Support Bearings

· Ball screw support bearings listed in the catalog are compliant with RoHS.

Notes: 1) Normally, grease fitting is not provided to NSK ball screw except Compact FA Series. Ball nut has a tap hole to install a grease fitting. The user should install a grease fitting if necessary.

²⁾ For M3 x 0.5 tap hole, small fitting (screw-in type) is available. Please contact NSK.

³⁾ VFA type cannot install grease fitting. Apply grease directly to inside the nut through oil hole using point nozzle.

⁴⁾ MA, RMA, MS, RMS, and RNCT types have no tap hole, apply grease directly to the screw shaft and ball grooves using point nozzle.

^{*}For details of country-specific RoHS, contact NSK.

APPENDICES:

TABLES

Appendices: Tables

- 1. Conversion from International Systems of Units (SI) · · · · E1
- 2. Conversion table between N and kgf ·····E3
- 3. Conversion table between kg and lb ····· E4
- 4. Hardness conversion table · · E5
- 5. Variations of shaft used in common fits ····· E7
- 6. Variations of housing holes in common fits ····· E9

1. Conversion from international system of units (SI)

Comparisons of SI, CGS, and engineering systems of units

Items System of units	Length	Mass	Time	Temperature	Acceleration	Force	Stress	Pressure	Energy	Power
SI	m	kg	s	K, °C	m/s²	N	Pa	Pa	J	W
CGS system	cm	g	s	°C	Gal	dyn	dyn/cm²	dyn/cm²	erg	erg/s
Engineering system	m	kgf • s²/m	s	°C	m/s²	kgf	kgf/m²	kgf/m²	kgf • m	kgf • m/s

Conversion rates from SI system of units

	Conversion rates from SI system of units												
Item	SI unit		Units other than	SI units	Conversion rate from SI unit								
itom	Name of unit	Abbreviation	Name of unit	Abbreviation	Conversion rate from or anic								
Angle	Radian	rad	Degree	0	180/π								
			Minute	1	10 800/π								
			Second		648 000/π								
Length	Meter	m	Micron	μ	10 ⁶								
			Angstrom	Å	1010								
Area	Square meter	m²	Are	а	10-2								
			Hectare	ha	10-⁴								
Volume	Cubic meter	m³	Liter	I, L	10 ³								
			Deciliter	dl, dL	104								
Time	Second	s	Minute	min	1/60								
			Hour	h	1/3 600								
			Day	d	1/86 400								
Numbers of vibration numbers of frequency	Hertz	Hz	Cycle	S ⁻¹	1								
Rotational speed	Times per second	S ⁻¹	Times per minute	rpm	60								
Velocity	Meter per second	m/s	Kilometer per hour	km/h	3 600/1 000								
			Knot	kn	3 600/1 852								
Acceleration	Meter per square second	m/s²	Gal	Gal	10 ²								
			G	G	1/9.806 65								
Mass	Kilogram	kg	Ton	t	10-3								
Force	Newton	N	Weight kilogram	kgf	1/9.806 65								
			Weight ton	tf	1/(9.806 65×10³)								
			Dyne	dyn	10⁵								
Torque and	Newton meter	N • m	Weight kilogram	kgf • m	1/9.806 65								
moment of force			meter										
Stress	Pascal	Pa	Weight kilogram per square centimeter	kgf/cm²	1/(9.806 65×10 ⁴)								
	(Newtons per square meter)	(N/m^2)	Weight kilogram per square millimeter	kgf/mm²	1/(9.806 65×10 ⁶)								

Prefixes for SI units

Powers of 10	Prefix Name Code	Powers of 10	Prefix Name Code
10 ¹⁸	exa E	10 ⁻¹	deci d
10 ¹⁵	peta P	10 ⁻²	centi c
10 ¹²	tera T	10 ⁻³	milli m
10°	giga G	10 ⁻⁶	micro μ
10°	mega M	10 ⁻⁹	nano n
103	kilo k	10 ⁻¹²	pico p
10 ²	hecto h	10 ⁻¹⁵	femto f
10 ¹	deca da	10 ⁻¹⁸	atto a

Conversion rates from SI units (continued from previous page)

	SI unit	atos iroin or t	Units other than		
Item	Name of unit	Abbreviation	Name of unit	Abbreviation	Conversion rate from SI unit
Pressure	Pascal	Pa	Weight kilogram per square meter	kgf/m²	1/9.806 65
	(newton per square meter)	(N/m ²)	Water column meter	mH₂O	1/(9.806 65×10³)
			Mercurial column millimeter	mmHg	760/(1.013 25×10 ⁵)
			Torr	Torr	760/(1.013 25×10 ⁵)
			Bar	bar	10-5
			Atmosphere	atm	1/(1.013 25×10 ⁵)
Energy	Joule	J	Erg	erg	10 ⁷
	(newton meter)	(N • m)	Calorie (international)	cal₁⊤	1/4.186 8
			Weight kilogram meter	kgf • m	1/9.806 65
			Kilowatt hour	kW • h	1/(3.6×10 ⁶)
			Metric horsepower/hour	PS • h	≈3.776 72×10 ⁻⁷
Electric power,	Watt	W	Weight kilogram meter per second	kgf • m/s	1/9.806 65
power	(joules per second)	(J/s)	Kilo calorie per hour	kcal/h	1/1.163
			Metric horsepower	PS	≈1/735.498 8
Viscosity, Viscosity index	Pascal second	Pa•s	Poise	Р	10
Kinematic viscosity,	Square meter	m²/s	Stokes	St	10⁴
Kinematic viscosity index	per second		Centistokes	cSt	106
Temperature, Difference in temperature	Kelvin, Celsius degrees	K, °C	Degree	°C	[See Note (1)]
Electrical current, magnetomotive force	Ampere	Α	Ampere	Α	1
Electrical power, electromotive force	Volt	V	(Watt per ampere)	(W/A)	1
Magnetic field intensity	Ampere per meter	A/m	Oersted	Oe	$4\pi/10^{3}$
Magnetic flux density	Tesla	Т	Gauss	Gs	104
			Gamma	γ	10°
Electrical resistance	Ohm	Ω	(Volt per ampere)	(V/A)	1

Note (1) Conversion from TK to θ °C is : θ = T – 273.15. To indicate temperature difference: $\Delta T = \Delta \theta$. ΔT and $\Delta \theta$ indicate temperature differences measured by Kelvin and Celsius respectively.

Remarks: Names and abbreviations of the unit in parentheses indicate the definition of the unit shown above the parentheses or left to the parentheses.

Conversion example 1 N = 1/9.806 65 kgf

2. Conversion table between N and kgf

[How to read the table]

To convert 10 N to kgf, locate 10 in the center column in the first block. Locate a corresponding kgf figure in the right side column. You will find 10 N is 1.0197 kgf. To convert 10 kgf to N, locate a figure in N column to its left. You will find 10 kgf is 98.006 N.

3. Conversion table between kg and lb

[How to read the table]

To convert 10 kg to lb, locate 10 in the center column in the first block. Locate a corresponding lb figure in right column. You will find 10 kg is 22.046 lb. To convert 10 lb to kg, locate the figure in the kg column to the left. You will find 10 lb is 4.536 kg.

1	kg	= 2.2046226	lb
1	lb	= 0.45359237	kg

									-									
N		kgf	N		kgf	N		kgf		kg		lb	kg		lb	kg		lb
9.8066	1	0.1020	333.43	34	3.4670	657.05	67	6.8321		0.454	1	2.205	15.422	34	74.957	30.391	67	147.71
19.613	2	0.2039	343.23	35	3.5690	666.85	68	6.9341		0.907	2	4.409	15.876	35	77.162	30.844	68	149.91
29.420	3	0.3059	353.04	36	3.6710	676.66	69	7.0360		1.361	3	6.614	16.329	36	79.366	31.298	69	152.12
39.227	4	0.4079	362.85	37	3.7729	686.47	70	7.0300		1.814	4	8.818	16.783	37	81.571	31.751	70	154.32
49.033	5	0.4079	372.65	38	3.8749	696.27	71	7.1300		2.268	5	11.023	17.237	38	83.776	32.205	70	156.53
49.033	5	0.5099	372.05	30	3.0743	090.27	71	7.2400		2.200	5	11.023	17.237	30	03.770	32.205	/ 1	156.55
58.840	6	0.6118	382.46	39	3.9769	706.08	72	7.3420		2.722	6	13.228	17.690	39	85.980	32.659	72	158.73
68.647	7	0.7138	392.27	40	4.0789	715.89	73	7.4439		3.175	7	15.432	18.144	40	88.185	33.112	73	160.94
78.453	8	0.8158	402.07	41	4.1808	725.69	74	7.5459		3.629	8	17.637	18.597	41	90.390	33.566	74	163.14
88.260	9	0.9177	411.88	42	4.2828	735.50	75	7.6479		4.082	9	19.842	19.051	42	92.594	34.019	75	165.35
98.066	10	1.0197	421.69	43	4.3848	745.31	76	7.7498		4.536	10	22.046	19.504	43	94.799	34.473	76	167.55
107.87	11	1.1217	431.49	44	4.4868	755.11	77	7.8518		4.990	11	24.251	19.958	44	97.003	34.927	77	169.76
117.68	12	1.2237	441.30	45	4.5887	764.92	78	7.9538		5.443	12	26.455	20.412	45	99.208	35.380	78	171.96
127.49	13	1.3256	451.11	46	4.6907	774.73	79	8.0558		5.897	13	28.660	20.865	46	101.41	35.834	79	174.17
137.29	14	1.4279	460.91	47	4.7927	784.53	80	8.1577		6.350	14	30.865	21.319	47	103.62	36.287	80	176.37
147.10	15	1.5296	470.72	48	4.8946	794.34	81	8.2597		6.804	15	33.069	21.772	48	105.82	36.741	81	178.57
156.91	16	1.6315	480.53	49	4.9966	804.15	82	8.3617		7.257	16	35.274	22.226	49	108.03	37.195	82	180.78
166.71	17	1.7335	490.33	50	5.0986	813.95	83	8.4636		7.711	17	37.479	22.680	50	110.23	37.648	83	182.98
176.52	18	1.8355	500.14	51	5.2006	823.76	84	8.5656		8.165	18	39.683	23.133	51	112.44	38.102	84	185.19
186.33	19	1.9375	509.95	52	5.3025	833.57	85	8.6676		8.618	19	41.888	23.587	52	114.64	38.555	85	187.39
196.13	20	2.0394	519.75	53	5.4045	843.37	86	8.7696		9.072	20	44.092	24.040	53	116.84	39.009	86	189.60
100.10	20	2.0004	010.70	00	0.4040	0.10.07	00	0.7000		0.072	20	11.002	24.040	00	110.04	00.000	00	100.00
205.94	21	2.1414	529.56	54	5.5065	853.18	87	8.8715		9.525	21	46.297	24.494	54	119.05	39.463	87	191.80
215.75	22	2.2434	539.37	55	5.6084	862.99	88	8.9735		9.979	22	48.502	24.948	55	121.25	39.916	88	194.01
225.55	23	2.3453	549.17	56	5.7104	872.79	89	9.0755		10.433	23	50.706	25.401	56	123.46	40.370	89	196.21
235.36	24	2.4473	558.98	57	5.8124	882.60	90	9.1774		10.886	24	52.911	25.855	57	125.66	40.823	90	198.42
245.17	25	2.5493	568.79	58	5.9144	892.41	91	9.2794		11.340	25	55.116	26.308	58	127.87	41.277	91	200.62
2.01.7		2.0.00	000.70	•	0.0	332	٠.	0.2701				000	20.000	•	.27.107		0.	200.02
254.97	26	2.6513	578.59	59	6.0163	902.21	92	9.3814		11.793	26	57.320	26.762	59	130.07	41.730	92	202.83
264.78	27	2.7532	588.40	60	6.1183	912.02	93	9.4834		12.247	27	59.525	27.216	60	132.28	42.184	93	205.03
274.59	28	2.8552	598.21	61	6.2203	921.83	94	9.5853		12.701	28	61.729	27.669	61	134.48	42.638	94	207.23
284.39	29	2.9572	608.01	62	6.3222	931.63	95	9.6873		13.154	29	63.934	28.123	62	136.69	43.091	95	209.44
294.20	30	3.0591	617.82	63	6.4242	941.44	96	9.7893		13.608	30	66.139	28.576	63	138.89	43.545	96	211.64
					**	•												
304.01	31	3.1611	627.63	64	6.5262	951.25	97	9.8912		14.061	31	68.343	29.030	64	141.10	43.998	97	213.85
313.81	32	3.2631	637.43	65	6.6282	961.05	98	9.9932		14.515	32	70.548	29.484	65	143.30	44.452	98	216.05
323.62	33	3.3651	647.24	66	6.7301	970.86	99	10.095		14.969	33	72.753	29.937	66	145.51	44.906	99	218.26
									•									

4. Conversion table of hardness

Rockwell C Scale		Brinell h	ardness	Rockwe A Scale	ell hardness B Scale	
hardness	Vickers hardness	Standard ball	Tungsten	Load 588.4 N	Load 980.7 N	Shore
(1 471 N)	Hardness	Standard ban	carbide ball	brale penetrator	Diameter 1.5888 mm {1/16 in} sphere	hardness
68	940	_	_	85.6	_	97
67	900	_	_	85.0	_	95
66	865	_	_	84.5	_	92
65	832	_	739	83.9	_	91
64	800	_	722	83.4	_	88
63	772	_	705	82.8	_	87
62	746	_	688	82.3	-	85
61	720	_	670	81.8	-	83
60	697	_	654	81.2	-	81
59	674	_	634	80.7	_	80
58	653	_	615	80.1	_	78
57	633	_	595	79.6	_	76
56	613	_	577	79.0	_	75 75
55	595	_	560	78.5	_	74
54	577	_	543	78.0	_	72
53	560	_	525	77.4	_	71
52	544	500	512	76.8	_	69
51	528	487	496	76.3	_	68
50	513	475	481	75.9	_	67
49	498	464	469	75.2	_	66
48	484	451	455	74.7	_	64
46 47	404 471	442	443	74.7	_	63
46	471	432	432	73.6	_	62
46 45	436 446	432	432 421	73.0	_	60
45 44	446	409	421	73.1	_	58
44	404	403	403	72.5	_	30
43	423	400	400	72.0	_	57
42	412	390	390	71.5	_	56
41	402	381	381	70.9	_	55
40	392	371	371	70.4	_	54
39	382	362	362	69.9	_	52

		1		1		
Rockwell C Scale		Brinell h	ardness		ell hardness	
hardness				A Scale	B Scale	
	Vickers		Tungsten	Load 588.4 N	Load 980.7 N	Shore
(1 471 N)	hardness	Standard ball	carbide ball			hardness
(1 -17 1 14)			carbide ball	brale penetrator	Diameter 1.5888 mm	
					{1/16 in} sphere	
38	372	353	353	69.4	_	51
37	363	344	344	68.9	_	50
36	354	336	336	68.4	(109.0)	49
35	345	327	327	67.9	(108.5)	48
34	336	319	319	67.4	(108.0)	47
33	327	311	311	66.8	(107.5)	46
32	318	301	301	66.3	(107.0)	44
31	310	294	294	65.8	(106.0)	43
30	302	286	286	65.3	(105.5)	42
29	294	279	279	64.7	(104.5)	41
28	286	271	271	64.3	(104.0)	41
27	279	264	264	63.8	(103.0)	40
26	272	258	258	63.3	(102.5)	38
25	266	253	253	62.8	(101.5)	38
24	260	247	247	62.4	(101.0)	37
23	254	243	243	62.0	100.0	36
22	248	237	237	61.5	99.0	35
21	243	231	231	61.0	98.5	35
20	238	226	226	60.5	97.8	34
(18)	230	219	219	_	96.7	33
(16)	222	212	212	_	95.5	32
(14)	213	203	203	_	93.9	31
(12)	204	194	194	_	92.3	29
(10)	196	187	187	_	90.7	28
(8)	188	179	179	_	89.5	27
(6)	180	171	171	_	87.1	26
(4)	173	165	165	_	85.5	25
(2)	166	158	158	_	83.5	24
(0)	160	152	152	l _	81.7	24
(0,				I	·	

E6

5. Deviations of shafts used in common fits

diamet	cation of er (mm)	d6	e6	f6	g5	g6	h5	h6	h7	h8	h9	h10	js5	js6
Over	or less	- 20	- 14	- 6	- 2	- 2	0	0	0	0	0	0	. 2	. 2
	3 6	- <u>26</u> - <u>30</u>	- <u>20</u> - <u>20</u>	- 12 - 10	- 6 - 4	- 8 - 4	- 4 0	- 6 0	-10 0	- 14 0	- <u>25</u> 0	- 40 0	± 2 ± 2.5	± 3 ± 4
6	10	- 38 - 40 - 49	- 28 - 25 - 34	- 18 - 13 - 22	- 9 - 5 -11	- 12 - 5 - 14	- 5 0 - 6	- 8 0 - 9	-12 0 -15	- 18 0 - 22	- 30 0 - 36	- 48 0 - 58	± 3	± 4.5
10	18	- 50 - 61	- 32 - 43	- 16 - 27	- 6 -14	- 6 - 17	0 - 8	0 -11	0 -18	0 - 27	0 - 43	0 - 70	± 4	± 5.5
18	30	- 65 - 78	- 40 - 53	- 20 - 33	- 7 -16	- 7 - 20	- 9	0 -13	0 –21	0 - 33	0 - 52	0 - 84	± 4.5	± 6.5
30	50	- 80 - 96	- 50 - 66	- 25 - 41	- 9 -20	- 9 - 25	0 –11	0 -16	0 -25	0 - 39	0 - 62	0 –100	± 5.5	± 8
50	80	-100 -119	- 60 - 79	- 30 - 49	-10 -23	- 10 - 29	0 -13	0 -19	0 -30	0 - 46	0 - 74	0 -120	± 6.5	± 9.5
80	120	-120 -142	- 72 - 94	- 36 - 58	-12 -27	- 12 - 34	0 -15	0 -22	0 -35	0 - 54	0 - 87	0 -140	± 7.5	±11
120	180	-145 -170	- 85 -110	- 43 - 68	-14 -32	- 14 - 39	0 -18	0 -25	0 -40	0 - 63	0 -100	0 -160	± 9	±12.5
180	250	-170 -199	-100 -129	- 50 - 79	-15 -35	- 15 - 44	0 -20	0 -29	0 -46	0 - 72	0 -115	0 -185	±10	±14.5
250	315	-190 -222	-110 -142	- 56 - 88	-17 -40	- 17 - 49	0 -23	0 -32	0 -52	0 - 81	0 -130	0 -210	±11.5	±16
315	400	-210 -246	-125 -161	- 62 - 98	-18 -43	- 18 - 54	0 -25	0 -36	0 -57	0 - 89	0 -140	0 -230	±12.5	±18
400	500	-230 -270	-135 -175	- 68 -108	-20 -47	- 20 - 60	0 -27	0 -40	0 -63	0 - 97	0 -155	0 -250	±13.5	±20
500	630	-260 -304	-145 -189	- 76 -120	_	- 22 - 66	_	0 -44	0 -70	0 -110	0 -175	0 -280	_	±22
630	800	-290 -340	-160 -210	- 80 -130	-	- 24 - 74	_	0 –50	0 -80	0 -125	0 –200	0 -320	_	±25
800	1 000	-320 -376	-170 -226	- 86 -142	_	- 26 - 82	_	0 -56	0 -90	0 -140	0 -230	0 -360	_	±28
1 000	1 250	-350 -416	-195 -261	- 98 -164	_	- 28 - 94	_	0 -66	0 -105	0 -165	0 -260	0 -420	_	±33
1 250	1 600	-390 -468	-220 -298	-110 -188	_	- 30 -108	_	0 -78	0 -125	0 -195	0 –310	0 -500	_	±39
1 600	2 000	-430 -522	-240 -332	-120 -212	_	- 32 -124	_	0 -92	0 -150	0 -230	0 -370	0 -600	_	±46

U	 	ι.	"	•

													•c. p
j5	j6	j7	k5	k6	k7	m5	m6	n6	6 q	r6	r7		cation of er (mm)
JS	JO	,,	l KJ	KO	K/	1113	1110	110	ро	10	17	Over	or less
± 2	+ 4 - 2	+ 6 - 4	+ 4 0	+ 6 0	+10 0	+ 6 + 2	+ 8 + 2	+ 10 + 4	+ 12 + 6	+ 16 + 10	+ 20 + 10	_	3
+ 3 - 2	+ 6 - 2	+ 8 - 4	+ 6	+ 9 + 1	+13	+ 2 + 9 + 4	+ 12	+ 16	+ 20	+ 23	+ 27	3	6
+ 4 - 2	+ 7	+10	+ 7	+10	+ 1	+12	+ 15	+ 19	+ 24	+ 28	+ 34	6	10
+ 5 - 3	- 2 + 8 - 3	- 5 +12	+ 1 + 9	+ 1	+ 1 +19	+ 6 +15	+ 6 + 18 + 7	+ 10 + 23 + 12	+ 15 + 29	+ 19 + 34 + 23	+ 19 + 41 + 23	10	18
+ 5 - 4	+ 9 - 4	- 6 +13 - 8	+ 1 +11 + 2	+ 1 +15 + 2	+ 1 +23 + 2	+ 7 +17 + 8	+ 7 + 21 + 8	+ 12 + 28 + 15	+ 18 + 35 + 22	+ 23 + 41 + 28	+ 23 + 49 + 28	18	30
+ 6 - 5	+11 - 5	+15 -10	+13 + 2	+18 + 2	+27 + 2	+20 + 9	+ 25 + 9	+ 33 + 17	+ 42 + 26	+ 50 + 34	+ 59 + 34	30	50
+ 6	+12	+18	+15	+21	+32	+24		+ 39		+ 60 + 41	+ 71 + 41	50	65
- 7	- 7	-12	+ 2	+ 2	+ 2	+11	+ 30 + 11	+ 20	+ 51 + 32	+ 62 + 43	+ 73 + 43	65	80
+ 6	+13	+20	+18	+25	+38	+28	+ 35	+ 45	+ 59	+ 73 + 51	+ 86 + 51	80	100
- 9	- 9	-15	+ 3	+ 3	+ 3	+13	+ 13	+ 23	+ 37	+ 76 + 54	+ 89 + 54	100	120
										+ 88 + 63	+103 + 63	120	140
+ 7 -11	+14 -11	+22 -18	+21 + 3	+28 + 3	+43 + 3	+33 +15	+ 40 + 15	+ 52 + 27	+ 68 + 43	+ 90 + 65	+105 + 65	140	160
•••		10		. 0	. 0	110	1 10	/	1 10	+ 93 + 68	+108 + 68	160	180
										+106	+123	180	200
+ 7 -13	+16 -13	+25 -21	+24 + 4	+33 + 4	+50 + 4	+37 +17	+ 46 + 17	+ 60 + 31	+ 79 + 50	+109 + 80	+126 + 80	200	225
										+113 + 84	+130 + 84	225	250
+7	±16	±26	+27	+36	+56	+43	+ 52	+ 66	+ 88	+126 + 94	+146 + 94	250	280
-16	±10	120	+ 4	+ 4	+ 4	+20	+ 20	+ 34	+ 56	+130 + 98	+150 + 98	280	315
+7	±18	+29	+29	+40	+61	+46	+ 57	+ 73	+ 98	+144 +108	+165 +108	315	355
-18		-28	+ 4	+ 4	+ 4	+21	+ 21	+ 37	+ 62	+150 +114	+171 +114	355	400
+7	±20	+31	+32	+45	+68	+50	+ 63	+ 80	+108	+166 +126	+189 +126	400	450
-20		-32	+ 5	+ 5	+ 5	+23	+ 23	+ 40	+ 68	+172 +132	+195 +132	450	500
_	_	_	_	+44	+70	_	+ 70	+ 88	+122	+194 +150	+220 +150	500	560
				0	0		+ 26	+ 44	+ 78	+199 +155	+225 +155	560	630
_	_	_	_	+50	+80	_	+ 80	+100	+138	+225 +175	+255 +175	630	710
				0	0		+ 30	+ 50	+ 88	+235 +185	+265 +185	710	800
_	_	_	_	+56	+90	_	+ 90	+112	+156	+266 +210	+300 +210	800	900
				0	0		+ 34	+ 56	+100	+276 +220	+310 +220	900	1 000
_	_	_	_	+66	+105	_	+106 + 40	+132	+186	+316 +250 +326	+355 +250	1 000	1 120
				0	0		+ 40	+ 66	+120	+326 +260 +378	+365 +260 +425	1 120	1 250
_	_	_	_	+78 0	+125 0	_	+126 + 48	+156 + 78	+218 +140	+378 +300 +408	+425 +300 +455	1 250	1 400
							T 40	7 70	T 140	+330 +462	+330 +520	1 400	1 600
_	_	_	_	+92 0	+150 0	_	+150 + 58	+184 + 92	+262 +170	+462 +370 +492	+370 +550	1 600	1 800
				U	U		∓ J0	+ 32	+1/0	+492	+400	1 800	2 000

6. Deviations of holes used in common fits

	cation of er (mm) or less	E6	F6	F7	G6	G 7	H6	H7	Н8	J6	J7	JS6	JS7
_	3	+ 20 + 14	+ 12 + 6	+ 16 + 6	+ 8 + 2	+ 12 + 2	+ 6 0	+ 10 0	+ 14 0	+ 2 - 4	+ 4 - 6	± 3	± 5
3	6	+ 28 + 20	+ 18 + 10	+ 22 + 10	+ 12 + 4	+ 16 + 4	+ 8	+ 12	+ 18	+ 5 - 3	± 6	± 4	± 6
6	10	+ 34 + 25	+ 22 + 13	+ 28 + 13	+ 14 + 5	+ 20 + 5	+ 9	+ 15 0	+ 22	+ 5 - 4	+ 8 - 7	± 4.5	± 7.5
10	18	+ 43 + 32	+ 27 + 16	+ 34 + 16	+ 17 + 6	+ 24 + 6	+ 11	+ 18 0	+ 27 0	+ 6 - 5	+10 - 8	± 5.5	± 9
18	30	+ 53 + 40	+ 33 + 20	+ 41 + 20	+ 20 + 7	+ 28 + 7	+ 13	+ 21 0	+ 33	+ 8 - 5	+12 - 9	± 6.5	±10.5
30	50	+ 66 + 50	+ 41 + 25	+ 50 + 25	+ 25 + 9	+ 34 + 9	+ 16	+ 25	+ 39	+10 - 6	+14 –11	± 8	±12.5
50	80	+ 79 + 60	+ 49 + 30	+ 60 + 30	+ 29 + 10	+ 40 + 10	+ 19	+ 30	+ 46	+13 - 6	+18 -12	± 9.5	±15
80	120	+ 94 + 72	+ 58 + 36	+ 71 + 36	+ 34 + 12	+ 47 + 12	+ 22	+ 35	+ 54 0	+16 - 6	+22 -13	±11	±17.5
120	180	+110 + 85	+ 68 + 43	+ 83 + 43	+ 39 + 14	+ 54 + 14	+ 25 0	+ 40	+ 63 0	+18 - 7	+26 -14	±12.5	±20
180	250	+129 +100	+ 79 + 50	+ 96 + 50	+ 44 + 15	+ 61 + 15	+ 29	+ 46	+ 72	+22 - 7	+30 -16	±14.5	±23
250	315	+142 +110	+ 88 + 56	+108 + 56	+ 49 + 17	+ 69 + 17	+ 32	+ 52	+ 81	+25 - 7	+36 –16	±16	±26
315	400	+161 +125	+ 98 + 62	+119 + 62	+ 54 + 18	+ 75 + 18	+ 36	+ 57 0	+ 89	+29 - 7	+39 –18	±18	±28.5
400	500	+175 +135	+108 + 68	+131 + 68	+ 60 + 20	+ 83 + 20	+ 40	+ 63 0	+ 97	+33 - 7	+43 -20	±20	±31.5
500	630	+189 +145	+120 + 76	+146 + 76	+ 66 + 22	+ 92 + 22	+ 44	+ 70 0	+110	_	_	±22	±35
630	800	+210 +160	+130 + 80	+160 + 80	+ 74 + 24	+104 + 24	+ 50 0	+ 80	+125 0	_	_	±25	±40
800	1 000	+226 +170	+142 + 86	+176 + 86	+ 82 + 26	+116 + 26	+ 56 0	+ 90	+140	_	_	±28	±45
1 000	1 250	+261 +195	+164 + 98	+203 + 98	+ 94 + 28	+133 + 28	+ 66	+105 0	+165 0	_	_	±33	±52.5
1 250	1 600	+298 +220	+188 +110	+235 +110	+108 + 30	+155 + 30	+ 78 0	+125 0	+195	_	_	±39	±62.5
1 600	2 000	+332 +240	+212 +120	+270 +120	+124 + 32	+182 + 32	+ 92 0	+150 0	+230 0	_	_	±46	±75

K5	K6	K7	M5	M6	M7	N5	N6	N7	P6	P7	Classific diamete	ation of er (mm)
											Over	or less
- 4	- 6	- 10	- 2 - 6	- 2 - 8	- 2 - 12	- 4 - 8	- 4 - 10	- 4 - 14	- 6 - 12	- 6 - 16	_	3
0 - 5	+ 2 - 6	+ 3 - 9	- 3 - 8	- 1 - 9	0 - 12	- 7 -12	- 5 - 13	- 4 - 16	- 9 - 17	- 8 - 20	3	6
+ 1 - 5	+ 2 - 7	+ 5 - 10	- 4 -10	- 3 - 12	0 - 15	- 8 -14	- 7 - 16	- 4 - 19	- 12 - 21	- 9 - 24	6	10
+ 2 - 6	+ 2 - 9	+ 6 - 12	- 4 -12	- 4 - 15	0 - 18	- 9 -17	- 9 - 20	- 5 - 23	- 15 - 26	- 11 - 29	10	18
+ 1 - 8	+ 2 -11	+ 6 - 15	- 5 -14	- 4 - 17	0 - 21	-12 -21	- 11 - 24	- 7 - 28	- 18 - 31	- 14 - 35	18	30
+ 2 - 9	+ 3 -13	+ 7 - 18	- 5 -16	- 4 - 20	0 - 25	-13 -24	- 12 - 28	- 8 - 33	- 21 - 37	- 17 - 42	30	50
+ 3 -10	+ 4 -15	+ 9 - 21	- 6 -19	- 5 - 24	- 30	–15 –28	- 14 - 33	- 9 - 39	- 26 - 45	- 21 - 51	50	80
+ 2 -13	+ 4 -18	+ 10 - 25	- 8 -23	- 6 - 28	0 - 35	–18 –33	- 16 - 38	- 10 - 45	- 30 - 52	- 24 - 59	80	120
+ 3 -15	+ 4 -21	+ 12 - 28	- 9 -27	- 8 - 33	0 - 40	-21 -39	- 20 - 45	- 12 - 52	- 36 - 61	- 28 - 68	120	180
+ 2 -18	+ 5 -24	+ 13 - 33	-11 -31	- 8 - 37	0 - 46	-25 -45	- 22 - 51	- 14 - 60	- 41 - 70	- 33 - 79	180	250
+ 3 -20	+ 5 -27	+ 16 - 36	-13 -36	- 9 - 41	0 - 52	-27 -50	- 25 - 57	- 14 - 66	- 47 - 79	- 36 - 88	250	315
+ 3 -22	+ 7 –29	+ 17 - 40	-14 -39	- 10 - 46	0 - 57	-30 -55	- 26 - 62	- 16 - 73	- 51 - 87	- 41 - 98	315	400
+ 2 -25	+ 8 -32	+ 18 - 45	-16 -43	- 10 - 50	0 - 63	-33 -60	- 27 - 67	- 17 - 80	- 55 - 95	- 45 -108	400	500
_	0 -44	0 - 70	_	- 26 - 70	- 26 - 96	_	- 44 - 88	- 44 -114	- 78 -122	- 78 -148	500	630
_	0 –50	0 - 80	_	- 30 - 80	- 30 -110	_	- 50 -100	- 50 -130	- 88 -138	- 88 -168	630	800
_	0 –56	0 - 90	_	- 34 - 90	- 34 -124	_	- 56 -112	- 56 -146	-100 -156	-100 -190	800	1 000
_	0 -66	0 -105	_	- 40 -106	- 40 -145	_	- 66 -132	- 66 -171	-120 -186	-120 -225	1 000	1 250
_	0 -78	0 -125	_	- 48 -126	- 48 -173	_	- 78 -156	- 78 -203	-140 -218	-140 -265	1 250	1 600
_	0 -92	0 -150	_	- 58 -150	- 58 -208	_	- 92 -184	- 92 -242	-170 -262	-170 -320	1 600	2 000

Worldwide Sales Offices

NSK LTD.-HEADQUARTERS, TOKYO, JAPAN NSK HONG KONG LTD. HONG KONG A Suite 705, 7th Floor, South Tower, World Finance Centre, Harbour City, T.S.T, Nissei Bldg., 1-6-3 Ohsaki, Shinagawa-ku, Tokyo 141-8560, Japan Kowloon, Hong Kong, China INDUSTRIAL MACHINERY BUSINESS DIVISION-HEADQUARTERS P: +852-2739-9933 F: +852-2739-9323 P: +81-3-3779-7227 F: +81-3-3779-7644 SHENZHEN Room 624-626, 6/F, Kerry Center, Renminnan Road, Shenzhen, Guangdong, China AUTOMOTIVE BUSINESS DIVISION-HEADQUARTERS P: +86-755-25904886 F: +86-755-25904883 P: +81-3-3779-7189 F: +81-3-3779-7917 Taiwan: Africa TAIWAN NSK PRECISION CO., LTD. South Africa: 11F No 87 Song Jiang Rd. Jhongshan District Tainei City 104 Taiwan R O C TAIPEL -> NSK SOUTH AFRICA (PTY) LTD. P: +886-2-2509-3305 F: +886-2-2509-1393 27 Galaxy Avenue, Linbro Business Park, Sandton 2146, South Africa 3F -2 No. 540 Sec. 3, Taiwan Blyd., Xitun Dist., Taichung City 407, Taiwan R.O.C. TAICHLING P: +27-11-458-3600 F: +27-11-458-3608 P: 1886_4_2708_3393 F: 1886_4_2708_3395 Asia and Oceania TAINAN 5F. No.8, Daye 1st Rd., Southern Taiwan Science Park, Tainan City 741, Taiwan R.O.C. Australia: NSK AUSTRALIA PTY. LTD. P: +886-6-505-5861 F: +886-6-505-5061 MELBOURNE A 11 Dalmore Drive, Scoresby, Victoria 3179, Australia TAIWAN NSK TECHNOLOGY CO., LTD. P: +61-3-9765-4400 F: +61-3-9764-8304 11F., No.87, Song Jiang Rd., Jhongshan District, Taipei City 104, Taiwan R.O.C. SYDNEY Unit 10, 24-28 River Road West, Parramatta, New South Wales, 2150, Australia P: +886-2-2509-3305 F: +886-2-2509-1393 P: +61-2-8843-8100 F: +61-2-9893-8406 TAICHUNG 10F-3, No.925, Sec.4, Taiwan Blvd., Xitun Dist., Taichung City 407 Taiwan R.O.C. RRISBANE 1/69 Selhuret Street, Coopers Plains, Oueensland 4108, Australia P: +886-4-2358-2945 F: +886-4-2358-7682 P: ±61_7_3347_2600 F: ±61_7_3345_5376 DEBTH Unit 1, 71 Tacoma Circuit, Canning Vale, Western Australia 6155, Australia TAINAN 5F. No.8, Dave 1st Rd., Southern Taiwan Science Park, Tainan City 741, P: +61-8-9256-5000 F: +61-8-9256-1044 Taiwan B O C New Zealand P: ±886-6-505-5861 F: ±886-6-505-5061 NSK NEW ZEALAND LTD. AUCKLAND 3 Te Apunga Place, Mt. Wellington, Auckland 1060, New Zealand NSK INDIA SALES CO.PVT.LTD. P: +64-9-276-4992 F: +64-9-276-4082 6th Floor, Bannari Amman Towers, No.29 Dr. Radhakrishnan Salai, Mylapore Chennai-600 004 Tamil Nadu, India China: NSK (SHANGHAI) TRADING CO., LTD. P: +91-44-2847-9600 F: +91-44-2847-9601 GURGAON Unit No-202, 2nd Floor, Block-A, Iris Tech Park, Sector-48, Sohna Road No 8 NSK Rd. Huagiao Economic Development Zone, Kunshan, Jiangsu, China (215332). JIANGSU P: +86-512-5796-3000 F: +86-512-5796-3300 Gurgaon-122018, Haryana, India P: +91-124-4104-530 F: +91-124-4104-532 NSK (CHINA) INVESTMENT CO., LTD. 321, 'A' Wing, Ahura Centre, 82, Mahakali Caves Boad, Andheri (Fast), Mumbai JIANGSU ☆ No.8 NSK Rd., Huagiao Economic Development Zone, Kunshan, Jiangsu, China (215332) MUMBA P: +86-512-5796-3000 F: +86-512-5796-3300 -400 093. India BELING Room 2116, Beijing Fortune Bldg., 5 Dong San Huan Bei Lu, Chao Yang District, P: +91-22-2838-7787 F: +91-22-2838-5191 Beijing, China (100004) Indonesia: P: +86-10-6590-8161 F: +86-10-6590-8166 PT. NSK INDONESIA Summitmas II, 6th Floor, JI. Jend Sudirman Kav. 61-62, Jakarta 12190, Indonesia TIAN JIN Room 06, 09F The Exchange Tower 2, No. 189 NanJing Road, Heping District, **JAKARTA** P: +62-21-252-3458 F: +62-21-252-3223 Tianiin, China (300050) P: +86-22-8319-5030 F: +86-22-8319-5033 Korea: CHANGCHUN Room 2311, Building A, Zhongyin Building, 727 Xi'an Road, Changchun, Jilin, NSK KOREA CO., LTD. China (130061) SEOUL Posco Center (West Wing) 9F, 440, Teheran-ro, Gangnam-gu, Seoul, 135-777, Korea P: +86-431-8898-8682 F: +86-431-8898-8670 P: +82-2-3287-0300 F: +82-2-3287-0345 Room 1101 China Resources Building, No. 286 Oingnian Street SHENYANG Malaysia NSK REARINGS (MAI AVSIA) SDN BHD Heping District, Shenyang Liaoning, China (110004) SHAH ALAM & No. 2 Jalan Pemaju U1/15 Seksyen U1. Hicom Glenmarie Industrial Park P: +86-24-2334-2868 F: +86-24-2334-2058 40150 Shah Alam, Selangor, Malaysia DALIAN Room 1805 Xiwang Tower, No.136 Zhongshan Road Zhongshan District, Dalian, Liaoning, China (116001) P: +60-3-7803-8859 F: +60-3-7806-5982 P: +86-411-8800-8168 F: +86-411-8800-8160 PRAI No.24, Jalan kikik, Taman Inderawasih, 13600 Prai, Penang, Malaysia P: +60-4-3902275 F: +60-4-3991830 NANJING Room A1 22F, Golden Eagle International Plaza, No.89 Hanzhong Road, Nanjing, JOHOR BAHRU 88 Jalan Ros Merah 2/17, Taman Johor Jaya, 81100 Johor Bahru, Johor, Malaysia Jiangsu, China (210029) P: +86-25-8472-6671 F: +86-25-8472-6687 P: +60-7-3546290 F: +60-7-3546291 FUZHOU Room 1801-1811, B1#1A Class Office Building, Wanda Plaza, No.8 Aojiang Road, Gr. Floor, 89 Jalan Bendahara, 31650 Ipoh, Perak, Malaysia Fuzhou, China (350009) P: +60-5-2555000 F: +60-5-2553373 P: +86-591-8380-1030 F: +86-591-8380-1225 Philippines Room 1110. New World International Trade Tower I, No 568 Jianshe Road, Wuhan, NSK REPRESENTATIVE OFFICE WUHAN 8th Floor The Salcedo Towers 169 H.V. dela Costa St., Hubei China (430000) MANILA Salcedo Village Makati City. Philippines 1227 P: +86-27-8556-9630 F: +86-27-8556-9615 P: +63-2-893-9543 F: +63-2-893-9173 OINGDAO Room 802, Farglory International Plaza, No.26 Xianggang Zhong Road, Shinan District, Qingdao, Shandong, China (266071) Singapore P: +86-532-5568-3877 F: +86-532-5568-3876 NSK INTERNATIONAL (SINGAPORE) PTE LTD. GUANGZHOU Room 2302, TaiKoo Hui Tower 1, No.385 Tianhe Road, 238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684 SINGAPORE P: +65-6496-8000 F: +65-6250-5845 Tianhe District, Guangzhou, China (510620) P: +86-20-3817-7800 F: +86-20-3786-450 NSK SINGAPORE (PRIVATE) LTD. 238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684 CHANGSHA Room 1048, 10/F, Zhongtian Plaza, No.766 WuyiRoad, Changsha, Hunan, China (410005) P: +65-6496-8000 F: +65-6250-5845 P: +86-731-8571-3100 F: +86-731-8571-3255 LUOYANG Room 1108, Fanoda Hotel, 6 XiYuan Road, LuoYang HeNan, China (471003) Thailand: P: +86-379-6069-6188 F: +86-379-6069-6180 NSK BEARINGS (THAILAND) CO.,LTD. 26 Soi Onnuch 55/1 Pravet Subdistrict, Pravet District, Bangkok 10250, Thailand XI'AN Room 1007, B Changan Metropolls Center88 Nanguanzheng Steet, Xi'an, Shanxi. BANGKOK P: +66-2320-2555 F: +66-2320-2826 China (710068) P: +86-29-8765-1896 F: +86-29-8765-1895 Vietnam: CHONGOING Room 2306, Unit B, No.137, Keyuan 2nd Road, Jiulongpo District, Chonqing, NSK VIETNAM CO., LTD. China (400039) Techno Center, Room 204-205, Thang Long Industrial Park, Dong Anh District, HANO P: +86-23-6806-5310 F: +86-23-6806-5292 Hanoi, Vietnam CHENGDU Room1117, Lippo Tower, No.62 North Kehua Road, Chengdu, Sichuan, China (610041) P: +84-4-3955-0159 F: +84-4-3955-0158 NSK REPRESENTATIVE OFFICE P: +86-28-8528-3680 F: +86-28-8528-3690 HO CHI MINH CITY Suite 307, Metropolitan Building, 235 Dong Khoi Street, District 1, HCMC, Vietnam NSK CHINA SALES CO., LTD. JIANGSU No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China (215332) P: +84-8-3822-7907 F: +84-8-3822-7910 P: +86-512-5796-3000 F: +86-512-5796-3300

Worldwide Sales Offices P: Phone F: Fax \$\price : Head Office

Brazil:

JOINVILLE

RECIFE

Daru

LIMA

Mexico:

MONTERREY

NSK PERU S.A.C.

NSK BRASIL LTDA.

30150-311

NSK RODAMIENTOS MEXICANA, S.A. DE C.V.

SAO PAULO 🌣 Rua 13 de Maio, 1633-14th Andar-Bela Vista-CEP 01327-905 São Paulo, SP, Brazil

Rua Blumenau, 178-sala 910-Centro Joinville-SC, Brazil 89204-250

Av. Conselheiro Aguiar, 2738-6th andar-conj. 604-Boa Viagem Recife-PE, Brazil 51020-020

Av. Caminos del Inca 670. Ofic : # 402. Santiago del Surco. Lima. Perú.

Av. Ricardo Margain 575, IOS Torre C, Suite 516, Parque Corporativo Santa

PORTO ALEGRE Av. Cristovão Colombo, 1694-sala 202-Floresta Porto Alegre-RS, Brazil 90560 001

BELO HORIZONTE Rua Ceara 1431-4th andar-sala 405-Funcionarios Belo Horizonte-MG. Brazil

P: +55-11-3269-4786 F: +55-11-3269-4720

P: +55-31-3274-2591 F: +55-31-3273-4408

P: +55-51-3222-1324 F: +55-51-3222-2599

P: +55-81-3326-3781 F: +55-81-3326-5047

P: +51-1-652-3372 F: +51-1-638-0555

MEXICO CITY & Av. Presidente Juarez No.2007 Lote 5. Col. San Jeronimo Tepetlacalco.

Tlalnepantla, Estado de Mexico, Mexico, C.P.54090

Engracia, San Pedro Garza Garcia, N.L. Mexico, C.P.66267

P: +52-55-3682-2900 F: +52-55-3682-2937

P: +52-81-8000-7300 F: +52-81-8000-7095

Europe

United Kingdom

NSK EUROPE LTD. (EUROPEAN HEADQUARTERS)

Belmont Place, Belmont Road, Maidenhead, Berkshire SL6 6TB, U.K. MAIDENHEAD

P: +44-1628-509-800 F: +44-1628-509-808

NSK UK LTD.

Northern Road, Newark, Nottinghamshire NG24 2JF, U.K. NEWARK

P: +44-1636-605-123 F: +44-1636-605-000

France

NSK FRANCES AS PARIS

Quartier de l'Europe, 2 Bue Georges Guynemer, 78283 Guyancourt, France

P: +33-1-30-57-39-39 F: +33-1-30-57-00-01

Germany:

NSK DEUTSCHLAND GMBH

DUSSELDORF & Harkortstrasse 15, D-40880 Ratingen, Germany P: +49-2102-4810 F: +49-2102-4812-290

Liebknechtstrasse 33, D-70565 Stuttgart-Vaihingen, Germany STUTTGART P: +49-711-79082-0 F: +49-711-79082-289

WOLFSBURG Tischlerstrasse 3, D-38440 Wolfsburg, Germany P: +49-5361-27647-10 F: +49-5361-27647-70

Italy: NSK ITALIA S.P.A.

MILANO Via Garibaldi 215, Garbagnate Milanese (Milano) 20024, Italy F: +39-299-025778

Netherlands:

NSK EUROPEAN DISTRIBUTION CENTRE B.V.

De Kroonstraat 38, 5048 AP Tilburg, Netherlands P: +31-13-4647647 F: +31-13-4647648

Poland: NSK REPRESENTATIVE OFFICE

WARSAW Ul. Migdalowa 4/73, 02-796, Warsaw, Poland

P: +48-22-645-1525 F: +48-22-645-1529

Russia:

SAINT-PETERSBURG Office I 703, Bldg 29, 18th Line of Vasilievskiy Ostrov, Saint-Petersburg, Russia, 199178

P: +7-812-332-5071 F: +7-812-332-5072

NSK SPAIN S.A.

BARCELONA C/Tarragona, 161 Cuerpo Bajo, 2a Planta, 08014, Barcelona, Spain

P: +34-93-289-2763 F: +34-93-433-5776

Turkey

NSK RULMANLARI ORTA DOGU TIC. LTD. STJ.

ISTANBUL 19 Mayis Mah. Ataturk Cad., Ulya Engin Is Merkezi No: 68 Kat. 6, P.K.: 34734, Kozvatagi-Istanbul Turkev

P: +90-216-477-7111 F: +90-216-477-7174

United Arab Emirates

NSK BEARINGS GULF TRADING CO. DUBA

JAFZA View 19, Floor 24 Office LB192402/3, PO Box 262163, DownTown Jebel Ali. Dubai LIAF

P: +971-4-804-8207 F: +971-4-884-7227

North and South America

United States of America:

NSK AMERICAS, INC. (AMERICAN HEADQUARTERS)

ANN ARBOR 4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A.

P: +1-734-913-7500 F: +1-734-913-7511

NSK CORPORATION

4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A.

P: +1-734-913-7500 F: +1-734-913-7511

NSK PRECISION AMERICA, INC.

FRANKLIN A 3450 Bearing Drive, Franklin, Indiana 46131, U.S.A.

P: +1-317-738-5000 F: +1-317-738-5050

780 Montague Expressway, Suite 504, San Jose, California, 95131, U.S.A.

P: +1-408-944-9400 F: +1-408-944-9405 NSK LATIN AMERICA, INC.

MIAM

3470 NW 82 Avenue Suite 625. Miami FL 33122. U.S.A.

P: +1-305-477-0605 F: +1-305-477-0377

Canada

NSK CANADA INC.

5585 McAdam Road, Mississauga, Ontario, Canada I 47 1N4 P: +1-905-890-0740 F: +1-800-800-2788

MONTREAL 2150-32E Avenue Lachine, Quebec, Canada H8T 3H7

P: +1-514-633-1220 F: +1-800-800-2788

VANCOUVER 3353 Wayburne Drive, Burnaby, British Columbia, Canada V5G 4I 4

P: +1-877-994-6675 F: +1-800-800-2788 Argentina

NSK ARGENTINA SRL

BLIENOS AIRES Garcia del Rio 2477 Piso 7 Oficina "A" (1429) Buenos Aires-Argentina

P: +54-11-4704-5100 F: +54-11-4704-0033

<As of January 2015> For the latest information, please refer to the NSK website.

NSK Ltd. has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and without any obligation on the part of the manufacturer. Every care has been taken to ensure the accuracy of the data contained in this brochure, but no liability can be accepted for any loss or damage suffered through errors or omissions. We will gratefully acknowledge any additions or corrections.

